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We study implications of the weak gravity conjecture in the AdS/CFT correspondence. Unlike
in Minkowski spacetime, AdS spacetime has a physical length scale, so that the conjecture must be
generalized with an additional parameter. We discuss possible generalizations and translate them
into the language of dual CFTs, which take the form of inequalities involving the dimension and
charge of an operator as well as the current and energy-momentum tensor central charges. We then
test these inequalities against various CFTs to see if they are universally obeyed by all the CFTs.
We find that certain CFTs, such as supersymmetric QCDs, do not satisfy them even in the large N

limit. This does not contradict the conjecture in AdS spacetime because the theories violating them
are either unlikely or unclear to have weakly coupled gravitational descriptions, but it suggests that
the CFT inequalities obtained here by naive translations do not apply beyond the regime in which
weakly coupled gravitational descriptions are available.

I. INTRODUCTION

There are many folk theorems that are believed to hold
in quantum gravity. Some are qualitative such as the
non-existence of continuous global symmetries, suggested
by the physics of black holes as well as perturbative string
theory. Others are more quantitative, which include the
weak gravity conjecture [1]. These more quantitative the-
orems, however, generally have weaker foundations and
their precise meanings are obscured beyond the semiclas-
sical limit. For recent discussions on the weak gravity
conjecture, see e.g. Refs. [2–5].

Since AdS/CFT duality [6, 7] provides a nonpertur-
bative definition of quantum gravity, it is natural to ex-
plore how the folk theorems in quantum gravity may be
realized in this framework. Ideally, a folk theorem can
be translated into a universal statement in CFTs which
may be tested, at least under some circumstances. Alter-
natively, one might find that such a universal statement
is not possible, in which case one would learn that the
theorem arises as a property that manifests itself only
in a certain (weakly coupled gravitational) limit of the
theory.

Motivated by these considerations, in this article we
study the weak gravity conjecture in AdS/CFT. Since
the original conjecture was formulated in asymptotically
Minkowski spacetime, we first discuss possible general-
izations in AdS spacetime (in Section III). Then, we
translate the statements into the language of CFTs,
all of which take the form that there must be an op-
erator whose coupling to the energy-momentum tensor
is smaller than that to the conserved current (in Sec-
tion IV). Finally, we test these statements against known
CFTs (in Section V). We find that the statements as for-
mulated here do not apply universally to all the CFTs.
On the other hand, all the theories that do not satisfy
them are those that are believed not to have weakly cou-

pled gravitational descriptions or unclear to have such
descriptions. It is, therefore, still consistent to postu-
late that the weak gravity bounds discussed here hold in
asymptotically AdS spacetime. An alternative possibil-
ity is that there are some modified expressions that apply
universally and reduce to the bounds discussed here when
there are weakly coupled gravitational descriptions. This
is discussed in Section VI.

II. WEAK GRAVITY CONJECTURE IN
MINKOWSKI SPACETIME

Consider Einstein-Maxwell theory in D-dimensional
(asymptotically-)flat Minkowski spacetime

S =

∫

dDx
√−g

(

R

2κ2D
− 1

4e2
FMNF

MN +matter

)

,

(1)

where κ2D = M2−D
Pl is the D-dimensional Newton con-

stant. The weak gravity conjecture states that a low
energy effective theory of a consistent theory of quan-
tum gravity must contain a particle with the mass m
and charge q satisfying1

m2

q2
≤ CDe

2κ−2
D . (2)

Here, the coefficient CD is determined such that the in-
equality is saturated by the extremal Reissner-Nordström
(RN) black hole of mass m and charge q. (In the normal-
ization of qe we will adopt later, CD = (D− 2)/(D− 3).)

1 There are two versions of the conjecture discussed in Ref. [1]. In
this paper we focus on the weaker (more conservative) version.
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An alternative, and essentially equivalent, formulation
of the conjecture is given by the statement that extremal
(non-BPS) RN black holes must be unstable, at least
marginally. A connection between the two formulations
is the following. Imagine that the weak gravity conjecture
were violated. Then the particle with the smallest m/q
has κ2Dm

2 > CDe
2q2, so that gravitational attraction

between two such particles is stronger than the gauge
repulsion. This implies that we can form Kepler bound
states composed of any number n of these particles, which
are all absolutely stable and become extremal in the n→
∞ limit. On the other hand, if there exists a particle
with m <

√
CDqe/κD, then extremal RN black holes can

decay, except possibly for “quantum” ones with charges
smaller than q, where we have assumed q /≫ 1.
In this paper we adopt the latter formulation, based

on extremal RN black holes, and discuss how it may be
generalized in AdS spacetime. We also see how the gener-
alized conjecture may be interpreted in dual CFTs, using
the AdS/CFT correspondence.

