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A similar problem has arisen in dealing with filament-reinforced solids,
For such composite materials in which often a nearly-incompressible matrix
is combined with elastic reinforcement, the Ritz method based upon the
Minimum Potential Energy Theorem leads to unsatisfactory results from a
computational standpoint. Furthermore, the limiting case of an incompressible
composite is not obtained by a continuous transition from the compressible;
i,e., a singularity again occurs in the problem formulation. This aspect of
the problem has recently been noticed by Shaffer [3] in formulating the
displacement equation of equilibrium for generalized plane strain of orthotropic
tubes.

This paper extends the earlier work of Herrmann [27 to orthotropic thermo-
elastic solids, After establishing some preliminary notation, constitutive
equations valid for compressible or incompressible solids are written; in
order to effect these relations it is necessary to retain an added mechanical
dependent variable, and an additional constraint condition, Having established
the set of field equations appropriate to both compressible and incompressible
linear, orthotropic thermoelastic solids a mixed variational principle based
on the Hellinger-Reissner Theorem is stated, The Euler equations of this
principle are the same field equations and the natural boundary conditions
are the appropriate conditions to be satisfied by the surface traction and
displacement vectors. From this point on the application of the variational
principle in the construction of finite element computer algorithms for the

solution of boundary value problems is well=known [47.



Preliminaries

The mechanical state in a linear, orthotropic thermoelastic solid is

conveniently described by the (symmetric) stress and strain tensors Tij and

€.., respectively, and the displacement vector u’*

. For quasi-static
ij i

problems the fifteen functions (components) are found by requiring satis-

faction of: the stress equations of equilibrium,

..+ £, =0 ; (L)
17,J 1
strain-displacement equations
26, . =u, | +u, . (2)
13 1,3 J,1

and the constitutive equations

eij = Sijkﬁ, T * oziJ.T . (3)

In the preceding fi is the body force vector, Sijk£ the elastic com-
pliance tensor, ai, the thermal expansion tensor and T the temperature
change from a reference state.

For a properly posed boundary value problem there must be appended to
these fifteen equations prescribed values of the displacement or traction
vector on the boundary of the solid., For a compressible solid there is no
formal difficulty in eliminating the strains from (2) and (3) and substitut-
ing in (1) to obtain displacement equations of equilibrium, Alternatively,

the same result can be obtained by forming the strain energy density, insert-

ing in the minimum potential energy functional and applying the variational

>k
State variables are referred to a fixed rectangular cartesian reference
frame; the usual index notation and summation convention is inferred.



operator. It is precisely at this point (obtaining stress in terms of
strain in either case) that the procedure fails for incompressible solids.
Consequently, it is necessary to modify the constitutive equation in such a
manner that inversion of the strain-stress equation is always possible,
irrespective of the compressibility of the solid. This is accomplished in
the next section through the introduction of an additional state variable,

Constitutive Equations for Orthotropic Solids

In the sequel, anticipating applications to computer-oriented algorithms,
it will be convenient to employ so-called reduced notation for the stress

and strain tensors, i.e.,

c, =T etc,

22’
(4)

€, = €

1 11) 2 22: Y = 2€ etc.

12 12’

With this notation the stress and strain tensors can be represented as

vectors and the compliance tensor as a two-dimensional array. However, care
must be exercised in transforming these quantities to other coordinate systems.
For further convenience in subsequent use in the variational theorem the

stress and strain ''vectors' are defined as

i = (o,

qQ
i

Oy O30 Tygr Tog T31) (5)

€, = Csl, €y €30 Yigr Yogo vsl) (6)

The linear thermal expansion tensor is likewise written

o, = (al, ¥y g, 0, 0, 0) (7)

and the elastic compliance tensor is



0
S;1 S S35 O
0 0
Sjg Sga Sy3
Si3 Sz Sz3 O 0
Sij =
0
0 0 o s,
0 0 0 0o s
K 0 0 0 0

with this notation the constitutive equation takes the form*

€, = S, 05 + aiT i,j =1,2,..

i ij

and the dilatation may be written as

where

Substituting (9) into (10):

D2

u
=
0
Q
+
eS|

e
Q

e
=

where

(8)

(9)

(10

(11)

(12)

(13)

(14)

It is assumed that the elastic axes of the orthotropic solid coincide with
the fixed reference frame.* In the sequel, where reduced variables appear,
unless otherwise stated,

summation is extended over the range 1, 2,



Anticipating the need to invert (9) we form the determinant of Sij as
follows:
\Sij\ = Ay Sy S55 See (15)
where
3 = 8 S - 82 S (s S..) -8 S - S S
M = S S33 7 Spg * Spg (87, + 81, 12 "33 7 "13 22
3\, = S S - Sz S (s S..) = S S - S S (16)
P2 7 Y33 M11 13 + 13 12 * 23 12 33 23 11
3\, = S S - Sz S (s S..) - 8 S - S S
37 11 T22 12 * 12 13 + 23 13 22 23 11

