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SUMMARY 10

In causal mediation analysis, the definitions of the natural direct and indirect effects involve potential
outcomes that can never be observed, so-called a priori counterfactuals. This conceptual challenge trans-
lates into issues in identification, which requires strong and often unverifiable assumptions, including
sequential ignorability. Alternatively, we can deal with post-treatment variables using the principal strati-
fication framework, where causal effects are defined as comparisons of observable potential outcomes. We 15

establish a novel bridge between mediation analysis and principal stratification, which helps to clarify and
weaken the commonly-used identifying assumptions for natural direct and indirect effects. Using princi-
pal stratification, we show how sequential ignorability extrapolates from observable potential outcomes
to a priori counterfactuals, and propose alternative weaker principal ignorability-type assumptions. We
illustrate the key concepts using a clinical trial. 20

Some key words: Causal inference; Identification; Potential outcome; Principal stratification

1. INTRODUCTION

Mediation analyses decompose causal effects into channeled effects through some mediator that lies in
the pathway between the treatment and the outcome, and un-channeled effects not through this mediator.
We define channeled and un-channeled effects using the concepts of natural direct and indirect effects. 25

The latter effects raise identifiability issues because they are defined as comparisons between potential
outcomes of various types, on some of which data contain no or little information without strong assump-
tions. Inferences on these effects usually rest on sequential ignorability, which combines ignorability of
treatment assignment given a set of pre-treatment covariates and ignorability of the mediator given the
treatment and pre-treatment covariates (Robins & Greenland, 1992). Under sequential ignorability, natu- 30

ral direct and indirect effects can be identified from the data using the mediation formula (Pearl, 2001).
Sequential ignorability implies that, conditional on covariates, there is no unmeasured confounding

of the treatment-mediator, treatment-outcome and mediator-outcome relationships. Therefore, these as-
sumptions require that the mediator be, at least in principle, regarded as an additional treatment and could
be potentially manipulated by an intervention. Sequential ignorability is not directly verifiable from the 35

observed data and its plausibility is not always well understood.
We provide insight into sequential ignorability using the concepts of principal stratification (Frangakis

& Rubin, 2002) and principal ignorability (Jo & Stuart, 2009; Ding & Lu, 2017) in the case of a binary
mediator. We make the following contributions. First, we use principal ignorability to offer an alternative
interpretation of sequential ignorability, which may seem more natural in some settings. Second, we use 40
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principal stratification to clarify the source of information on natural direct and indirect effects under
sequential ignorability. Third, we elucidate the relationship between sequential and principal ignorability
under an additional monotonicity assumption. Fourth, we propose a new set of assumptions to identify
natural direct and indirect effects, and investigate their relationships with sequential ignorability.

2. NOTATION, FRAMEWORK AND IDENTIFIABILITY IN MEDIATION ANALYSIS45

2·1. Potential outcomes and causal effects
For each individual i characterized by covariates Xi, let Zi represent a binary treatment, with Zi = 1

for those assigned to the active treatment and Zi = 0 for those assigned to the control. Let Yi(z) and
Mi(z) be the potential outcomes for a primary endpoint, Y , and a binary post-treatment intermediate
variable, M , we would observe under treatment level z (z = 0, 1) for unit i. In mediation analysis, M is50

referred to as a mediator.
For each unit i the observed data include covariates Xi, the treatment Zi, and the observed values of

the mediator and outcome, which can be defined, by consistency, as M obs
i = Mi(Zi) = ZiMi(1) + (1−

Zi)Mi(0) and Y obs
i = Yi(Zi) = ZiYi(1) + (1− Zi)Yi(0).

The purpose of mediation analysis is to investigate the extent to which the mediator plays a role in55

the effect of the treatment on the outcome. To formalize causal effects that can answer such a question,
Robins & Greenland (1992) and Pearl (2001) extended the above potential outcomes by introducing the
double-indexed notation Yi(z,m), which denotes the potential outcome for unit i that would occur if
the treatment were set to level z, and if the mediator were manipulated to level m. Furthermore, we can
define an additional potential outcome, Yi(z,Miz′), where the level of the mediator is determined by60

an intervention on the treatment. If z′ = z, then Yi(z) = Yi(z,Miz) under the composition assumption
(VanderWeele, 2015). We use Miz for Mi(z) in the nested potential outcomes.

The average causal effect conditional on covariates at level Xi = x, ACE(x) = E{Yi(1)− Yi(0) | x},
can be decomposed into the sum of a natural direct effect,

NDE(z | x) = E{Yi(1,Miz)− Yi(0,Miz) | x}, (z = 0, 1) (1)

and a natural indirect effect,65

NIE(z | x) = E{Yi(z,Mi1)− Yi(z,Mi0) | x}, (z = 0, 1) (2)

as ACE(x) = NDE(z | x) + NIE(1− z | x) (Robins & Greenland, 1992; Pearl, 2001). The natural di-
rect effect NDE(z | x) is the average effect of the treatment when the mediator is kept at the level that
would potentially be observed under treatment z, and the natural indirect effect NIE(z | x) is the average
effect of a change in the mediator, achieved by a hypothetical intervention that sets the treatment to level
z. All the effects are defined conditional on covariates.70

Throughout the paper, we use a randomized clinical trial, the morphine study (Borracci et al., 2013), to
convey the intuition behind the assumptions and illustrate how one can reason about their plausibility.

