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Abstract
The Fayans energy density functional (EDF) has been very successful in
describing global nuclear properties (binding energies, charge radii, and
especially differences of radii) within nuclear density functional theory. In a
recent study, supervised machine learning methods were used to calibrate the
Fayans EDF. Building on this experience, in this work we explore the effect of
adding isovector pairing terms, which are responsible for different proton and
neutron pairing fields, by comparing a 13D model without the isovector
pairing term against the extended 14D model. At the heart of the calibration is
a carefully selected heterogeneous dataset of experimental observables
representing ground-state properties of spherical even–even nuclei. To quan-
tify the impact of the calibration dataset on model parameters and the
importance of the new terms, we carry out advanced sensitivity and correlation
analysis on both models. The extension to 14D improves the overall quality of
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the model by about 30%. The enhanced degrees of freedom of the 14D model
reduce correlations between model parameters and enhance sensitivity.

Keywords: model calibration, numerical optimization, statistical analysis,
sensitivity analysis, density functional theory, nuclear pairing

1. Introduction

Nuclear density functional theory (DFT) [1–3] is a quantum many-body method applicable
across the whole nuclear landscape. At the heart of nuclear DFT lies the energy density
functional (EDF) that represents an effective internucleon interaction. The EDF is a functional
of various nucleonic densities and currents, which are usually assumed to be local. The EDF
coupling constants are usually adjusted to experimental data and—in many cases—to selected
nuclear matter parameters. The validated global EDFs often provide a level of accuracy
typical of phenomenological approaches based on parameters locally optimized to the
experiment and enable extrapolations toward particle drip lines and beyond [4].

The EDF developed by Fayans and collaborators [5–8] turned out to be particularly useful
since it was designed to describe the ground-state properties of finite nuclei. The volume part
of the functional was adjusted to reproduce the microscopic equation of state of the nucleonic
matter [6]. In this sense the functional could be considered ‘universal.’ By employing a
density-dependent pairing functional with gradient terms, the Fayans EDF was able to explain
the odd–even staggering effect in charge radii [5, 7].

In [9], detailed analysis of the Fayans EDF was carried out. Various optimization strategies
were explored to arrive at a consistent description of odd–even staggering of binding energies
and charge radii. Next, the functional was extended to weakly bound nuclei [10] and long
isotopic chains, to that end invoking Hartree–Fock–Bogoliubov (HFB) pairing instead of the
simpler Bardeen–Cooper–Schrieffer (BCS) approach. These functionals were subsequently
used for the interpretation of experimental data on charge radii [11–24].

Recently, the Fayans functional was extended by allowing separate pairing strengths for
proton and neutrons, that is, pairing isovector terms Indeed, in order to accommodate the
experimental odd–even mass staggering, the effective pairing interaction in atomic nuclei
requires larger strength in the proton pairing channel than in the neutron pairing channel [25].
Such an extension enhances the flexibility to accommodate the radius trends in isotopic chains
also in heavier nuclei; for a preliminary application see [26].

Following the previous large-scale calibration studies of Skyrme EDFs [27–30], in [31]
various supervised machine learning methods were employed to optimize the Fayans EDF.
Building on this experience, in this study we explore the effect of adding isovector pairing
terms This is done based on the dataset of [9]. We compare fits with and without the pairing
isovector terms and provide advanced sensitivity analysis of the resulting model.

2. The Fayans functional

The Fayans EDF is a nonrelativistic EDF similar to the widely used Skyrme functional [1],
but with more flexibility in density dependence and pairing. We use it here in the form of the
original FaNDF0 parameterization [6]. The functional is formulated in terms of particle
density ρt, kinetic density τt, spin–orbit current Jt, and pairing densities rt, where the isospin
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index t labels isoscalar (t= 0) and isovector (t= 1) densities; for details see appendix A. The
isoscalar and isovector densities can be expressed in terms of proton (p, τ3=−1) and neutron
(n, τ3=+1) densities, for example

r r r r r r= + = - ( ), , 1n p n p0 1

and similarly for the other densities. It is convenient to use also the dimensionless densities

r
r

r
r

= = ( )x x, , 2t
t

sat
pair

0

pair

where ρsat and ρpair are scaling parameters of the Fayans EDF.
Within DFT, the total energy of the system is given by ò= ( ) rE d r3 , where the local

energy density  is a functional of the local isoscalar and isovector particle and pairing
densities and currents. The energy density of the Fayans EDF is composed from volume,
surface, spin–orbit, and pairing terms. We use it here in the following form:
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Several EDF parameters are fixed a priori. These are ÿ2/2mp= 20.749 811MeV fm2,
ÿ2/2mn= 20.721 249MeV fm2, e2= 1.439 964 48MeV fm, ρsat= 0.16 fm−3, ρpair= ρsat,
σ= 1/3, and γ= 2/3. The saturation density ρsat determines also the auxiliary parameters
Wigner–Seitz radius pr= ( )r 3 4s sat

1 3 and Fermi energy e p= ( )  mr9 8 2F s
2 3 2 2. The

saturation density ρsat is a fixed scaling parameter, not identical to the physical equilibrium
density ρeq that is a result of the model. Note the factor 4 in the pairing functional
equation (3e); the paper [9] had a misprint at that place showing only a factor of 2. In the
present application, we ignore the spin–orbit tensor term ∝J2, which means g= 0 and ¢ =g 0.