III. WEAK GRAVITY CONJECTURE IN ADS
SPACETIME

How can we extend the weak gravity conjecture to
asymptotically AdS spacetime? The answer is not ob-
vious because of the following facts: (i) AdS spacetime
can be regarded as a finite box, preventing Hawking ra-
diation from escaping to “infinity”; (ii) Physical proper-
ties of black holes change when their size becomes larger
than the AdS scale (making the n → ∞ limit we took
in the previous section less convincing); (iii) Unlike in
Minkowski spacetime, there is no no-hair theorem in AdS
spacetime, making it possible for a black hole to decay
by a process that does not have a direct analogue in
Minkowski spacetime.
Given these facts, in this paper we formulate our con-

jecture(s) in the following steps.2 We first consider the
requirement that small extremal AdS-RN black holes
must be able to decay by a process that is also avail-
able in Minkowski spacetime. In particular, we require
that there is a particle in the AdS theory to which small
extremal AdS-RN black holes can decay. We call this
condition the simple kinematic conjecture, and discuss
its formulation in dual CFTs.
We next consider the condition that small extremal

AdS-RN black holes decay by a dynamical process that
is available (only) in AdS spacetime. In particular, we
consider that the decay occurs through superradiant in-
stability discussed in Refs. [10, 11]. We find that this
gives a condition weaker than that of the simple kine-
matic conjecture, and call it the dynamical conjecture.
The difference between the simple kinematic and dynam-

2 Related but different conjectures were discussed in Refs. [8, 9].

ical conjectures is purely AdS in nature—both these con-
jectures reduce to the Minkowski one in the appropriate
large AdS radius limit.
We finally discuss possible additional constraints com-

ing from large extremal AdS-RN black holes. We find
that as long as either of the above conjectures is satisfied,
a large extremal AdS-RN black hole can always have a
microscopic “decay” process. Namely, a process in which
a larger black hole is converted into a smaller one and
the light quantum is always kinematically allowed. It is
possible that this is indeed enough for the consistency of
the theory.
On the other hand, in AdS spacetime the above process

does not lead to a real decay of a large black hole because
the finite-box nature of AdS makes a large black hole be
in thermal equilibrium with the ambient space. To make
the large black hole really unstable, we need to have a
different process. In Ref. [12], it was advocated that this
may in fact be the case—large extremal AdS-RN black
holes have instabilities associated with the presence of a
superconducting phase in strongly coupled dual CFTs.
While we do not have a better argument for this conjec-
ture than the authors of Ref. [12], we also discuss it for
completeness.

IV. CFT FORMULATION

We now formulate our conjectures using the language
of dual CFTs. Below, we focus on the case with D = 5,
but the extension to other dimensions is straightforward.
In dual d = 4 CFTs, a conserved current Jµ and the

energy-momentum tensor Tµν have the two-point func-
tions

〈Jµ(x)Jν (0)〉 =
CV

x6
Iµν(x), (3)

〈Tµν(x)Tρσ(0)〉 =
CT

x8
Iµν,ρσ(x), (4)

where Iµν(x) = δµν − xµxν/x
2 and Iµν,ρσ(x) =

(Iµρ(x)Iνσ(x) + Iµσ(x)Iνρ(x))/2 − δµνδρσ/4. Crudely
speaking, CT counts the number of massless degrees of
freedom in the CFT, while CV counts the number of
massless charged degrees of freedom in the CFT. (When
the current Jµ is gauged, the leading-order beta function
is proportional to CV .) For our explicit normalization
convention for these quantities, see Appendix A.
The AdS/CFT correspondence states that CV and CT

are related to the kinetic terms of the bulk fields in AdS
spacetime

S =

∫

d5x
√−g

(

1

2κ25

(

R+
12

L2

)

− 1

4e2
FMNF

MN + · · ·
)

,

(5)
as

CV =
6L

π2
e−2, CT =

40L3

π2
κ−2
5 , (6)
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where L is the AdS radius. The existence of a bulk field
of mass m implies that of a CFT operator of scaling di-
mension

∆ = Lm+O(1), (7)

where O(1) corrections depend on the spin and detailed
couplings, and we will discuss it only when necessary. It
is natural to focus on ∆ rather than m, since it corre-
sponds to the conserved global energy in AdS spacetime.
A (minimally-coupled) scalar field in AdS spacetime must
satisfy the Breitenlohner-Freedman bound

m2L2 ≥ −4. (8)

Note that a small negative mass-squared is allowed with-
out causing an instability.

