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ABSTRACT 
 

 The phenotypic behavior of a cell is driven by its molecular microstate, which emerges as a 

function of its epigenetic, transcriptomic, and proteomic states. Variability in these states can arise due to  

stochastic processes, leading to extensive microstate and functional variability in genetically clonal 

populations. It is of fundamental interest in cell biology to understand the number of states a cell can 

occupy, as well as the laws governing state transitions and the functional correlates of state variability. In 

this work, we develop an ensemble of molecular biology, computational, and statistical tools to measure 

and quantify morphological heterogeneity in both fixed and live populations of isogenic wild-type (WT) 

mouse embryonic fibroblasts (MEFs). We discover that WT MEFs occupy a continuum of states in 

morphology space, with increased density in specific subspaces and that this increased occupancy is due 

to a non-uniform energy landscape underlying WT MEF morphology space. Finally, we show that drug 

induction can induce topological changes to the energy landscape and that these changes correspond 

directly to functional divergence at the cellular level.  

 This work produces new insight into the topological and dynamical properties of morphological 

heterogeneity and provides a body of evidence suggesting that variability in these parameters correlate 

directly to functional heterogeneity within an isogenic population. Furthermore, this work positions 

morphological heterogeneity as an important and consequential form of non-genetic heterogeneity, setting 

the groundwork for future studies of the relationships between microstate, morphological, and functional 

variability.  
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CHAPTER 1. Introduction

 A cell is the most basic unit of living organisms, capable of exhibiting a range of fascinating 

behaviors and characteristics that, together, one would identify as “life.” The ability to carry out these 

behaviors is encoded in a cell’s genome, or DNA sequence, which acts as a blueprint for cellular 

activities. DNA codes for a multitude of functions that we associate with life – for example, the F-ATPase 

that generates energy to power human metabolism, or the photoreceptors in our eyes that absorb 

wavelength-specific photons and allow us to see the world around us. It is estimated that there may be 

more than 1 trillion diverse species in the world (Locey and Lennon, 2016), and it is the difference 

between their genomes that gives each species its unique structure and behavior, allowing sperm whales 

to hold their breaths for more than an hour, honeybees to hone in on UV-emitting flowers in their search 

for nectar, and giant sequoias to grow hundreds of feet tall and withstand forest fires. DNA is, without a 

doubt, the most important influencer of cellular behavior, so one might be surprised to learn that 

organisms containing the exact same DNA sequence, base pair for base pair, can be found to exhibit non-

uniform behaviors.  

 The discovery of behavioral variability in genetically clonal populations, termed non-genetic 

heterogeneity, fundamentally shifted understanding of cell biology from that of a deterministic process 

where all structure and behavior is dictated by the genome, to one in which biology is a less well-dictated 

process, in part deterministic and in part stochastic. Stochastic processes are those driven by random and 

unpredictable events. As example, proteins are the most common and essential functional unit of the cell 

and for a functional protein to be produced, a gene must be transcribed into mRNA and then translated 

into a protein. This process requires the complex coordination of hundreds of molecular components, the 

majority of which are freely floating in the nucleoplasm and cytoplasm and whose interactions are driven 

by electrostatic interactions at the atomic scale. In this particular case, for a gene to be transcribed, DNA 

must first be unwound, and the correct transcription factor must bind to the promoter site of the correct 

gene. Helper molecules must then bind to this site and recruit RNA polymerase, which then must ratchet 



 2 

along several hundred base pairs of DNA while recruiting the correct complementary nucleotide and 

forming chemical bonds to produce a complete mRNA transcript. This mRNA must then undergo a 

number of potential modifications, from removal of introns by a multi-part molecular machine called the 

spliceosome, to biochemical modifications of the 3’ and/or 5’ UTRs. The post-transcriptionally modified 

mRNA must then be bound by nuclear export receptors, shuttled to the nuclear membrane, and 

transported through a nuclear pore into the cytoplasm. Here the mRNA must be fortuitously bound by a 

ribosome, which must then progressively ratchet along the mRNA while incorporating the codon-

appropriate amino acid at every third base. Once the amino acid polymer is complete, the polypeptide 

then needs to fold into the correct functional conformation; for a relatively small protein such as thyroid 

releasing hormone, which composed of 234 amino acids, the possible conformation space can contain up 

to 3466 (~10222) possibilities, using the assumption of 3 possible angles for each of the Ψ and Φ angles of a 

peptide bond (Levinthal, 1969). This sequence of events illustrates just a small subset of the hundreds, if 

not thousands, of interactions that must occur for a gene to be transcribed and subsequently translated into 

a protein. Given the complexity of this process and the number of steps driven by random electrostatic 

interactions, it is not difficult to understand how two cells with identical underlying genomes may come 

to possess different numbers of the same protein. Multiply this by the number of different proteins within 

the cell, and one can imagine the vast space of possible protein microstates and how this could feasibly 

lead to variability in cellular behavior. Furthermore, molecular microstates are composed of more than 

just proteins, as there can also be variability along other parameters, such as non-coding RNAs or higher-

order assembly processes at the organelle and cellular scale. The ability of biological organisms to adopt 

many different molecular microstates despite an identical underlying genetic code dramatically increases 

the functional capacity of biological organisms and results in a diversification of possible behaviors. 

 Though stochasticity is often considered a “messy” process and defies the perception of biology 

as a perfectly orchestrated collection of moving parts, stochasticity in fact plays an important and vital 

role in many biological processes. In 1944, Joseph Bigger discovered that genetically clonal populations 

of Staphylococcus pyogenes exhibited non-uniform resistance to antibiotics (Bigger, 1944). Under 
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penicillin inoculation, about 1% of the cells in a genetically clonal population proved resistant; when this 

surviving population was expanded, it was found that a second inoculation of penicillin again resulted in a 

1% survival rate. If the initial surviving population had undergone mutations that rendered them 

antibiotic-resistant, one would expect the second re-established population to exhibit a 100% survival 

rate. These observations led to a hypothesis that these cells were not antibiotic-resistant mutants, but 

instead phenotypic variants of a genetically clonal population. These cells were termed “persister” cells 

and recent studies in Escherichia coli have shown that though a population may be genetically clonal, the 

“persister” cells within the population express functionally distinctive characteristics, including 

suppressed metabolic activity and unique gene expression profiles (Shah et al., 2006). One might surmise 

that the tradeoff for drug resistance is a delay in growth rate and that the tradeoff for more robust growth 

is increased sensitivity to antibiotic exposure. In this case, the stochasticity that produces phenotypic 

variants of a genetically clonal population leads to an evolutionary advantage at the population level, 

where different cells are primed to excel under different conditions, with one group slow-growing, but 

able to survive antibiotic exposure, and a second group more evolutionarily “fit” in that cells rapidly 

divides and produce progeny, but simultaneously experiences increased vulnerability to changes in the 

external environment. 

 Another illustration of the important role stochastic processes play in biology can be found in the 

process of mammalian haematopoetic differentiation. Haematopoietic stem cells in the bone marrow 

respond to external cues and differentiation factors to give rise to all the major blood types, including 

erythroids (e.g. red blood cells), lymphocytes (e.g. T-cells, B-cells), and myelocytes (e.g. macrophages). 

The mechanics of this process can be challenging to overcome, as a pool of genetically clonal cells must 

give rise to an assortment of cell types, but must also respond heterogeneously to external cues to achieve 

an incomplete response at the population level such that the stem cell population is not uniformly 

depleted. To gain a better understanding of how this process works, scientists measured the expression 

levels of the stem cell transcript Sca-1 across a population of mouse haematopoietic progenitor cells and 

found that Sca-1 expression levels followed an approximately normal distribution (Chang et al., 2008). 
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Interestingly, cells varied in their probability of differentiation based on their Sca-1 expression levels. 

