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Abstract
In light of constraints inherent to empirical research, such as
finite time and resources, there has been growing interest in
using artificial intelligence to streamline the scientific process.
However, despite advancements in automating scientific dis-
covery, the implementation of strategies for sampling useful
experiments remains a challenge. This metascientific study
evaluates different experimental sampling strategies based on
their effectiveness in advancing the discovery of linear models
of human cognition based on synthetic data. We investigate
the hypothesis put forth by Dubova et al. (2022) that random
sampling of experiments is more effective than model-driven
sampling. Indeed, the results of this study indicate that random
sampling is more effective in a majority of cases, and that the
underperformance of model-driven strategies can be attributed
to a narrow sampling of the design space. Despite limitations
in our approach, the work presented offers a novel framework
for the metascientific study of autonomous empirical research.
Keywords: computational discovery; automated scientific dis-
covery; active learning; metascience

Introduction
Recent work calls for large-scale experiments in cognitive
science to facilitate the development of integrative theories of
cognition (Almaatouq et al., 2022; Griffiths, 2015). To cat-
alyze such large-scale experimentation, researchers have pro-
posed that artificial intelligence be integrated into the empir-
ical research process (Agrawal et al., 2020; Musslick, 2021;
Peterson et al., 2021). However, there is limited knowledge of
how to advance the development of statistical models through
the effective sampling of experimental conditions. In this
metascientific study, we leverage a closed-loop framework
for autonomous empirical research to examine the abilities of
various experimentation strategies to accurately recover es-
tablished models of cognition from synthetic data.

Previous efforts to automate sampling of experimental con-
ditions have relied on expert domain knowledge (King et al.,
2009; Lindsay et al., 1993) and active learning techniques,
which are machine learning methods for selecting the most
useful data points given a model (Settles, 2009). In empirical
sciences, where an experimental design space has been cho-
sen, active learning can be used to select experimental con-
ditions that maximize the information gained from a novel
experiment. In principle, this allows for efficient use of re-
sources, whereby researchers can pinpoint promising condi-
tions rather than exhaustively sample the entire design space.

Recently, active learning approaches were pitted against
random sampling and found to be less effective (Dubova et

al., 2022). In their metascientific study, Dubova et al. (2022)
tasked different theorists, which were represented by autoen-
coders, to collaboratively reconstruct a ground truth consti-
tuted by a mixture of multi-variate Gaussian distributions.
Data were sampled using various strategies, including theory
falsification, novelty sampling, and random sampling. The
results indicated that random sampling outperformed (model-
driven) active sampling strategies, presumably because the
latter focused on a narrow region of the experimental design
space. This finding runs counter to the hypothetico-deductive
model and suggests, provocatively, that random sampling
may be the optimal way to design experiments and test theo-
ries. However, one could argue that the study’s setup may not
accurately reflect real-world empirical research, which relies,
to a large extend, on interpretable, linear statistical models
and aims to explain phenomena more complex than multi-
variate Gaussian distributions.

In this article, we investigate the hypothesis put forth by
Dubova et al. (2022)—that random sampling of experimen-
tal conditions outperforms active sampling in guiding the re-
covery of interpretable, statistical models of human cognition
from synthetic data. However, unlike in the original study,
we simulate the empirical research process with interpretable
theories and synthetic datasets, covering paradigms such as
object categorization (Luce, 1963; Shepard, 1958), value-
based choice (Tversky and Kahneman, 1992), controlled pro-
cessing (Cohen et al., 1990), and task switching (Yeung and
Monsell, 2003). To accomplish this, we leverage a novel
framework for autonomous empirical research that relies on
computational discovery and closed-loop automation to iden-
tify interpretable models of empirical phenomena. We find
that, for any given ground truth, random sampling outper-
forms many active sampling approaches. Our analyses sug-
gest that the benefit of random sampling results from captur-
ing more variance in measurements obtained from the ground
truth. However, the most successful sampling strategy de-
pends on the type of data and can be active rather than ran-
dom. We conclude by discussing the implications for com-
putational discovery in cognitive science and outline future
directions for the computational metascience of human cog-
nition.
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Methods
We begin by introducing the test bed used for evaluating dif-
ferent experiment sampling strategies in cognitive science.
The test bed relies on an open-source framework for au-
tonomous empirical research, which allows for the integra-
tion of mechanisms for model discovery, experiment sam-
pling, and data collection. We then outline analytical pro-
cedures for comparing different experiment sampling strate-
gies. The framework is available as the Python package
autora, and all reported simulations are based on code listed
in https://github.com/autoresearch/autora.

