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Detecting Performance Anomalies in Cloud Platform 
Applications

Hiranya Jayathilaka,

Chandra Krintz,

Rich Wolski

Computer Science Department, Univ. of California, Santa Barbara

Abstract

We present Roots, a full-stack monitoring and analysis system for performance anomaly detection 

and bottleneck identification in cloud platform-as-a-service (PaaS) systems. Roots facilitates 

application performance monitoring as a core capability of PaaS clouds, and relieves the 

developers from having to instrument application code. Roots tracks HTTP/S requests to hosted 

cloud applications and their use of PaaS services. To do so it employs lightweight monitoring 

of PaaS service interfaces. Roots processes this data in the background using multiple statistical 

techniques that in combination detect performance anomalies (i.e. violations of service-level 

objectives). For each anomaly, Roots determines whether the event was caused by a change in the 

request workload or by a performance bottleneck in a PaaS service. By correlating data collected 

across different layers of the PaaS, Roots is able to trace high-level performance anomalies 

to bottlenecks in specific components in the cloud platform. We implement Roots using the 

AppScale PaaS and evaluate its overhead and accuracy.
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1 INTRODUCTION

Cloud computing is a popular approach for deploying applications at scale [1], [2]. This 

widespread adoption of cloud computing, particularly for deploying web applications, is 

facilitated by ever-deepening software abstractions. These abstractions elide the complexity 

necessary to enable scale, while making application development easier and faster. But they 

also obscure the runtime details of cloud applications, making the diagnosis of performance 

problems challenging. Therefore, the rapid expansion of cloud technologies combined with 

their increasing opacity has intensified the need for new techniques to monitor applications 

deployed in cloud platforms [3].

Application developers and cloud administrators generally wish to monitor application 

performance, detect anomalies, and identify bottlenecks. To obtain this level of operational 

insight into cloud-hosted applications, the cloud platforms must support data gathering 

and analysis capabilities that span the entire software stack of the cloud. However, most 

cloud technologies available today do not provide adequate application monitoring support. 
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Cloud administrators must therefore trust the application developers to implement necessary 

instrumentation at the application level. This typically entails using third party, external 

monitoring software [4], [5], [6], which significantly increases the effort and financial cost 

of maintaining applications. Developers must also ensure that their instrumentation is both 

correct, and does not degrade application performance. Nevertheless, since the applications 

depend on extant cloud services (e.g. scalable database services, scalable in-memory caching 

services, etc.) that are performance opaque, it is often difficult, if not impossible to diagnose 

the “root cause” of a performance problem using such extrinsic forms of monitoring.

Further compounding the performance diagnosis problem, today’s cloud platforms are very 

large and complex [3], [7]. They are comprised of many layers, where each layer may 

consist of many interacting components. Therefore when a performance anomaly manifests 

in a user application, it is often challenging to determine the exact layer or the component 

of the cloud platform that may be responsible for it. Facilitating this level of comprehensive 

root cause analysis requires both data collection at different layers of the cloud, and 

mechanisms for correlating the events recorded at different layers.

Moreover, performance monitoring for cloud applications must be customizable. Different 

applications have different monitoring requirements in terms of data gathering frequency 

(sampling rate), length of the history to consider when performing statistical analysis 

(sample size), and the performance SLOs (service level objectives [8]) that govern the 

application. Cloud monitoring should be able to facilitate these diverse requirements on a 

per-application basis. Designing such customizable and extensible performance monitoring 

frameworks that are built into the cloud platforms is a novel and challenging undertaking.

To address these challenges, we develop a full-stack, application performance monitor 

(APM) called Roots [9], as a cloud Platform-as-a-service (PaaS) extension. PaaS clouds 

provide a set of managed services which developers compose into applications, via high-

level interfaces (i.e., defined and exported via a software development kit (SDKs)). We 

design Roots as another PaaS service so that it can be managed automatically and directly 

capture events and performance data across the PaaS without requiring application code 

instrumentation.

Prior work outlines several key requirements for cloud APMs [3], [7], which we incorporate 

into Roots. They are:

Scalability Roots is lightweight, and does not cause any noticeable overhead in application 

performance. It puts strict upper bounds on the data kept in memory. The persistent data is 

accessed on demand, and can be removed after their usefulness has expired.

Multitenancy Roots facilitates configuring monitoring policies at the granularity of 

individual applications. Users can employ different statistical analysis methods to process 

the monitoring data in ways that are most suitable for their applications.

Complex application architecture Roots collects data from the entire cloud stack (load 

balancers, app servers, built-in PaaS services etc.). It correlates data gathered from different 

parts of the cloud platform, and performs systemwide bottleneck identification.
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Dynamic resource management Cloud platforms are dynamic in terms of their magnitude 

and topology. Roots captures performance events of applications by augmenting the key 

components of the cloud platform. When new processes/components become active in 

the cloud platform, they inherit the same augmentations, and start reporting to Roots 

automatically.

Autonomy Roots detects performance anomalies online without manual intervention. When 

Roots detects a problem, it attempts to automatically identify the root cause by analyzing 

available workload and service invocation data.

Roots collects data from the logs and the interfaces of internal PaaS components. In addition 

to high-level metrics including request throughput and latency, Roots measures PaaS service 

invocations and their duration. It uses batch operations and asynchronous communication to 

minimize its overhead on request latency.

When Roots detects a performance anomaly in an application, it attempts to identify its root 

cause by analyzing the workload data and the performance of the internal PaaS services 

on which the application depends. Roots first determines if the detected anomaly was 

most likely caused by a change in the application workload (e.g. a sudden spike in the 

number of client requests), or by an internal bottleneck in the cloud platform (e.g. a slow 

database query). For the latter, Roots employs a statistical bottleneck identification method 

that combines quantile analysis, change point detection, and linear regression to identify 

the root cause bottleneck (i.e. the PaaS component that most likely caused the performance 

degredation).

We also devise a mechanism for Roots that distinguishes between different paths of 

execution in the application (control flows). Our approach does not require static analysis 

but instead uses the runtime data collected by Roots. This mechanism calculates the 

proportion of user requests processed by each path and uses it to characterize the 

workload of an application (e.g. read-heavy vs write-heavy workload in a data management 

application). Using this approach, Roots is able to detect when application workloads 

change.

We prototype Roots as an extension to the AppScale, open source PaaS [10]. We evaluate 

the feasibility and the efficacy of Roots by conducting a series of empirical trials using our 

prototype. We show that Roots is able to detect manually injected faults within 5 minutes of 

their injection with very low overhead. We also show that Roots is able to scale to tens of 

thousands concurrent applications.

2 BACKGROUND

PaaS clouds have been experiencing a rapid growth in popularity in the recent years [11], 

[12]. They typically host web-accessible (HTTP/S) applications, while providing sandboxed 

execution, high scalability, and high availability. PaaS clouds are complex distributed 

systems that provide scalability by automatically allocating resources for applications on 

the fly (auto scaling), and availability through the execution of multiple instances of each 

application.
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PaaS applications rely on a set of managed, scalable services offered by the underlying 

cloud platform. We refer to these services as PaaS kernel services. PaaS clouds like Google 

App Engine [13] and Microsoft Azure [14] export the kernel services via a well-defined 

set of APIs, that are collectively referred to as the PaaS “software development kit” (SDK). 