When a population of clonal haematopoietic stem cells were induced with the erythroid-producing 

differentiation factor erythropoietin, the differentiation potential of cells was found to be inversely 

correlated with their Sca-1 expression levels, with cells expressing low levels of Sca-1 exhibiting a seven-

fold higher differentiation potential than those expressing high levels of Sca-1. In contrast, differentiation 

into the myeloid lineage in response to granulocyte-macrophage colony-stimulating factor (GM-CSF) was 

positively correlated with Sca-1 expression levels, with Sca-1- high cells exhibiting a two-fold higher 

differentiation potential compared to low Sca-1 expressing cells. At first glance, stochastically-driven 

processes may seem inefficient when compared with deterministically-driven processes; however, 

depending on the context, stochastic processes may engender several key advantages. First, it allows for 

many cell types to be produced from a single common precursor pool, eliminating the burdensome task of 

maintaining separate precursor pools for each possible lineage. Secondly, because this single precursor 

pool is pluripotent, in theory the ratios of different cell types can be quickly altered in response to the 

needs of the organism; for example, an acute demand for increased production of erythrocytes may be 

quickly met through conversion of cells into a pro-erythrocyte lineage, leaving an intact pool of self-

replenishing stem cells. This is a potentially easier task than maintaining separate pools, monitoring their 

stem cell levels, and selectively replenishing specific pools. These experiments convincingly illustrate 

that stochasticity plays a vital role in many biological processes and can often enable an organism to more 

rapidly and efficiently respond to changing physiological needs. 

 Stochasticity is the driving force behind microstate variability in genetically clonal populations 

and a central interest in biology is to understand the ex-genome functional diversity that microstates 

engender. This necessitates developing a fuller understanding of what microstates can exist, the rules that 

govern microstate transitions, and the functional correlates of each microstate. However, given the many 

hundreds of thousands of molecules in a cell, a comprehensive determination of the molecular microstate 

is difficult to come by. Genome-wide techniques such as transcriptomics, proteomics, or ChIP-Seq, 

succeed at capturing various parameters of the molecular microstate, but while powerful, these methods 
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are inherently cell-destructive and cannot be used to study state transitions or the functional correlates of 

the molecular microstate. Here we explore whether cytomorphology may serve as a viable intermediate 

solution. While lacking the precision of genome-wide methods, cytomorphology represents the sum of 

many hundreds of molecular processes and may thus serve as a coarse-grain indicator of the molecular 

state of a cell.  

 Cytomorphology is essentially composed of mesoscale structures built from hundreds of 

nanometer-scale molecular interactions. As example, mitochondria are complex, multi-layered structures 

composed of an outer membrane, an inner membrane, an intermembrane space, and a matrix space within 

the inner membrane. Membranes are composed of a combination of phospholipids and proteins, and 

diverse proteins are responsible for carrying out a range of important mitochondrial functions – for 

example, the F-ATPase that converts a proton gradient into chemical energy in the form of ATP, or the 

numerous caspase proteins that play an integral role in apoptosis, a process of cell-programmed death. At 

the mesoscale, mitochondria exist as a combination of fragmented mitochondria, which are isolated bean-

shaped pieces, and fused mitochondria, which are large, interconnected branching networks. Fragmented 

and fused mitochondria are known to exhibit different biochemical properties and play different roles 

within the cell. Mitochondrial fusion is a necessary process for maintaining the physiological health of the 

cell; by fusing, mitochondria can exchange metabolites, enzymes, and mitochondrial DNA (mtDNA), 

essentially creating a shared reservoir of accessible materials. This process is so vital that if mitochondrial 

fusion is chemically inhibited, mitochondria exhibit a loss of membrane potential (Chen et al., 2003) and 

a decrease in rates of aerobic respiration (Chen et al., 2005).  

 Beyond mitochondrial morphometry, differences in spatial localization have also been found to 

correlate with biochemical and functional differences. In a 2002 study of hepatocytes, authors found that, 

compared to perinuclear mitochondria, peripheral mitochondria were more fragmented, exhibited higher 

Δψ (membrane potential), and had higher uptake rates of positively-charged molecules (Collins et al., 

2002). Spatial localization has also proven consequential in terms of the establishment of interorganelle 

contacts. Sites of mitochondria-ER contact have been found at the site of fission events (Friedman et al., 
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2011), suggesting that mitochondrial fission events can be directly influenced by mitochondrial contacts 

with other organelles, who themselves may be subject to specific subcellular localization constraints.  

 At the cellular level, changes in mitochondrial morphology have been linked to dramatic changes 

in cellular function. In S. cerevisiae, mitochondrial morphology has been shown to correlate with the 

respiratory state of the cell, where actively respiring cells largely form interconnected networks of 

mitochondria, while mitochondria in non-respiring, fermentative cells primarily exist in a more 

fragmented form (Aung-Htut et al., 2013). In mammalian cells, sets of proteins have been identified as 

key players in the fusion and fission processes. In several studies, authors found that, upon upregulation 

of fusion proteins or downregulation of fission proteins, mitochondria preferentially formed hyperfused 

networks, with the resultant cells exhibiting decreased sensitivity to apoptotic induction. In the inverse 

case, authors found that upregulation of fission proteins or downregulation of fusion proteins resulted in 

mitochondrial hyperfragmentation, producing cells with increased apoptotic sensitivity (Alirol and 

Martinou, 2006). The ensemble of these observations highlight the integral role that mitochondrial fusion 

and fission events play in the functional behavior of a cell.  

  Further highlighting the relationship between mitochondrial morphology and cellular function, 

many disease states have been associated with aberrant mitochondrial morphologies. These include 

neurological disorders such as Alzheimer’s (Wang et al., 2009; Trimmer et al., 2000), Parkinson’s 

(Wiemerslage et al., 2016; Trimmer et al., 2000) and mood disorders (Cataldo et al., 2010). An example 

of the observed changes is found in (Fig. 1), which illustrates mitochondrial organization in a healthy 

control patient (left) compared to that of a patient diagnosed with bipolar disorder (BD), where the 

mitochondria have become more densely clustered and perinuclearly organized.  

 Here we have presented an in-depth examination of mitochondria, from its molecular constituents 

to the biochemical and functional properties of its different morphological states. Using this example we 

provide supporting evidence for the hypothesis that organelle morphology may serve as a mesoscale 

indicator of the cellular microstate and, consequently, the functional state of a cell. In theory, these 

principles may be widely applicable to many additional organelles beyond mitochondria (e.g. the nucleus, 
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Figure 1. Fibroblasts derived from control and bipolar disorder patients. The actin cytoskeleton appears in red, 
the cell nucleus appears in blue, and the mitochondria appear in green. Mitochondria shape, organization, and spatial 
localization are altered in the bipolar disorder (right) versus control (left) patient. (Source: Cataldo et al., 2010) 
 
endoplasmic reticulum, Golgi complex, etc.). Given the strong possibility of organelle morphology 

serving as an indicator of cellular state and function, we endeavoured to develop tools for quantifying 

organelle morphology and characterizing morphological heterogeneity within a cellular population. In 

particular, we investigate morphological heterogeneity against an isogenic background; if identified and 

proven to have functional correlates, this would constitute a new form of non-genetic heterogeneity and 

fundamentally advance our understanding of cell biology.  
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CHAPTER 2. Morphological Heterogeneity in Genetically Clonal Populations 

 One of the most challenging aspects of studying the functional correlates of cytomorphology 

arises from the fact that the majority of known cytomorphological changes originate from changes at the 

genome level. This makes it difficult to untangle the consequences of cytomorphological changes from 

those produced by genome-driven molecular changes. As example, Huntington’s Disease (HD) is a 

disease characterized by gradual loss of motor coordination and difficulties with cognition and mood 

regulation (Walker, 2007). HD is caused by a mutation in the Huntingtin (Htt) gene and has been 

associated with changes in both mitochondrial morphology and biochemical function at the cellular scale 

(Tabrizi et al., 1999; Wang et al., 2009). However, Htt has not been directly implicated in mitochondrial 

dynamics and may very likely contribute to HD progression through additional pathways, making it 

difficult to untangle the functional effects of morphological changes from parallel molecular changes 

produced by the Htt mutant.  

 Because of these limitations, a useful context in which to study cytomorphological variability is 

in isogenic populations, where all cells share a genetically identical background. This allows one to 

ensure that any variability in cytomorphology or cellular function is not driven by genetically-driven 

molecular changes, but instead arises from non-genetic heterogeneity. Many of the most commonly used 

laboratory cell lines appear largely morphologically uniform; however, wild-type (WT) mouse embryonic 

fibroblasts (MEFs) exhibit high degrees of native morphological heterogeneity (Fig. 2). This observation, 

coupled with the fact that MEFs are a commonly used laboratory cell line with a diverse set of molecular 

and genetic tools available, render MEFs an ideal model system for our study. MEFs are mesenchyme-

derived primary cells that play important roles in the formation and support of the extracellular matrix. 