A. Simple kinematic conjecture

Let us first consider the simple kinematic bound com-
ing from the requirement that there exists a particle that
has a smaller ratio of the AdS energy ∆ to the charge q
than that of small extremal AdS-RN black holes (which
have the horizon sizes smaller than the AdS radius L).
As summarized in Appendix B, in AdS spacetime the
mass-to-charge ratio, M/Q, of a small extremal black
hole depends on the size of the black hole

M2

Q2
=

3e2

2κ2
h(x), (9)

where h(x) = (3x2/4)(
√
1 + x−1)−2(2

√
1 + x+1)−1, and

x = 2Mκ25/L
2 (0 < x . 1). Since h(x) is a monotonically

increasing function, however, requiring the bound for the
smallest black hole, i.e. in the x→ 0 limit,3 ensures that
all heavier black holes satisfy the corresponding bounds.

This leads to the condition that in 5D AdS spacetime
there must be a particle whose AdS energy E and charge
q satisfy

E2

q2
≤ 3

2
e2κ−2

5 . (10)

Using Eq. (6) and ∆ = LE, we can write this in terms

3 This limit must be taken such that the size of the black hole is
still larger than the 5D Planck scale. In the CFT language, if

we have a (5D) Planck-sized black hole, ∆ ∼ Lκ
−2/3
5

∼ C
1/3
T .

In comparison, we have ∆ & CT for large black holes. Note that
the 5D Planck scale is the largest conceivable cutoff for the 5D
theory, but there can be lower scales such as the Kaluza-Klein
or string scales. In fact, Ref. [1] argues that this must be the
case, based on an analysis of 5D AdS spacetime cut off by a “UV
brane.”

of the CFT data4

∆2

q2
≤ 9

40

CT

CV
. (11)

This condition, by itself, does not tell us where the state
exists, but it is natural to expect that it must be below
the mass of the lightest 5D AdS-RN black hole.
The mass of the lightest 5D AdS-RN black hole de-

pends on the size of the extra dimensions beyond 5D
AdS we consider. It is not known how small the extra
dimensions can be made in general, but it is possible that
there is a lower bound on their size. For example, Ref. [1]
argues that the volume of the extra dimensional space X
must satisfy (VX/l

5
s ) & gs(R/ls), where ls and gs are the

string length and coupling, respectively. Assuming that
X has only one length scale, this implies that the state

satisfying Eq. (11) must exist below ∆ ∼ C
3/5
T .

Since black holes in the x→ 0 limit behave similarly to
those in Minkowski spacetime, we expect that the condi-
tion discussed here is reduced to the original Minkowski
bound when we take L→ ∞ (with the fixed Planck scale
as well as any other scales). Indeed, using Eqs. (6, 7), we
find that Eq. (11) yields Eq. (2) in the appropriate limit.

B. Dynamical conjecture

In general, the stability condition for a system in AdS
spacetime is different from that in Minkowski space-
time. In particular, since there is no no-hair theorem in
AdS spacetime, extremal AdS-RN black holes may have
dynamical instabilities involving classical condensates,
which are not available in Minkowski spacetime. Indeed,
it is known that in the presence of a minimally coupled
charged scalar field, extremal AdS-RN black holes may
be unstable against scalar hair formation. For small ex-
tremal AdS-RN black holes, this instability can be inter-
preted as a superradiant instability.
According to Refs. [10, 11], the superradiant instabil-

ity for small extremal black holes occurs when there is a
minimally coupled charged scalar field in the bulk satis-
fying the condition (for the r+/L→ 0 limit):