The application servers provide the linkage between application code and the PaaS kernel 

services. A set of front-end servers expose web application entry points, and provide load-

balancing for HTTP/S clients invoking the applications.

By providing most of the functionality that applications require via kernel services, the 

PaaS model significantly reduces the amount of code that applications developers must 

write. PaaS clouds also relieve developers of the burden of configuration, deployment, and 

scaling through platform automation. In combination, the PaaS model significantly increases 

programmer productivity. However, a downside of this approach is that these features also 

hide the performance details of PaaS applications. Since the applications spend most of 

their time executing kernel services [15], it is challenging for the developers to diagnose 

performance issues given the opacity of the cloud platform’s internal implementation.

One way to circumvent this problem is to instrument application code [4], [5], [6], 

and continuously monitor the time taken by various parts of the application. But such 

application-level instrumentation is tedious, and error prone thereby misleading those 

attempting to diagnose problems. Moreover, the instrumentation code may slow down or 

alter the application’s performance. In contrast, implementing data collection and analysis 

as a kernel service built into the PaaS cloud allows performance diagnosis to be a “curated” 

service that is reliably managed by the cloud platform.

3 ROOTS

Roots is a holistic system for application performance monitoring (APM), performance 

anomaly detection, and root cause analysis. It is operated by the cloud providers as a builtin 

PaaS service that collects data from all the cloud components user applications interact with. 

Data collection, storage and analysis all take place within the cloud, and the insights gained 

are communicated to both the cloud administrators and application developers as needed. 

The key intuition behind Roots is that, as an intrinsic PaaS service, Roots has visibility 

into all activities of the PaaS cloud, across layers. Moreover, since the PaaS applications 

we have observed spend most of their time in PaaS kernel services [15], we hypothesize 

that we can infer application performance from observations of how the application uses the 

platform, i.e. by efficiently monitoring the time spent in PaaS kernel services. If we are able 

to do so, then we can avoid application instrumentation and its downsides, while detecting 

performance anomalies and identifying their root cause quickly and accurately.

The PaaS model that we assume with Roots is one in which the clients of a web application 

engage in a “service-level agreement” (SLA) [8] with the “owner” or operator of the 

application that is hosted in a PaaS cloud. The SLA stipulates a response-time “service-level 

objective” (SLO) that, if violated, constitutes a breech of the agreement. If the performance 

of an application deteriorates to the point that at least one of its SLOs is violated, we 

treat it as an anomaly. Moreover, we refer to the process of diagnosing the reason for an 
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anomaly as root cause analysis. For a given anomaly, the root cause could be a change in the 

application workload or a bottleneck in the application runtime. Bottlenecks may occur in 

the application code, or in the PaaS kernel services that the application relies on.

Roots collects performance data across the cloud platform stack, and aggregates it based 

on request/response. It uses this data to infer application performance, and to identify SLO 

violations (performance anomalies). Roots can further handle different types of anomalies in 

different ways. We overview each of these functionalities in the remainder of this section.

3.1 Data Collection and Correlation

We must address two issues when designing a monitoring framework for a system as 

complex as a PaaS cloud.

1. Collecting data from multiple different layers.

2. Correlating data collected from different layers.

Each layer of the cloud platform is only able to collect data regarding the state changes 

that are local to it. A layer cannot monitor state changes in other layers due to the 

level of encapsulation provided by layers. However, processing an application request 

involves cooperation of multiple layers. To facilitate system-wide monitoring and bottleneck 

identification, we must gather data from all the different layers involved in processing a 

request. To combine the information across layers we correlate the data, and link events 

related to the same request together.

To enable this, we augment the front-end server of the cloud platform. Specifically, we have 

it tag incoming application requests with unique identifiers. This request identifier is added 

to the HTTP request as a header, which is visible to all internal components of the PaaS 

cloud. Next, we configure data collecting agents within the platform to record the request 

identifiers along with any events they capture. This way we record the relationship between 

application requests, and the resulting local state changes in different layers of the cloud, 

without breaking the existing level of abstraction in the cloud architecture. This approach 

is also scalable, since the events are recorded in a distributed manner without having to 

maintain any state at the data collecting agents. Roots aggregates the recorded events by 

request identifier to efficiently group the related events as required during analysis.

Figure 1 illustrates the high-level architecture of Roots, and how it fits into the PaaS stack. 

APM components are shown in grey. The small grey boxes attached to the PaaS components 

represent the agents used to instrument the cloud platform. In the diagram, a user request 

is tagged with the identifier value R at the front-end server. This identifier is passed down 

to the lower layers of the cloud along with the request. Events that occur in the lower 

layers while processing this request are recorded with the request identifier R, so Roots can 

correlate them later. For example, in the data analysis component we can run a filter query 

to select all the events related to a particular request (as shown in the pseudo query in the 

diagram). Similarly, Roots can run a “group by” query to select all events, and aggregate 

them by the request identifier.
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The figure also depicts Roots data collection across the PaaS stack (i.e. its full stack 

monitoring). From the front-end server, Roots collects information related to incoming 

application requests. It does so by scraping HTTP server access logs, which are exported by 

most web servers (e.g. Apache HTTPD or Nginx).

At the application server level, Roots collects logs and metrics related to the application 

runtime from the application servers and operating system. Roots also employs a set of 

per-application benchmarking processes that periodically probes different applications to 

measure their performance. These are lightweight, stateless processes managed by the Roots 

framework. These processes send their measurements to the data storage component for 

analysis.

Roots collects information about all kernel invocations made by the applications by 

intercepting kernel invocations at service interface entrypoints. For each PaaS kernel 

invocation, we capture the following parameters.

• Source application making the kernel invocation

• Timestamp

• A sequence number indicating the order of PaaS kernel invocations within an 

application request

• Target kernel service and operation

• Execution time of the invocation

• Request size, hash, and other parameters

These PaaS kernel invocation details enable Roots to trace the execution of application 

requests through the PaaS without instrumenting the application itself.

Finally, at the lowest level Roots collects information related to virtual machines, containers 

and their resource usage. We gather metrics on network usage by individual components 

which is useful for traffic engineering use cases. We also scrape hypervisor and container 

manager logs to track when resources are allocated and released.

To avoid introducing delays to the application request processing flow, we implement Roots 

data collecting agents as asynchronous tasks. Agents buffer data locally and periodically 

write to data storage components using separate background tasks and batch communication 

operations. These persistence operations must run with sufficient frequency so as to not 

impede the analysis that Roots employs to detect anomalies soon after they occur.

3.2 Data Storage and Analysis

Roots stores all collected data in a database capable of efficient persistent storage and 

querying. We facilitate this via indexing data by application ID and timestamp. Roots also 

performs periodic garbage collection on data that is no longer pertinent to analyses.

The data analysis components consist of two extensible abstractions: anomaly detectors 
and anomaly handlers. Anomaly detectors are processes that periodically analyze the data 
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for each deployed application. Roots supports multiple detector implementations, each of 

which is a statistical method for detecting performance anomalies. Detectors are configured 

on a per-application basis, making it possible for different applications to use different 

anomaly detectors. Roots also supports multiple concurrent anomaly detectors for the same 

application, which can be used to compare the efficacy of different detection strategies 

concurrently. Each anomaly detector has configurable parameters for execution schedule and 

sliding window duration. We use a period 60 seconds for the former and the previous hour 

for the latter, in our prototype and evaluation. Window size impacts the time range of events 

processed by the detector when invoked. We employ a fixed-size window to bound Roots 

memory use.