Overall Approach
Our test bed integrates three software components: (1) an au-
tonomous theorist that constructs quantitative models link-
ing experiment conditions to dependent measures; (2) an
autonomous experimentalist that designs novel experiments;
and (3) a synthetic environment for data collection. In the
current study, we focus on the second component. Specifi-
cally, we pair a logistic regression with different experimen-
talist algorithms and evaluate which combination is best able
to recover four models of human cognition that we treat as
ground truths.

Theorist ExperimentalistCandidate Model(s)

New Data

Experiment Environment 
(Ground Truth Agent)

Collected Data

New Experiment

Simulated Empirical Research Loop

Figure 1: Simulated Empirical Research Loop. An au-
tonomous theorist (blue) generates candidate models based
on collected data. The experimentalist (green) proposes novel
experiments to be conducted on a synthetic ground-truth
agent (orange), from which new data is collected.

We evaluate the effectiveness of each experimentalist in a
closed loop of model fitting and experimentation. This loop
iteratively executes the following steps: it generates new ex-
perimental conditions through the experimentalist, it collects
new data through a given ground-truth agent, and fits a logis-
tic regression through the theorist. We validate each fitted re-
gression model by assessing its ability to predict observations
obtained from the full space of legal experiment conditions,
as defined by the ground-truth agent.

Theorist
We implement an autonomous theorist that uses logistic re-
gression to find a model that correlates experimental variables
with noisy dependent measures obtained from a ground-truth
agent. We choose a basic logistic regression in this study

because (1) it is highly interpretable with respect to the in-
fluence of experimental factors on the dependent variable,
(2) it is frequently used for modeling choice data, and (3) it
can qualitatively recover signature effects of all ground-truth
agents1 For each ground-truth agent, all experimental factors
and their interactions are included as regressors, while the ob-
servations obtained from each ground-truth agent are consid-
ered the regressands. One of the sampling strategies (model
comparison) requires two models from the theorist. Thus, we
also fitted a second (reference) model that included no inter-
action terms as regressors.

Experimentalists
We consider the five experimentalists listed in Table 1. The
goal of each experimentalist is to identify novel experiment
conditions x⃗ ∈ X , where xi corresponds to the level of the
experiment factor i.

Table 1: Experimentalists. To determine novel experiment
conditions x⃗, experimentalists may use any of the latest can-
didate models M from the theorist, experimental conditions
that have already been probed x⃗′ ∈ X ′, or respective depen-
dent measures y⃗′ ∈ Y ′.

Experimentalist Function
Arguments

M X ′ Y ′

Random x⃗i ∼U [ai,bi]

Novelty argmax
x⃗

min(d(⃗x, x⃗′))

Least
Confident

argmax
x⃗

1−PM(ŷ∗ |⃗x),

ŷ∗ = argmax
ŷ

PM(ŷi |⃗x)

Model
Comparison

argmax
x⃗

(PM1(ŷ|⃗x)−PM2(ŷ|⃗x))2

Falsification argmax
x⃗

L̂(M,X ′,Y ′, x⃗)

