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ABSTRACT
Background: Current methods of image-guided
surgery of tumours of the lung mostly rely on CT.
A sensitive procedure of selective tumour fluorescence
labelling would allow simple and high-resolution
visualisation of the tumour for precise surgical
navigation.
Methods: Human lung cancer cell lines H460 and
A549 were genetically transformed to express red
fluorescent protein (RFP). Tumours were grown
subcutaneously for each cell line and harvested and
minced for surgical orthotopic implantation on the left
lung of nude mice. Tumour growth was measured by
fluorescence imaging. After the tumours reached
5 mm in diameter, they were injected under
fluorescence guidance with the telomerase-dependent
green fluorescent protein (GFP)-containing
adenovirus, OBP-401. Viral labelling of the lung
tumours with GFP precisely colocalised with tumour
RFP expression. Three days after administration of
OBP-401, fluorescence-guided surgery (FGS) was
performed.
Results: FGS of tumours in the lung was enabled by
labelling with a telomerase-dependent adenovirus
containing the GFP gene. Tumours in the lung were
selectively and brightly labelled. FGS enabled complete
lung tumour resection with no residual fluorescent
tumour.
Conclusions: FGS of tumours in the lung is feasible
and more effective than bright-light surgery.

INTRODUCTION
Fluorescence-guided surgery (FGS) of cancer
is an area of intense current interest. Our
laboratory used orthotopic mouse models of
cancer to develop FGS using both fluores-
cent cancer-specific antibodies1–9 and a
green fluorescent protein (GFP)-containing
telomerase-dependent adenovirus (OVP-401)
to label tumours.10–15

In a recent study from our laboratory,
telomerase-dependent adenovirus OBP-401
infection brightly and selectively labelled

glioblastoma multiforme (GBM) with GFP
for FGS in orthotopic nude mouse models.
OBP-401-based FGS enabled curative resec-
tion of GBM without recurrence for at least
150 days, compared with less than 30 days
with bright-light surgery (BLS).14

In another recent study from our labora-
tory, human fibrosarcoma HT-1080 expres-
sing red fluorescent protein (RFP) was
implanted orthotopically in the quadriceps
femoris muscle of nude mice. The tumour-
bearing mice were injected with high-dose
and low-dose adenovirus OBP-401 which
labelled the tumour with GFP. FGS or BLS
was then performed. OBP-401 could label
the fibrosarcoma with GFP in situ, concord-
ant with RFP. OBP-401-based FGS resulted in
superior resection of the fibrosarcoma in this
orthotopic model, compared with BLS.
High-dose administration of OBP-401
enabled FGS without residual fibrosarcoma
cells or local or metastatic recurrence, due to
its dual effect of cancer-cell labelling with
GFP and killing. High-dose OBP-401-based
FGS improved disease-free survival as well as
preserved muscle function compared with
BLS.15

In a patient-derived orthotopic xenograft
(PDOX) model of pancreatic cancer,
OBP-401 was used to label the cancer cells
with GFP. The PDOX was previously grown in
an RFP transgenic mouse that stably labelled
the PDOX stroma cells bright red. The
colour-coded PDOX model, with GFP-
expressing cancer cells and RFP-expressing
stroma, enabled FGS to completely resect the
pancreatic tumours including stroma. Dual-
coloured FGS significantly prevented local
recurrence, which BLS or single-colour FGS
did not.13

We previously developed a metastatic lung
cancer model that utilises histologically-intact
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lung tumour tissue implanted into the left lung by a
thoracotomy procedure. This method resulted in exten-
sive local growth in nude and severe combined immuno-
deficiency mice, as well as development of regional and
distant metastases.16

Lung cancer surgery has been improved by CT and
other imaging technology.17–23 In the present study, we
demonstrate that OBP-401 labels orthotopic lung
cancer in situ in nude mice, enabling highly effective
FGS of the lung tumour. The simplicity and
effectiveness of the FGS technology described in
the present report suggests important improvements
over current methods of image-assisted lung cancer
surgery.