When an anomaly detector detects an anomaly in application performance, it sends an event 

to a collection of anomaly handlers. The event encapsulates a unique anomaly identifier, 

timestamp, application identifier and the source detector’s sliding window that correspond 

to the anomaly. Anomaly handlers are configured globally (i.e. each handler receives events 

from all detectors), but each handler filters events of interest. Handlers can also trigger 

events, which are delivered to all the listening anomaly handlers. Similar to detectors, Roots 

supports multiple anomaly handler implementations, e.g., one for logging anomalies, one 

for sending alert emails, one for updating a dashboard, etc. Additionally, Roots provides 

two special anomaly handlers: a workload change analyzer and a bottleneck identifier. 

Communication between detectors and handlers is performed via shared memory.

The ability of anomaly handlers to filter the events they process and to trigger events directly 

facilitates construction of elaborate event flows with sophisticated logic. For example, the 

workload change analyzer can run some analysis upon receiving an anomaly event from any 

anomaly detector. If an anomaly cannot be associated with a workload change, it can trigger 

a different type of event. The bottleneck identifier, can be configured to execute only when 

such an event occurs. Using this mechanism, Roots performs workload change analysis first 

and systemwide bottleneck identification only when necessary.

3.3 Roots Process Management

Most data collection activities in Roots can be treated as passive – i.e. they happen 

automatically as the applications receive and process requests in the cloud platform. They 

do not require explicit scheduling or management. In contrast, application benchmarking 

and data analysis are active processes that require explicit scheduling and management. This 

is achieved by grouping benchmarking and data analysis processes into units called Roots 

pods.

Each Roots pod is responsible for starting and maintaining a preconfigured set of 

benchmarkers and data analysis processes (i.e. anomaly detectors and handlers). These 

processes are light enough, so as to pack a large number of them into a single pod. Pods 

are self-contained entities, and there is no inter-communication between pods. Processes in 

a pod can efficiently communicate with each other using shared memory, and call out to the 

central Roots data storage to retrieve collected performance data for analysis. Furthermore, 

pods can be replicated for high availability, and application load can be distributed among 

multiple pods for scalability.
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Figure 2 illustrates a Roots pod monitoring two applications. It consists of two 

benchmarking processes, three anomaly detectors and two anomaly handlers. The 

anomaly detectors and handlers are shown communicating via an internal shared memory 

communication bus.

4 PROTOTYPE IMPLEMENTATION

To investigate the efficacy of Roots as an approach to implementing performance diagnostics 

as a PaaS service, we have developed a working prototype, and a set of algorithms that uses 

it to automatically identify SLO-violating performance anomalies. For anomalies not caused 

by increases in workload (HTTP request rate), Roots performs further analysis to identify 

the bottleneck component that is responsible for the issue.

We implement our prototype in AppScale [10], an open source PaaS cloud that is API 

compatible with Google App Engine (GAE) [13]. This compatibility enables us to evaluate 

our approach using real applications developed by others since GAE applications run on 

AppScale without modification. Because AppScale is open source, we were able to modify 

its implementation minimally to integrate Roots.

Figure 3 shows an overview of our prototype implementation. Roots components are shown 

in grey, while the PaaS components are shown in blue. We use ElasticSearch [16] as the 

data storage component of our prototype. ElasticSearch is ideal for storing large volumes 

of structured and semi-structured data [17]. It can be deployed as a scalable distributed 

service with sharding and replication. ElasticSearch continuously organizes and indexes 

data, making the information available for fast and efficient querying. Additionally, it 

also provides powerful data filtering and aggregation features, which greatly simplify the 

implementations of high-level data analysis algorithms.

We configure AppScale’s front-end server (based on Nginx) to tag all incoming application 

requests with a unique identifier. This identifier is attached to the incoming request as a 

custom HTTP header. All data collecting agents in the cloud extract this identifier, and 

include it as an attribute in all the events reported to ElasticSearch.

We implement a number of data collecting agents in AppScale to gather runtime information 

from all major components. These agents buffer data locally, and store them in ElasticSearch 

in batches. Events are buffered until the buffer accumulates 1MB of data, subject to a hard 

time limit of 15 seconds. This ensures that the events are promptly reported to the Roots 

data storage while keeping the memory footprint of the data collecting agents small and 

bounded. For scraping server logs, and storing the extracted entries in ElasticSearch, we use 

the Logstash tool [18]. To capture the PaaS kernel invocation data, we augment AppScale’s 

PaaS kernel implementation, which is derived from the GAE PaaS SDK. More specifically 

we implement an agent that records all PaaS SDK calls, and reports them to ElasticSearch 

asynchronously. Most metrics captured by our prototype are latency-related (e.g. latency of 

internal RPC calls and latency of cloud SDK calls). We wish to expand Roots’ capability to 

capture a more diverse range of performance metrics in our future work.
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We implement Roots pods as standalone Java server processes. Threads are used to 

run benchmarkers, anomaly detectors and handlers concurrently within each pod. Pods 

communicate with ElasticSearch via a web API, and many of the data analysis tasks 

such as filtering and aggregation are performed in ElasticSearch itself. Some of the more 

sophisticated statistical analysis tasks (e.g. change point detection and linear regression as 

described below) are implemented in the R language, and the Roots pods integrate with R 

using the Rserve protocol [19].

4.1 SLO-violating Anomalies

As described previously, Roots defines anomalies as performance events that trigger SLO 

violations. Thus, we devise a detector to automatically identify when a SLO violation 

has occurred. This anomaly detector allows application developers to specify simple 

performance SLOs for deployed applications. A performance SLO consists of an upper 

bound on the application response time (T), and the probability (p) that the application 

response time falls under the specified upper bound. A general performance SLO can be 

stated as: “application responds under T milliseconds p% of the time”.

When enabled for a given application, this anomaly detector starts a benchmarking process 

that periodically measures the response time of the target application. Probes made by the 

benchmarking process are several seconds apart in time (sampling rate), so as to not strain 

the application with load. The detector then periodically analyzes the collected response 

time measurements to check if the application meets the specified performance SLO. 

Whenever it detects that the application has failed to meet the SLO, it triggers an anomaly 

event. The SLO-based anomaly detector supports following configuration parameters:

• Performance SLO: Response time upper bound (T), and the probability (p).

• Sampling rate: Rate at which the target application is benchmarked.

• Analysis rate: Rate at which the anomaly detector checks whether the application 

has failed to meet the SLO.

• Minimum samples: Minimum number of samples to collect before checking for 

SLO violations.

• Window size: Length of the sliding window (in time) to consider when checking 

for SLO violations. This acts as a limit on the number of samples to keep in 

memory. This has to be large enough so that each analysis cycle has enough data 

points to calculate results with statistical significance.

Together, the window size and sampling rate impose an upper bound on the amount of 

data that needs to be kept in memory for calculations. Analysis rate governs how often the 

collected data is aggregated. Cloud administrators and application developers can tune these 

parameters to meet their specific accuracy and capacity goals.