Example 1. Baccini et al. (2017) analyzed the morphine study to assess the extent to which the effect
of preoperative oral administration of morphine sulphate on post-operative pain intensity is mediated
by post-operative self administration of intravenous morphine sulphate by patients. A sample of patients75

undergoing an elective open colon-rectal abdominal surgery were randomly assigned to receive either oral
morphine sulphate, Zi = 1, or oral midazolam, Zi = 0. The control is an active placebo with a sedative
effect. For each patient, we observe gender and age. For patient i under treatment z, the potential outcome
Yi(z) is the value of post-operative pain intensity, and Mi(z) is a binary indicator equal to 1 or 0 if the
patient self-administered a low or high level of morphine sulphate after surgery. Moreover, Yi(z,m) and80

Yi(z,Miz′) denote the values of post-operative pain intensity for patient i that would occur if his/her
treatment was set to level z, and her/his post-operative morphine consumption was manipulated to levels
m and Mi(z′), respectively.
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2·2. Identification issues and sequential ignorability
Potential outcomes of the form Yi(z,Miz′), with z ̸= z′, are referred to as cross-world counterfactuals 85

(Robins & Greenland, 1992) or a priori counterfactuals (Frangakis & Rubin, 2002). They can never be
observed in one experiment, because they result from hypothetically assigning each unit to two different
treatments simultaneously (Mealli & Mattei, 2012; Forastiere et al., 2016). Although we can hypothesize
their existence, a priori counterfactuals are conceptually different from potential outcomes of the form
Yi(z), which are observable potential outcomes. The potential outcome Yi(z,Miz′) is observable only if 90

either z = z′ or Mi(z) = Mi(z′), i.e., Yi(z) = Yi(z,Miz) = Yi(z,Miz′), and is actually observed when
the treatment received by unit i is Zi = z = z′. Although ignorability of the treatment suffices to identify
the marginal distributions of potential outcomes of the form Yi(z), and hence the average causal effect,
ACE(x), identification of the marginal distributions of a priori counterfactuals, and hence of natural direct
and indirect effects, requires additional assumptions that would allow extrapolation to a priori counterfac- 95

tuals based on the observed data.
There are different sets of identifying assumptions for the natural direct and indirect effects (Pearl, 2001;

Van Der Laan & Petersen, 2008; Hafeman & VanderWeele, 2011; Imai, Keele & Yamamoto, 2010). Ten
Have & Joffe (2012) provides a review. The difference between them is subtle and, broadly speaking, they
all couple the ignorability of the treatment with the ignorability of the mediator conditional on covariates. 100

Here we focus on the assumptions used by Imai, Keele & Yamamoto (2010):

Assumption 1 (Ignorability of the treatment). {Yi(z,m),Mi(z′)} Zi | Xi for all z, z′,m = 0, 1;

Assumption 2 (Ignorability of the mediator). Yi(z,m) Mi(z′) | (Zi = z′, Xi) for all z, z′,m = 0, 1.

Imai, Keele & Yamamoto (2010) refer to Assumptions 1 and 2 together as sequential ignorability.
Assumption 1 is the ignorability of the treatment, and Assumption 2 states that the mediator is ignorable 105

given the observed treatment and covariates. Under Assumptions 1 and 2,

E{Yi(z,Miz′) | x} =
∑

m=0,1

E(Y obs
i | Zi = z,M obs

i = m,x)× pr(M obs
i = m | Zi = z′, x), (3)

which is referred to as the mediation formula (Pearl, 2001). We see from (3) that the average of the
potential outcome Yi(z,Miz′) can be identified from the observed data by the conditional expectation of
the observed outcomes given treatment level z, averaged over the conditional distribution of the observed
mediator given treatment level z′. 110

2·3. Principal stratification
Frangakis & Rubin (2002) introduced the principal stratification framework to deal with post-treatment

variables. A principal stratification with respect to a post-treatment variable M is a partition of units into
latent subpopulations, called principal strata, defined by the joint potential values of that post-treatment
variable under each level of the treatment. Denote by Gi = {Mi(0),Mi(1)} the principal strata mem- 115

bership. Given a binary mediator, Gi ∈ {00, 01, 10, 11}. In Example 1, we call Gi = 00 pain-intolerant
patients, Gi = 01 compliant patients, Gi = 10 defiant patients, and Gi = 11 pain-tolerant patients.

A principal causal effect is a comparison between the potential outcomes within a particular princi-
pal stratum. We focus on average principal causal effects, defined as PCE(g | x) = E{Yi(1)− Yi(0) |
Gi = g, x}. The average causal effect is a weighted average of the principal causal effects ACE(x) = 120∑

g PCE(g | x)πg|x, where the summation is over g ∈ {00, 01, 10, 11}, and πg|x = pr(Gi = g | x) is
the conditional probability of the principal stratum g. Frangakis & Rubin (2002) call PCE(11 | x) and
PCE(00 | x) dissociative effects. These subgroups, for which the mediator is not affected by the treatment,
provide information on the natural direct effect of the treatment. They call PCE(01 | x) and PCE(10 | x)
associative effects. These subgroups, for which the mediator is affected by treatment, generally combine 125

natural direct and indirect effects (Mealli & Mattei, 2012). See VanderWeele (2008) for more discussions.
The principal strata membership is in general unknown, as we cannot observe both potential values

of the mediator in a single experiment. This inherent latent nature of principal strata jeopardizes the
identification of principal causal effects without additional assumptions.
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3. GENERALIZED STRONG PRINCIPAL IGNORABILITY AND THE MEDIATION FORMULA130

Principal ignorability was introduced for the identification of principal causal effects (Jo & Stuart, 2009;
Ding & Lu, 2017; Feller et al., 2016). Here, we generalize it for mediation analysis:

Assumption 3 (Generalized strong principal ignorability). Yi(z,m) Gi | Xi for all z,m = 0, 1.

Assumption 3 requires that the distribution of potential outcomes Yi(z,m) be the same across principal
strata, conditional on covariates. Because the heterogeneity across principal strata can be interpreted as135

heterogeneity with respect to a latent variable (Forcina, 2006), Assumption 3 can also be seen as ruling
out the presence of unmeasured confounding of the mediator-outcome relationship (Ding & Lu, 2017). In
the following, we present results that help to clarify the relationship between Assumptions 2 and 3. While
the former involves marginal independence between the potential outcomes and the two potential values
of the mediator, the latter assumes joint independence. Therefore, Assumption 3 implies Assumption 2.140

Thus, there can be situations where principal strata are heterogeneous, i.e., Assumption 3 does not hold,
but Assumption 2 holds. Even if the joint distribution of Mi(0) and Mi(1) depends on a latent variable
also affecting the outcome, the marginal distribution of the two potential mediators might be free of
unmeasured confounding. Then, the proposition below follows.