The fact that morphological heterogeneity is observed against a WT background allows us to study this 

heterogeneity in as “native” a state as possible, given the constraints of working in an in vitro tissue 

culture setting. This allows us to better understand native morphological heterogeneity and its relationship 

to cellular function and offers the possibility of illuminating the workings of biological systems in their  
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Figure 2. Fluorescent images of fixed WT MEFs. The microtubule cytoskeleton appears in green and the cell 
nucleus appears in blue. Images taken at 40x magnification. Images are rescaled in a consistent manner such that 
cell sizes are directly comparable. 
 
most native form, absent any laboratory-induced genetic modifications.   

 Our approach for studying morphological heterogeneity and its functional correlates begins with 

developing tools to label and visualize cytomorphological structures. We then must quantify 

morphological features of these structures and develop ways to interpret these feature measurements in a 

meaningful and statistically rigorous manner. We discuss the development of these techniques in the 

following sections. 

2a. Fluorescent Labeling and Imaging of Cytomorphological Structures 
 
 WT MEFs were harvested from 13.5 days post-fertilization embryos of C57BL/6 mice (Jackson 

Laboratory, 000664), with embryo torsos isolated and diced with a sterile razor blade, then plated into 

10cm cell culture dishes under full cell culture media (Dulbecco’s Modified Eagle Serum w/ 4.5 g/L 

glucose (DME H-21) + 10% fetal bovine serum (FBS) + 1x penicillin/streptomycin (P/S)). Cells were 

incubated at 37°C, 5% CO2 for 24h. Non-adherent cells were aspirated and adherent cells, representing 
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the MEF population, were trypsinized (0.25% trypsin w/EDTA) and stored in 10% DMSO in FBS at  

-80°C until ready for use.  

 We chose the microtubule cytoskeleton, the nucleus, and the mitochondria as our 

cytormorphological structures of interest. These structures were chosen based on numerous examples of 

changes in these structures occurring concomitantly with changes in cellular function. Cytoskeletal 

changes are a hallmark of cancer and have been linked to changes in cellular adhesion and growth rates 

(Chen et al., 2014; Vilariño et al., 2006). Nuclear morphology has similarly been linked to variability in 

cellular function, as aberrations to nuclear morphology are a hallmark of cancer and used widely as 

diagnostic markers for dysplasia and carcinoma. Nuclear morphology has also been observed to change as 

a function of aging, with nuclei transitioning from a smooth, bean-shaped structure to a rippled, multi-

lobed structure. This effect is particularly noticeable in disorders of premature aging, such as progeria 

(Scaffidi et al., 2005). Changes in mitochondrial morphology have been associated with changes at both 

the biochemical level and the pathophysiological level; mitochondrial changes have been observed in 

parallel with changes to the electrochemical membrane potential, ATP production (Iannetti et al., 2015), 

and apoptotic sensitivity (Alirol and Martinou, 2006; Suen et al., 2008), as well as many 

neurodegenerative disorders including Alzheimer’s, Parkinson’s, and Huntington’s Disease (Tabrizi et al., 

1999; Wang et al., 2009).  

 To visualize and quantify these morphological structures, we began by biochemically labeling 

these structures with fluorescent antibodies and dyes. Passage 1 (P1) WT MEFs were plated into 384-well 

tissue culture plates (Greiner, #781091) at a density of 50 cells/well under full cell culture media (DME 

H-21 + 10% FBS + 1x P/S). Cells were incubated at 37°C, 5% CO2 for 24h and chemically fixed and 

labeled according to the following protocol: 

 1) Fix cells by incubating under 4% paraformaldehyde (Electron Microscopy Sciences, #15710)  

     in phosphate-buffered saline (PBS) for 15 minutes at room temp. 

 2) Wash 1x with PBS. 

 3) Permeabilize cells by incubating under 0.1% Triton X-100 in PBS for 15 minutes at room 
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     temp. 

 4) Wash 1x with PBS. 

 5) Block cells with 3% BSA+ 5% normal goat serum (Jackson ImmunoResearch Labs, #005-000-  

     121) + 0.1% Triton X-100 in PBS (“MEF Blocking Buffer”) for 10 minutes at room temp. 

 6) Incubate cells in 400x dilution mouse mAb mtHsp70 (1.08 mg/mL, ThermoFisher, MA3-028)    

      in “MEF Blocking Buffer” for 1 hour at room temp. 

 7) Wash 1x with PBS. 

 8) Incubate cells in 1000x dilution goat anti-mouse IgG AlexaFluor488 (2 mg/mL, Life      

      Technologies, A11029) in “MEF Blocking Buffer” for 1 hour at room temp. 

 9) Wash 1x with PBS. 

 10) Incubate cells in 600x dilution rabbit pAb α-tubulin (0.2 mg/mL, abcam, ab18251) in “MEF    

      Blocking Buffer” for 1 hour at room temp. 

 11) Wash 1x with PBS. 

 12) Incubate cells in 1000x dilution goat anti-rabbit IgG AlexaFluor647 (2 mg/mL, Life        

      Technologies, A21245) in “MEF Blocking Buffer” for 1 hour at room temp. 

 13) Wash 1x with PBS. 

 14) Incubate cells in 1µg/mL DAPI (Invitrogen, D1306) in 0.1% Triton X-100 in PBS for 10   

      minutes at room temp. 

 15) Wash 3x with PBS. Store cells at 4°C under PBS, protected from light, for up to 3 days. 

Following fluorescent labeling, cells were imaged at 40x magnification on the InCell 2000, an automated 

high-content imaging platform. A sample cell image is shown in (Fig. 3). At 40x magnification, it took 49 

fields of view (FOVs) to scan each well of a 384-well plate. Each FOV was imaged in three fluorescent 

channels: Cy5 to illuminate AlexaFluor647-labeled α-tubulin (microtubule cytoskeleton), DAPI to 

illuminate DAPI-labeled DNA (nucleus), and FITC to illuminate AlexaFluor488-labeled mtHsp70  

(mitochondria). Channels were then overlaid and a composite image of the well compiled by  

concatenating the 49 FOVs into a 7x7 array for each well. 
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Figure 3. Example fluorescence image of a fixed WT MEF. A single cell labeled for α-tubulin (cell), DAPI 
(nucleus), and mitochondrial heat shock protein 70 (mitochondria). Each structure was labeled with a different, 
spectrally separate, fluorophore and a composite image is shown on the right, with the microtubule cytoskeleton of 
the cell depicted in green, the nucleus depicted in blue, and the mitochondria depicted in red. Image taken at 40x 
magnification. 
   
2b. Developing Quantitative Feature Analysis Algorithms 
 
 After imaging each well, we computationally segmented each cell to digitally isolate objects for 

further analysis. To accomplish this, we wrote custom segmentation algorithms based on a series of 

dilation, filling, erosion, and smoothing steps (Appendix, pg. 77-85) and segmented objects on the 

microtubule cytoskeleton channel (Cy5). Cells were presented to the user and manually accepted or 

rejected based on a few criteria: i) cells had to be single, isolated cells that were not in contact with other 

cells or the edge of the well, and ii) cells could not be in active M phase, as discerned from a user-based 

assessment of cytomorphology.  

 Once cells were segmented, they were further processed to extract cytoskeletal, nuclear, and 

mitochondrial features using custom feature extraction algorithms written in MATLAB. The microtubule 

cytoskeleton and nucleus are single, continuous objects and were analyzed for similar feature sets. These 

features include basic morphometric measurements such as area, perimeter, and ellipticity, as well as 

more complex features such as the area of a convex hull surrounding the object or the percent change to 

an object’s area or perimeter upon application of varying degrees of smoothing to the object outline 

(Appendix, pg. 86-89, 92-96). A second set of feature algorithms focused on textural and spatial intensity 

features. These included explicit textural features such as contrast and homogeneity, as well as custom 

spatial distribution features that analyzed intensity distributions within different regions of the object 

(Appendix, pg. 90-91, 97-98). These measurements provided information about the spatial distribution 
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and organization of elements within the cell, allowing us to ask, for example, if α-tubulin was more 

densely concentrated towards the center or periphery of the cell, and if α-tubulin was evenly distributed 

throughout the cytoplasm or clustered into discrete subspaces. 

 Unlike the cell and nucleus, mitochondria are not single objects and require a multi-object feature 

analysis approach. Mitochondria consist of a collection of interconnected networks of tubules (fused 

mitochondria) and an array of isolated, bean-shaped mitochondria (fragmented mitochondria). To 

properly segment mitochondria, we developed a second set of custom segmentation algorithms. These 

similarly employed a series of dilation, filling, erosion, and smoothing steps (Appendix, pg. 99-105), 

relying on the user for manual endpoint acceptance or rejection. Mitochondrial features were analyzed 

using a second set of custom features extraction algorithms written in MATLAB, this time customized 

specifically for the multi-object properties of mitochondria. As with the cell and nucleus, these consisted 

of measurements of size, shape, and texture features, but now with the possibility of including mean, 

maximum, minimum, and standard deviation measurements given the multi-object nature of the structure. 