Experimentalists may use information about any of the the-
orist’s candidate models M, experiment conditions that have
already been probed x⃗′ ∈ X ′, or respective dependent mea-
sures y⃗′ ∈ Y ′. One strategy, referred to as the random ex-
perimentalist, disregards prior information and instead sam-
ples each experiment factor uniformly from a predefined in-
terval, U [ai,bi], where ai and bi represent the lower and upper
bounds of the experiment factor, respectively. Another ap-
proach, referred to as the novelty experimentalist, selects new
experiment conditions that maximize the smallest Euclidean
distance, d(⃗x, x⃗′), to previously selected conditions. The ex-
perimentalist labeled least confident chooses experiment con-
ditions for which the theorist’s best model is most uncertain,

1We ensured that logistic regression could qualitatively repro-
duce basic effects produced by each ground-truth agent when trained
on the full data set.
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i.e., for which the highest predicted outcome probability is
closest to 0.5. The model comparison experimentalist identi-
fies two candidate models from the logistic regression—one
with all interaction terms (the candidate model) and one with-
out interaction terms (the reference model)—and then selects
experiment conditions for which the predictions of the two
models disagree the most. Finally, the falsification experi-
mentalist searches for experiment conditions under which the
loss L̂(M,X ′,Y ′, x⃗) of the best candidate model is predicted to
be the highest. This loss is approximated with a multi-layer
perceptron, which is trained to predict the loss of a candi-
date model, M, given experiment conditions X ′ and depen-
dent measures Y ′ that have already been probed.

Ground-Truth Agents
We evaluate each experimentalist across four experimental
domains: object categorization, value-based decision mak-
ing, the Stroop task, and task switching, each represented by
a prominent computational model of human cognition (see
Table 2). The corresponding computational models act as
ground-truth agents and are used to generate observations y
from experiment factors x⃗. We implemented each agent so
that it outputs a probability (e.g., representing the likelihood
of the agent choosing one response over another), such that
the data produced by all agents are amenable to logistic re-
gression.

Table 2: Ground Truth Agents. Agents correspond to quan-
titative models adapted from respective references and varied
by the number of parameters as well as experiment factors.

Ground Truth Reference # Param. # Fact.

Object Categ.
Agent

Luce (1963) 1 4

Decision Making
Agent

Tversky and
Kahneman (1992)

6 4

Stroop
Agent

Cohen et al. (1990) 25 6

Task Switching
Agent

Yeung & Monsell (2003) 6 3

Object Categorization Agent Object categorization tasks
require participants to categorize a target object (e.g., catego-
rize a digit according to its parity), possibly while ignoring
a distractor object (e.g., a second digit displayed below the
target digit). The adapted Shepard-Luce choice rule from Lo-
gan and Gordon (2001) posits that the likelihood of an indi-
vidual assigning a target object, represented as x, to a specific
response category, represented as i, is proportional to their
psychological similarity η(x, i),

p(“x is i”) =
η(x, i)βx + ε

∑ j∈R η(x, j)βx +∑ j∈R η(y, j)(1−βx)
(1)

where R corresponds to the set of all possible response cate-
gories and y represents a second object on display. Here, we
assume an attentional bias toward processing the target ob-
ject βx = 0.8. Furthermore, we consider a scenario with only
two response categories, i and j, with an equal attentional
bias to each category. Finally, we assume processing noise
ε ∼ N (0,0.012) with the constraint that 0 ≤ p(“x is i”)≤ 1.

Experimental factors include the psychological similari-
ties2 between the target object and the two response cate-
gories η(x, i), η(x, j) ∈ {1.25k | k ∈ {1,2, . . . ,8}}, as well
as the similarities between the distractor object and the
same two response categories η(y, i), η(y, j) ∈ {1.25k | k ∈
{1,2, . . . ,8}}. The dependent measure is the probability of
assigning category i to the target object x, p(“x is i“).