PROPOSITION 1. Under Assumptions 1 and 3, the mediation formula (3) holds.145

Proposition 1 states that the average of a priori counterfactuals can be identified from the observed data
in the same way, that is, by the mediation formula (3), under either Assumptions 1 and 2 or Assumptions 1
and 3. Although Assumption 3 is stronger than Assumption 2, in some cases the plausibility of Assumption
3 might be easier to justify, because it can help to think in terms of homogeneity across principal strata
rather than in terms of no unmeasured confounding of the mediator-outcome relationship.150

In Example 1, Assumption 2 requires that, at least in principle, we can conceive an intervention on post-
operative morphine consumption, and assume that it is randomly assigned within each treatment group,
conditional on covariates. Thus, Assumption 2 rules out unobserved confounders that causally affect both
post-operative morphine consumption and pain intensity given the treatment and pretreatment covariates.
Although hypothetical interventions on post-operative morphine consumption might be conceivable, they155

might be unethical. Moreover, it might be difficult to argue that all relevant confounders of the relationship
between post-operative morphine consumption and pain intensity have been observed, especially in the
morphine study with only two covariates. It might be easier to envision the plausibility of Assumption 3,
which requires that the potential outcomes for pain intensity that would occur if the treatment were set
to level z and the post-operative morphine consumption were set to level m have the same distributions160

across pain-tolerant, pain-intolerant, compliant and defiant patients with the same value of the covariates.

4. INTERPRETATION OF THE MEDIATION FORMULA: EXTRAPOLATION ACROSS PRINCIPAL STRATA

We aim at clarifying the extrapolation of information on a priori counterfactuals performed by the
mediation formula (3). In principle, the average potential outcome is a weighted average of the same
potential outcome across principal strata, with weights given by principal strata proportions. The following165

proposition shows what part of the observed data and which type of units provide information on potential
outcomes Yi(z,Miz′), which can be a priori counterfactuals for some units if z ̸= z′.

PROPOSITION 2. Under Assumptions 1, if either Assumption 2 or 3 holds, then

E {Yi(1,Mi0) | x} = (4)
[
E{Yi(1) | Gi = 00, x}

π00|x

π00|x + π10|x
+ E{Yi(1) | Gi = 10, x}

π10|x

π00|x + π10|x

]
(π00|x + π01|x)

+

[
E{Yi(1) | Gi = 11, x}

π11|x

π01|x + π11|x
+ E{Yi(1) | Gi = 01, x}

π01|x

π01|x + π11|x

]
(π10|x + π11|x),
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E {Yi(0,Mi1) | x} = (5)
[
E{Yi(0) | Gi = 11, x}

π11|x

π11|x + π10|x
+ E{Yi(0) | Gi = 10, x}

π10|x

π11|x + π10|x

]
(π00|x + π01|x)

+

[
E{Yi(0) | Gi = 00, x}

π00|x

π01|x + π00|x
+ E{Yi(0) | Gi = 01, x}

π01|x

π01|x + π00|x

]
(π10|x + π00|x).

Each term of (4) and (5) is a product of a weighted average of an observable potential outcome, Yi(1) 170

or Yi(0), and the sum of the proportion of two principal strata. This product reflects how information
on observable potential outcomes for specific principal strata is used for potential outcomes of the type
Yi(z,Miz′) for other principal strata.

In Example 1, according to (4), a weighted average of the observable potential outcomes for pain in-
tensity under oral morphine, Yi(1), for patients with Mi(1) = 0, who would self-administer a high level 175

of morphine sulphate, i.e., pain-intolerant patients Gi = 00 and defiant patients Gi = 10, provides infor-
mation on Yi(1,Mi0) for patients with Mi(0) = 0, who would self-administer a high level of morphine
sulphate under the placebo, i.e., compliant patients Gi = 01 and pain-intolerant patients Gi = 00. More-
over, the distributions of Yi(1) for patients with Mi(1) = 1, i.e., pain-tolerant patients Gi = 11 and com-
pliant patients Gi = 01, are used to impute Yi(1,Mi0) for patients with Mi(0) = 1, i.e., defiant patients 180

Gi = 10 and pain-tolerant patients Gi = 11. A similar interpretation applies to (5).
Proposition 2 also provides valuable insights into the meaning of the natural indirect effects. Specifi-

cally, we have the following propositions, in which we use ACEM (x) = E{Mi(1)−Mi(0) | x} to de-
note the conditional average causal effect of the treatment on the mediation for notational simplicity.

PROPOSITION 3. Under Assumption 1, if either Assumption 2 or 3 holds, then 185

NIE(1 | x) = ACEM (x)× [E{Yi(1) | Gi = 11 or 01, x}− E{Yi(1) | Gi = 00 or 10, x}], (6)
NIE(0 | x) = ACEM (x)× [E{Yi(0) | Gi = 11 or 10, x}− E{Yi(0) | Gi = 00 or 01, x}]. (7)

Proposition 3 decomposes the natural indirect effects into products the average effect of the treatment
on the mediator and a comparison of potential outcomes across different principal strata.

Under Assumptions 1 and 2, if we further introduce homogeneity assumptions of the potential outcome
distributions across principal strata, then the second terms on the right-hand sides of (6) and (7) can be
interpreted as the average causal effects of the mediator on the outcome. 190

PROPOSITION 4. Suppose Assumptions 1 and 2 hold. If Yi(1,m) Gi | Xi, then

NIE(1 | x) = ACEM (x)× E{Yi(1, 1)− Yi(1, 0) | x}. (8)

If Yi(0,m) Gi | Xi, then

NIE(0 | x) = ACEM (x)× E{Yi(0, 1)− Yi(0, 0) | x}. (9)

The independence assumption Yi(z,m) Gi | Xi for a fixed value of z is implied by Assumption 3, so
both (8) and (9) hold under Assumptions 1 and 3. Formulas (8) and (9) reflect the intuition of mediation:
the treatment affects the mediator, and then the mediator affects the outcome given the treatment level 195

Zi = z with either z = 0 or z = 1.