For morphometric measurements, we quantified basic features such as the number of mitochondria, sum 

and mean area, and sum and mean perimeter, as well as more complex features such as the ratio of fused 

to fragmented mitochondria or the mean number of nodes per mitochondrial network (Appendix, pg. 99-

105). For textural measurements, we again measured explicit textural features such as contrast and 

homogeneity in order to assess the textural distribution of mitochondria within the cell. We also 

developed features to measure spatial intensity distributions within specific subspaces of the cell 

(Appendix, pg. 99-105). For example, we sliced the cell into four concentric rings of increasing radii and 

took measurements such as the percentage of total mitochondria contained within each ring, or the 

variance of mitochondrial area within each ring. This allowed us to probe aspects of mitochondrial 

subcellular localization, such as whether mitochondria preferentially occupy perinuclear or peripheral 

subspaces, or if variability in mitochondria morphology varied as a function of subcellular localization.  
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Figure 4. Sample segmentation of cytomorphological structures. An example cell labeled for α-tubulin (cell),  
DAPI (nucleus), and mitochondrial heat shock protein 70 (mitochondria) segmented for each structure using custom 
image segmentation algorithms written in MATLAB. The original image (left, colored) and segmented outline/mask  
(right, white) are shown for an example cell labeled for the microtubule cytoskeleton (top, green), nucleus (middle, 
blue), and mitochondria (bottom, red). Image taken at 40x magnification. 
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2c. Principal Component Analysis for Dimensionality Reduction 

 Extracting a high-dimensional feature set is powerful in that it provides an expansive set of 

feature information about each cell. However, a challenge in working with high-dimensional datasets is in 

parsing which variables are informative and which are either redundant or information-poor. Several 

statistical tools exist for dimensionality reduction. In our case, we chose to employ a technique called 

Principal Component Analysis (PCA), based on the following reasons: 

 i) PCA works on the principle of identifying features that contribute maximal variance to the       

     population. Since our primary interest is in identifying morphological heterogeneity, 

     identifying high-variance features is a reasonable way to identify this heterogeneity. Variance   

     is, of course, not the only measure of heterogeneity and there exist other dimensionality-  

     reduction techniques (e.g. hierarchical clustering, t-SNE) to identify heterogeneity; however, in 

     this case the relatively simple method of PCA proved sufficient for identifying underlying   

     morphological heterogeneity in a population of WT MEFs. 

 ii) The final output of PCA is a set of linear combinations of the original features, weighted by   

     their variance. This is useful because by producing an output phrased in terms of the original   

     input morphological features, the results remain interpretable from a biological standpoint.   

     This is in contrast to many machine learning classifiers (e.g. neural nets, random forests),    

     which may succeed in classifying cells, but often occludes information concerning the      

     classification  process, rendering it difficult to parse the contribution of each feature. 

 iii) The results of PCA can be graphically represented in Cartesian coordinates, providing a useful 

     and intuitive way to visualize morphology space as well as morphological transitions within   

     this space. This visualization is also amenable to visualization of probability densities and   

     energy landscapes within morphology space, a process we touch upon further in Chapter 3. 

 iv) The output of PCA is a set of linear combinations, so distance between Principal     

     Component (PC) coordinates scale linearly and can be meaningfully compared. 
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Principal Component Analysis: Theory 

 Mathematically, PCA works by taking an M-variable feature set over N samples and organizing 

the data into an MxN matrix, X. The goals of PCA are two-fold: a) to identify sets of orthogonal linear 

combinations of features that contribute the most overall variance to the population, and b) to reduce 

redundant features, i.e. features whose values correlate strongly with each other. To achieve this, we 

undertake the following set of linear algebra operations: 

1) Compute the covariance matrix of MxN, producing an MxM size matrix of covariance values, where n 

is the number of samples. 

                                                                 𝑆! =  cov(X) =  !
!!!

 XXT                                                         (Eq. 1) 

Since we are interested in minimizing the amount of redundancy, or covariance, our goal in this case is to 

make all off-diagonal values equal to 0. In other words, we want to diagonalize the matrix.  

2) We identify an operation, P, that can be applied to X such that Y=PX. The covariance of Y is then:  

                                                                   𝑆! =  cov(Y) =  !
!!!

 (PX)(PX)T                                                                         (Eq. 2) 

                                                                   𝑆! =  !
!!!

 (PXXTPT)                                                                 (Eq. 3) 

                                                                   𝑆! =  !
!!!

 PAPT    where A = XXT                                          (Eq. 4) 

3) A is a symmetric matrix equal to XXT and can be diagonalized by the matrix E, a matrix of the 

eigenvectors of A, where each column is a different eigenvector. 

                                                                    𝑆! =  !
!!!

 PEDETPT                   (Eq. 5) 

4) If we choose E = PT, then   

                                                                    𝑆! =  !
!!!

 PPTDETE                (Eq. 6)  

                                                                    𝑆! =  !
!!!

 D                 (Eq. 7) 

This series of operations effectively diagonalizes SY. By calculating the eigenvectors of the symmetric 

matrix A, where A = XXT, we can diagonalize SY and minimize the covariance, one of the primary aims 

of PCA. By selecting the eigenvectors with the largest eigenvalues, we are able to identify the most 
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dominant, or “important” PCs that contribute the most “stretch” to the basis. These can be used to 

calculate a % explained, the percent of total population variance captured by that particular PC. 

Principal Component Analysis: Application 

 Since PCA works by identifying features contributing maximal variance to the population, it is 

important that features be normalized to have the same mean and range. Feature value ranges will 

naturally vary depending on the feature being measured; a measurement such as cell area may vary from 

10-1000 pixels, whereas a measurement like eccentricity is confined to the values 0.0 – 1.0. To avoid 

biasing our PCA analysis towards these larger-magnitude features, we normalized the mean and range of 

all features. This is accomplished by calculating the µ (mean) and σ (std) of each feature and calculating 

the associated z-score of each measurement.  

                                                                               z = !!!!
!

                (Eq. 8) 

Once the z-scores have been calculated for all measurements, we can proceed to PCA. In our case, this 

computation is as follows, where z(i,j) = the z-value for the ith feature of the jth cell. 

Z = [z(1,1) z(1,2) … z(1,903)  z(1,904)           ZT = [z(1,1)        z(2,1)          … z(204,1)  z(205,1)]  
        z(2,1), z(2,2) … z(2,903)  z(2,904)         z(1,2)        z(2,2)          … z(204,2)   z(205,2) 
        …  … … …  …         …          … …        … …  … 
        z(204,1) z(204,2) … z(204,903)  z(204,904)         z(1,903)      z(2,903)       … z(204,903)  z(205.903) 
        z(205,1) z(205,2)  … z(205,903)  z(205,904)]        z(1,904)      z(2,904) … z(204,904)  z(205.904)] 
 
                                                                 𝑆! =  cov(Z) =  !