In order to prevent the detector from needlessly reporting the same anomaly multiple times, 

we purge all the data from anomaly detector’s sliding window whenever it detects an SLO 

violation. Therefore, the detector cannot check for further SLO violations until it repopulates 

the sliding window with the minimum number of samples. This implies that each anomaly 
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is followed by a “warm up” period. For instance, with a sampling rate of 15 seconds, and a 

minimum samples count of 100, the warm up period can last up to 25 minutes.

4.2 Path Distribution Analysis

We have implemented a path distribution analyzer in Roots whose function it is to identify 

recurring sequences of PaaS kernel invocations made by an application. Each identified 

sequence corresponds to a path of execution through the application code (i.e. a path through 

the control flow graph of the application). This detector is able to determine the frequency 

with which each path is executed over time. Then, using this information which we term 

a “path distribution,” it reports an anomaly event when the distribution of execution paths 

changes.

For each application, a path distribution is comprised of the set of execution paths available 

in that application, along with the proportion of requests that executed each path. It is an 

indicator of the type of request workload handled by an application. For example, consider a 

data management application that has a read-only execution path, and a read-write execution 

path. If 90% of the requests execute the read-only path, and the remaining 10% of the 

requests execute the read-write path, we may characterize the request workload as read-

heavy.

Roots path distribution analyzer facilitates computing the path distribution for each 

application with no static analysis, by only analyzing the runtime data gathered from the 

applications. It periodically computes the path distribution for a given application. If it 

detects that the latest path distribution is significantly different from the distributions seen 

in the past, it triggers an event. This is done by computing the mean request proportion for 

each path (over a sliding window of historical data), and then comparing the latest request 

proportion values against the means. If the latest proportion is off by more than n standard 

deviations from its mean, the detector considers it to be an anomaly. The sensitivity of the 

detector can be configured by changing the value of n, which defaults to 2.

Path distribution analyzer enables developers to know when the nature of their application 

request workload changes. For example in the previous data management application, if 

suddenly 90% of the requests start executing the read-write path, the Roots path distribution 

analyzer will detect the change. Similarly it is also able to detect when new paths of 

execution are being invoked by requests (a form of novelty detection).

4.3 Workload Change Analyzer

Performance anomalies can arise either due to bottlenecks in the cloud platform or changes 

in the application workload. When Roots detects a performance anomaly (i.e. an application 

failing to meet its performance SLO), it needs to be able to determine whether the failure 

is due to an increase in workload or a bottleneck that has suddenly manifested. Roots 

employs a workload change analyzer to detect workload changes. This Roots component is 

implemented as an anomaly handler, which gets executed every time an anomaly detector 

identifies a performance anomaly. Note that this is different from the path distribution 

analyzer, which is implemented as an anomaly detector. While the path distribution analyzer 
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looks for changes in the type of the workload, the workload change analyzer looks for 

changes in the workload size or rate.

Workload change analyzer uses change point detection algorithms to analyze the historical 

trend of the application workload. We use the “number of requests per unit time” as the 

metric of workload size. Our implementation of Roots supports a number of well known 

change point detection algorithms (PELT [20], binary segmentation and CL method [21]), 

any of which can be used to detect level shifts in the workload size. Algorithms like PELT 

favor long lasting shifts (plateaus) in the workload trend, over momentary spikes. We expect 

momentary spikes to be fairly common in workload data. But it is the plateaus that cause 

request buffers to fill up, and consume server-side resources for extended periods of time, 

thus causing noticeable performance anomalies.

4.4 Bottleneck Identification

Applications running in the cloud consist of user code executed in the application server, 

and remote service calls to various PaaS kernel services. An AppScale cloud consists of the 

same kernel services present in the Google App Engine public cloud (datastore, memcache, 

urlfetch, blobstore, user management etc.). We consider each PaaS kernel invocation, and 

the code running on the application server as separate components. Each application request 

causes one or more components to execute, and any one of the components can become a 

bottleneck to cause performance anomalies. The purpose of bottleneck identification is to 

find, out of all the components executed by an application, the one component that is most 

likely to have caused application performance to deteriorate.

Suppose an application makes n PaaS kernel invocations (X1, X2, …Xn) for each request. 

For any given application request, Roots captures the time spent on each kernel invocation 

(TX1, TX2, …TXn), and the total response time (T total) of the request. These time values are 

related by the formula T total = TX1 + TX2 + … + TXn + r, where r is all the time spent in the 

resident application server executing user code (i.e. the time spent not executing PaaS 

kernel services).r is not directly measured in Roots, since that requires code instrumentation. 

However, in previous work [15] we showed that typical PaaS-hosted web applications spend 

most of their time invoking PaaS kernel services. We make use of these findings, and assert 

that for typical, well-designed PaaS applications r ≪ TX1 + TX2 + … + TXn.

Roots bottleneck identification mechanism first selects up to four components as possible 

candidates for the bottleneck. These candidates are then further evaluated by a weighted 

algorithm to determine the actual bottleneck in the cloud platform.

4.4.1 Relative Importance of PaaS Kernel Invocations—The purpose of this 

metric is to find the component that is contributing the most towards the variance in the 

total response time. We select a window W  in time which includes a sufficient number of 

application requests, and ending at the point when the performance anomaly was detected. 

Note that for each application request in W , we can fetch the total response time (T total), and 

the time spent on individual PaaS kernel services (TXn) from the Roots data storage. Then 

we take all the T total values and the corresponding TXn values in W , and fit a linear model of 
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the form T total  = TX1 + TX2 + … + TXn using linear regression. Here we leave r out deliberately, 

since it is typically and ideally small.

Occasionally in AppScale, we observe a request where r is large relative to TXn. Often these 

events are correlated with large TXn values as well leading us to suspect that the effect may 

be due to an issue with the AppScale infrastructure (e.g. a major garbage collection event 

in the PaaS software). Overall, Roots detects these events and identifies them correctly (cf 

subsections 4.4.3 and 4.4.4 below), but they perturb the linear regression model. To prevent 

that, we filter out requests where the r value is too high. This is done by computing the mean 

(μr) and standard deviation (σr) of r over the selected window, and removing any requests 

where r > μr + 1.65σr.

Once the regression model has been computed, we run a relative importance algorithm [22] 

to rank each of the regressors (i.e. TXn values) based on their contribution to the variance 

of T total. We use the LMG method [23] which is resistant to multicollinearity, and provides 

a break down of the R2 value of the regression according to how strongly each regressor 

influences the variance of the dependent variable. The relative importance values of the 

regressors add up to the R2 of the linear regression. We consider 1 − R2 (the portion of 

variance in T total not explained by the PaaS kernel invocations) as the relative importance 

of r. The component associated with the highest ranked regressor is chosen as a bottleneck 

candidate. Statistically, this is the component that causes the application response time to 

vary the most.

4.4.2 Changes in Relative Importance—Next we divide the time window W  into 

equal-sized segments, and compute the relative importance metrics for regressors within 

each segment. We also compute the relative importance of r within each segment. This way 

we can obtain a time series of relative importance values for each regressor and r. These 

time series represent how the relative importance of each component has changed over time.

We subject each relative importance time series to change point analysis to detect if the 

relative importance of any particular variable has increased recently. If such a variable can 

be found, then the component associated with that variable is also a potential candidate 

for the bottleneck. The candidate selected by this method represents a component whose 

performance has been stable in the past, and has become variable recently.

4.4.3 High Quantiles—Next we analyze the individual distributions of TXn and r. Out 

of all the available distributions we find the one whose quantile values are the largest. 