Besides the Fayans nuclear energy Fy, the total energy accounts also for Coulomb energy
(direct and exchange) and the center-of-mass correction term. These are standard terms
without free parameters [1], and hence they are not documented here. The pairing functional
is complemented by prescription for the cutoff in pairing space, which is explained in
appendix A. Altogether, the discussed Fayans model has p= 13(14) free parameters: six in
the volume term ( a v,  h h,1

v
2
v ), two in the surface term ( + a h,s s ), two in the spin–orbit term

(k k¢, ), and three (four) in the pairing term ( x x
+ -[ ]f f,ex, ex, , x

+ +h h, ). Five of the six volume
parameters can be expressed in terms of five nuclear matter properties (NMPs), namely,
equilibrium density ρeq, energy per nucleon EB/A, incompressibility K, symmetry energy J,
and slope of symmetry energy L; for their definition in terms of the energy functional see
appendix B. There remains only -h2

v as a direct volume parameter. This recoupling has the
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advantage that the rather technical model parameters are replaced by more physical droplet
model constants. We use the parameters in this recoupled form.

The numerical treatment is based on the spherical Hartree–Fock code [32]. The spherical
DFT equations are solved on a numerical 1D radial grid with five-point finite differences for
derivatives, a spacing of 0.3 fm, and a box size from 9.6 fm for light nuclei to 13.8 fm for
heavy ones. The solution is determined iteratively by using the accelerated gradient techni-
que. For the BCS pairing cutoff, we use a soft cutoff with the Fermi profile [33]; see
appendix A for details.

A few words are in order about the numerical realization of computing nuclear properties
for the Fayans functional. The largest part of the computations, namely, preparing the
observables for the optimization routine POUNDerS and subsequent analysis of the results, is
done with a spherical 1D code. The radial wavefunctions and fields are represented on a
spatial grid along radial directions. The ground state is found by using accelerated gradient
iterations on the energy landscape. The numerical basics are explained in detail in [32]. In
section 5.2 we also analyze the predictions for deformed nuclei along a selection of isotopic
chains. These embrace also deformed nuclei. The deformed calculations are performed by
using a cylindrical 2D grid in coordinate space. As in the 1D case, accelerated gradient
iteration coupled to the BCS iterations is used to find the ground state. The 2D code, coined
SkyAx, is explained in detail in [34]. We use it here in an extended version covering also
Fayans functionals.

3. Optimization and local analysis

3.1. Problem definition: the objective function

The FaNDF DFT package uses the parameterized Fayans EDF to obtain the model value
m(νi; x) of a given observable for a given nucleus, both specified by the input νi, at a desired
parameter-space point Îx p. For a particular dataset n= ={( )} d,i i i

n
1 we construct the

weighted least-squares objective function
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where the wi, which we refer to as ‘adopted errors,’ are positive numbers discussed below and
where δi are residuals. Note that the residuals are dimensionless by virtue of the weights wi.
This allows the accumulation of contributions from different physical observables.
Effectively, we deal with a dimensionless dataset n= =

˜ {( ˜ )} d,i i i
n

1 with

º˜ ( )d
d

w
, 5i

i

i

which allows us to compare variations of d̃i from physically different types of
observables [35, 36].

In this paper we use the iterative derivative-free optimization software POUNDerS [37] to
approximate a nonlinear least-squares local minimizer x̂ associated with the dataset such that


»

Î
( ˆ ˜ ) ( ˜ ) ( ) x xf f; min ; . 6

x p
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3.2. Regression analysis

Optimization has reached its goal if an approximate minimum of the objective function f is
found. In addition to the minimum point defining the optimal parameter set x̂, the behavior of
f around x̂ carries useful information; the local behavior determines the response to slightly
varying conditions such as noise in the data. When endowed with a particular statistical
interpretation, the local behavior determines a range of reasonable parameters by using f as
the generator of a probability distribution in parameter space. The profile of f, soft or steep,
determines the width of the probability distribution near x̂. The vicinity near x̂ can be
described by a Taylor expansion with respect to x. The first derivative at a minimum dis-
appears; that is, ¶ =a f 0x . The second derivative at a minimum can be approximated as

å¶ ¶ » =ab a ba b ∣ ( )ˆf C J J , 7xx x
i

i i

where dº = ¶a aĴ Ji x i is the Jacobian matrix and º abĈ C is merely shorthand for an
approximation of the second derivative of the objective function, which characterizes the
leeway of the model parameters. In certain statistical settings, the inverse

-
Ĉ

1
can be

interpreted as proportional to an approximate covariance matrix. Its diagonal elements give an
estimate of the standard deviation saˆ of parameter xα as

s s s= =
-

a aa
-ˆ ˆ ( ˆ ) ˆ

( ˆ) ( )x
C

f

n p
, . 8

1 2

The value saˆ sets a natural scale for variations of xα: variations less (larger) than saˆ are
considered small (large). This suggests the introduction of dimensionless parameters

s
=a

a

a
˜

ˆ
( )x

x
, 9

which will play a role in the sensitivity analysis of section 4.3.
The matrix ab

-( ˆ )C
1

can be used to approximate not only the variances of each parameter
but also the correlations between different parameters. This matrix depends on the physical
dimensions of the parameters. Rescaling it using the dimensionless parameters yields the
matrix

=ab
ab

aa bb

-

- -

( ˆ )

( ˆ ) ( ˆ )
( )R

C

C C
. 10

1

1 1

The square of the covariances, abR 2 , defines the coefficients of determination (CoDs), which
will be discussed in section 4.2.