!"#!!
 ZZT     (Eq. 9) 

 
We can eliminate the fraction in front of ZZT, since this is essentially a weighting factor and we are only 

interested in the eigenvectors and relative weighting of each eigenvector relative to the others, values that 

are not influenced by this weighting factor. We then calculate the eigenvectors of XXT and associated 

eigenvalues. The values for the three eigenvectors with the largest eigenvalues, representing Principal 

Components (PC) 1, 2, and 3, are listed in (Table 1), while histograms of the values of PC1, PC2, and 

PC3 are shown in (Fig. 5). 
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                      Principal Component 1; variance explained = 29.6%  

Feature Name Feature Type Loading 
CellEquivDiameterArea Cell morphometry 0.1185 
NucEquivDiameterArea Nucleus morphometry 0.1173 
NucMeanCentroidDist Nucleus morphometry 0.1166 
CellMeanCentroidDist Cell morphometry 0.1151 
NucMinorAxisLength Nucleus morphometry 0.1145 
NucConvexPerimeter Nucleus morphometry 0.1143 
NucHighSmoothPerimeter Nucleus morphometry 0.1140 
CellConvexPerimeter Cell morphometry 0.1133 
CellHighSmoothPerimeter Cell morphometry 0.1132 
NucLowSmoothPerimeter Nucleus morphometry 0.1130 

 
                       Principal Component 2; variance explained = 10.6% 

Feature Name Feature Type Loading 
CellCVDisc3 Cell texture -0.1558 
CellCVDisc4 Cell texture -0.1528 
CellCVDisc2 Cell texture -0.1526 
CellCVDisc1 Cell texture -0.1397 
CellFracTotalDisc1 Cell texture -0.1393 
CellCVCentroidDist Cell texture -0.1318 
CellHighSmoothOrig… 
   …PerimeterChangeRel 

Cell morphometry 0.1223 

CellHighSmoothOrig… 
   …PerimeterRatio 

Cell morphometry 0.1223 

CellCircularity Cell morphometry 0.1216 
CellSolidity Cell morphometry 0.1191 

 
         Principal Component 3; variance explained = 6.7% 

Feature Name Feature Type Loading 
MitoCVDisc2 Mitochondria texture 0.1725 
MitoCVDisc3 Mitochondria texture 0.1716 
MitoCVDisc4 Mitochondria texture 0.1698 
CellCVCorrelation Cell texture 0.1573 
CellCVCentroidDist Cell morphometry 0.1546 
CellCircularity Cell morphometry -0.1464 
MitoVarCorrelation Mitochondria texture 0.1436 
CellVarCorrelation Cell texture 0.1433 
MitoCVCorrelation Mitochondria texture 0.1358 
CellVarHomogeneity Cell texture 0.1344 

 
 
  
Table 1. Dominant loadings of the first three Principal Components of fixed WT MEFs. The top 10 loadings of 
the first three principal components of a 205-feature set analysis of WT MEF morphology. Principal Component 1 
captures 29.6% of total variance and is dominated by cell and nucleus morphometric features. Principal Component 
2 captures 10.6% of total variance and is dominated by cell morphometric and textural features. Principal 
Component 3 captures 6.7% of total variance and is dominated by mitochondrial textural and cell morphometric 
features.  
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Figure 5. Probability density functions of the first three Principal Components of WT MEFs. Plots of the 
probability density functions of PC1, PC2, and PC3 show the extent of variance along these three dimensions. PC1 
is the most variable dimension but is still characterized by a single dominant peak centered at 0 and does not show 
evidence of bimodality or more complicated types of heterogeneity. PC2 and PC3 are similarly characterized by 
single dominant peaks centered at 0, but explore a more constrained range of values relative to PC1. 
 
2d. Results and Interpretation 

 By identifying the eigenvectors with the largest corresponding eigenvalues, we can identify the 

linear combination of features that most successfully captures overall population variance. The top 3 PCs 

and their top 10 loadings are listed in (Table 1). A complete list of loadings of the top three PCs can be 

found in (Appendix, Table A2). From these loadings, it becomes clear that the dominant contributors to 

morphological heterogeneity are cell morphometry and textural features, nuclear morphometry features, 

and mitochondrial textural features.  

 By plotting Principal Components 1, 2, and 3 against each other (Fig. 6, Fig. 7), we were able to 

visualize the morphology space of WT MEFs, observing several interesting characteristics. First, these 

plots confirmed the existence of morphological heterogeneity in WT MEFs and proved that our feature 

analysis algorithms could successfully capture facets of this heterogeneity. Furthermore, our approach 

allowed us to visualize the topology of WT MEF morphology space and discover that cells do not cluster 

into discrete subspaces, suggesting that WT MEF morphologies are more aptly described as a continuum 

rather than a set of discrete states. This means that instead of occupying or cycling through a discrete set 

of morphological states, cells in a population of WT MEFs can instead occupy many hundreds of 

different morphological states at any given point in time.  
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Figure 6. Scatter plots depicting WT MEF state occupancy in 2-dimensional morphology spaces. Morphology 
space distribution of fixed WT MEFs in three different 2-dimensional spaces defined by permutations of PC1, PC2, 
and PC3. Cell states appear heterogeneously distributed in the space defined by PC1 vs. PC2, with a dense cloud of 
cells near (0, 0) and less dense occupancy towards the periphery of this space. Cell states appear similarly 
heterogeneous in the space defined by PC1 vs. PC3, with a dense cloud near (0, 0) and more sparse occupancy 
towards the periphery. Cells display more constrained morphological heterogeneity in the space defined by PC2 vs. 
PC3, with a single dense cloud near (0, 0) and a few scattered cells extending towards the periphery. This 
observation is in agreement with the principles of Principal Component Analysis, where higher PCs capture a larger 
fraction of the total variance.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
Figure 7. Scatter plots depicting WT MEF state occupancy in a 3-dimensional morphology space. Morphology 
space distribution of fixed WT MEFs in a 3-dimensional morphology space defined by PC1 vs. PC2 vs. PC3. This 
plots allows us to visualize the heterogeneity of WT MEF morphology space. There is a single dense cloud of cells 
near (0, 0, 0) in morphology space and a significant cloud of more sparsely distributed cells extending in all 
directions along PC1, PC2, and PC3. The full range of PC1 and PC2 [-30, 30] appears to be occupied, whereas cells 
appear to predominantly occupy the lower half of PC3 [-30, 0]. This plot confirms that the coupling of our 205-
feature morphology analysis algorithms with Principal Component Analysis can capture aspects of the observed 
morphological heterogeneity of WT MEFs.   
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These observations lead to many interesting questions about the dynamics as well as functional 

consequences of morphological heterogeneity. In terms of dynamics, one could ask whether morphology 

state is a static or dynamic property. If dynamic, what are the rules that govern morphological transitions? 

Do cells traverse morphology space in a deterministic manner (e.g. state A always leads to state B, which 

always leads to state C, etc.), or are transitions probabilistically driven (e.g. state A has an x% chance of 

leading to state B and a y% chance of leading to state C.) Are the probabilities of transition uniform in all 

regions of morphology space, or are transition dynamics variable across state space? By developing a 

clearer understanding of the dynamics of morphology space, we hope to gain insight into the driving 

principles behind morphological heterogeneity as well as contribute more generally to our understanding 

of the dynamical properties of cells.  

 Along with an improved understanding of the dynamics of morphology space, we hope to address 

questions regarding the functional relevance of a cell’s morphological state. There are many known 

instances of morphological changes arising concomitantly with functional changes, both in basic science 

and clinical settings. The observed morphological heterogeneity thus necessarily leads to questions of 

whether this morphological state might correlate with functional behavior and, if so, if morphology can be 

used as a coarse-grain indicator of the functional state of a cell.  
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CHAPTER 3. Developing a Dynamic Map of Morphology Space 
  
 Our first step in developing a dynamic map of morphology space was to develop molecular 

biology tools to enable tracking of morphology in live cells. Once accomplished, we imaged cells over a 

multi-day time course and plotted their trajectories in morphology space as a function of time. This 

approach allowed us to gain insight into the dynamics underlying the observed morphological 

heterogeneity of WT MEFs. Furthermore, we were able to adapt statistical mechanical concepts to 

morphology space and develop a theoretical map of the energy landscape underpinning this space, 

creating, to our knowledge, the first known energy landscape of cellular morphology space.  

3a. Constructing a Live-Cell Reporter for Cytomorphology 

 Our first step in mapping out the dynamics of morphology space focused on developing 

molecular biology tools to visualize and track cytomorphology in live WT MEFs. We decided to 

approach this challenge by engineering a lentivirus construct. Lentivirus-mediated delivery of fluorescent 

reporters was ideal for several reasons: a) common transfection approaches such as liposomal transfection 

or electroporation tend to produce low transfection efficiency in primary cell lines such as WT MEFs; in 

contrast, lentivirus produce much higher transduction efficiencies; b) since the time course was expected 

to run over several days, we wanted a way to integrate the expression system into the endogenous WT 

MEF genome to ensure robust expression over the entire time course, rather than risk transient expression 

expiring over the course of the experiment. Selection of a stable cell line over several weeks was not a 

viable option, given that WT MEFs are a primary cell line and experience increased senescence potential 

with each passage.  