5. MONOTONICITY IN MEDIATION ANALYSIS

We now investigate the role of monotonicity in mediation analysis:

Assumption 4 (Monotonicity). Mi(1) ≥ Mi(0) for all i.

Assumption 4 rules out negative effects of the treatment on the mediator, but an alternative version 200

of monotonicity, ruling out positive effects of the treatment on the mediator, could be considered. The
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plausibility of monotonicity in mediation analysis strongly depends on the substantive setting. In Example
1, monotonicity, ruling out the existence of defiant patients with Gi = 10, is likely plausible due to the
pharmacological characteristics of the active placebo under control. See also Baccini et al. (2017).

When the treatment and the mediator are both binary, the following proposition holds under the mono-205

tonicity in Assumption 4.

PROPOSITION 5. Under Assumptions 1 and 4, Assumptions 2 and 3 are equivalent.

Proposition 5 implies that, under ignorability of treatment assignment and monotonicity, sequential ig-
norability and strong principal ignorability are equivalent, so we can use the mediation formula in (3) to
identify and estimate natural direct and indirect effects invoking either Assumption 2 and 3, whichever210

is easier to justify in a specific case study. In Example 1, Assumption 1 holds by design and Assump-
tion 4 is very plausible. Therefore, we can identify the natural direct and indirect effects using (3), if we
can provide convincing arguments on the plausibility of either Assumption 2, i.e., no unmeasured con-
founding between the morphine consumption and pain intensity, or Assumption 3, i.e., homogeneity of
the distributions of the potential outcomes across pain-tolerant, pain-intolerant, and compliant patients.215

6. IDENTIFICATION UNDER GENERALIZED WEAK PRINCIPAL IGNORABILITY

Here we propose a set of alternative assumptions for identification of natural direct and indirect effects,
involving generalizations of weak principal ignorability assumptions (Jo & Stuart, 2009; Ding & Lu,
2017; Feller et al., 2016) to potential outcomes of the form Yi(z,m):

Assumption 5. Yi(1, 1) Mi(0) | {Mi(1) = 1, Xi};220

Assumption 6. Yi(1, 0) Mi(1) | {Mi(0) = 0, Xi}.

Assumption 5 is a generalized weak principal ignorability of Yi(1, 1) across strata Gi = 11 and Gi =
01, and Assumption 6 is a generalized weak principal ignorability of Yi(1, 0) across strata Gi = 00 and
Gi = 01. Assumptions 5 and 6 together are weaker than Assumption 3, because the independence in
Assumptions 5 and 6 refers to specific potential outcomes and are conditional on specific values of Mi(0)225

and Mi(1).
In general, we cannot rank sequential ignorability and Assumptions 5 and 6. However, when the treat-

ment and the mediator are both binary, relying on Proposition 5, we have the following result.

PROPOSITION 6. Under Assumptions 1 and 4, Assumption 2 implies Assumptions 5 and 6.

Proposition 6 implies that the set of Assumptions 1, 4, 5 and 6 is weaker than the set of Assumptions 1,230

4 and 2 or 3, and thus may be more plausible. Therefore, it might be valuable to investigate whether we
can identify natural direct and indirect effects under Assumptions 1, 4, 5 and 6.

Assumptions 5 and 6 involve homogeneity of two different potential outcomes, Yi(1, 1) and Yi(1, 0),
across two different sets of principal strata. In particular, Assumption 5 states that the distribution of
Yi(1, 1) is the same for strata Gi = 11 and Gi = 01, i.e., pain-tolerant and compliant patients for whom235

Yi(1, 1) = Yi(1,Mi1) = Yi(1). Assumption 5 implies that we can use the observed data to estimate the
distribution of Yi(1, 1) for the two principal strata that are mixed together in the observed set with Zi = 1
and M obs

i = 1, i.e., patients who are treated with preoperative oral morphine and who self-administer a
low level of morphine sulphate after surgery.

The second homogeneity in Assumption 6 refers to the potential outcome Yi(1, 0) across strata Gi = 00240

and Gi = 01, i.e., pain-intolerant and compliant patients for whom Yi(1, 0) = Yi(1,Mi0). This homo-
geneity has a slightly different flavor, because it allows for identifying the a priori counterfactual for
compliant patients Gi = 01 using information of Yi(1, 0) for pain-intolerant patients Gi = 00. Under
Assumptions 1 and 4, we can estimate the distribution of Yi(1, 0) for Gi = 00 using information of the
observed outcome for units with Zi = 1 and M obs

i = 0, i.e., patients who are treated with preoperative245

oral morphine and who self-administer a high level of morphine sulphate after surgery.
We formalize these arguments in the following proposition.
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PROPOSITION 7. If Assumptions 1, 4, 5 and 6 hold, then

E{Yi(1,Mi0) | x} =
∑

m=0,1

E(Y obs
i | Zi = 1,M obs

i = m,x)× pr(M obs
i = m | Zi = 0, x),

NDE(0 | x) =
∑

m=0,1

E(Y obs
i | Zi = 1,M obs

i = m,x)× pr(M obs
i = m | Zi = 0, x)

−E(Y obs
i | Zi = 0, x),

NIE(1 | x) =
{
E(Y obs

i | Zi = 1,M obs
i = 1, x)− E(Y obs

i | Zi = 1,M obs
i = 0, x)

}

×
{
E(M obs

i | Zi = 1, x)− E(M obs
i | Zi = 0, x)

}
.

In the Supplementary Material, we give analogous results for NDE(1 | x) and NIE(0 | x).