L2m2 − 3

2
e2κ−2

5 L2q2 ≤ −4. (12)

In terms of the CFT data, this leads to

(∆− 2)2

q2
≤ 9

40

CT

CV
, (13)

where ∆ is the dimension of the CFT operator corre-
sponding to the charged scalar field in the bulk. Note

4 Whether this inequality is satisfied or not is related to a cer-
tain convexity of the CFT operator spectrum in the large spin
limit [13]. We thank João Penedones for bringing this to our
attention.
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that the bound on ∆ is shifted by two units compared
with that in Eq. (11). This is because the condensation
effect can make the AdS energy per charge lower than
that of the collection of quanta. In fact, in the range
allowed by unitarity, ∆ ≥ 1, the bound in Eq. (13) is
weaker than that in Eq. (11).
In the appropriate Minkowski limit (sending L →

∞ while keeping m), Eq. (13) is also reduced to the
Minkowski bound in Eq. (2). This implies that the dif-
ference between the two bounds in Eqs. (11) and (13) is
purely AdS in nature—it is important only for low ∆.
We note that, unlike the corresponding objects in

Minkowski spacetime, extremal AdS-RN black holes do
not saturate the BPS bound (i.e. they cannot be super-
symmetric), except in the limit r+/L → 0. (See Ap-
pendix B.) The decay processes described above, there-
fore, may occur non-marginally even in theories with su-
persymmetry.

C. Large black holes

In AdS spacetime, we have large extremal AdS-RN
black holes (r+ > L), which do not possess a simple
flat spacetime limit. While the weak gravity bound in
Minkowski spacetime does not directly lead to the con-
clusion that these black holes must be unstable, it is in-
teresting to see what bounds on CFTs can be obtained by
requiring that they are indeed unstable. In fact, the idea
that the planar extremal AdS-RN black branes (which
are equivalent to AdS-RN black holes in the r+/L→ ∞
limit) should be unstable was advocated in Ref. [12], in
relation to the presence of a superconducting phase in
strongly coupled CFTs.
The instability condition on an AdS-RN black hole

with respect to the formation of (minimally coupled)
scalar hair condensation depends on the size of the black
hole r+. While the general condition can be found in
Ref. [11], here we quote only two representative cases.
We expect that the true bound is obtained by the union
of the conditions for all values of r+ & L.
In the limit of a planar extremal AdS-RN black brane

(i.e. r+/L→ ∞), the horizon topology becomes AdS2 ×
R3, and the instability appears when the effective mass of
a charged field near the horizon becomes below the AdS2
Breitenlohner-Freedman bound. In our normalization,
we find ([12] for D = 4 and [14] for D = 5)

3

2

(∆− 1)(∆− 3)

q2
≤ 9

40

CT

CV
. (14)

On the other hand, for an “intermediate” extremal AdS-
RN black hole (i.e. r+ ∼ L or ∆BH ∼ CT ), the condition
that it must be unstable gives (for r+ = L)

4

3

(∆− 2)2

q2
≤ 9

40

CT

CV
. (15)

The shift in ∆ is the same as in Eq. (13), but we have an
additional factor of 4/3 in the left-hand side.

The conditions in Eqs. (14, 15) give stronger bounds
than the original weak gravity bound, Eq. (2), in the
naive flat-space limit ∆ ≫ 1. This, however, does not
mean the existence of a stronger bound than Eq. (2) in
Minkowski spacetime. In the true Minkowski limit, large
black holes considered here disappear from the spectrum,
and so do the corresponding bounds.

V. TESTING WITH EXAMPLES

In this section, we study if the bounds discussed in
the previous section are indeed satisfied in various known
CFTs. Since our conjectures are about “generic” CFTs
that have weakly coupled gravitational descriptions, and
these theories are not well understood, we need to “test”
them against theories in our hands, which are not nec-
essarily in a class to which the conjectures must apply.
Nevertheless, we find some interesting lesson—all the the-
ories that we find do not satisfy the bounds are those that
are believed not to have weakly coupled gravitational de-
scriptions (or unclear to have such descriptions). In par-
ticular, we find that supersymmetric theories that have
weakly coupled gravitational descriptions (although in
10D) do satisfy the bounds.