Specifically, we compute a high quantile (e.g. 0.99 quantile) for each distribution. The 

component, whose distribution contains the largest quantile value is chosen as another 

potential candidate for the bottleneck. This component can be considered having a high 

latency in general.

4.4.4 Tail End Values—Finally, Roots analyzes each TXk and r distribution to identify 

the one with the largest tail values with respect to a particular high quantile. For each 
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maximum (tail end) latency value t, we compute the metric P t
q as the percentage difference 

between t and a target quantile q of the corresponding distribution. We set q to 0.99 in our 

experiments. Roots selects the component with the distribution that has the largest P t
q as 

another potential bottleneck candidate. This method identifies candidates that contain rare, 

high-valued outliers (point anomalies) in their distributions.

4.4.5 Selecting Among the Candidates—The above four methods may select up 

to four candidate components for the bottleneck. We designate the candidate chosen by a 

majority of methods as the actual bottleneck. Ties are broken by assigning more priority to 

the candidate chosen by the relative importance method.

5 RESULTS

We evaluate the efficacy of Roots as a performance monitoring and root cause analysis 

system for PaaS applications. To do so, we consider its ability to identify and characterize 

SLO violations. For violations that are not caused by a change in workload, we evaluate 

Roots’ ability to identify the PaaS component that is the cause of the performance anomaly. 

We also evaluate the Roots path distribution analyzer, and its ability to identify execution 

paths along with changes in path distributions. Finally, we investigate the performance and 

scalability of the Roots prototype.

5.1 Anomaly Detection: Accuracy and Speed

To begin the evaluation of the Roots prototype we experiment with the SLO-based anomaly 

detector, using a simple HTML-producing Java web application called “guestbook”. This 

application allows users to login, and post comments. It uses the AppScale datastore 

service to save the posted comments, and the AppScale user management service to handle 

authentication. Each request processed by guestbook results in two PaaS kernel invocations 

– one to check if the user is logged in, and another to retrieve the existing comments from 

the datastore. We conduct all our experiments on a single node AppScale cloud except where 

specified. The node itself is an Ubuntu 14.04 VM with 4 virtual CPU cores (clocked at 

2.4GHz) and 4GB of memory.

We run the SLO-based anomaly detector on guestbook with a sampling rate of 15 seconds, 

an analysis rate of 60 seconds, and a window size of 1 hour. We set the minimum sample 

count to 100, and run a series of experiments with different SLOs on the guestbook 

application. Specifically, we fix the SLO success probability at 95%, and set the response 

time upper bound to μg + nσg ⋅ μg and σg represent the mean and standard deviation of the 

guestbook’s response time. We learn these two parameters apriori by benchmarking the 

application. Then we obtain three different upper bound values for the guestbook’s response 

time by setting n to 2, 3 and 5 and denote the resulting three SLOs L1, L2 and L3 respectively.

We also inject performance faults into AppScale by modifying its code to cause the datastore 

service to be slow to respond. This fault injection logic activates once every hour, and 

slows down all datastore invocations by 45ms over a period of 3 minutes. We chose 45ms 

because it is equal to μg + 5σg for the AppScale deployment under test. Therefore this delay 

is sufficient to violate all three SLOs used in our experiments. We run a similar set of 
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experiments where we inject faults into the user management service of AppScale. Each 

experiment is run for a period of 10 hours.

Table 1 shows how the number of anomalies detected by Roots in a 10 hour period varies 

when the SLO is changed. The number of anomalies drops noticeably when the response 

time upper bound is increased. When the L3 SLO (45ms) is used, the only anomalies 

detected are the ones caused by our hourly fault injection mechanism. As the SLO is 

tightened by lowering the upper bound, Roots detects additional anomalies. These additional 

anomalies result from a combination of injected faults, and other naturally occurring faults 

in the system. That is, Roots detected some naturally occurring faults (temporary spikes in 

application latency), when a number of injected faults were still in the sliding window of the 

anomaly detector. Together these two types of faults caused SLO violations, usually several 

minutes after the fault injection period has expired.

Next we analyze how fast Roots can detect anomalies in an application. We first consider 

the performance of guestbook under the L1 SLO while injecting faults into the datastore 

service. Figure 4 shows anomalies detected by Roots as events on a time line. The horizontal 

axis represents passage of time. The red arrows indicate the start of a fault injection period, 

where each period lasts up to 3 minutes. The blue arrows indicate the Roots anomaly 

detection events. Note that every fault injection period is immediately followed by an 

anomaly detection event, implying near real time reaction from Roots, except in case of the 

fault injection window at 20:00 hours. Roots detected another naturally occurring anomaly 

(i.e. one that we did not explicitly inject but nonetheless caused an SLO violation) at 19:52 

hours, which caused the anomaly detector to go into the warm up mode. Therefore Roots 

did not immediately react to the faults injected at 20:00 hours. But as soon as the detector 

became active again at 20:17, it detected the anomaly.

Figure 5 shows the anomaly detection time line for the same application and SLO, while 

faults are being injected into the user management service. Here too we see that Roots 

detects anomalies immediately following each fault injection window.

In all of our experiments, Roots detected the injected anomalies in 158 seconds on average 

with a maximum time to detection of 289 seconds (i.e. less than 5 minutes). This duration 

can be further controlled by changing the analysis rate and window size of the detectors.

5.2 Path Distribution Analyzer: Accuracy and Speed

Next we evaluate the effectiveness and accuracy of the path distribution analyzer. For this we 

employ two different applications.

key-value store This application provides the functionality of an online key-value store. 

It allows users to store data objects in the cloud where each object is given a unique key. 

The objects can then be retrieved, updated or deleted using their keys. Different operations 

(create, retrieve, update and delete) are implemented as separate paths of execution in the 

application.
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cached key-value store This is a simple extension of the regular key-value store, which 

adds caching to the read operation using the AppScale’s memcache service. The application 

contains separate paths of execution for cache hits and cache misses.

We first deploy the key-value store on AppScale, and populate it with a number of data 

objects. Then we run a test client against it which generates a read-heavy workload. On 

average this workload consists of 90% read requests and 10% write requests. The test client 

is also programmed to randomly send bursts of write-heavy workloads. These bursts consist 

of 90% write requests on average, and each burst lasts up to 2 minutes. Figure 6 shows the 

write-heavy bursts as events on a time line (indicated by red arrows). Note that almost every 

burst is immediately followed by an anomaly detection event (indicated by blue arrows). The 

only time we do not see an anomaly detection event is when multiple bursts are clustered 

together in time (e.g. 3 bursts between 17:04 and 17:24 hours). In this case Roots detects the 

very first burst, and then goes into the warm up mode to collect more data. Between 20:30 

and 21:00 hours we also had two instances where the read request proportion dropped from 

90% to 80% due to random chance. Roots identified these two incidents also as anomalous.

We conduct a similar experiment using the cached key-value store. Here, we run a test client 

that generates a workload that is mostly served from the cache. This is done by repeatedly 

executing read requests on a small selected set of object keys. However, the client randomly 

sends bursts of traffic requesting keys that are not likely to be in the application cache, thus 

resulting in many cache misses. Each burst lasts up to 2 minutes. As shown in figure 7, 

Roots path distribution analyzer correctly detects the change in the workload (from many 

cache hits to many cache misses), nearly every time the test client injects a burst of traffic 

that triggers the cache miss path of the application. The only exception is when multiple 

bursts are clumped together, in which case only the first raises an alarm in Roots.