Decision Making Agent Value-based decision making is
concerned with how humans choose between offers, e.g., be-
tween two lotteries that are associated with different values
and respective success probabilities. Prospect theory (Tver-
sky and Kahneman, 1992) suggests that humans choose be-
tween two options, A and B, based on their expected values,

P(Choose A) =
e1/T ·U(A)

e1/T ·U(A)+ e1/T ·U(B)
(2)

where T = 0.1 is the temperature of the choice softmax func-
tion and U(A) and U(B) are the expected utilities of the two
choices. Here, we assume that each choice is associated with
one value and a respective probability such that the expected
utility of any option amounts to U(A) = v(xa)π(pa) + ε,
where v(xa) corresponds to the subjective value of the out-
come associated with option A and π(pa) corresponds to the
probability of that outcome. We also assume that the com-
putation is noisy, ε ∼ N (0,0.012). Following Tversky and
Kahneman, 1992, we adopt an asymmetric value function,

v(x) =

{
xα x ≥ 0
−λ(−x)β x < 0

(3)

where α = β = 0.88 and λ = 2.25. Furthermore, we assume
that humans overweight low probabilities and underweight
high probabilities,

π(p) =
pγ

(pγ +(1− p)γ)1/γ
(4)

where γ = 0.69 if x < 0 and γ = 1.0 if x ≥ 0. The four experi-
ment factors for this ground-truth agent correspond to the out-
comes of both options, xa,xB ∈ {0.25k | k ∈ {−4,3, . . . ,4}},
and the respective probabilities, pa, pb ∈ {0.125k | k ∈
{0,1, . . . ,10}}. Finally, we considered P(Choose A) as the
dependent variable.

Stroop Agent The Stroop Model is a neural network model
that aims to explain cognitive processes involved in the abil-
ity of individuals to override habitual responses (e.g., reading

2Here, we assume that psychological similarities between ob-
jects and response categories are known prior to the experiment and,
thereby, manipulable.
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a color word “GREEN”) in order to fulfill current task goals
(e.g., naming the ink color of the color word). As described
in Cohen et al. (1990), the model is comprised of two input
layers, one representing the stimulus and one representing the
task. The stimulus layer is divided into two groups, with each
group consisting of two units. One group represents the color
of the stimulus (e.g., green or red), and the other group rep-
resents the word (e.g., “GREEN” or “RED”). The two units
constituting the task layer represent the color naming task and
the word reading task. Both the stimulus and task inputs are
multiplied by a matrix of connection weights, projecting from
the input layers to an associative (hidden) layer. The result-
ing pattern of activity over the units in the associative layer is
then passed through a logistic function, which is used to de-
termine, through another set of connection weights, the pat-
tern of activity over the output layer via a softmax function.
The two units constituting the output layer represent the prob-
abilities of the verbal responses, “green” and “red”.

A fundamental assumption of the Stroop model is that the
connections projecting from the word input units to the out-
put layer (via the associative layer) are stronger than those
of the color input units. This is believed to establish an au-
tomatic processing pathway for the word inputs. However,
the model also proposes that the color input units may be
selected over the word inputs (via projections from the task
layer) at the associative layer. In this study, we applied the
connection weights from Cohen et al., 1990 and added noise
ε ∼ N (0,0.012) to the net input of each output unit.

The inputs to the Stroop Model can be represented as six
experimental factors: the saturations of the two colors green
and red cr,cg ∈ {0.1k | k ∈ {0,1, . . . ,10}}, the visibilities of
the two words, “GREEN” and “RED” wr,wg ∈ {0.1k | k ∈
{0,1, . . . ,10}}, and the presence of the two tasks, color nam-
ing and word reading tc, tw ∈ {0,1}. However, the experi-
mental design space is constructed such that only one of the
respective features and tasks is present, i.e., ci ≥ 0,c j ̸=i =
0;wi ≥ 0,w j ̸=i = 0; ti = 1, t j ̸=i = 0. We treat the probability of
responding “green” as the dependent measure.