3.3. Calibration strategy and selection of data

At this point, it is worth recapitulating the history of our Fayans EDF parameterizations based
on careful calibrations of large, heterogeneous datasets. The first fit, which was published in
[9] and is called Fy(Δr), calibrated the functional without the isovector pairing parameter
x

-fex, and treated pairing at the BCS level. While the present study’s dataset is an evolution of
the datasets from this first fit and from [31], they are all nearly identical. The BCS pairing
inhibits application of Fy(Δr) for weakly bound nuclei. The next stage aimed to include the
measured charge radius of the neutron-deficient 36Ca, which required the use of HFB pairing.
The refit including 36Ca delivered the parameterization Fy(Δr, HFB) [10], which can be
applied without constraints on the binding strength. Both parameter sets deliver a fairly good
reproduction of nuclear bulk properties over the chart of nuclei together with differential
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charge radii along the Ca isotopic chain. However, subsequent applications revealed that the
reproduction of differential radii in heavier nuclei was deficient. To allow more flexibility,
one must allow different pairing strengths for protons and neutrons, which amounts to acti-
vating the parameter x

-fex, . For first explorations, isotopic radius differences in Sn and Pb
were added to the optimization dataset, which resulted in a substantial improvement for all
isotopic radius differences without loss in other observables [26]. Here, we scrutinize the
impact of x

-fex, as such (i.e. without changing the dataset).
In this study we compare the optimization, nonlinear regression analysis, and sensitivity

analysis results for a baseline problem with the Fayans EDF using p= 13 free model para-
meters and fixed =x

-f 0ex , against the p= 14 version of the baseline problem with x
-fex ,

freed. The two problems are constructed with the same dataset, , which comprises n= 194
observables that are associated with 69 different spherical, ground-state, even–even nucleus
configurations. Table 1 shows a breakdown of the physical observables by class. The energy
staggering (last two rows) is defined by means of the three-point energy difference between
neighboring even–even isotopes for Δ(3)En and isotones for Δ(3)Ep. It provides experimental
data to inform the pairing functional, similar to previous fits of the Fayans EDF [9, 38].
However, here we employ even–even staggering (see table C3) as opposed to even–odd
staggering; see [9] for more details.

The dataset used for optimizing the Fayans EDF consists of binding energies and their
differences and key properties of the charge form factor [39] such as charge radius, diffraction
(or box-equivalent) radius, and surface thickness. The individual data are listed in tables C1
and C2.

The adopted errors (wi) associated with the residuals in the dataset are basically taken from
those in [9] and are provided in appendix C. Their choice is a compromise. Typically, the
adopted errors are tuned such that the average variance from equation (8) fulfills s =ˆ 12

[35, 36]. This works only approximately in our case because the model has a systematic error
associated with its mean-field approximation neglecting correlations. This error has been
estimated by computing collective ground-state correlations beyond DFT throughout the chart
of isotopes [40]. The adopted errors are taken from previous fits for which the criterion
s =ˆ 12 was approximately fulfilled. The data were selected such that the systematic error
remains below the adopted error. The more versatile Fayans functional considered here
produces better fits, and one is tempted to reduce the wi to meet the criterion. But then one
may lose a great amount of fit data, which would reduce the predictive power of the fit. We
thus continue to use the inherited adopted errors and accept that we deal then typically with
s »ˆ 1 42 for 13D and ≈1/5 for 14D. A special case is the few data on spin–orbit splittings

Table 1. The classes of physical observables di (i= 1, ... 194) included in this study.

Class Symbol Number of observables

Binding energy EB 60
Diffraction radius Rbox 28
Surface thickness σ 26
Charge radius rch 54
Proton single-level energy òls,p 3
Neutron single-level energy òls,n 4
Differential radii δ〈r2〉 3
Neutron radius staggering Δ(3)En 5
Proton radius staggering Δ(3)Ep 11
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of single-particle levels; their uncertainty is taken as rather large because single-particle
energies are indirectly deduced from neighboring odd nuclei, which adds another bunch of
uncertainties.

A few crucial differential charge radii in Ca are included in the fit data; see table C4. These
were decisive for determining the advanced gradient terms in the Fayans EDF related to the
parameters h s and x

h . For a detailed discussion of the physics implications see [9]. The
additional data points on differential charge radii were given small adopted errors to force
good agreement for these new data points.

3.4. Parameter scaling and parameter boundaries

The model parameters used in the functional have different physical units. In addition,
empirical studies of the objective function at the different starting points used in the study
reveal that the characteristic length scales of the objective function along different parameters
can vary by several orders of magnitude at each point and that these length scales can differ
significantly between points. To quantify these length scales at key parameter-space points,
and therefore to characterize the objective function at the points, we construct at each point a
transformation that maps the parameters ξα in the scaled parameter space to

x x= - + = D +a a a a a a a a( )x h l l l

in the functional’s parameter space. In particular, this maps the [ ]0,1 p unit hypercube in the
scaled space onto the

´ ´[ ] [ ]l h l h, ,p p1 1

hypercube in the functional’s space. The Δα correspond to the lengths of the sides of the
hypercube and are determined such that objective function values change by a similar amount
in magnitude due to independent offsets along each parameter by the same amount in the
scaled space. The lα are chosen so that the hypercube in the functional’s space is centered on
the original point. To improve performance and increase the probability of finding a good
approximation to the least-squares solution, each optimization operates in the parameter space
scaled about the optimization’s starting point. The length scales Δα are given in table 2 for
scaling about three key points.

While in a previous FaNDF study [31] special techniques were used to maintain opti-
mizations within a constrained region in which the software was expected to be numerically
stable, for this study we performed only unconstrained optimizations in accord with (6) and
without major issues.