5.3 Workload Change Analyzer Accuracy

Next we evaluate the Roots workload change analyzer. In this experiment we run a varying 

workload against the key-value store application for 10 hours. The load generating client is 

programmed to maintain a mean workload level of 500 requests per minute. However, the 

client is also programmed to randomly send large bursts of traffic at times of its choosing. 

During these bursts the client may send more than 1000 requests a minute, thus impacting 

the performance of the application server that hosts the key-value store. Figure 8 shows how 

the application workload has changed over time. The workload generator has produced 6 

large bursts of traffic during the period of the experiment, which appear as tall spikes in 

the plot. Note that each burst is immediately followed by a Roots anomaly detection event 

(shown by red dashed lines). In each of these 6 cases, the increase in workload caused a 

violation of the application performance SLO. Roots detected the corresponding anomalies, 

and determined them to be caused by changes in the workload size. As a result, bottleneck 

identification was not triggered for any of these anomalies. Even though the bursts of traffic 

appear to be momentary spikes, each burst lasts for 4 to 5 minutes thereby causing a lasting 

impact on the application performance.
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5.4 Bottleneck Identification Accuracy

Next we evaluate the bottleneck identification capability of Roots. We first discuss the 

results obtained using the guestbook application, and follow with results obtained using a 

more complex application. In the experimental run illustrated in figure 4, Roots determined 

that all the detected anomalies except for one were caused by the AppScale datastore 

service. This is consistent with our expectations since in this experiment we artificially inject 

faults into the datastore. The only anomaly that is not traced back to the datastore service is 

the one that was detected at 14:32 hours. This is indicated by the blue arrow with a small 

square marker at the top. For this anomaly, Roots concluded that the bottleneck is the local 

execution at the application server (r). We have verified this result by manually inspecting 

the AppScale logs and traces of data collected by Roots. As it turns out, between 14:19 and 

14:22 the application server hosting the guestbook application experienced some problems, 

which caused request latency to increase significantly.

Similarly, in the experiment shown in figure 5, Roots determined that all the anomalies are 

caused by the user management service, except in one instance. This is again inline with 

our expectations since in this experiment we inject faults into the user management service. 

For the anomaly detected at 04:30 hours, Roots determined that local execution time is the 

primary bottleneck. Like earlier, we have manually verified this diagnosis to be accurate.

In order to evaluate how the bottleneck identification performs when an application makes 

more than 2 PaaS kernel invocations, we conduct another experiment using an application 

called “stock-trader”. This application allows setting up organizations, and simulating 

trading of stocks between the organizations. The two main operations in this application are 

buy and sell. Each of these operations makes 8 calls to the AppScale datastore. According 

to our previous work [15], 8 kernel invocations in the same path of execution is very rare 

in web applications developed for a PaaS cloud. The probability of finding an execution 

path with more than 5 kernel invocations in a sample of PaaS-hosted applications is less 

than 1%. Therefore the stock-trader application is a good extreme case example to test the 

Roots bottleneck identification support. We execute a number of experimental runs using 

this application, and here we present the results from two of them. In all experiments we 

configure the anomaly detector to check for the response time SLO of 177ms with 95% 

success probability.

In one of our experimental runs we inject faults into the first datastore query executed by 

the buy operation of stock-trader. The fault injection logic runs every two hours, and lasts 

for 3 minutes. The duration of the full experiment is 10 hours. Figure 9 shows the resulting 

event sequence. Note that every fault injection event is immediately followed by a Roots 

anomaly detection event. There are also four additional anomalies in the time line which 

were SLO violations caused by a combination of injected faults, and naturally occurring 

faults in the system. For all the anomalies detected in this test, Roots correctly selected the 

first datastore call in the application code as the bottleneck. The additional four anomalies 

occurred because a large number of injected faults were in the sliding window of the 

detector. Therefore, it is accurate to attribute those anomalies also to the first datastore query 

of the application.
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Figure 10 shows the results from a similar experiment where we inject faults into the second 

datastore query executed by the operation. Here also Roots detects all the artificially induced 

anomalies along with a few extras. All the anomalies, except for one, are determined to be 

caused by the second datastore query of the buy operation. The anomaly detected at 08:56 

(marked with a square on top of the blue arrow) is attributed to the fourth datastore query 

executed by the application. We have manually verified this diagnosis to be accurate.

In the experiments illustrated in figures 4, 5, 9, and 10 we maintain the application request 

rate steady throughout the 10 hour periods. Therefore, the workload change analyzer of 

Roots did not detect any significant shifts in the workload level. Consequently, none of 

the anomalies detected in these 4 experiments were attributed to a workload change. The 

bottleneck identification was therefore triggered for each anomaly.

To evaluate the agreement level among the four bottleneck candidate selection methods, we 

analyze 407 anomalies detected by Roots over a period of 3 weeks. We see that except on 

13 instances, in all the remaining cases 2 or more candidate selection methods agreed on 

the final bottleneck component chosen. This implies that most of the time (96.8%) Roots 

identifies bottlenecks with high confidence.

5.5 Multiple Applications in a Clustered Setting

To demonstrate how Roots can be used in a multi-node environment, we set up an AppScale 

cloud on a cluster of 10 virtual machines (VMs). VMs are provisioned by a Eucalyptus 

(IaaS) cloud, and each VM is comprised of 2 CPU cores and 2GB memory. Then we 

proceed to deploy 8 instances of the guestbook application on AppScale. We use the 

multitenant support in AppScale to register each instance of guestbook as a different 

application (G1 through G8). Each instance is hosted on a separate application server 

instance, has its own private namespace on the AppScale datastore, and can be accessed 

via a unique URL. We disable auto-scaling support in the AppScale cloud, and inject faults 

into the datastore service of AppScale in such a way that queries issued from a particular 

VM, are processed with a 100ms delay. We identify the VM by its IP address in our test 

environment, and shall refer to it as V f in the discussion. We trigger the fault injection every 

2 hours, and when activated it lasts for up to 5 minutes. Then we monitor the applications 

using Roots for a period of 10 hours. Each anomaly detector is configured to check for the 

75ms response time SLO with 95% success rate. ElasticSearch, Logstash and the Roots pod 

are deployed on a separate VM.

Figure 11 shows the resulting event sequence. Note that we detect anomalies in 3 

applications (G4, G6 and G7) immediately after each fault injection. Inspecting the topology 

of our AppScale cluster revealed that these were the only 3 applications that were hosted 

on V f. As a result, the bi-hourly fault injection caused their SLOs to get violated. Other 

applications did not exhibit any SLO violations since we are monitoring against a very high 

response time upper bound. In each case Roots detected the SLO violations 2–3 minutes into 

the fault injection period. As soon as that happened, the anomaly detectors of G4, G6 and 

G7 entered the warmup mode. But our fault injection logic kept injecting faults for at least 

2 more minutes. Therefore when the anomaly detectors reactivated after 25 minutes (time to 

collect the minimum sample count), they each detected another SLO violation. As a result, 
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we see another set of detection events approximately half an hour after the fault injection 

events.