 The general approach for engineering our lentivirus, which we call the 3-Reporter lentivirus, 

centered on cloning fluorescent reporters of our three structures of interest into the lentivirus expression 

vector pPWPXL (Addgene #12257). Our three gene-reporter constructs were: mIFP-H2B (monomeric 

infrared fluorescent protein attached to Histone 2B) to target the nucleus, tdTomato-mito-7 (tandem dimer 

Tomato attached to a mitochondria localization sequence) to target the mitochondria, and EGFP-tubulin 
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(enhanced green fluorescent protein attached to α-tubulin) to target the microtubule cytoskeleton. The 

three reporters were separated by two copies of the self-cleaving peptide P2A (Kim et al., 2011). The 

target 3Reporter gene cassette is depicted in (Fig. 8). This approach greatly simplified construction of the 

lentivirus plasmid in that it allowed us to express all three gene-reporter constructs under the same EF1α 

promoter. Furthermore, this strategy ensured expression of the three gene-reporter constructs in 

stoichiometrically consistent ratios, allowing us to more reasonably compare fluorescence intensities 

across channels. Full sequence data for the “3-Reporter” insert can be found in (Appendix, Fig. A1). 

 1) Fluorescent reporter plasmids were acquired from the Nikon Imaging Center (NIC) at UCSF, 

originally provided by Michael Davidson (FSU) as part of the Davidson Collection. The plasmids 

acquired were: EGFP-tubulin-6 (EGFP-tagged α-tubulin, fluorescent in the GFP channel), mIFP-H2B-6 

(mIFP-tagged histone 2B, fluorescent in the Cy5 channel), and tdTomato-mito-7 (tdTomato-tagged 

mitochondria localization sequencing, fluorescent in the RFP channel). We transformed plasmids into 

DH5α competent cells (ThermoFisher, #18265017) and grew colonies on appropriate antibiotic selection 

lysogeny broth (LB) agar plates. Surviving colonies were then cultured in a solution of LB + antibiotic to 

OD600 ~ 3.0. Plasmids were purified and isolated the plasmids using a QIAprep Spin Miniprep Kit 

(Qiagen, #27105) and sent to a third-party sequencing service (Elim Biopharmaceuticals, Inc.) for 

 

 
 
 
 
 
 
 
 
 
Figure 8. Schematic of 3-Reporter gene-reporter cassette. Fluorescent reporters targeted to our three structures of 
interest are transcribed as a single transcript under an EF1α promoter. The nucleus-targeting monomeric infrared 
fluorescent protein attached to histone 2B is found at the beginning of the transcript, followed by the self-cleaving 
peptide P2A. This is followed by the mitochondria-targeting tdTomato attached to a mitochondria localization 
sequence (tdTomato-mito-7), followed by another copy of the self-cleaving peptide P2A. The transcript terminates 
with the microtubule cytoskeleton-targeting enhanced green fluorescent protein attached to α-tubulin (EGFP-
tubulin-6). Once transcribed and translated, the P2A sequences will self-cleave, producing three separate fluorescent 
reporters in a stoichiometric 1:1:1 ratio targeting our three structures of interest. 
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sequence confirmation. We then separately transfected each plasmid into cultures of 293T cells, using the 

FuGENE 6 Transfection Reagent (Promega, E2691) and accompanying protocol. FuGENE 6 and DNA 

were mixed at a ratio of 6uL FuGENE : 1µg DNA. At 72h post-transfection, cells were examined under 

an epifluorescence microscope to confirm fluorescence and proper cytostructural localization of our gene-

reporter products. 

 2) The three fluorescent reporters were stitched together and copies of the self-cleaving P2A 

inserted in between reporters to create one comprehensive 3-Reporter cassette. The self-cleaving P2A 

peptide allows for the entire insert to be transcribed and translated as a single unit, ensuring that each 

gene-reporter trio is produced in a stoichiometrically consistent ratio. Since some of the feature 

measurements rely on pixel intensity measurements, this approach allows us to reasonably compare 

fluorescence intensities across different channels in a consistent manner. Once completed, this cassette 

was inserted into the pWPXL backbone. Cloning of the cassette was accomplished using a Gibson 

Assembly approach and cassette insertion accomplished using restriction enzyme cloning. All primers 

were purchased from Integrated DNA Technologies (IDT) and primer sequences are listed in (Table 3). 

The strategies for cassette assembly and insertion were as follows: 

 i) pWPXL homology was added to the 5’ end of mIFP-H2B-6 using the F-H2B_KOZAK primer;    

     this primer preserves the BamHI restriction site and introduces a Kozak sequence to maximize    

     expression efficiency. 

 ii) The full P2A sequence (66 base pairs, Kim et al., 2011) was added to the 3’ end of mIFP-H2B-  

      6 using the R-mIFP_EXTENSION primer to form the intermediate “mIFP-H2B-6-P2A.”  

 iii) The tdTomato-mito-7 construct was separated into tdTomato1 and tdTomato2 modules. It was 

      necessary to split the construct and polymerase chain reaction (PCR) amplify the two modules       

      separately because the tandem tdTomato modules are homologous, resulting in random primer 

      attachment to both modules if PCR amplified as a single module. P2A homology was added to 

      the 5’ end of tdTomato1 using the F-MITO primer. Tandem linker homology was maintained  

      at the 3’ end of tdTomato1 using the R-tdTomatoLinker primer. Tandem linker homology was   
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      maintained at the 5’ end of tdTomato2 using the F-tdTomatoLinker primer. P2A-EGFP-  

      tubulin-6 homology was added to the 3’ end of tdTomato2 using the R-MITO primer.  

 iv) The P2A sequence (66 base pairs, Kim et al., 2011) was added to the 5’ end of EGFP-tubulin-  

      6 using the F-EGFP_EXTENSION primer to form the intermediate “P2A-EGFP-tubulin-6.”  

 v) pWPXL homology was added to the 3’ end of EGFP-tubulin-6 using the R-TUBULIN primer. 

 3) Primers were designed to introduce 16-42 base pair homology between fragments such that 

they would be compatible with Gibson Assembly (GA). Fragments were PCR amplified using Phusion 

High-Fidelity DNA Polymerase (NEB, M0530L), following a standard PCR protocol. Amplification 

conditions are listed in (Table 2). Fragments were stitched together using a Gibson Assembly Kit (NEB 

E2611S) and accompanying protocol. PCR and Gibson Assembly steps were accomplished in the 

following order: 

 i) PCR amplify mIFP-H2B-6 using the primers F-H2B-KOZAK and R-mIFP_EXTENSION to   

     obtain “mIFP-H2B-6-P2A,” with 5’ pWPXL homology and a 3’ P2A sequence. 

 ii) PCR amplify tdTomato2-mito-7 using the primers F-MITO and R-tdTomatoLinker to obtain   

     “tdTomato1,” the first tdTomato module, with 5’ homology to P2A and 3’ homology to the   

     tandem linker.  

 iii) PCR amplify tdTomato2-mito-7 using the primers F-tdTomatoLinker and R-MITO to obtain   

     “tdTomato2,” the second tdTomato module, with 5’ homology to the tandem linker and 3’   

     homology to P2A. 

 iv) PCR amplify EGFP-tubulin-6 using the primers F-EGFP_EXTENSION and R-TUBULIN to   

     obtain “P2A-EGFP-tubulin-6,” with a 5’ P2A sequence and 3’ pWPXL homology.  

 v) Gibson Assembly of mIFP-H2B-6-P2A and tdTomato1 to produce “mIFP-H2B-6-P2A-  

     tdTomato1, “with 5’ pWPXL homology and 3’ tandem linker homology. 

 vi) Gibson Assembly of tdTomato2 and P2A-EGFP-tubulin-6 to produce “tdTomato2-P2A-  

     EGFP-tubulin-6,” with 5’ tandem linker homology and 3’ pWPXL homology. 
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 vii) PCR amplification of “mIFP-H2B-6-P2A-tdTomato1” using the primers F-H2B_KOZAK    

     and R-tdTomatoLinker. 

 viii) PCR amplification of “tdTomato2-P2A-EGFP-tubulin-6” using the primers F-     

     tdTomatoLinker and R-TUBULIN. 

 ix) Full Gibson Assembly of “mIFP-H2B-6-P2A-tdTomato1” and “tdTomato2-P2A-EGFP-   

     tubulin-6” to produce the full 3-Reporter cassette.  

 4) The 3-Reporter cassette was cloned into the pWPXL backbone following a standard restriction   

      enzyme cloning protocol. 

 5) The restriction digest product was transformed into NEB Competent DH5α cells (NEB C2987) 

     and plated onto carbenicillin-selection LB agar plates. 

 6) A standard Colony PCR protocol was used to screen for hits, using primers F-MITO (Table 3)   

     and GA4400-R (Table 4) to amplify an expected  ~2100 base pair segment. 