7. DISCUSSION 250

Generalized strong principal ignorability in Assumption 3 implies ignorability of the mediator in As-
sumption 2. Proposition 5, however, shows that under monotonicity, the two assumptions are equivalent
with a binary mediator. This allows us to derive alternative and weaker assumptions to identify natural
direct and indirect effects, namely the weak principal ignorability in Assumptions 5 and 6. Unfortunately,
monotonicity, ignorability of the mediator and weak principal ignorability assumptions are not directly 255

testable from the observed data, and they may be implausible in some contexts. Therefore, it is valuable
to think about what we can learn from the data about the causal estimands of interest when some of the
underlying critical assumptions cannot be invoked.
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S1. NDE(1 | x) AND NIE(0 | x) UNDER GENERALIZED WEAK PRINCIPAL IGNORABILITY

In §6 we proposed a set of alternative assumptions for identification of natural direct and indirect effects,
but focused only on NDE(0 | x) and NIE(1 | x). For completeness, here we derive similar results for
NDE(1 | x) and NIE(0 | x).

Assumption S1. Yi(0, 0) Mi(1) | {Mi(0) = 0, Xi}. 15

Assumption S2. Yi(0, 1) Mi(0) | {Mi(1) = 1, Xi}.

Assumption S1 is the generalized weak principal ignorability of Yi(0, 0) across strata Gi = 00 and
Gi = 01, and Assumption S2 is the generalized weak principal ignorability of Yi(0, 1) across strata Gi =
11 and Gi = 01. As Assumptions 5 and 6, Assumptions S1 and S2 are weaker than the generalized
principal ignorability in Assumption 3. Relying on Proposition 5, we have the following result analogous 20

to Proposition 6.

PROPOSITION S1. Under Assumptions 1 and 4, Assumption 2 implies Assumptions S1 and S2.

Assumptions S1 and S2 involve homogeneity of two different potential outcomes, Yi(0, 0) and Yi(0, 1),
across two different sets of principal strata. In particular, Assumption S1 states that the distribution of
Yi(0, 0) is the same for strata Gi = 00 and Gi = 01 for whom Yi(0, 0) = Yi(0,Mi0) = Yi(0). Although 25

the distribution of the potential outcome can be identified under Assumption 1, Assumption S1 allows
estimating from the observed data the distribution of Yi(0, 0) for the two principal strata that are mixed to-
gether in the observed set with Zi = 1 and M obs

i = 0. The second homogeneity in Assumption S2, refers
to the potential outcome Yi(0, 1) across strata Gi = 11 and Gi = 01 for whom Yi(0, 1) = Yi(0,Mi1).
This homogeneity has a slightly different flavor, because it allows for identifying the a priori counter- 30

factual for stratum Gi = 01 using information of Yi(0, 1) for Gi = 11, which, in turn, can be estimated
using information of the observed outcome for units with Zi = 0 and M obs

i = 1 under Assumption 1. We
formalize these arguments below analogous to Proposition 7.
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PROPOSITION S2. If Assumptions 1, 4, S1 and S2 hold, then

E{Yi(0,Mi1) | x} =
∑

m=0,1

E(Y obs
i | Zi = 0,M obs

i = m,x)× pr(M obs
i = m | Zi = 1, x),

NDE(1 | x) =
∑

m=0,1

E(Y obs
i | Zi = 1, x)

−E(Y obs
i | Zi = 0,M obs

i = m,x)× pr(M obs
i = m | Zi = 1, x),

NIE(0 | x) =
{
E(Y obs

i | Zi = 0,M obs
i = 1, x)− E(Y obs

i | Zi = 0,M obs
i = 0, x)

}

×
{
E(M obs

i | Zi = 1, x)− E(M obs
i | Zi = 0, x)

}
.

S2. PROOFS35

S2·1. Proof of the mediation formula (3)
We review the proof of the mediation formula (3) under Assumptions 1 and 2:

E{Yi(z,Miz′) | x} =
∑

m=0,1

E{Yi(z,m) | Mi(z
′) = m,x}× pr{Mi(z

′) = m | x}

=
∑

m=0,1

E{Yi(z,m) | Zi = z′,Mi(z
′) = m,x}× pr{Mi(z

′) = m | x}

=
∑

m=0,1

E{Yi(z,m) | Zi = z′, x}× pr{Mi(z
′) = m | x}

=
∑

m=0,1

E{Yi(z,m) | Zi = z, x}× pr{Mi(z
′) = m | Zi = z′, x}

=
∑

m=0,1

E{Yi(z,m) | Zi = z,Mi(z) = m,x}× pr{Mi(z
′) = m | Zi = z′, x}

=
∑

m=0,1

E{Y obs
i | Zi = z,M obs

i = m,x}× pr(M obs
i = m | Zi = z′, x).

Assumption 1, ignorability of the treatment, implies Yi(z,m) Zi | {Mi(z′), Xi} and Mi(z′) Zi | Xi,
and ensures the second and the fourth equalities. Assumption 2, ignorability of the mediator, ensures
the third and fifth equalities. Consistency ensures the last equality with M obs

i = Mi(Zi) and Y obs
i =40

Yi(Zi,M obs
i ).

S2·2. Proof of Proposition 1: mediation formula (3) under Assumptions 1 and 3
Assumptions 1 and 3 together imply Assumption 2. Therefore, Proposition 1 follows from the proof in

Section S2·1.