Task Switching Agent One of the most robust findings in
cognitive psychology is that individuals make fewer errors
and respond more slowly when repeating a task as compared
to switching from one task to another. Yeung and Monsell
(2003) explain this and other task-switching phenomena with
a simple model in which the activation level of a task is re-
lated to its performance,

P(Correct Response to Task A) =
e1/T ·actA

e1/T ·actA + e1/T ·actB
. (5)

where T = 0.2 is the choice temperature, and actA and actB
correspond to the activity of tasks A and B, respectively. The
activity of any task is a non-linear function of its input, acti =
1− e1.5·inputi . The input consists of multiple factors,

inputi = strengthi +priming · repetition+ control(i)+ ε (6)

including the degree of task practice, represented as strengthi,
and a priming factor, which is incorporated when the task on
the current experimental trial is identical to that of the previ-
ous trial (repetition = 1). Additionally, endogenous control
is incorporated into the task input as a function of the task’s
strength (see Yeung and Monsell, 2003 for more details). Fi-
nally, noise ε ∼ N (0,0.012) is added to the input. For the
simulations reported below, we parameterized the model ac-
cording to Table 4 in Yeung and Monsell, 2003.

The three experimental factors of the task switching model
are the strengths of the two tasks, strengthi ∈ {0.02k | k ∈
{1, . . . ,100}}, and the type of task transition, repetition ∈
{0,1}. We considered the probability of correctly respond-
ing to Task A as the dependent variable of interest.

Simulation Procedure
We evaluated each experimentalist by first generating an ex-
haustive “legal” set of experimental conditions (see the exper-
iment factor bounds described for each ground-truth agent).
Some experimentalists require seed data or models to deter-
mine novel experiment conditions. Thus, before initiating the
first research cycle, we collected a seed data set that com-
prises ten evenly-spaced experiment conditions sampled from
the legal set, along with the noisy observations obtained from
the respective ground-truth agent. We also fitted a seed model
to this data set. Together, the seed data set and the seed model
provided the same initial condition for each experimentalist
with a given ground-truth. Following this initialization, we
ran 50 empirical research cycles, with each cycle consisting
of the following steps: (1) sample ten novel experiment con-
ditions according to the specific experimentalist strategy, (2)
collect corresponding noisy observations from the ground-
truth agent, (3) combine new data with existing data, and (4)
fit a new candidate model to the data. For each cycle, we cal-
culated the mean-squared error (MSE) of the theorist’s candi-
date model’s predictions for all experiment conditions (with
noise-less observations). The entire procedure was indepen-
dently simulated 20 times for each pairing of experimentalist
and ground-truth agent, resulting in a total of 400 simulations.

Analysis
Prior to all analysis, we removed outliers, operationalized as
an MSE greater or less than three standard deviations from
the mean MSE for a given research cycle and experimental-
ist. We evaluated the performance for each pairing of ex-
perimentalist and ground truth by regressing the final MSE
(after 50 cycles of the empirical research process) against
the experiment strategy (categorical regressor). In alignment
with our hypothesis, we contrasted each experimentalist strat-
egy against the random experimentalist (intercept). Differ-
ent seeds of the empirical research cycle were treated as ran-
dom effects. To further examine the different experimentalist
strategies, we calculated the variance across all collected ob-
servations from the dependent measure at the end of each sim-
ulation. As with the MSE, we regressed the variance against
the experiment strategy (categorical regressor), with the ran-
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dom experimentalist as the baseline, and treated the seed for
each cycle as a random effect. Finally, we projected the ex-
periment conditions collected after 10 cycles3 for each exper-
imentalist onto a 2-dimensional plane using t-SNE.

Results
Table 3 and Figure 2 summarize the results for all pairings of
experimentalist and ground truth. For the object categoriza-
tion agent, we observe that none of the experimentalists yield
a significantly lower MSE than the random experimentalist.
Curiously, the model-driven experimentalists relying on fal-
sification and model comparison strategies performed signif-
icantly worse than random sampling. For the value-based de-
cision making agent, however, the falsification experimental-
ist yielded a significantly lower MSE compared to the random
experimentalist. All other sampling strategies performed as
well or worse as the random sampling strategy. For the Stroop
agent, novelty sampling appeared as good as random sam-
pling, whereas all other sampling strategies yielded a higher
MSE compared to the random strategy. Finally, for the task
switching agent, none of the sampling strategies yielded a
lower MSE compared to the random sampling strategy. The
model comparison and falsification strategies even yielded
greater MSEs with each data collection cycle, resulting in sig-
nificantly greater final MSEs as depicted in Figure 2D.