 7) Colony PCR hits were sent for full-coverage sequencing using the primers listed in (Table 4). 

Gibson 
Assembly 
fragment 

Input plasmid(s) F-primer / R-primer  Annealing 
Temp. 
(Cycles 1-3) / 
(Cycles 4-30) 

Expected  
band size 
(bp) 

Elongation 
time (min) 

mIFP-H2B-6-
P2A 

mIFP-H2B-6 F-H2B_KOZAK /  
R-mIFP_EXTENSION 

55-65°C /  
62-72°C 
(gradient) 

~1400 2.0 

tdTomato1 tdTomato-mito-7 F-MITO /  
R-tdTomatoLinker 

55-65°C /  
62-72°C 
(gradient) 

~750 1.0 

tdTomato2 tdTomato-mito-7 F-tdTomatoLinker /  
R-MITO 

62-72°C /  
62-72°C 
gradient 

~750 1.0 

P2A-EGFP-
tubulin-6 

EGFP-tubulin-6 F-EGFP_EXTENSION 
/ R-TUBULIN 

55-65°C /  
62-72°C 
gradient 

~2100 2.0 

mIFP-H2B-6-
P2A-tdTomato1  

mIFP-H2B-6-P2A + 
tdTomato1 

F-H2B_KOZAK /  
R-tdTomatoLinker 

55-65°C /  
62-72°C 
gradient 

~2000 2.5 

tdTomato2-P2A-
EGFP-tubulin-6  

tdTomato2 + P2A-
EGFP-tubulin-6 

F-tdTomatoLinker /  
R-TUBULIN 

55-65°C /  
62-72°C 
gradient 

~2800 3.0   

 
Table 2. Plasmids and PCR conditions for Gibson Assembly of 3Reporter lentivirus plasmid. Sequences of 
primers used to engineer 3Reporter lentivirus construct. Our three desired gene-reporter sequences were PCR 
amplified with custom primers to create areas of homology. PCR products were then joined using a succession of 
Gibson Assembly steps. 
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Table 3. Primer sequences for PCR amplification of 3Reporter lentivirus plasmid components. Sequences of 
primers used to engineer 3Reporter lentivirus construct. Our three desired gene-reporter sequences were PCR 
amplified with custom primers to create areas of homology. Different homology regions are highlighted in different 
colors. grey = pWPXL vector homology; cyan = mIFP-H2B-6 homology; magenta = P2A homology; red = 
tdTomato-mito-7 homology; yellow = tdTomato tandem linker homology; green = EGFP-tubulin-6 homology. 
 
 
 

    pWPXL 
    pWPXL-H2B-mIFP-P2A 
                                 P2A-tdTomato1-linker 
                           linker-tdTomato2-P2A 
                                                                   P2A-EGFP-Tubulin-pWPXL 
                                       pWPXL 
 

Figure 9. Schematic of Gibson Assembly of 3Reporter lentivirus expression plasmid.  
The gene-reporter PCR products created are depicted in the above graphical representation and areas of homology 
are colored to show homologous regions for Gibson Assembly. Different homology regions are highlighted in 
different colors. grey = pWPXL vector homology; cyan = mIFP-H2B-6 homology; magenta = P2A homology; red = 
tdTomato-mito-7 homology; yellow = tdTomato tandem linker homology; green = EGFP-tubulin-6 homology. 
 

Primer name Sequence 
pWPXL-F 5’-TTT TCC GAT CAC GAG ACT AGC CTC-3’ 
GA3800-R 5’-TTA GTA CCC TCG GAC ACG GC-3’ 
GA5600-R 5’-TTA GCC AGA AAC GCG TGG C-3’ 
GA6100-R 5’-CAC GAC GAC GTT CGG ACA GAA TTT-3’ 
GAv6_5000-R 5’-GAC CTC CTC GCC CTT GCT CAC CAT-3’ 
GAv6_5900-R 5’-CTT GGC GGT CTG GGT GCC CTC GTA-3’ 
GA4400-R 5’-GGC GGA TCT TGA AGT TCA CCT TGA-3’ 
GAv6_6500-R 5’-GGT GAA CAG CTC CTC GCC CTT GCT-3’ 
GA6700-R 5’-GTC ATC TCC TCC CCC AAT GGT C-3’ 
GA7350-R 5’-GGG AAG TGG ATG CGG GGG TA-3’ 
pWPXL-R 5’-GCA GCG TAT CCA CAT AGC GTA AAA GG-3’ 

         
Table 4. Primer sequences to confirm 3Reporter lentivirus plasmid sequence. Sequences of the comprehensive 
set of primers used to confirm successful production of the desired 3Reporter lentivirus plasmid. This (set) of 
primers covers the entire sequence from the 5’ insert site of the original pWPXL plasmid, through mIFP-H2B, 
tdTomato-mito, and EGFP-tubulin, through to the 3’ insert site the pWPXL plasmid. Primers were designed to 
produce PCR products with ~200 base pair overlap to ensure full sequencing coverage.   

Primer Name Sequence 
F-H2B_KOZAK 5’-agcctcgaggtttaaactacgggatccggtaccgccaccatgcca-3’ 

R-mIFP_EXTENSION 3’-tcgaaacgtgtcagagtcaggtttccttcgcctcgatgattgaagtcg… 
…gacgacttcgtccgacctctgcacctcctcttgggacctgga-5’ 

F-MITO 5’-tggaggagaaccctggaccttccgtcctgacgccgc-3’ 
R-tdTomatoLinker 3’-gccgtggcggaggaggctcctgttgttgtaccgg-5’ 
F-tdTomatoLinker 5’-cggcaccgcctcctccgaggacaacaacatggcc-3’ 

R-MITO 3’-gcggtggtggacaaggacatgccgtacctgctcgacatgttcccttc… 
…gcctcgatgattgaagtcggacgac-5’ 

F-EGFP_EXTENSION 5’-ggaagcggagctactaacttcagcctgctgaagcaggctggagac… 
…gtggaggagaaccctggacctgtgagcaagggcgaggagc-3’ 

R-TUBULIN 3’-ctcccactccttcttcctctccttatgattcggccctgatcagtatactattagttggag-5’ 
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 8) Sequencing hits were cultured in LB broth + carbenicillin and grown to OD600 ~3.0. Plasmids 

were transfected into 293T cells using the FuGENE 6 Transfection Reagent (Promega, E2691) and 

accompanying protocol. FuGENE 6 and DNA were mixed at a ratio of 6uL FuGENE : 1µg DNA. At 72h 

post-transfection, cells were examined under an epifluorescence microscope to ascertain fluorescence and 

proper cytostructural localization of gene-reporter products. The plasmid producing the brightest 

fluorescence was identified, aliquoted and stored at -20°C until ready for use. This plasmid was termed 

the 3-Reporter lentivirus expression plasmid. 

 9) 3-Reporter lentivirus was produced using the following 293T lentivirus production protocol: 

 i) Culture 293T cells in 10cm tissue culture plates in 10mL antibiotic-free cell culture media  

     (DME H-21 + 10% FBS) at 37°C, 5% CO2. Culture cells for at least 12 hours until ~70-80%   

     confluency is reached.  

 ii) For each 10cm plate, in a polypropylene tube, mix: 

  5.79µg  3-Reporter lentivirus expression plasmid  

  4.34µg  psPAX2 lentivirus packaging plasmid (Addgene, #12260) 

  1.45µg  pMD2.G lentivirus enveloped plasmid (Addgene, #12259) 

  (x) µL serum-free OPTI-MEM (Gibco, 31985-070)                            

  to 115.8µL total volume 

 iii) To prepare the FuGENE 6 master mix, carefully combine the following (for each 10 cm dish):   

  34.7µL FuGENE 6 Transfection Reagent (Promega, E2691) 

  428.5µL serum-free OPTI-MEM (Gibco, #31985-070)                  

  463.2µL total volume 

     Add FuGENE 6 directly to the OPTI-MEM without touching the sides of the tube. Mix by   

     flicking or gentle pipetting and incubate mixture for 5 minutes at room temp. 

 iv) Add the plasmid mixture from step (2) to the FuGENE 6 master mix from step (3) and   

     incubate mixture for 20-30 minutes at room temp. 
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 v) Add the FuGENE 6 + plasmid mixture from step (4) directly to the 10cm dish of 293T cells.   