MATERIALS AND METHODS
GFP-expressing telomerase-specific adenovirus
The recombinant GFP-expressing, cancer-specific adeno-
virus OBP-401 contains the promoter element of the
human telomerase reverse transcriptase (hTERT) gene
which drives the expression of E1A and E1B genes
linked to an internal ribosome entry site for selective
replication only in cancer cells. The GFP gene is driven
by the cytomegalovirus promoter, which was constructed
as previously described.24

Cell culture
Human lung cancer cell lines A549 and H460 were
maintained and cultured in RPMI-1640 medium

Figure 1 OBP-401 labels lung

cancer cells in Gelfoam

histoculture. Human lung cancer

A549 cells expressing RFP

(2×106 [A,B] or 2×107 [C,D]) were

seeded in Gelfoam histoculture.

OBP-401 was added at 1×108

PFU 48 h after cell seeding.

Images were acquired with the

OV100 Small Animal Imaging

System (Olympus, Tokyo, Japan)

(A,C) or with a confocal laser

scanning microscope FV1000

(Olympus). (B and D) OBP-401

labelled lung cancer cells in

three-dimensional Gelfoam

histoculture. Representative

images of A549-RFP lung cancer

cells before and after infection of

OBP-401 at 1×108 PFU.
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with 10% fetal bovine serum and 5% penicillin/
streptomycin.

Mouse experiments
Athymic nude mice (AntiCancer Inc, San Diego,
California, USA) were kept in a barrier facility under
HEPA filtration. Mice were fed with autoclaved labora-
tory rodent diet (Tecklad LM-485, Western Research
Products). All animal studies were conducted in accord-
ance with the principles and procedures outlined in the
National Institutes of Health Guide for the Care and
Use of Laboratory Animals under Assurance Number
A3873–01.

Establishment of solitary lung-tumour mouse model
Cancer cells (2×106) were injected initially into the flank
of nude mice to obtain stock tumour. When the subcuta-
neous tumour reached approximately 10 mm diameter,
it was harvested and cut into 1 mm fragments. For direct
implantation, a piece of tumour was sutured with 8-0
nylon on the left lower lobe of the lung16 25 26 of mice
under isoflurane anaesthesia.

In vitro or ex vivo imaging
Images of OBP-401 labelling of cancer cells in vitro or
tumour ex vivo were acquired with a confocal
laser-scanning microscope (FV1000; Olympus Corp,
Tokyo, Japan).27

In vivo whole body/whole tumour imaging
For whole-body or whole-tumour imaging, an OV100
Small Animal Imaging System (Olympus Corp) was
used.28

OBP-401-based FGS
FGS was performed under anaesthesia using subcutane-
ous administration of a ketamine mixture (10 μL
ketamine HCl, 7.6 μL xylazine, 2.4 μL acepromazine
maleate and 10 μL PBS). After thoracotomy, the
OBP-401-labelled tumour was imaged with the OV100
and resected. After resection of the tumour, the thoracic
wall of the mice was closed with 6-0 sutures.

RESULTS
We first confirmed that OBP-401 selectively labelled
lung cancer cells with GFP in monolayer culture. Lung
cancer cell lines A549 and H460 expressing RFP were
additionally labelled with OBP-401-GFP. The cells
became yellow in a dose-dependent manner after
infection with OBP-401 due to expression of GFP as well
as RFP (see online supplementary figure S1). GFP
expression reached a plateau at 3 days after infection in
vitro of A549-RFP and H460-RFP cells (see online sup-
plementary figure S2).
Next, we demonstrated that OBP-401 labelled lung

cancer cells in three-dimensional Gelfoam histoculture,
where lung cancer cells formed tumour-like structures

Figure 2 Orthotopic lung cancer mouse model. To obtain

tumour stock for orthotopic transplantation, RFP-expressing

A549 cells (5×106) were suspended in Matrigel and inoculated

into the right flank of 5-week-old female athymic nude mice.

After tumour growth and harvest, the tumour tissue was cut

into small pieces (diameter; 2–3 mm). A tumour fragment was

sutured on the exposed lung with 8-0 nylon sutures.

(A) RFP-expressing tumour fragments produced from a

subcutaneous tumour from RFP-expressing A549 human lung

cancer cells (left panels, low magnification; right panels, high

magnification). (B) Surgical orthotopic implantation of tumour

fragments on the exposed lung in the thoracic cavity.