S2·3. Proof of Proposition 245

Consider E{Yi(1,Mi0) | x}. By consistency, the mediation formula (3) can be re-written in terms of
potential outcomes as

E{Yi(1,Mi0) | x} =
∑

m=0,1

E{Y obs
i | Zi = 1,M obs

i = m,x}× pr{M obs
i = m | Zi = 0, x}

= E{Yi(1) | Zi = 1,Mi(1) = 0, x}× pr{Mi(0) = 0 | Zi = 0, x}
+E{Yi(1) | Zi = 1,Mi(1) = 1, x}× pr{Mi(0) = 1 | Zi = 0, x}

= E{Yi(1) | Mi(1) = 0, x}× pr{Mi(0) = 0 | x}
+E{Yi(1) | Mi(1) = 1, x}× pr{Mi(0) = 1 | x},



Principal ignorability in mediation analysis 3

where the last equality follows from Assumption 1. By the law of total probability, each term in the last
equality can further be written in terms of principal strata. Formally,

E{Yi(1,Mi0) | x}
= [E{Yi(1) | Mi(0) = 0,Mi(1) = 0, x}× pr{Mi(0) = 0 | Mi(1) = 0, x}

+E{Yi(1) | Mi(0) = 1,Mi(1) = 0, x}× pr{Mi(0) = 1 | Mi(1) = 0, x}]× pr{Mi(0) = 0 | x}
+[E{Yi(1) | Mi(0) = 0,Mi(1) = 1, x}× pr{Mi(0) = 0 | Mi(1) = 1, x}
+E{Yi(1) | Mi(0) = 1,Mi(1) = 1, x}× pr{Mi(0) = 1 | Mi(1) = 1, x}]× pr{Mi(0) = 1 | x}

=

[
E{Yi(1) | Gi = 00, x}

π00|x

π00|x + π10|x
+ E{Yi(1) | Gi = 10, x}

π10|x

π00|x + π10|x

]
(π00|x + π01|x)

+

[
E{Yi(1) | Gi = 01, x} π01

π01|x + π11|x
+ E{Yi(1) | Gi = 11, x}

π11|x

π01|x + π11|x

]
(π10|x + π11|x).

Similarly, we can prove the result for E{Yi(0,Mi1) | x}. 50

S2·4. Proof of Proposition 3
Consider NIE(1 | x). Define

w1 =
π11|x + π10|x

π11|x + π01|x
=

pr(M obs
i = 1 | Zi = 0, x)

pr(M obs
i = 1 | Zi = 1, x)

,

w2 =
π00|x + π01|x

π00|x + π10|x
=

1− pr(M obs
i = 1 | Zi = 0, x)

1− pr(M obs
i = 1 | Zi = 1, x)

=
pr(M obs

i = 0 | Zi = 0, x)

pr(M obs
i = 0 | Zi = 1, x)

.

The quantities 1/w1 and 1/w2 can be interpreted as causal effects of the treatment on the mediator on the
risk ratio scale. Replacing w1 and w2 in Proposition 2, we have

E{Yi(1,Mi0) | x} = w1 ×
[
π11|xE{Yi(1) | Gi = 11, x}+ π01|xE{Y (1) | Gi = 01, x}

]

+w2 ×
[
π00|xE{Yi(1) | Gi = 00, x}+ π10|xE{Y (1) | Gi = 10, x}

]
.

Therefore,

NIE(1 | x) = E{Yi(1) | x}− E{Yi(1,Mi0) | x}
=

∑

g=11,01,00,10

πg|xE{Yi(1) | Gi = g, x}

−
(
w1 ×

[
π11|xE{Yi(1) | Gi = 11, x}+ π01|xE{Yi(1) | Gi = 01, x}

]

+w2 ×
[
π00|xE{Yi(1) | Gi = 00, x}+ π10|xE{Yi(1) | Gi = 10, x}

] )

= (1− w1)×
[
π11|xE{Yi(1) | Gi = 11, x}+ π01|xE{Yi(1) | Gi = 01, x}

]

+(1− w2)×
[
π00|xE{Yi(1) | Gi = 00, x}+ π10|xE{Yi(1) | Gi = 10, x}

]
,

which is a weighted combination of the average potential outcomes under treatment across principal strata
with weights depending on the proportions of the principal strata and the causal effects of the treatment
on the mediator. Because

1− w1 = 1−
π11|x + π10|x

π11|x + π01|x
=

π01|x − π10|x

π11|x + π01|x
=

E{Mi(1)−Mi(0) | x}
π11|x + π01|x

1− w2 = 1−
π00|x + π01|x

π00|x + π10|x
= −

π01|x − π10|x

π00|x + π10|x
= −E{Mi(1)−Mi(0) | x}

π00|x + π10|x
,
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we can further simplify the natural indirect effect as55

NIE(1 | x) = E{Mi(1)−Mi(0) | x}

×
[

π11|x

π11|x + π01|x
E{Yi(1) | Gi = 11, x}+

π01|x

π11|x + π01|x
E{Yi(1) | Gi = 01, x}

−
π00|x

π00|x + π10|x
E{Yi(1) | Gi = 00, x}−

π00|x

π00|x + π10|x
E{Yi(1) | Gi = 10, x}

]

= E{Mi(1)−Mi(0) | x}× [E{Yi(1) | Gi = 11 or 01, x}− E{Yi(1) | Gi = 00 or 10, x}] .

Similarly, we can prove the result for NIE(0 | x).

S2·5. Proof of Proposition 4
Consider the results in Proposition 3. For Gi = 11 or 01, we have Mi(1) = 1, and for Gi = 10 or 00,

we have Mi(1) = 0. If we invoke the potential outcomes with double index Yi(z,m) and use Yi(z) =
Yi(z,Miz), then we can rewrite the results in Proposition 3 as60

NIE(1 | x) = E{Mi(1)−Mi(0) | x}
×[E{Yi(1, 1) | Gi = 11 or 01, x}− E{Yi(1, 0) | Gi = 00 or 10, x}],

NIE(0 | x) = E{Mi(1)−Mi(0) | x}
×[E{Yi(0, 1) | Gi = 11 or 10, x}− E{Yi(0, 0) | Gi = 00 or 01, x}].

Therefore, the proofs of (8) and (9) follow directly from applying the homogeneity assumptions
Yi(1,m) Gi | Xi and Yi(0,m) Gi | Xi, respectively.

S2·6. Proof of Proposition 5
We need a lemma to prove Proposition 5.

LEMMA S1. Consider a general random variable R, and two binary random variables R1 and R065

satisfying monotonicity R1 ≥ R0. The following independence relationships are equivalent:

R R1 and R R0 ⇐⇒ R (R1, R0) ⇐⇒ R R1 | R0 and R R0 | R1.