We conclude our discussion of Roots efficacy with a summary of our results. Table 2 

provides an overview of all the results presented so far, broken down into four features that 

we wish to see in an anomaly detection and bottleneck identification system.

5.6 Roots Performance Overhead and Scalability

Next we evaluate the performance overhead incurred by Roots on the applications deployed 

in the cloud platform. We are particularly interested in understanding the overhead of 

recording the PaaS kernel invocations made by each application, since this feature requires 

some changes to the PaaS kernel implementation. We deploy a number of applications on 

a vanilla AppScale cloud (with no Roots), and measure their request latencies. We use 

the popular Apache Bench tool to measure the request latency under a varying number of 

concurrent clients. We then take the same measurements on an AppScale cloud with Roots, 

and compare the results against the ones obtained from the vanilla AppScale cloud. In both 

environments we disable the auto-scaling support of AppScale, so that all client requests are 

served from a single application server instance. In our prototype implementation of Roots, 

the kernel invocation events get buffered in the application server before they are sent to 

the Roots data storage. We wish to explore how this feature performs when the application 

server is under heavy load.

Table 3 shows the comparison of request latencies. We discover that Roots does not add 

a significant overhead to the request latency in any of the scenarios considered. In all the 

cases, the mean request latency when Roots is in use, is within one standard deviation 

from the mean latency when Roots is not in use. The latency increases with the number of 

concurrent clients (since all requests are handled by a single application server), but still 

there is no evidence of any detrimental overhead from Roots even under load. This is due to 

the asynchronous nature of Roots, which buffers monitoring events in memory, and reports 

them to ElasticSearch out of the request processing flow.

Finally, to demonstrate how lightweight and scalable Roots is, we deploy a Roots pod on 

a virtual machine with 4 CPU cores and 4GB memory. To simulate monitoring multiple 

applications, we run multiple concurrent anomaly detectors in the pod. Each detector is 

configured with a 1 hour sliding window. We vary the number of concurrent detectors 

between 100 and 10000, and run each configuration for 2 hours. We track the memory and 

CPU usage of the pod during each of these runs using the jstat and pidstat tools.

Figure 12 illustrates the maximum resource utilization of the Roots pod for different counts 

of concurrent anomaly detectors. We see that with 10000 concurrent detectors, the maximum 

CPU usage is 238%, where 400% is the available limit for 4 CPU cores. The maximum 

memory usage in this case is only 778 MB. Since each anomaly detector operates with a 

fixed-sized window, and they bring additional data into memory only when required, the 

memory usage of the Roots pod generally stays low. We also experimented with larger 

concurrent detector counts, and we were able to pack up to 40000 detectors into the pod 

before getting constrained by the CPU capacity of our VM. This result implies that we can 
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monitor tens of thousands of applications using a single pod, thereby scaling up to a very 

large number of applications using only a handful of pods.

6 RELATED WORK

Roots falls into the category of performance anomaly detection and bottleneck identification 

(PADBI) systems. PADBI systems observe, in real time, the performance behaviors of a 

running system or application, collecting vital measurements at discrete time intervals to 

create baseline models of typical system behaviors [7]. Such systems play a crucial role 

in achieving guaranteed service reliability, performance and quality of service by detecting 

performance issues in a timely manner before they escalate into major outages or SLO 

violations [24]. PADBI systems are thoroughly researched, and well understood in the 

context of traditional standalone and network applications. Many system administrators are 

familiar with frameworks like Nagios [25], Open NMS [26] and Zabbix [27] which can be 

used to collect data from a wide range of applications and devices.

However, the paradigm of cloud computing, being relatively new, is yet to be fully 

penetrated by PADBI systems research. The size, complexity and the dynamic nature of 

cloud platforms make performance monitoring a particularly challenging problem. The 

existing technologies like Amazon CloudWatch [28], New Relic [4] and DataDog [6] 

facilitate monitoring cloud applications by instrumenting low level cloud resources (e.g. 

virtual machines), and application code. But such technologies are either impracticable or 

insufficient in PaaS clouds where the low level cloud resources are hidden under layers of 

managed services, and the application code is executed in a sandboxed environment that 

is not always amenable to instrumentation. When code instrumentation is possible, it tends 

to be burdensome, error prone, and detrimental to the application’s performance. Roots on 

the other hand is built into the fabric of the PaaS cloud giving it full visibility into all the 

activities that take place in the entire software stack.

Our work borrows heavily from the past literature [3], [7] that detail the key features 

of cloud APMs. Ibidunmoye et al highlight the importance of multilevel bottleneck 

identification as an open research question [7]. This is the ability to identify bottlenecks 

from a set of top-level application service components, and further down through the 

virtualization layer to system resource bottlenecks. We detail our early investigations into 

doing so in [9]. The work herein expands upon both the technical detail and empirical 

evaluation of this initial work. We also present a novel mechanism for detecting changes in 

application workload patterns by analyzing the request execution paths. Roots is unique in 

that it supports identifying execution paths and performance bottlenecks using only the set 

of services provided by the PaaS kernel.

Similar to systems like X-Trace [29] and PinPoint [30], Roots also tags request messages 

in order to trace their flow through a complex distributed system. X-Trace records network 

activities across protocols and layers, but does not support root cause analysis. PinPoint 

traces interactions among J2EE middleware components to localize faults. Roots on the 

other hand traces the PaaS kernel service calls made by an application while processing 

requests.
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Cherkasova et al developed an online performance modeling technique to detect anomalies 

in traditional transaction processing systems [31]. They divide time into contiguous 

segments, such that within each segment the application workload (volume and type of 

transactions) and resource usage (CPU) can be fit to a linear regression model. Segments for 

which a model cannot be found, are considered anomalous. Then they remove anomalous 

segments from the history, and perform model reconciliation to differentiate between 

workload changes and application problems. While this method is powerful, it requires 

instrumenting application code to detect different external calls (e.g. database queries) 

executed by the application. Since the model uses different transaction types as parameters, 

some prior knowledge regarding the transactions also needs to be fed into the system. The 

algorithm is compute intensive due to the need for continuous segmentation and model 

fitting.

Dean et al implemented PerfCompass [32], an anomaly detection and localization method 

for IaaS clouds. They instrument the VM operating system kernels to capture the system 

calls made by user applications. Anomalies are detected by looking for unusual increases in 

system call execution time. They group system calls into execution units (processes, threads 

etc), and analyze how many units are affected by any given anomaly. Based on this metric 

they conclude if the problem was caused by a workload change or an application level issue. 

We take a similar approach in Roots, in that we capture the PaaS kernel invocations made by 

user applications.

Nguyen et al presented PAL, another anomaly detection and localization mechanism 

targeting distributed applications deployed on IaaS clouds [33]. Similar to Roots, they also 

use an SLO monitoring approach to detect application performance anomalies. When an 

anomaly is detected, they perform change point analysis on gathered resource usage data 

(CPU, memory and network) to identify the anomaly onset time.