A. Known AdS/CFT with supersymmetry

We first study if our conjectures are satisfied in known
examples of the AdS/CFT correspondence. Since these
theories have weakly coupled gravitational descriptions
in 10D, our analysis in the previous section need not a
priori apply. Moreover, their 10D bulk descriptions pos-
sess high supersymmetries that relate gravity with U(1)
gauge forces, reducing the significance of the conjectures
in some cases. Nevertheless, we find it nontrivial that all
these theories satisfy the bounds applied naively, espe-
cially given that not all the CFTs satisfy them as we will
see in later subsections.

To be specific, we focus on type IIB string theory
compactified on AdS5 × Yp,q with the coprime numbers
p > q, which have weakly coupled supergravity descrip-
tions with the second order bulk actions. In these the-
ories, the Kaluza-Klein reduction is consistent and most
5D asymptotic AdS solutions (including black holes) can
be uplifted to 10D solutions [15] despite the intrinsic 10D
nature of these theories. The compact spaces Yp,q are
nontrivial examples of Sasaki-Einstein five folds, whose
explicit construction can be found in Ref. [16].

The resulting dual CFTs preserve N = 1 superconfor-
mal symmetry in 4D with U(1)R symmetry. The central
charges for the energy-momentum tensor and the R cur-
rent can be computed both from the gravitational and
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field theory points of view, giving [17]

CT =
10N2

πVp,q
, (16)

CR =
N2

πVp,q
, (17)

where N and Vp,q are the number of branes and the vol-
ume of Yp,q, respectively (which we will not use). These
theories also have U(1)F × U(1)B × SU(2) global sym-
metries. As long as we have a scalar chiral operator,
the superconformal R charge always saturates the simple
kinematic bound in Section IVA (and thus satisfies the
weaker bound in Section IVB). We are therefore more
interested in other global symmetries.
Let us first consider the U(1)F symmetry. In the the-

ories under consideration, there are three types of chi-
ral primary operators with their U(1)F charges given in
terms of the R charges as

qF (O1) = y1R(O1), (18)

qF (O2) = −y2R(O2), (19)

qF (O3) = −1

2
(y1 + y2)R(O3), (20)

where

y1 =
1

4p
(2p− 3q −

√

4p2 − 3q2), (21)

y2 =
1

4p
(2p+ 3q −

√

4p2 − 3q2). (22)

Since these are scalar chiral primary operators, they sat-
isfy ∆(Oi) = (3/2)R(Oi). The AdS/CFT as well as di-
rect field theory computations give the central charge for
U(1)F as

CF =
N2

8πVp,q

√

4p2 − 3q2

p2
(2p−

√

4p2 − 3q2). (23)

Using these formulae, we can calculate the ratios ∆2/q2F
for O1,2,3. We find that the simple kinematic bound

∆2

q2F
≤ 9

40

CT

CF
, (24)

is always satisfied by O1 and O2 (but not necessarily O3).
Note that in order to be consistent with the weak gravity
conjecture, we only need one operator (e.g. O1 here) that
satisfies the bound. The most stringent case is the p≫ q
limit, but we still have a factor of 3 margin there.
As far as we have checked, in all known examples of

the AdS/CFT correspondence with weakly coupled grav-
ity descriptions, the simple kinetic bound in Section IVA
(and thus also the dynamical bound in Section IVB) is
satisfied for the R symmetries and Abelian flavor sym-
metries. The further such examples include AdS5×Lp,q,r

compactification of type IIB string theory [18]. We find
this nontrivial.

As for the baryonic symmetry, the situation is less
clear. In the examples considered, the lightest object
charged under the baryonic symmetry has ∆ ∼ N ∼
C

1/2
T , so that it is heavier than the 5D Planck scale,

∆ ∼ Lκ
−2/3
5 ∼ C

1/3
T . This, however, may not mean a

violation of the bound if the size of extra dimensions is
necessarily larger than the (effective) 5D Planck scale;
see discussions after Eq. (11).
Let us now turn to the bound coming from large black

holes, discussed in Section IVC. Recall that this bound
is related, in the limit r+/L → ∞, to the (in)stability
of planer extremal AdS-RN black branes, since in this
limit the horizon can be approximated by a plane with
R