For a compressible elastic solid, the strain energy density must be positive
definite; this requires that in addition to the non-vanishing of the
determinant of Sij’ the principal minors T(ii) and the diagonal elements

S(ii) of the determinant must be greater than zero [5], i.e.,

>0

> > i
lS l 0, T(ii) , S(ii) 0, no sum on i . a7

ij
In [3] Shaffer has shown that for a (mechanically) incompressible solid,

AL = A =A_ =0 (18)

These three equations (18) place restrictions on the cross- compliances of
the solid, effectively reducing the number of independent elastic compliances
and generalizing the result v = 0.5 for an isotropic solid.

Since Ai =0, i =1, 2, 3, for an incompressible orthotropic solid,
from (15) it is seen that \Sijl vanishes, which establishes the connection
between mechanical incompressibility and vanishing of the determinant of

the compliance matrix., In the sequel in dealing with an incompressible

elastic solid we shall assume that (17) is replaced by the condition



s. .| = o, >0 >0 (19)
s,

ij T(ii) ’ S(ii)
Thus, for solids that are incompressible or nearly incompressible the solu-
tion of (9) for cj is eilther not possible or numerically very sensitive,.
Following [1] and [27] it is desirable to modify both the stress vector o

and the compliance matrix Sij so that (9) can be recast in a form invertible
for both compressible and incompressible solids. This is accomplished by

defining an additional constitutive variable and splitting the compliance

matrix into two parts. Let

o. = HF, + ¢ * (20)

where H 1is a scalar variable with the dimensions of stress and Ui* is the

*

difference between the stress vector and H. (For isotropic solids ci is
the deviator stress). Further, set
S,. = B.. + B.. (21)
1] 1] 13

where Bij is for the present an arbitrary matrix and Bij is the resulting
modified compliance matrix, Equation (21) is defined to be symmetric in i

and j. Substituting (20) and (21) into (9) gives

¢, = (B,.F, +B..F)H+B, o.¥+p,.0.%+ar (22)
1 13 J 13 ] 13 J 13 J 1
In order to solve this equation for cj* set
B,.0. ¥ =0 (23)
1J 2
This implies that
= 0 24
1855 (24)

Using (23), solving for cj* in (22) and substituting the result into (20):



-1,
¢ - T - F H

-1
where Bji , the inverse of Bji’ is temporarily assumed to exist., Since
H has been introduced in the constitutive equation as an additional variable,

the dilatation equation (10) is retained as an independent equation, Sub-

stituting (21) and (25) in (9) and the result in (10) leads to

-1

-1
(Fie + FiBikBkz szFj) H - FiBikBkj (eJ. - on.T) = 0 (26)

1573
Equations (25) and (26) comprise the constitutive equations for incompressible
and nearly incompressible orthotropic solids,

We now take up the question of the existence of the inverse of the
modified compliance matrix, Bij' Since Sij is in diagonal form for 1i,j > 3,
without loss of generality we set Bij zero for i, j > 3. Thus in consider-

ing the inverse of Bij we need consider only the upper 3 x 3 submatrix.

To satisfy (24) set

- —

Bll \/811822 \/611833

rm——

Bij = Boo V855833 (27)

Symmetric B
_ 33

Next select the Bij in such a way that Bij is reduced to diagonal form,

This is accomplished by taking

B(ii)e(jj) - Sij b= 1,23 (28)
i # j, no sum

From (28) it follows that



Si's'k
B.. = ——%~i— no sum; = i,j,k = 1,2,3 (29)

ii .
Jk 1434k

Substituting (29) into (21) the modified compliance matrix can now be

written
T
23 0 0
23
T13
Bij = -5 0 (30)
b
12
L J
where Tij are the primary minors of Sij' Furthermore, in the limiting case

of incompressibility the vanishing of the determinant of Sij implies that

the primary minors are all numerically equal [6]. In the present case

Tig= " Tg="Tyy= 1 (31)

where from (19) Tll is greater than zero, Finally it follows from (30)

and (31) that the inverse of the modified compliance matrix can be written

S,a 0 0
BZE = - 51~ 0 5|3 0 (32)
11
i 0 0 S|,
-1

Equation (32) establishes the existence of Bij in the incompressible case.
We now return to the general formulation for both compressible and
incompressible solids, specializing the results for the case of isotropy.