Magalhaes and Silva have made significant contributions in the area of anomaly detection 

and root cause analysis in web applications [34], [35]. They compute the correlation 

between application workload and latency. If the level of correlation drops significantly, 

they consider it to be an anomaly. A similar correlation analysis between workload and other 

local system metrics (e.g. CPU and memory usage) is used to identify the system resource 

that is responsible for a given anomaly. They also use an aspect-oriented programming 

model in their target applications, which allows them to easily instrument application 

code, and gather metrics regarding various remote services (e.g. database) invoked by 

the application. This data is subjected to a series of simple linear regressions to perform 

root cause analysis. This approach assumes that remote services are independent of each 

other. However, in a cloud platform where kernel services are deployed in the same 

shared infrastructure, this assumption might not hold true. Therefore we improve on their 

methodology, and use multiple linear regression with relative importance to identify cloud 

platform bottlenecks. Relative importance is resistant to multicollinearity, and therefore does 

not require the independence assumption.

Anomaly detection is a general problem not restricted to performance analysis. Researchers 

have studied anomaly detection from many different points of view, and as a result many 
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viable algorithms and solutions have emerged over time [36]. Prior work in performance 

anomaly detection and root cause analysis can be classified as statistical methods (e.g. 

[33], [35], [37], [38]) and machine learning methods (e.g. [39], [40], [41]). While we use 

many statistical methods in our work (change point analysis, relative importance, quantile 

analysis), Roots is not tied to any of these techniques. Rather, we provide a framework on 

top of which new anomaly detectors and anomaly handlers can be built.

7 CONCLUSIONS AND FUTURE WORK

As the paradigm of cloud computing grows in popularity, the need for monitoring cloud-

hosted applications is becoming critical. Application developers and cloud administrators 

wish to detect performance anomalies in cloud applications, and perform root cause analysis 

to diagnose problems. However, the high level of abstraction provided by cloud platforms, 

coupled with their scale and complexity, makes performance diagnosis a daunting problem.

In this paper, we present Roots, an efficient and accurate monitoring framework for 

applications deployed in a PaaS cloud. Roots is designed to function as a curated service 

built into the cloud platform. It relieves the application developers from having to configure 

their own monitoring solutions, or instrument application code. Roots captures runtime data 

from all the different layers involved in processing application requests. It correlates events 

across PaaS layers and identifies bottlenecks across the PaaS stack.

Roots monitors applications for compliance with service level objectives (SLOs) and detects 

anomalies via SLO violations. When Roots detects an anomaly, it analyzes workload data 

and application runtime data to perform root cause analysis. Roots is able to determine 

whether a particular anomaly was caused by a change in the application workload, or 

due to a bottleneck in the cloud platform. Our workload change point detection algorithm 

distinguishes between different paths of execution though an application. Our bottleneck 

identification algorithm uses a combination of linear regression, quantile analysis, and 

change point detection to identify the PaaS service that is the most likely cause of the 

anomaly.

We evaluate Roots using a prototype built for the AppScale PaaS. Our results indicate 

that Roots is effective at detecting workload changes and performance bottlenecks within 

5 minutes from when they start and introduces no false positives. Our empirical trials also 

show that the mean latency of the PaaS platform with Roots is within one standard deviation 

of the mean latency of the cloud platform without Roots, for the workloads we studied.

In our future work, we plan to expand the data gathering capabilities of Roots into the low 

level virtual machines and containers that host cloud platform services. We intend to tap 

into the hypervisors and container managers to harvest runtime data regarding the resource 

usage (CPU, memory, disk etc.) of application components. With that we expect to extend 

the root cause analysis support of Roots so that it can not only pinpoint the bottlenecked 

application components, but also the low level hosts and system resources that constitute 

each bottleneck.
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Fig. 1. 
Roots APM architecture.
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Fig. 2. 
Anatomy of a Roots pod. The diagram shows 2 application benchmarking processes (B), 3 

anomaly detectors (D), and 2 handlers (H). Processes communicate via a shared memory 

communication bus local to the pod.
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Fig. 3. 
Roots prototype implementation for AppScale PaaS.
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Fig. 4. 
Anomaly detection in guestbook application during a period of 10 hours. Red arrows 

indicate fault injection at the datastore service. Blue arrows indicate all anomalies detected 

by Roots during the experimental run.
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Fig. 5. 
Anomaly detection in guestbook application during a period of 10 hours. Red arrows 

indicate fault injection at the user management service. Blue arrows indicate all anomalies 

detected by Roots during the experimental run.
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Fig. 6. 
Anomaly detection in key-value store application during a period of 10 hours. Steady-state 

traffic is read-heavy. Red arrows indicate injection of write-heavy bursts. Blue arrows 

indicate all the anomalies detected by the path distribution analyzer.
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Fig. 7. 
Anomaly detection in cached key-value store application during a period of 10 hours. 

Steady-state traffic is mostly served from the cache. Red arrows indicate injection of cache-

miss bursts. Blue arrows indicate all the anomalies detected by the path distribution analyzer.
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Fig. 8. 
Workload size over time for the key-value store application. The test client randomly sends 

large bursts of traffic causing the spikes in the plot. Roots anomaly detection events are 

shown in red dashed lines.
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Fig. 9. 
Anomaly detection in stock-trader application during a period of 10 hours. Red arrows 

indicate fault injection at the 1st datastore query. Blue arrows indicate all anomalies detected 

by Roots during the experimental run.
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Fig. 10. 
Anomaly detection in stock-trader application during a period of 10 hours. Red arrows 

indicate fault injection at the 2nd datastore query. Blue arrows indicate all anomalies 

detected by Roots during the experimental run.
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Fig. 11. 
Anomaly detection in 8 applications deployed in a clustered AppScale cloud. Red arrows 

indicate fault injection at the datastore service for queries generated from a specific host. 

Cross marks indicate all the anomalies detected by Roots during the experiment.
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Fig. 12. 
Resource utilization of a Roots pod.
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TABLE 1

Number of anomalies detected in guestbook app under different SLOs (L1, L2 and L3) when injecting faults 

into two different PaaS kernel services.

Faulty PaaS Service L1 (30ms) L2 (35ms) L3 (45ms)

datastore 18 11 10

user management 19 15 10
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TABLE 2

Summary of Roots efficacy results.

Feature Results Observed in Roots

Detecting anomalies All the artificially induced anomalies were detected, except when multiple anomalies are clustered together in 
time. In that case only the first anomaly was detected. Roots also detected several anomalies that occurred due 
to a combination of injected faults, and natural faults.

Characterizing anomalies 
as being due to workload 
changes or
bottlenecks

When anomalies were induced by varying the application workload, Roots correctly determined that the 
anomalies were caused by workload changes. In all other cases we kept the workload steady, and hence the 
anomalies were attributed to a system bottleneck.

Identifying correct 
bottleneck

In all the cases where bottleneck identification was performed, Roots correctly identified the bottleneck 
component.

Reaction time All the artificially induced anomalies (SLO violations) were detected as soon as enough samples of the fault 
were taken by the benchmarking process (2–5 minutes from the start of the fault injection period).

Path distribution All the artificially induced changes to the path distribution were detected.
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TABLE 3

Latency comparison of applications when running on a vanilla AppScale cloud vs when running on a Roots-

enabled AppScale cloud.

Without Roots With Roots

App./Concurrency Mean (ms) SD Mean (ms) SD

guestbook/1 12 3.9 12 3.7

guestbook/50 375 51.4 374 53

stock-trader/1 151 13 145 13.7

stock-trader/50 3631 690.8 3552 667.7

kv store/1 7 1.5 8 2.2

kv store/50 169 26.7 150 25.4

cached kv store/1 3 2.8 2 3.3

cached kv store/50 101 24.8 97 35.1
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