3 topology. In fact, there had been some interests
in the stability of these objects in string compactifica-
tion [12, 14, 19]. The motivation there was mainly ap-
plications to condensed matter physics, in which the in-
stability of these objects corresponds to the instability of
zero temperature CFTs under the introduction of chem-
ical potentials. In Section IVC, we discussed a possible
instability due to a scalar hair formation. In the dual
CFT language, this corresponds to an instability of the
system due to a scalar condensate, leading to a superflu-
idity or superconductivity phase transition.
In all the examples studied in Refs. [12, 14, 19], the ex-

tremal AdS-RN black branes are indeed (marginally) un-
stable due to such scalar condensates. References [12, 14]
studied (mainly) R-charged extremal AdS-RN black
branes in which R-charged scalar fields, typically dual
to chiral primary operators in the CFTs, trigger the in-
stability. In Ref. [19], a more intricate situation with
baryon charges was studied and the system was still
marginally (un)stable.5 These authors interpreted this
observation as a manifestation of the weak gravity con-
jecture applied to extremal AdS-RN branes. In our view-
point, these examples suggest that extremal AdS-RN
black holes are unstable in the large black hole limit.
Correspondingly, in these dual CFTs, there exists an
operator that (marginally) satisfies the bound such as
Eqs. (14, 15).

B. Free theories

We now study if our bounds, as formulated in
Eqs. (11), (13), (14), and (15), can be universally valid
for all the CFTs regardless of the existence of a weakly
coupled gravitational picture.
For this purpose, let us consider free field theories. We

find that the naive bound in Eq. (11) cannot be universal.
Take a free complex scalar with a U(1) global symmetry.

5 Strictly speaking, what they obtained by their tree-level compu-
tations is that the potential vanishes. It is, however, conjectured
that higher order corrections make the system unstable. We
thank Igor Klebanov for discussions.
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This theory has an operator (free complex scalar itself)
with ∆ = 1. Normalizing the charge of this scalar to be
unity, q = 1, we find that CT /CV = 8/3. The bound
in Eq. (11) then leads to 1 ≤ 3/5, which is clearly not
satisfied. The existence of other operators does not help,
since they all have |∆/q| ≥ 1. A similar conclusion is
also obtained for a free fermion.
The situation is different for the dynamical conjecture

in Eq. (13), which gives a weaker bound. This bound is
satisfied by a free scalar and a free fermion due to the
shift in the left-hand side. It is trivially satisfied for a
charged free scalar φ because of the existence of the φ2

operator, which has (∆, q) = (2, 2). For a free fermion
ψ, we have a (∆, q) = (3, 2) scalar operator (i.e. ψ2), and
since the theory has CT /CV = 2, the bound is satisfied.
Therefore, at this point, the bound in Eq. (13) still has
a chance to be universal.
Finally, we discuss the bounds in Eqs. (14, 15), arising

from considerations of large black holes. These bounds
are also satisfied by free scalars and fermions. The mean-
ing of this fact, however, is not clear. In a weakly coupled
gravitational description, we might as well formulate the
conjecture in a form more physical from the CFT point
of view: the zero temperature CFTs must be unstable
under the introduction of a chemical potential. (This is-
sue was studied in Ref. [20].) In this form, however, we
know that a free fermion system does not satisfy the con-
jecture, since it is stable under the introduction of large
chemical potentials. This casts some doubt on adopt-
ing Eqs. (14, 15) as the conditions applying universally
beyond the weakly coupled gravity limit.6

C. Supersymmetric QCDs in the large N limit

Consider supersymmetric QCDs with SU(Nc) gauge
groups and Nf flavors of quarks (i.e. Nf Q’s and Nf

Q̄’s in the fundamental and anti-fundamental represen-
tations of SU(Nc), respectively) in the conformal win-
dow 3

2Nc ≤ Nf ≤ 3Nc.
7 This theory possesses a

U(1)B symmetry, Q(+1) and Q̄(−1), in addition to the
SU(Nf)×SU(Nf ) flavor symmetry and the R-symmetry.
Since the theory has scalar chiral superconformal pri-
mary operators, the R-symmetry automatically satisfies
the bounds in Eqs. (11, 13). We thus focus on the U(1)B
symmetry below.
While the theory is strongly coupled away from the

perturbative regime Nf ∼ 3Nc, one can compute the
exact value of the U(1)B-current central charge CB from
the supersymmetric formula

CB = − 9

4π4
Tr[RBB] =

9

4π4
(2NfNc)

Nc

Nf
. (25)

6 We thank Sean Hartnoll for discussions on this point.
7 We take the Veneziano limit Nc, Nf → ∞ for the purpose of
simplifying the formula.