Equation (8) now takes the fomm
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- - 0 0 0

1+v 1+v 1+v
I S 0 0 0

1+v 1+v

1

— 0 0 0

14y

5, =+ oy
+ b symmetric 2 0 0
2 0
2
B «-J

where v, u are Poisson's ratio and shear modulus, respectively., Thus

M

85 ° T Zmay FiFy
and
B_1 = (u + F F ) 8 no sum
i3 = MO TGO %y

From these results it is easily shown that (25) and (26) reduce to

= - _SvH_
o, = u[ei + F(i)e(i) ZFiaT] LI (33)
and
3(1-2v)
2 - I Sl L =
w(d - 30T i) H=0 (34)

which apart from a constant multiplying H have been previously given in
(11, [2].

A Variational Theorem

Having recast the constitutive equation into a form valid for both
compressible and incompressible orthotropic elastic solids, i.e. (25), it
is possible toreturn to the equilibrium equations (1) and strain-displ acement

equations (2) and obtain the equations of equilibrium in terms of



11

displacements and the H variable, These equations, along with the constraint
condition (26) and suitable boundary conditions, define a boundary value
problem, Alternatively, the boundary value problem can be defined by a vari-
ational principle whose Euler equations and natural boundary conditions are

the equilibrium equations, dilatation condition and boundary conditions
respectively., The variational principle for the present case as well as the
previously obtained result for isotropic materials [2], is a special case of

the Hellinger-Reissner Theorem, the functional of which can be written

Ty ) = Jpien D -

f t.u.d t -u.)d 35
13 Tijeij + iui]dv + ISTtiui s + jsu i(ui ui) S (35)

In (35) W(Tij) is the complementary energy density, ti is the surface

traction vector prescribed over the part of the surface ST’ ﬁi is the dis-
placement vector prescribed over the part of the surface Su and the strain-
displacement equations are assumed to be satisfied. The mechanical state

that satisfies the stress equations of equilibrium and the strain-stress equations

is given by

6J = 0 (36)

where Tij and ui are varied independently. The state variables ..

1]
1) (2) . *
and ui are assumed to be of class C and C respectively, In the
present context the functional in (35) is modified as follows: the stress-

strain relations are assumed to be satisfied, excepting the variable H,
and the displacement vector ui meets the prescribed boundary conditions on
Su' Accordingly, the functional can be expressed in terms of H and ui

and the surface integral over Su vanishes. To facilitate writing the

*
When the variational principle is utilized in connection with the finite
element method, weaker restrictions on the state variables may be allowed,
In this connection see [2],
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functional in (35) in terms of reduced variables it is necessary to introduce
a set of reduced strain-displacement equations. Accordingly, we define a

matrix operator Dij through

e, =D, u i=1, 2, , 6; j=1, 2, 3 (37)
where
i —aa— 0 0
*1
o 2 o
%9
0 0 2
0xq
i = (38)
’ T T
aXz Bxl
0 I
BXS 3%,
9 ol
s 0 —
S oy
Now substituting in (35), in terms of reduced variables there results
J{H,u,} = - I BTt l(D ul)® u) -¢TD, u -8, FHD u
T B ij| 2 7imm jnn i jn n ik k jn n
1 2] 1 2
F = F = -
* BT o+ 5B B T H ] * PR FH - fiuy pdv
+ ‘J"S tou ds (39)

T

Substituting (39) into (36) and executing the variation, (using the symmetry

-1
of B.))
1]
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-1,
IB V[Bij(‘sikaDjnu'n OB FET PP BT FiBiijH] SH

+ [Bfl.(D_ u - @T- §. F HD. bu :I - £ 6u_ Y dv (40)
ij  imm i ik k jn n n n
+ IS Enéunds =0 i, =1, 2, ...,6; m, n =1,2,3

In order to simply the term in the second square bracket note that

-1
- - =
Bij (Dimum iT SikaH) cJ. (41)

This expression can be placed in a form suitable for application of the

Divergence Theorem by using the identity

du j, . -7 du (42)
n

o.D, du = [T :
j jn n mn n“’'m mn,m

where Tmn is the symmetric stress tensor

r -—
9 9% %
- 3
Tmn C4 c2 c5 (43)
% O 93
A -

Accordingly, using (41), (42) in the second square bracket of (40) and applying

the Divergence Theorem leads to

-jB [chjnéun - fnéun]dv = - ISTwmnvméunds + IB(Tmn,m + fn) 6un dvy (44)

Using this result (40) can be written
J"B {[Eq. (26) 16H + (Tonm * fnjéun} dv + jST(tn =T v )éu ds = 0 (45)

Appealing to the usual lemma of the calculus of variations, the independent
vanishing of the bracketed expressions multiplying 8H and 6un is equivalent
to the dilatation condition (26) and the stress equations of equilibrium (or

displ acement equations of equilibrium if (41), (43) are used). Furthermore



vanishing of the surface integral is equivalent to satisfaction of the
traction boundary condition. In the special case of isotropy (45) reduces

to the result obtained in [2].

14
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