4. Results

4.1. Optimization with POUNDerS

The p= 13 optimization, referred to as 13D in the following, was started from the best result,
x1, reported in [31]. The least-squares approximation obtained, called x̂13D (see table 3), is
different from x1 due to improvements made to the software and the aforementioned changes
to the dataset. The resulting Fayans EDF parameterization is called Fy(Δr, 13D). ECNoise
tools based on [41–43] were used to obtain forward-difference approximations to the gradient
of the objective function and the Jacobian of the residual function, º Î ´ˆ ( ˆ ) ˆxJ J n p

13D 13D ,
which are needed for assessing the quality of the POUNDerS solution, nonlinear regression
analysis, and sensitivity analysis.
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The p= 14 optimization, referred to as 14D in the following, was started from both x1 and
x̂13D, with both effectively yielding the same least-squares approximation x̂ ;14D see table 3.
For the optimization started at the former point, the length scale along -h2

v changed sig-
nificantly enough over the optimization that the objective function was eventually evaluated
at points where the software failed. This necessitated determining a new affine transformation
at an intermediate point and restarting the optimization from that point using the new scaling.
The gradient and Jacobian, Ĵ14D, were obtained with ECNoise in an identical way to that for
the 13D solution. The resulting Fayans EDF parameterization is called Fy(Δr, 14D).

The top panel of figure 1 shows the residuals elementwise for both solutions. The bottom
panel presents the change of the absolute value of the residuals, with negative (positive)
values indicating a gain (loss) in quality of the agreement to data. The residuals are grouped
by classes of observables with subgrouping into isotopic or isotonic chains where possible.
Large changes between the two parameterization are seen for binding energies and charge
radii, moderate changes for diffraction radii, and small differences for surface thicknesses.
The bottom panel shows that the extension from 13D to 14D, while generally beneficial, can
decrease agreement with experiment for some observables. To quantify this effect, we now
inspect partial sums of the objective function f rather than single residuals.

The lower panel of figure 2 shows the total objective function f (rightmost bar) and the
partial contributions fclass summed over each class of observables (energy, radii, etc.) as
indicated. The upper panel complements the information by showing the fclass per data point
for each class. Adding x

-fex, to the set of optimized parameters results in a clear gain in quality
for most observables. Several observables (surface thickness, proton spin–orbit splitting, and
proton gap) are hardly affected by this change. The most significant improvement is seen for
the neutron gap.

The χ2 per datum (upper panel) shows that the optimization resulted in values con-
siderably below one. This is due to our choosing to take the correlation effects as a guideline

Table 2. The characteristic length scales,Δα, of the objective function along each of the
free parameters used to define the scaling of each parameter at the starting point x1,
which was the best result in [31]; the result of the 13D optimization x̂ ;13D and the result
of the 14D optimization x̂14D. The units for ρeq are in fm−3; for EB/A, K, J, and L, the
units are in MeV. All other parameters are dimensionless.

Δα(x1) Da( ˆ )x13D Da( ˆ )x14D

κ 0.0152 0.0121 0.0337
k¢ 0.546 0.606 0.452

+a s 0.0392 0.0328 0.0438

h s 0.162 0.125 0.250
EB/A 0.125 0.125 0.125
ρeq 0.004 84 0.004 03 0.005 36
K 16.5 15.3 21.1
J 3.18 3.04 2.70
L 33.5 29.0 19.6

-h2
v 27.2 78.7 10 900
x

+fex, 0.0592 0.0450 0.0917
x
+h1 0.0832 0.0635 0.128
x
h 0.368 0.286 0.742
x

-fex, 2.17 2.18 0.853
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for the adopted errors. All in all, the total χ2 has been reduced by about 30% through the
introduction of x

-fex , . This surprisingly large gain suggests that the new feature brought in,
namely, to allow different pairing strengths for protons and neutrons, is physically significant.
Table 3 shows the model parameters of Fy(Δr, 13D) and Fy(Δr, 14D) together with their
approximated standard deviations. The differences of the parameter values between the two
calibrations stay more or less within these standard deviations. An exception is the parameter
x

-fex, , which is specific to 14D. Its value is much larger than its standard deviation, meaning

that it is not compatible with 13D parameterizations that set =x
-f 0ex, . The model parameters

for the volume terms are expressed by NMP. Their actual values agree nicely with the
commonly accepted values; see the discussion in [29]. The largest difference between 13D

Table 3. The least-squares estimate of the 13D (top) and 14D (bottom) optimization
problems and the standard deviations defined in equation (8) that partially characterize
the approximated zero-mean normal distributions of the associated parameter estima-
tion error. ρeq is in fm−3; the units of EB/A, K, J, L are in MeV; other parameters are
dimensionless.

ax̂ (13D) saˆ

κ 0.190 867 0.002 024
k¢ 0.032 788 0.014 017

+a s 0.564 916 0.021 191

h s 0.408 625 0.089 848
EB/A −15.873321 0.014 744
ρeq 0.165 064 0.000 763
K 203.587 853 7.638 661
J 29.069 702 0.639 137
L 44.228 119 6.477 113

-h2
v 15.325 767 6.456 659
x

+fex, −3.963726 0.175 008
x
+h1 3.540 660 0.215 688
x
h 3.270 458 0.191 246

ax̂ (14D) saˆ

κ 0.185 929 0.002 038
k¢ 0.019 272 0.014 026

+a s 0.538 812 0.016 033

h s 0.307 605 0.072 431
EB/A −15.881322 0.010 785
ρeq 0.164 331 0.000 648
K 214.169 984 6.062 988
J 30.248 343 0.432 775
L 62.427 904 3.181 482

-h2
v 406.608 365 486.788 920
x

+fex, −4.315720 0.169 836
x
+h1 3.983 162 0.205 909
x
h 3.532 572 0.281 308
x

-fex, −0.357833 0.063 162
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and 14D is seen in the value of -h2
v , which is already large for 13D and grows much larger for

14D. But one should not be misled by the dramatic change in value. A large -h2
v simply

renders the second term in the denominator of the isovector volume term in (3b) all-dominant
such that large changes have only small effect. This parameter is extremely weak in the
regime of large values. As a consequence, its computed variance is large and exceeds the
bounds of the linear regime. One should not take this variance literally; it is simply a signal of
a weakness of the model in this respect.