Similarly, the exact value of the energy-momentum ten-
sor central charge is [21]

CT =
5

2π4
(7N2

c − 9N4
c

N2
f

), (26)

leading to

CT

CB
=

5

9
(7− 9N2

c

N2
f

). (27)

Because of the gauge invariance, the lightest baryonic
charged operator is ǫQQQQ... (with Nc Q’s), which has

qB = Nc, ∆ =
3

2
Nc(1−

Nc

Nf
). (28)

We thus find that when

Nf

Nc
>

3

11
(6−

√
3) ≃ 2.1, (29)

all the bounds are violated—there is no light (protected,
chiral) state that satisfies any of the bounds. Note that
the shift of ∆ in Eq. (13) does not help because the di-
mensions of relevant operators are of O(Nc) ≫ 2. While
it is logically possible that some unprotected operator
satisfies a bound, we find it unlikely. Furthermore, even
this loophole is closed when the theory is close to free,
Nf/Nc ≃ 3.

A reasonable conclusion is that none of the inequalities
in Eqs. (11, 13, 14, 15) applies universally, at least as
are written. This does not contradict the existence of
the corresponding weak gravity bounds in the limit that
theories admit weakly coupled gravity dual descriptions.
Even in the limit of large Nc, the supersymmetric QCDs
considered here are expected not to have weakly coupled
gravitational duals, as suggested e.g. by the presence of
higher spin protected operators and a violation of the
holographic central charge equality c = a. The analysis
here simply says that the bounds as are written cannot
be true universally for all the CFTs.

The weak gravity bounds we present, therefore, must
be corrected when we deviate from weakly coupled Ein-
stein gravitational descriptions. In the example consid-
ered here, we are taking the large Nc limit. Therefore,
these corrections must be understood as higher deriva-
tive corrections (such as higher curvature terms). It was
claimed that higher derivative terms must contrive such
that the original weak gravity conjecture holds without
modification [22]. (See also Ref. [23] for related AdS dis-
cussions.) Our example suggests that this might not be
the case in general. Note, however, that the relation be-
tween the two analyses is not strict. For example, unlike
in the Minkowski case, in AdS spacetime one cannot take
a simple large black hole limit to make higher derivative
terms be small perturbations to the system.
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D. CFT dual of extremal AdS/RN branes

Suppose the weak gravity bound from large black holes
holds. Then, any attempt to construct a dual field theory
model for extremal AdS/RN branes must exhibit some
instability, at least if we can take the weakly coupled
limit in the gravity side.
There is, in fact, some attempt to construct field the-

ories that model extremal AdS/RN branes in the large
N limit with long range interactions [24]. The claim is
that it is possible to reproduce states with a large degen-
eracy matching with the Bekenstein-Hawking entropy of
RN black branes. An important thing for us is that these
theories do not seem to show an instability suggested by
the conjecture.
Similarly, in another recent paper [25], a universal be-

havior of scaling dimensions, ∆ ∼ Q(D−1)/(D−2), in a
large charge sector of certain (non-large N) (D − 1)-
dimensional CFTs was discussed. The observation rele-
vant to us is that the scaling behavior of ∆ as a function
of Q is precisely that of large AdS-RN black holes in D
dimensions. Again, as long as their effective field theory
building on large charge expansion is valid, there does
not seem any instability.
These analyses, however, do not immediately imply

that the weak gravity bound from large black holes is
invalid, since it is not clear if the theories analyzed have
weakly coupled gravitational descriptions. It would be
interesting to study if these constructions can be applied
in the regime in which the weakly coupled gravity limit
can surely be taken. If such a limit can indeed be taken,
the weak gravity conjecture for large black holes would
imply that the effective field theory description discussed
in Ref. [25] must possess an additional instability mode.