(1) Thoracotomy operation. (2) Isolation of the lower lobe of

left lung. (3 and 4) Implantation of tumour fragments with 8-0

sutures. (5) Closure of chest wall with 6.0 sutures. (6) Closure

of skin with 6.0 sutures. (C) Intravital imaging of A549-RFP

lung cancer (OV100) (left panels, low magnification; right

panels, high magnification).
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(figure 1A, C). GFP labelling of lung cancer cells with
OBP-401 was visualised at the single cell level by con-
focal imaging (figure 1B, D). These results indicated
that OBP-401 labelled almost all cancer cells within
3 days after infection and suggested that OBP-401 FGS
should be performed 2 or 3 days after infection with
OBP-401.
To obtain a proper model for FGS of tumours in the

lung, we implanted RFP-expressing tumour fragments,

generated from harvested subcutaneous tumours, on the
lungs of nude mice using surgical orthotopic implant-
ation (figure 2A, B).16 25 26 We readily detected
RFP-expressing tumours on the lungs external to
the thorax by fluorescence imaging 1 week after implant-
ation (figure 2C, see online supplementary movie S1).
OBP-401 was injected into the lung tumours by RFP

guidance through the thoracic wall (figure 3A, see online
supplementary figure S3). A549-RFP and H460-RFP cells,

Figure 3 OBP-401 precisely labels orthotopic lung cancer. (A) Intravital imaging through the chest wall of A549-RFP lung

tumour. (B) Intravital imaging through the chest wall of OBP-401-GFP labelling of A549-RFP tumour by OBP-401 injection

through the chest wall. (C) Intravital imaging of OBP-401-GFP labelled A549-RFP lung tumour after thoracotomy. Images were

acquired with the OV100. For A, B and C, left panels are low magnification; right panels are high magnification.

Figure 4 OBP-401-based fluorescence-guided surgery of orthotopic lung cancer. (A) Intravital imaging of OBP-401 labelling of

A549-RFP lung tumour in situ with GFP. (B) Tumors resected by fluorescence-guided surgery of orthotopic A549-RFP lung

cancer labelled with OBP-401 GFP and RFP. Dotted lines show the outline of the tumor border. (C) Representative images after

fluorescence-guided surgery. Images were acquired with the OV100 (Olympus). For A, B and C, left panels are low magnification

and right panels are high magnification.
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growing on the lung, expressed GFP 3 days after injection
of OBP-401 (figure 3B and online supplementary figure
S4, movie S2), respectively. Next, we performed intravital
real-time imaging of A549-RFP and H460-RFP tumours
with OBP-401-GFP on the lung after thoractomy (figure
3C and supplementary figure S3, respectively).
The thorax of mice was opened in order to intravitally

image the tumour in the lung with assisted ventilation of
the mice.29 We readily detected GFP labelling of A549
and H460 and identified the precise location of the
tumours (figure 3C and online supplementary figure S4,
movie S3, respectively). In contrast, the normal lung was
not labelled by OBP-401 (see online supplementary
figure S6).
The lung tumours were then resected under fluores-

cence guidance (figure 4, see online supplementary
figure S5). The resected tumours co-expressed GFP and
RFP (figure 4B, see online supplementary figure S5,
movie S4). OBP-401-based FGS enabled complete resec-
tion of lung cancer (figure 4C).

DISCUSSION
FGS of the lung can be used alone or in combination
with CT-based image guidance. The simplicity and high
resolution of FGS has important potential for curative
surgery. Tumours can be readily labelled with GFP using
OBP-401. Other labelling techniques can be used, such
as with fluorescent antibodies, if tumour-specific
markers can be identified. OBP-401 has broad potential
since most cancers express telomerase.
A phase I clinical trial of intratumoral injection of

OBP-301, which is the parent of OBP-401, in patients
with advanced solid tumours demonstrated that
OBP-301 monotherapy was well tolerated by the
patients,30 suggesting the clinical safety and potential of
OBP-401-based FGS. A phase I trial of OBP-401-based
FGS will be the subject of a future study.
Until it is possible to use OBP-401 in the clinic for

FGS, animal studies will be the limit to the FGS strategy
described above. Other means of labelling the lung
tumours with fluorescent dyes31 can be used. The two
methods can also be compared and contrasted to deter-
mine an optimal technology for FGS of lung cancer to
begin clinical trials.
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