The strengths of the density-independent pairing functional x
fex, define the density-

independent proton pairing strength = +x x x
+ -f f fpex, ex, ex, and density-independent neutron

pairing strength = -x x x
+ -f f fnex, ex, ex, . According to table 3, this yields = =x xf fp nex, ex,

-3.963726 for 13D and = - = -x xf f4.673553, 3.957887p nex, ex, for 14D. This means that
the density-independent neutron pairing strength remains practically unchanged when going
from 13D to 14D while the magnitude of the proton strength significantly increases. This
result is typical for all modern Skyrme functionals [25, 29]. It is satisfying that the Fayans
functional behaves the same way.

Figure 1. (Top) Residual values for the 13D and 14D solutions. (middle) Change in
residual values between the 13D and 14D solutions. (Bottom) Change in residual
magnitude between the 13D and 14D solutions. A negative value indicates that the
magnitude of the associated residual decreased as a result of freeing x

-fex , . The elements

are grouped in observable classes of table 1 with an ordering, from left to right, of EB,
Rbox, σ, rch, òls,p, òls,n, δ〈r

2〉, Δ(3)En, and Δ(3)Ep.
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4.2. Correlations between observables/parameters

The correlations between model parameters in the vicinity of our solution are quantified by
the matrix of CoDs. Figure 3 visualizes the correlations for both the 13D and 14D calibra-
tions. Considerable correlations exist for some groups of parameters, which show that the
number of the degrees of freedom of the model is less than the number of parameters [44]. For
example, strong correlations exist between the two surface parameters ( + a h,s s ), between the

two symmetry parameters (J, L), and between two pairing parameters ( x x
+ +f h,ex, 1 ). Several

somewhat smaller, but still strong, correlations also exist. For example, surface parameters
and K correlate because both have impact on nuclear radii. Binding energy and symmetry
energy parameters correlate because of some long isotopic chains in the data pool. Practically

Figure 2.Breakdown of the contributions to the total objective function f by observable
class (see table 1) for the Fy(Δr, 13D) and Fy(Δr, 14D) parameterizations (see table 3).
Presented are the (bottom) summed contribution fclass within a class and the (top)
average contribution per data point fclass/Nclass, where Nclass is the number of data
points in the given class.
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uncorrelated are the two spin–orbit parameters κ and k¢. All these correlations behave
similarly in both calibration variants, and they appear also in other models [45]. Not sur-
prisingly, however, some correlations differ with pairing parameters. For example, the 13D
variant shows considerable correlation of x x

+ +f h,ex, 1 with surface parameters while the 14D
variant has lost this correlation because of the introduction of the isovector pairing parameter
x

-fex, . A similar reduction of correlations happens for the connection between pairing para-
meters and the group K, ρeq. It is not uncommon for correlations to get reduced with new
parameters because they remove a previously existing rigidity within a model [46, 47].
Although the new parameter x

-fex, has most of its correlations within the group of pairing
parameters, it is rather independent from them. Correlations with other model parameters are
generally weak, except for -h v

2 , which is related to isovector density dependence.

4.3. Sensitivity analysis

Minimization of the objective function delivers the optimized parameter set x̂. Sensitivity
analysis deals with the question of how the parameters change, d+a a a˜ ⟶ ˜ ˜x x x , if the data
are varied by a small amount, d+˜ ⟶ ˜ ˜d d di i i. Note that we formulate the problem in terms
of dimensionless data equation (5) and dimensionless parameters equation (9) to allow a
seamless combined handling of different types of data and parameters. Following forward
error analysis [48], we search for the solution d+x̂ x to the optimization problem (6) but with
the modified dataset d+˜ ˜d di i and find

Figure 3. Coefficients of determination abR 2 for the 13D (lower triangle) and 14D
(upper triangle) calibrations. The parameters are ordered to highlight their correlations.
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Equation (11) establishes the connection to a parameter change for small perturbations dd̃i,
and can be expressed also as d d=a ã

˜( )S x di
i

i. In the following, we assume that all
dimensionless data points are changed by the same amount d d= =˜ ˜d di constant. Since
equation (11) is in the linear regime, changes d ã

( )x i are proportional to dd̃ . We are interested in
the relative effects, and thus the actual value of dd̃ is unimportant once the approximation in
equation (11) is employed.

Figure 4. Relative sensitivities per data class equation (13) for the model parameters of
the 13D Fy(Δr, 13D) (bottom) and 14D Fy(Δr, 14D) (top) EDFs. The data classes are
represented by colors as indicated. The δ〈r2〉 represent the isotopic radius2 differences
and the Δ(3)E the odd–even staggerings of energies.
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From the (dimensionless) sensitivity matrix we build the real-valued, positive number
=a a∣ ∣ Si i

2 as a measure for the impact of data point d̃i on parameter ax̃ . The matrix of
sensitivities a i carries a huge amount of information about the calibrated model. First, we
look at the sensitivity for observable classes C of energies, radii, and so on. Instead of asking,
for example, what is the impact of the energy of 208Pb on a parameter ax̃ , we ask now, what is
the impact of all the energy entries. To that end, we build the sum of the detailed a i over the
data i in class C:

å=a a
Î

( )( )  . 12C

i C
i

The relative sensitivity per class is given by

å
=a

a

a
( )( )

( )

( )



s 13C

C

c
c

and does not depend on the choice of dd̃ as desired. Figure 4 shows the relative sensitivities
for the 13D and 14D calibration variants. The patterns are similar to those already seen for
Skyrme models [27]. The parameters EB/A, J, and L are most influenced by the binding
energy data while ρeq, K, and surface parameters +a s and h s are more sensitive to surface data
Rbox, σ, and rch. The spin–orbit parameters κ and k¢ are dominated by energy information
while the data on the spin–orbit splitting, òls, play a surprisingly small role. The pairing
parameters x x

 +f h, ,ex, 1 and x
h are impacted primarily by binding energies and surface data.