VI. DISCUSSION

In this paper, we have discussed possible generaliza-
tions of the weak gravity conjecture to AdS spacetime.
We have considered the conditions arising from both
small and large AdS-RN black holes, and translated them
into the language of dual CFTs. While these conditions
need to be satisfied a priori only in the regime in which
weakly coupled gravitational descriptions are available,
we have tested them against a wider range of CFTs. We
have found that the bounds as formulated in this paper
are not universally satisfied by all the CFTs, and yet all
the examples that we found do not satisfy them are the-
ories that are expected not to have, or unclear to have,
weakly coupled gravitational descriptions.
Although the bounds as written here do not apply uni-

versally to all the CFTs, it is possible that a similar,
modified bound exists that is universally valid. If such a
bound exists, it must arise purely from consistency con-
ditions applicable to all the CFTs with a U(1) symme-
try. One candidate for such consistency conditions is the
conformal bootstrap condition for correlation functions,

and indeed there have been some studies on bounds of
current central charges CV using this method (with or
without fixing the dimensions of operators or the energy-
momentum tensor central charge CT ) [26].
While these bounds given by the conformal bootstrap

are rigorous within numerical precision, they mostly
give lower bounds on CV , yielding lower bounds on the
strength of gravity. Obtaining an upper bound is difficult
because of the possibility that another (non-conserved)
spin one operator mimics the current operator in ques-
tion in a single bootstrap equation. This makes it hard
to isolate the relevant contribution. In this respect, a
promising case is a theory with N = 2 supersymmetry,
in which a conserved current multiplet has an isolated
contribution to the bootstrap equation so that the above
problem can be avoided. This allows us to obtain an
upper bound on CV [27], although current theoretical
technology still seems unable to extract a useful bound
in this way for large values of CT , which we are interested
in.
Another direction would be to study the consistency

of the CFT spectrum on nontrivial geometries such as
S1 × Sd−1. There is a constraint on the spectrum from
the modular invariance in d = 2 cases. There, the infor-
mation of the central charges is also encoded in the torus
partition function, and the promising results have been
reported in Ref. [28]. In higher dimensions, however, due
to the lack of manifest modular properties, it is an open
question if we can derive an interesting bound.
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Appendix A: Normalization Convention

Here we present our normalization convention for CV

and CT in Eqs. (3, 4). In the dual gravitational descrip-
tion, our normalization for CV corresponds to taking that

http://arxiv.org/abs/de-sc/0011632
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of qe so that CD = (D − 2)/(D − 3) in Eq. (2).
We focus on D = 5, i.e. 4-dimensional CFTs. For

a single complex scalar with a unit charge, we take its
contribution to CV and CT as (see, e.g., Ref. [29]):

CV =
1

S2
4

, CT =
8

3

1

S2
4

, (A1)

where S4 is the volume of the unit four-sphere, S4 = 2π2.
For a single Weyl fermion with a unit (chiral) charge, we
then have

CV = 2
1

S2
4

, CT = 4
1

S2
4

. (A2)

The contribution from a free massless vector field is CT =
16/S2

4 .
The coefficient in the weak gravity bound, e.g. in the

right-hand side of Eq. (11) can be worked out by noticing
that the bound in the Minkowski limit (i.e. 1 ≪ ∆ ≪ CT )
becomes identical to the BPS bound for the superconfor-
mal R-current in superconformal field theories, which is
saturated by chiral primaries having ∆/qR = 3/2 and
CT /CR = 10.

Appendix B: Extremal AdS-RN Black Holes

In our normalization, the metric of the 5D AdS-RN
black hole is given by

ds2 = −f(r)dt2 + f−1(r)dr2 + r2dΩ2
3, (B1)

where

f(r) = 1− 2κ25
3r2

M +
κ25e

2

6r4
Q2 +

r2

L2
, (B2)

and M and Q are the mass and charge of the black hole,
respectively. The gauge potential is given by

At = const.− e2Q

r2
. (B3)

The outer horizon is located at r = r+, where

2κ25M

3
= r2+ +

κ25e
2Q2

6r2+
+
r4+
L2
. (B4)

The extremal limit is defined by

Q2 =
6r4+
e2κ25

(

1 + 2
r2+
L2

)

, (B5)

so that f(r) has a double zero with zero temperature. In
this limit, the mass of the black hole is given by

M =
3r2+
κ25

(

1 +
3

2

r2+
L2

)

. (B6)

Note that the BPS condition M2/Q2 = CDe
2κ−2

D |D=5 =
(3/2)e2κ25 is not satisfied except for r+/L → 0, even
though the black hole has zero temperature.

The transition between small and large black holes oc-
curs at r+ ∼ L. At that point, M ∼ L2κ−2

5 , and the
corresponding conformal dimension is ∆ ∼ L3κ−2

5 ∼ CT .
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