Proof of Lemma S1. We need only to prove that

R R1 and R R0 =⇒ R (R1, R0),

because other implication relationships are straightforward.
From R R1 we have pr(R | R1 = 1) = pr(R | R1 = 0), which can be decomposed as

pr(R | R1 = 1, R0 = 1)pr(R0 = 1 | R1 = 1) + pr(R | R1 = 1, R0 = 0)pr(R0 = 0 | R1 = 1)

= pr(R | R1 = 0, R0 = 1)pr(R0 = 1 | R1 = 0) + pr(R | R1 = 0, R0 = 0)pr(R0 = 0 | R1 = 0).

Monotonicity R1 ≥ R0 further simplifies the above equation to

pr(R | R1 = 1, R0 = 1)pr(R0 = 1 | R1 = 1) + pr(R | R1 = 1, R0 = 0)pr(R0 = 0 | R1 = 1)

= pr(R | R1 = 0, R0 = 0). (S1)

Similarly, from R R0 we have pr(R | R0 = 1) = pr(R | R0 = 0), which can be decomposed as70

pr(R | R1 = 1, R0 = 1)pr(R1 = 1 | R0 = 1) + pr(R | R1 = 0, R0 = 1)pr(R1 = 0 | R0 = 1)

= pr(R | R1 = 1, R0 = 0)pr(R1 = 1 | R0 = 0) + pr(R | R1 = 0, R0 = 0)pr(R1 = 0 | R0 = 0).

Monotonicity R1 ≥ R0 further simplifies the above equation to

pr(R | R1 = 1, R0 = 1) (S2)
= pr(R | R1 = 1, R0 = 0)pr(R1 = 1 | R0 = 0) + pr(R | R1 = 0, R0 = 0)pr(R1 = 0 | R0 = 0).
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Replacing pr(R | R1 = 0, R0 = 0) in (S2) by its expression in (S1), we have

pr(R | R1 = 1, R0 = 1)

= pr(R | R1 = 1, R0 = 0)pr(R1 = 1 | R0 = 0)

+ {pr(R | R1 = 1, R0 = 1)pr(R0 = 1 | R1 = 1) + pr(R | R1 = 1, R0 = 0)pr(R0 = 0 | R1 = 1)}
×pr(R1 = 0 | R0 = 0). (S3)

Combining the terms involving pr(R | R1 = 1, R0 = 1) and pr(R | R1 = 1, R0 = 0) respectively, (S3)
above implies

pr(R | R1 = 1, R0 = 1)× {1− pr(R0 = 1 | R1 = 1)pr(R1 = 0 | R0 = 0)} (S4)
= pr(R | R1 = 1, R0 = 0)× {pr(R1 = 1 | R0 = 0) + pr(R0 = 0 | R1 = 1)pr(R1 = 0 | R0 = 0)} .

Because 75

{1− pr(R0 = 1 | R1 = 1)pr(R1 = 0 | R0 = 0)}
− {pr(R1 = 1 | R0 = 0) + pr(R0 = 0 | R1 = 1)pr(R1 = 0 | R0 = 0)}

= 1− pr(R1 = 1 | R0 = 0)− pr(R1 = 0 | R0 = 0) = 0

implies

1− pr(R0 = 1 | R1 = 1)pr(R1 = 0 | R0 = 0)

= pr(R1 = 1 | R0 = 0) + pr(R0 = 0 | R1 = 1)pr(R1 = 0 | R0 = 0).

Therefore, (S4) implies that pr(R | R1 = 1, R0 = 1) = pr(R | R1 = 1, R0 = 0). Replacing pr(R | R1 =
1, R0 = 1) in (S1) by pr(R | R1 = 1, R0 = 0), we further deduce that pr(R | R1 = 1, R0 = 0) = pr(R |
R1 = 1, R0 = 1). Therefore, we have shown that

pr(R | R1 = 1, R0 = 0) = pr(R | R1 = 1, R0 = 1) = pr(R | R1 = 0, R0 = 0). (S5)

Because monotonicity R1 ≥ R0 rules out (R1 = 0, R0 = 1), the above relationships in (S5) imply 80

R (R1, R0). !
Proof of Proposition 5. Suppose that Assumption 3 holds. Then Yi(z,m) Mi(z′) | Xi for all

z, z′,m = 0, 1, because Gi = {Mi(z),Mi(z′)}. Assumption 2 follows from

pr{Yi(z,m),Mi(z
′) | Zi = z′, Xi} = pr{Yi(z,m),Mi(z

′) | Xi}
= pr{Yi(z,m) | Xi}× pr{Mi(z

′) | Xi}
= pr{Yi(z,m) | Zi = z′, Xi}× pr{Mi(z

′) | Zi = z′, Xi},

where the first equality and the last equality follow from Assumption 1.
Vice versa, suppose that Assumption 2 holds. Assumption 1 implies 85

pr{Yi(z,m),Mi(z
′) | Zi = z′, Xi} = pr{Yi(z,m),Mi(z

′) | Xi}
pr{Yi(z,m) | Zi = z′, Xi}× pr{Mi(z

′) | Zi = z′, Xi} = pr{Yi(z,m) | Xi}× pr{Mi(z
′) | Xi},

which, coupled with Assumption 2, imply that Yi(z,m) Mi(z′) | Xi for all z, z′,m = 0, 1. Under As-
sumption 4, Mi(1) ≥ Mi(0), and therefore Assumption 3 follows from Lemma S1, with R = Yi(z,m),
R0 = Mi(0) and R1 = Mi(1), conditional on Xi. !

S2·7. Proof of Proposition 6
Proposition 5 ensures that, under Assumption 4, Assumption 2 implies Assumption 3. We need

only to show that Assumption 3 implies Assumptions 5 and 6. Assumption 3 can be written as
Yi(z,m) {Mi(0),Mi(1)} | Xi for all z,m = 0, 1, which further implies

Yi(z,m) Mi(0) | {Mi(1), Xi}, Yi(z,m) Mi(1) | {Mi(0), Xi},
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and, in particular, with specific values of z, m, Mi(0) and Mi(1),

Yi(1, 1) Mi(0) | {Mi(1) = 1, Xi}, Yi(1, 0) Mi(1) | {Mi(0) = 0, Xi}.