The differential data, δ〈r2〉 and Δ(3)E, are important for the determination of the pairing
functional in the 14D variant, especially for x

+h1 .

Figure 5. Total impact of a data point i on the parameters of the Fy(Δr, 14D) (a) and
Fy(Δr, 13D) (b) EDFs. The data classes are separated by dashed vertical lines as in
figure 1. The data points having the largest impact on calibration results are indicated.
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The effect of one data point d̃i on the model parameters also provides interesting infor-
mation. To this end, we add up the detailed sensitivities over all parameters, coming to the
total impact of a data point d̃i as åa a i. To render the different data points comparable, we
use a constant change d d= =˜ ˜d d 1i . To see the effect of another value dd̃ , we simply scale
the resulting total impact by this value. Figure 5 shows the result of our sensitivity study. Note
that the absolute values are unimportant here; the main information is contained in the relative
distribution. In general, the calibration dataset is fairly balanced, with only several data points
showing significant variations. The most pronounced peaks in the 14D variant are the binding
energies of 52Ca, 68Ni, 100Sn, and 214Pb; the charge radii of 42Ca and 50Ti; and the proton
3-point binding energy difference for 92Mo. For the 13D EDF, the importance of EB for 132Sn
and 214Pb and Δ(3)Ep for 92Mo is reduced. Furthermore, we note that the sensitivities for
Δ(3)En, and even more so for Δ(3)Ep, are generally larger for 14D. These results are related to
the fact that 14D has more leeway in the pairing functional. The results show, first, that
sensitivity not only is a property of data but also is intimately connected with the form of the
functional and, second, that more versatility in the functional often leads to more sensitivity.

Figure 6. Comparison of the spectral pairing gaps [49], D = å Dt a t a a aÎ u v3 3

åa t a aÎ u v
3

, for (top) neutrons and (bottom) protons obtained with Fy(Δr, 14D) and
Fy(Δr, 13D) and also with Fy(Δr, 14D) with =x

-f 0ex, .
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5. Predictions

5.1. Impact of isovector pairing on pairing gaps

At the end of the discussion of table 3, we saw that the density-independent proton pairing
strength is increased when going from 13D to 14D while the neutron strength remains almost
the same. This should be visible from typical calculated pairing observables (e.g. the proton
and neutron pairing gaps). Figure 6 compares the spectral pairing gaps [49] obtained with
Fy(Δr, 14D) and Fy(Δr, 13D) and also with Fy(Δr, 14D) assuming =x

-f 0ex, . As expected,
when going from 13D to 14D, proton gaps increase. However, the neutron gaps decrease
substantially from 13D to 14D while the density-independent pairing strengths are practically
the same in both variants. This result indicates that the rearrangement of all parameters, in
particular those defining the density-dependent part of the pairing functional, strongly impact
spectral pairing gaps. As a counter check, we also considered a variation of 14D with the only
change that we fix =x

-f 0ex, . The difference between the results of the 13D variant and those

of the 14D variant having =x
-f 0ex, indicates the impact of readjustment of 13 parameters of

13D in the 14D results.

5.2. Predictions of observables along isotopic chains

As discussed earlier, the additional isovector degree of freedom in Fy(Δr, 14D) allows a
better adjustment to data, particularly with regard to isovector trends. This raises the question
of how the two parameterizations perform in extrapolations outside the pool of the training
dataset . We look at this now in terms of four long isotopic chains of spherical semi-magic
nuclei: Ca, Sn, and Pb. We also study the deformed chain of Yb isotopes. Figure 7 shows
binding energies and differential radii along the Ca, Sn, and Pb chains. As expected, binding
energies are well described for the fit nuclei, which are the even–even isotopes 40Ca-48Ca, Sn

Figure 7. Comparison of the Fy(Δr, 13D) and Fy(Δr, 14D) results for 〈δr2〉 (top) and
EB/A (bottom) with experiment for three semi-magic isotopic chains: Ca (left), Sn
(middle), and Pb (right). The statistical uncertainties of the predictions [36] are shown
as error bars and error bands. All even–even nuclei in these chains are spherical, and
calculations were done with the axial DFT solver SkyAx. The differential radii are
shown relative to 48Ca, 132Sn, and 208Pb. Experimental binding energies are from [50].
Experimental radii are from [39, 51] (Ca), [14] (Sn), and [52] (Pb).
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with N� 72, and Pb with N� 122. The agreement persists along the whole Ca chain. Dif-
ferences develop at the lower ends of the Sn and Pb chains where 13D remains close to data
and 14D becomes slightly less bound. This happens because 14D produces less pairing for the

Figure 8. Comparison of the Fy(Δr, 13D) and Fy(Δr, 14D) results with experiment
(where available) for the chain of Yb isotopes (Z= 70). Since most of these isotopes
are deformed, calculations were performed with the axial DFT solver SkyAx. (a) Total
binding energy per particle. (b) Differential radii relative to 166Yb. (c) Proton
quadrupole deformations. Binding energies and deformations are calculated for even–
even isotopes only. Experimental values are taken from [50] (binding energies), [52]
(charge radii), and [54] (deformations).
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proton-rich isotopes than does 13D, a consequence of the isovector pairing. This should not
be taken too seriously because the low-N isotopes are becoming increasingly deformation-soft
and thus prone to ground-state correlations.