The right part of Table 3 indicates that most experimen-
talists yield lower variance across the collected observations
when compared to the random sampling strategy, except, in
some cases, for the novelty experimentalist. The same result
was reflected in the projection of observed experiment condi-
tions, grouped by sampling strategy (lower panels in Figure
2). In general, the model-driven experimentalists (falsifica-
tion and model comparison) sample a narrow space of exper-
iment conditions, which reflects a sampling bias. Conversely,
data points collected by the random and novelty experimen-
talist appear more spread out, enabling them to capture the
“bigger picture” of the ground truth. A post-hoc analysis re-
vealed a strong correlation between the final MSE and vari-
ance of collected observations across seeds and experimen-
talists, r(395) = .51, p< .001, suggesting that the greater vari-
ance obtained by random sampling contributes to its success.

Discussion
Central bottlenecks in empirical research call for an integra-
tion of artificial intelligence into the scientific process. While
solutions for automating theory discovery are emerging, there
are few well-informed attempts at automating strategies for
sampling experimental conditions in established psycholog-
ical paradigms. In this article, we evaluated different ex-
perimental sampling strategies based on their abilities to ef-
fectively recover ground-truth agents from noisy observa-
tions. We found that the best sampling strategy depended on
the ground truth to be discovered. Curiously, model-driven

3We chose a small number of cycles to avoid obscuring differ-
ences across experimentalists due to visual cluttering.

Table 3: Analysis Results. For every ground truth, exper-
imentalists are compared based on the MSE of the result-
ing model, as well as the variance across all collected ob-
servations. The random sampling strategy acts as a refer-
ence level. Green/red highlighting indicates whether the re-
spective experimentalist yields relatively lower/higher MSE
or higher/lower variance, compared to random sampling.

Dependent Measure MSE Variance of Collected Data

β S.E p β S.E p

Object Categorization

Intercept (Random) .0739 .0081 <.001 .0344 .0025 <.001

Novelty .0042 .0052 .4173 -.0147 .0029 <.001

Least Confident -.0023 .0052 .6579 -.0318 .0028 <.001

Model Comparison .0287 .0052 <.001 -.0315 .0028 <.001

Falsification .0188 .0052 <.001 -.0227 .0028 <.001

Decision Making

Intercept (Random) .3947 .0015 <.001 .1959 .0028 <.001

Novelty -.0009 .0020 .6685 -.0071 .0039 .0733

Least Confident .0008 .0020 .7086 -.1811 .0039 <.001

Model Comparison .0051 .0020 <.05 -.1796 .0039 <.001

Falsification -.0090 .0020 <.001 -.1655 .0039 <.001

Stroop

Intercept (Random) .2310 .0014 <.001 .1195 .0050 <.001

Novelty -.0018 .0019 .3607 .0116 .0071 .1030

Least Confident .0067 .0019 <.001 -.1152 .0071 <.001

Model Comparison .0087 .0019 <.001 -.0854 .0071 <.001

Falsification .0087 .0020 <.001 -.0707 .0071 <.001

Task Switching

Intercept (Random) .0467 0.0012 <.001 .0220 .0007 <.001

Novelty -.0004 .0016 .7970 .0031 .0011 <.01

Least Confident -.0020 .0016 0.2220 -.0196 .0011 <.001

Model Comparison .0172 .0016 <.001 -.0193 .0011 <.001

Falsification .0107 .0016 <.001 -.0121 .0011 <.001

strategies more commonly underperformed random sampling
(Table 4). Our results suggest that the relative disadvantage of
the model-driven sampling of experiments results from the in-
ability to capture variance across the entire design space, po-
tentially due to strong sampling biases imposed by the model.