S2·8. Proof of Proposition 790

First, we prove the result for Yi(1,Mi0). We can write its conditional mean given Xi = x as a weighted
average across principal strata:

E{Yi(1,Mi0) | x} = E{Yi(1,Mi0) | Gi = 00, x}π00|x + E{Yi(1,Mi0) | Gi = 01, x}π01|x

+E{Yi(1,Mi0) | Gi = 11, x}π11|x + E{Yi(1,Mi0) | Gi = 10, x}π10|x.(S6)

Under Assumption 4, π10|x = 0 and other conditional probabilities of principal strata are identified by

π11|x = pr(M obs
i = 1 | Zi = 0, x)

π00|x = pr(M obs
i = 0 | Zi = 1, x)95

π01|x = 1− π11|x − π00|x = pr(M obs
i = 1 | Zi = 1, x)− pr(M obs

i = 1 | Zi = 0, x).

Identification of the conditional mean of Yi(1,Mi0) within stratum Gi = 00 follows from

E{Yi(1,Mi0) | Gi = 00, x} = E{Yi(1,Mi1) | Mi(0) = Mi(1) = 0, x}
= E{Yi(1,Mi1) | Mi(1) = 0, x}
= E{Yi(1,Mi1) | Zi = 1,Mi(1) = 0, x}
= E(Y obs

i | Zi = 1,M obs
i = 0, x),

where the first equality holds because Yi(1,Mi0) = Yi(1,Mi1) for Gi = 00, the second equality holds
because of Assumption 4, the third equality holds because of Assumption 1, and the last equality holds
because of the composition and consistency assumptions.100

Identification of the conditional mean of Yi(1,Mi0) within stratum Gi = 01 follows from

E{Yi(1,Mi0) | Gi = 01, x} = E{Yi(1,Mi0) | Mi(0) = 0,Mi(1) = 1, x}
= E{Yi(1, 0) | Mi(0) = 0,Mi(1) = 1, x}
= E{Yi(1, 0) | Mi(0) = 0,Mi(1) = 0, x}
= E(Y obs

i | Zi = 1,M obs
i = 0, x), (S7)

where the first equality holds by definition, the second equality holds because Yi(1,Mi0) = Yi(1, 0) for
Gi = 01, the third equality holds because of Assumption 6, and the last equality holds because of consis-
tency Y obs

i = Yi(Zi,M obs
i ).

Identification of the conditional mean of Yi(1,Mi0) within stratum Gi = 11 follows from105

E{Yi(1,Mi0) | Gi = 11, x} = E{Yi(1,Mi0) | Mi(0) = 1,Mi(1) = 1, x}
= E{Yi(1, 1) | Mi(0) = 1,Mi(1) = 1, x}
= E{Yi(1, 1) | Mi(1) = 1, x}
= E{Yi(1, 1) | Zi = 1,Mi(1) = 1, x}
= E(Y obs

i | Zi = 1,M obs
i = 1, x), (S8)

where the first equality holds by definition, the second equality holds because Yi(1,Mi0) = Yi(1, 1) for
Gi = 11, the third equality holds because of Assumption 5, the fourth equality holds because of Assump-
tion 1, and the last equality follows from consistency.
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Therefore, we can use the above ingredients to simplify (S6) as

E{Yi(1,Mi0) | x}
= E(Y obs

i | Zi = 1,M obs
i = 0, x)× pr(M obs

i = 0 | Zi = 1, x)

+E(Y obs
i | Zi = 1,M obs

i = 0, x)× {pr(M obs
i = 1 | Zi = 1, x)− pr(M obs

i = 1 | Zi = 0, x)}
+E(Y obs

i | Zi = 1,M obs
i = 1, x)× pr(M obs

i = 1 | Zi = 0, x)

=
∑

m=0,1

E(Y obs
i | Zi = 1,M obs

i = m,x)× pr(M obs
i = m | Zi = 0, x). (S9)

Second, we turn to the identification of the natural direct effect NDE(0 | x):

NDE(0 | x) = E{Yi(1,Mi0) | x}− E{Yi(0,Mi0) | x} = E{Yi(1,Mi0) | x}− E{Yi(0) | x},

where the first term is identified by (S9) and the second term is identified by E(Y obs
i | Zi = 0, x) under 110

Assumption 1.
Third, we prove the result for the natural indirect effect NIE(1 | x). The following decomposition

NIE(1 | x) = E{Yi(1,Mi1) | x}− E{Yi(1,Mi0) | x}
= [E{Yi(1,Mi1) | Gi = 01, x}− E{Yi(1,Mi0) | Gi = 01, x}]× π01|x (S10)

holds under Assumption 4 because Yi(1,Mi1) = Yi(1,Mi0) for strata Gi = 11 and Gi = 00. We can 115

use (S7) to identify E{Yi(1,Mi0) | Gi = 01, x} in (S10) and use the following result to identify
E{Yi(1,Mi1) | Gi = 01, x} in (S10):

E{Yi(1,Mi1) | Gi = 01, x} = E{Yi(1, 1) | Mi(0) = 0,Mi(1) = 1, x}
= E{Yi(1, 1) | Mi(0) = 1,Mi(1) = 1, x}
= E(Y obs

i | Zi = 1,M obs
i = 1, x), 120

where the first equality holds because Yi(1,Mi1) = Yi(1, 1) for Gi = 11, the second equality holds be-
cause of Assumption 5, and the last equality follows from (S8). Therefore, (S10) reduces to

NIE(1 | x) ={E(Y obs
i | Zi = 1,M obs

i = 1, x)− E(Y obs
i | Zi = 1,M obs

i = 0, x)}
× {pr(M obs

i = 1 | Zi = 1, x)− pr(M obs
i = 1 | Zi = 0, x)}.

S2·9. Proofs of Propositions S1 and S2 125

The proofs are similar to the ones of Propositions 6 and 7.