The differential charge radii are shown the upper panels in figure 7. This observable is
more sensitive to isovector properties than the absolute charge radii. The trends in the Ca
chain are similar for 13D and 14D. Both tend to slightly overestimate the odd–even stag-
gering of radii. This is a feature already known from earlier Fayans EDF studies [9, 10]. Note,
however, that the odd–even charge radius staggering had not been included in the dataset .
The overall trend of differential radii for Sn and Pb is similar to that for energies, with an
increasing difference between 13D and 14D toward low N. For both chains, the Fy(Δr, 14D)
results stay closer to data. We note that the charge–radius kink at 208Pb is heavily influenced
by the pairing and surface effects [12, 53].

Our calibration dataset  consists of data on spherical nuclei. It is thus interesting to look
at the performance of Fy(Δr, 13D) and Fy(Δr, 14D) for well-deformed nuclei. Figure 8
shows binding energies, differential radii, and proton quadrupole deformations along the
chain of Yb isotopes containing many deformed nuclei. For deformed systems, we augment
the binding energies by a rotational energy correction approximating the angular momentum
projection results as outlined in [55, 56]. This correction vanishes for spherical nuclei as
discussed earlier. The calculated binding energies agree with the data, especially near the
spherical 152Yb and for the well-deformed heavier isotopes. Small differences are seen in the
transitional region. As in our previous studies [23, 57], the description of differential radii is
excellent. The proton quadrupole deformations β2,p show a transition from spherical shapes
near the semi-magic 152Yb to well-deformed isotopes for N> 95. We note that experimental
β2 deformations deduced from B(E2) values include zero-point quadrupole fluctuations from
ground-state vibrations. The latter are particularly large in transitional nuclei. A detailed
comparison with data would require accounting for these fluctuations.

Summarizing this section, the Fayans functionals Fy(Δr, 13D) and Fy(Δr, 14D) calibrated
in this work perform well on the testing set of observables for spherical and deformed nuclei.
In general the 14D model performs slightly better, especially for charge radii.

6. Conclusions

In previous work [31] we studied the performance of optimization-based training algorithms
in the context of computationally expensive nuclear physics models based on modest cali-
bration datasets. We concluded that the POUNDerS algorithm, within a budget of function
evaluations, is extremely robust in the context of nuclear EDF calibration.

In this work we employed POUNDerS to carry out parameter estimation of two Fayans
functionals, Fy(Δr, 13D) and Fy(Δr, 14D). The latter functional accounts for different
strengths of proton and neutron pairing, which generally improved the agreement of the
model with ground-state properties.

We carried out sensitivity analysis of these 13D and 14D parameterizations and studied the
sensitivity of model parameters to changes in data points di. We concluded that the binding
energy of 52Ca, 68Ni, 100Sn, and 214Pb, the charge radii of of 42Ca and 50Ti, and the proton
3-point binding energy difference for 92Mo have the most pronounced impact on
Fy(Δr, 14D).

In future work we will generalize the surface Fayans functional by adding the isovector
surface term. Such an extension is important for systematic calculations of deformed nuclei
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and fission [28, 58]. New calibration datasets will include data on deformed nuclei, including
fission isomers.
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Appendix A. Local densities and currents in detail

The Fayans EDF, as the Skyrme EDF, is formulated in terms of local densities and currents.
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density

spin density

current

i spin orbit density

kinetic energy density

i kinetic spin density

pairing density A1
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In this equation, vα and uα are the standard BCS (or canonical HFB) amplitudes. The phase-
space weight fα provides a smooth cutoff of the space of single-particle states included in
pairing. All of the above expressions are local quantities that depend on the position vector r
and refer to the local wave function components jα= jα(r). The pairing density
equation (A1) is restricted to α> 0, which stands for states with positive azimuthal angular
momenta (the other half with α< 0 are the pairing conjugate states).
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For the pairing cutoff, we use a soft cutoff with the profile [33]

e= + - + Da a
-

a
( (( ( )) )) ( )  f 1 exp , A2qF, cut

1

where εα are the single-particle energies, òcut marks the cutoff band, and Δò= òcut/10 is its
width. We use a dynamical setting of the pairing band where òcut is adjusted such that a fixed
number of nucleons h+N Nq qcut

2 3 is included [49], here with ηcut= 5 as in [9].

Appendix B. Nuclear matter properties

Bulk properties of symmetric nuclear matter at equilibrium, called nuclear matter properties
(NMPs), are often used to characterize the properties of a model, or functional respectively. A
starting point for the definition of NMPs is the binding energy per nucleon in the symmetric
nuclear matter

r
t
r

t
r

r r

r
= + = + +

( )
( )  E

A

E

A m m2 2

,
, B1

p

p

p n

n

n

B kin Fy
v

0

2 2 Fy
v

0 1

0

which depends only on the volume term (3b) of the functional. Variation with respect to Kohn–
Sham wave functions establishes a relation between kinetic densities τ0/1 and densities ρ0/1 as
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which yields the binding energy at equilibrium, as a function of the densities ρ0/1 alone:
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The NMP are the properties of EB/A near the equilibrium point. Table B1 lists the NMPs
discussed in this work. We consider τt as independent variables for the purpose of a formally
compact definition of the effective mass. Static properties are deduced from the binding
energy at equilibrium, which depends on ρ0 only. This is indicated by using the total
derivatives for K∞, asym, and L. The slope of the symmetry energy L parameterizes the
density dependence of asym. We evaluate the NMP in practice by performing the derivatives
numerically starting from expression equation (B3).