Our results comport with prior simulations of Dubova et al.
(2022), demonstrating that random sampling of experiment
conditions can outperform active sampling stategies. The
simulation approach taken by Dubova et al. (2022) differed
in two important ways: (a) ground truths were represented
by multi-variate Gaussian distributions instead of established
models of human cognition, and (b) scientific models were
approximated by autoencoders instead of more interpretable
and more commonly applied logistic regression models. Yet,
results from both approaches converge in that they identify
advantages of random sampling over model-driven experi-
mentation. Contrary to Dubova et al. (2022), our study sug-
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A B C DObject Categorization Decision Making Stroop Task Task Switching

Figure 2: Simulation Results. Top panels show the error of the theorist model across the full set of legal experimental conditions
for the (A) object categorization agent, (B) value-based decision making agent, (C) Stroop agent, and (D) task switching agent.
Different colors represent different experimentalists. Bottom panels depict a t-SNE projection of all experimental conditions
(sampled after 10 data collection cycles) for the respective ground-truth agent onto a two-dimensional plane. The exhaustive
space of legal experimental conditions is represented by white-gray points, with the degree of grayness indicating the value
of the dependent measure for the respective experimental condition. Darker shades of gray correspond to higher probabilities.
Colored points represent the final set of experimental conditions that were sampled by the best experimentalist of each type.

Table 4: Summary. The number of times that experimental-
ists performed better, worse, or equal to random sampling.

Experimentalist Better Worse Equal
Novelty 0 0 4
Least Confident 0 1 3
Model Comparison 0 4 0
Falsification 1 3 0

gests that, active experimentation can, in principle, outper-
form random sampling. However, if the ground truth is un-
known, random sampling can be a successful heuristic com-
pared to most other approaches. This is consistent with ob-
servations that matrices with low rank (e.g., structured data
from experiments with few independent variables) are well
approximated with random sampling (Halko et al., 2011).

While suggestive, the evidence provided by this study is
limited by its specific parameterization of the empirical re-
search cycle. First, we benchmarked different experimental-
ists on only a small subset of quantiative models that served
as ground truth. As our analyses indicate, the best experi-
mentation strategy may depend on the particularities of the
phenomenon under investigation. Consequently, future work
should examine the performance of different strategies as a
function of features characterizing the object of study, such
as the rank of the data matrix (Halko et al., 2011). Second,
we restricted model discovery to fitting parameters in a logis-
tic regression. While this yields interpretable models, it does
not involve the most challenging aspect of theory discov-
ery—identification of the model architecture. Autonomous

theorists could deploy different forms of automated model
discovery, such as symbolic regression (Guimerà et al., 2020;
Schmidt and Lipson, 2009; Udrescu et al., 2020) or neural
architecture search (Elsken et al., 2019; Musslick, 2021). Fi-
nally, we used only simple experimentalists strategies. In
principle, we could compose or serialize strategies into more
sophisticated experimentalists and counterbalancing schemes
(Musslick et al., 2022). The latter may involve eliminating or
adding independent variables to explore boundaries of the ex-
perimental design space (Dubova et al., in press). To address
these limitations, we open-sourced a framework for automat-
ing and simulating steps of the empirical research process
(https://github.com/autoresearch/autora), which of-
fers a principled way to examine the differential effects
of ground-truth agents, strategies for theory discovery, and
methods for experiment sampling, on scientific discovery.

In conclusion, the work presented in this study suggests
that random sampling of experimental conditions is a valu-
able heuristic compared to model-driven experimentation.
Furthermore, while the prospect of large-scale experimenta-
tion and automated scientific discovery seems appealing, our
work highlights the need for more comprehensive metascien-
tific studies to identify effective strategies for sampling ex-
periments from large design spaces. We hope that the meta-
scientific test bed introduced in this study will encourage a
proliferation of efforts along these lines and pave the way for
autonomous empirical research.
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