All these NMPs depend on the volume parameters of the Fayans functional through
equation (B1). There are six volume parameters in EB/A|eq and five NMPs. We use the NMPs
to express five of the volume parameters. -h2

v is the sole remaining volume parameter.

Table B1. Definitions of NMPs used in this work. All derivatives are to be taken at the
equilibrium point corresponding to the equilibrium density ρeq.
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A
B = E

A eq

B

Equilibrium density: ρ0,eq ↔ ¶ =r 0E

A0
B

Incompressibility: K∞ = r
r

9 E

A0
2 d

d eq

2

0
2

B

Symmetry energy: asym = r º
r

J
A

1
2 0

2 d

d
eq

2

1
2

B

Slope of asym: L = r
r

3
a

0
d

d eq

sym

0

J. Phys. G: Nucl. Part. Phys. 51 (2024) 105101 P-G Reinhard et al

20



Appendix C. Input data in detail

Tables C1–C4 show the detailed calibration data  together with their adopted error.

Table C1. Calibration data Part I: bulk data along isotopic chains.

A Z EB ΔEB Rbox ΔRbox σ Δσ rch Δrch

MeV fm fm fm

16 8 −127.620 4 2.777 0.08 0.839 0.08 2.701 0.04

36 20 −281.360 2 3.450 0.18
38 20 −313.122 2 3.466 0.10
40 20 −342.051 3 3.845 0.04 0.978 0.04 3.478 0.02
42 20 −361.895 2 3.876 0.04 0.999 0.04 3.513 0.04
44 20 −380.960 2 3.912 0.04 0.975 0.04 3.523 0.04
46 20 −398.769 2 3.502 0.02
48 20 −415.990 1 3.964 0.04 0.881 0.04 3.479 0.04
50 20 −427.491 1 3.523 0.18
52 20 −436.571 1 3.5531 0.18

58 26 3.7745 0.18

56 28 −483.990 5 3.750 0.18
58 28 −506.500 5 4.364 0.04 3.776 0.10
60 28 −526.842 5 4.396 0.04 0.926 0.20 3.818 0.10
62 28 −545.258 5 4.438 0.04 0.937 0.20 3.848 0.10
64 28 −561.755 5 4.486 0.04 0.916 0.08 3.868 0.10
68 28 −590.430 1

100 50 −825.800 2
108 50 4.563 0.04
112 50 5.477 0.12 0.963 0.36 4.596 0.18
114 50 5.509 0.12 0.948 0.36 4.610 0.18
116 50 5.541 0.12 0.945 0.36 4.626 0.18
118 50 5.571 0.08 0.931 0.08 4.640 0.02
120 50 5.591 0.04 4.652 0.02
122 50 −1035.530 3 5.628 0.04 0.895 0.04 4.663 0.02
124 50 −1050.000 3 5.640 0.04 0.908 0.04 4.674 0.02
126 50 −1063.890 2
128 50 −1077.350 2
130 50 −1090.400 1
132 50 −1102.900 1
134 50 −1109.080 1

198 82 −1560.020 9 5.450 0.04
200 82 −1576.370 9 5.459 0.02
202 82 −1592.203 9 5.474 0.02
204 82 −1607.521 2 6.749 0.04 0.918 0.04 5.483 0.02
206 82 −1622.340 1 6.766 0.04 0.921 0.04 5.494 0.02
208 82 −1636.446 1 6.776 0.04 0.913 0.04 5.504 0.02
210 82 −1645.567 1 5.523 0.02
212 82 −1654.525 1 5.542 0.02
214 82 −1663.299 1 5.559 0.02
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Table C2. Calibration data Part II. Similar as in table C1, but for nuclei along isotonic
chains.

A Z EB ΔEB Rbox ΔRbox σ Δσ rch Δrch

MeV fm fm fm

34 14 −283.429 2
36 16 −308.714 2 3.577 0.16 0.994 0.16 3.299 0.02
38 18 −327.343 2 3.404 0.02

50 22 −437.780 2 4.051 0.04 0.947 0.08 3.570 0.02
52 24 4.173 0.04 0.924 0.16 3.642 0.04
54 26 4.258 0.04 0.900 0.16 3.693 0.04

86 36 −749.235 2 4.184 0.02
88 38 −768.467 1 4.994 0.04 0.923 0.04 4.220 0.02
90 40 −783.893 1 5.040 0.04 0.957 0.04 4.269 0.02
92 42 −796.508 1 5.104 0.04 0.950 0.04 4.315 0.02
94 44 −806.849 2
96 46 −815.034 2
98 48 −821.064 2

134 52 −1123.270 1
136 54 −1141.880 1 4.791 0.02
138 56 −1158.300 1 5.868 0.08 0.900 0.08 4.834 0.02
140 58 −1172.700 1 4.877 0.02
142 60 −1185.150 2 5.876 0.12 0.989 0.12 4.915 0.02
144 62 −1195.740 2 4.960 0.02
146 64 −1204.440 2 4.984 0.02
148 66 −1210.750 2 5.046 0.04
150 68 −1215.330 2 5.076 0.04
152 70 −1218.390 2

206 80 −1621.060 1 5.485 0.02
210 84 −1645.230 1 5.534 0.02
212 86 −1652.510 1 5.555 0.02
214 88 −1658.330 1 5.571 0.02
216 90 −1662.700 1
218 92 −1665.650 1
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