     Swirl the plate to mix and incubate cells at 37°C, 5% CO2, overnight for 12-15 hours. 

 vi) After 12-15 hours, remove the transfection media and replace with full cell culture media   

     (DME H-21 + 10% FBS + 1x pen/strep). Incubate at 37°C, 5% CO2 for 24 hours. 

 vii) After 24 hours, harvest the media (1st harvest) into a polypropylene tube and store at 4°C.   

     This media contains active lentivirus. Replace media with fresh full cell culture media (DME    

     H-21 + 10% FBS + 1x pen/strep). Incubate at 37°C, 5% CO2 for 24 hours. 

 viii) After 24 hours, harvest the media again (2nd harvest) and pool with the media from the 1st   

     harvest. Proceed to step (ix) to concentrate the lentivirus, or store at 4°C for up to 2 days before 

     concentrating. 

 ix) Filter media through a 0.45µm PVDF membrane filter (Millipore, SLHVM33RS) to remove    

      cell debris. Concentrate lentivirus using Lenti-X Concentrator (Clontech, PT4421-2) and the    

      accompanying protocol, resuspending the lentivirus in DME H-21 + 10% FBS. 

 x) Store lentivirus in single-use aliquots at -80°C until ready for use. Avoid freeze-thaw cycles. 

 10) The 3-Reporter lentivirus was titered to determine the optimal lentivirus titer for live cell 

experiments. Passage 1 (P1) WT MEFs were seeded into 96-well tissue culture plates (Greiner #655090) 

at a density of 5000 cells/well in antibiotic-free cell culture media (DME H-21 + 10% FBS). Lentivirus 

was titered at 10, 20, 40, 60, 80, and 100µL virus in 200µL total volume antibiotic-free cell culture media 

and cells observed 72 hours post-transduction. The lentivirus titer that produced the highest transduction 

efficiency without producing phenotypically noticeable signs of cell death or stress was identified and 

chosen as the optimal lentivirus titer. Note: Polybrene is a commonly used reagent to augment 

transduction efficiency. However, when we tested polybrene addition at 8ug/uL, we observed no 

discernible increase in transduction efficiency, so elected not to use polybrene in subsequent lentivirus 

transductions. 

 11) To prepare cells for live-cell imaging, Passage 1 (P1) WT MEFs were seeded into 96-well 

tissue culture plates (Greiner #655090) at a density of 5000 cells/well in antibiotic-free cell culture media 
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(DME H-21 + 10% FBS). After 24 hours, the appropriate titer of 3-Reporter lentivirus and antibiotic-free 

cell culture media were added to a final volume 200µL/well. At 24 hours post-transduction, cells were 

trypsinized and seeded into a new 96-well cell culture plate (Greiner #655090) at a density of 500 

cells/well in 200µL full cell culture media (DME H-21 + 10% FBS + 1x pen/strep). After an additional 24 

hours (48 hours post-transduction), media was replaced with 200µL full cell culture media containing 

100µM biliverdin hydrochloride (BV; Sigma, #30891). BV is a cofactor required for mIFP fluorescence 

(Yu et al., 2015). Cells were incubated under 100uM BV media at 37°C, 5% CO2 for 24 hours.  

Immediately prior to imaging (72h post-transduction), BV media was removed (BV is autofluorescent in 

nature), cells washed 3x with PBS, and re-incubated under full cell culture media. 

3b. Time-Lapse Imaging in Live Cells 

 Cells were imaged at the UCSF Nikon Imaging Center (NIC) on a high-speed confocal 

microscope fitted with a Plan Apo λ 40x objective (NA 0.95) equipped with 405, 488, 561, and 640 nm 

laser lines and 450/50m (DAPI), 525/50m (FITC), 600/50m (Cy3), and 700/75m (Cy5) filters. A stage-

top temperature and CO2 control chamber was set to 37°C and 0.3 l/min to mimic tissue culture 

conditions. Cells were imaged at 2h intervals over a 60h time course in the brightfield (BF), GFP (EGFP-

tubulin), RFP (tdTomato-mito-7), and Cy5 (mIFP-H2B) channels at 100ms, 300ms, 300ms, and 300ms 

exposure, respectively (Fig. 10). 

 

 
 
 
 
 
 
 
 
 
Figure 10. Example fluorescence image of a live WT MEF. A single cell expressing EGFP-tubulin (microtubule 
cytoskeleton), mIFP-H2B (nucleus), and tdTomato-mito-7 (mitochondria). A composite image is shown on the far 
right, with the microtubule cytoskeleton depicted in green, the nucleus depicted in blue, and the mitochondria 
depicted in red. Image taken with 40x magnification on a spinning disk confocal microscope. 
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3c. Dynamics of Cellular Transitions in Morphology Space 

 After imaging, we used our earlier developed suite of custom image analysis algorithms to extract 

205 morphometric and textural features from each time frame, analyzing up to 30 times frames per cell. 

The exact number of time frames analyzed per cell varied depending on several factors (e.g. segmentation 

difficulties, cells moving out of the FOV, etc.) To visualize and quantify morphological changes, we 

plotted transition vectors within morphology space, with each vector origin defined at (PC1(t), PC2(t)) and 

vector terminus defined at (PC1(t+2h), PC2(t+2h)). In subsequent experiments, morphology data was recorded 

at 2h intervals, but due to microscope autofocus issues, data was only viable for analysis at every other 

time point (4h intervals). To facilitate a meaningful comparison between different datasets, we plotted the 

dataset at 4h intervals, such that vector origins are defined at (PC1(t), PC2(t)) and vector termini defined at 

(PC1(t+4h), PC2(t+4h)). A map of the raw transition vectors is presented in (Fig. 11).   

 

 

 

 

 

 

      
 
 
 
 
 
 
 
 
 
 
Figure 11. Plot of raw WT MEF transition vectors. Changes in morphology are depicted as transition vectors in 
the morphology space defined by PC1 vs. PC2. Transition vectors were calculated at 4h time intervals such that the 
origin of each vector is found at (PC1(t), PC2(t)) and the terminus of each vector found at (PC1(t+4h), PC2(t+4h)). 
Transition vectors have been scaled down by a factor of 1.5 to facilitate visualization of vectors. 
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This initial raw vector map appeared over-crowded, rendering it difficult to assess the dynamic properties 

of morphology space. To distill this transition map, we binned the morphology space defined by PC1 vs. 

PC2 into a 60x60 bin array, with each x-axis bin representing a single unit along PC1, and each y-axis bin 

representing a single unit along PC2. We then averaged the magnitude and direction of vectors originating 

from each bin (e.g. if there were three raw vectors originating from a single bin, we calculated their 

average vector) and plotted these vectors on a bin-by-bin basis, as depicted in (Fig. 12). This plot revealed 

underlying non-uniformities in the dynamics of morphology space. Notably, transition vectors originating 

in the central (0, 0) region of morphology space were, on average, of smaller magnitude than those 

originating at the periphery. This suggests that, over the same time interval, the degree of morphological 

change exhibited by a cell varies as a function of the starting morphological state of the cell. 

   

  

 

 

 

 

 

 

 

 
 
 
 
 
Figure 12. Plot of bin-by-bin average WT MEF transition vectors. Transition vectors are averaged on a bin-by-
bin basis in the morphology space defined by PC1 vs. PC2, binned into a 60x60 bin array. Transition vectors were 
calculated at 4h time intervals such that the origin of each vector is found at (PC1(t), PC2(t)) and the terminus of each 
vector found at (PC1(t+4h), PC2(t+4h)). The transition vector map is characterized by smaller-magnitude transitions 
towards the center (0, 0) of PC space, whereas transitions towards the periphery tend to be of larger magnitude. 
Transition vectors have been scaled down by a factor of 1.5 to facilitate visualization of vectors. 
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This observation was further supported by a 2-dimensional colored surface plot (Fig. 13) of the average 

magnitude of vectors originating from each bin. In this plot, the average magnitude is represented by a 

ROYGBIV color bar, with red indicating a large average magnitude and violet indicating a small average 

magnitude. This plot revealed that transitions originating from the central (0, 0) region of morphology 

space tended to be of smaller magnitude (blue, light blue) compared to those originating from more 

peripheral bins of morphology space (orange, red). These results suggest that the degree of morphological 

change within a given time interval varies as a function of the starting morphological state of a cell, with 

cells near (0, 0) in morphology space undergoing, on average, less dramatic morphological changes (as 

measured in PC1 and PC2 units) over the same time interval when compared to cells occupying more 

peripheral states of morphology space. These observations present strong evidence of non-uniformity in 

the transition dynamics of WT MEF morphology space. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 13. Colored surface plot of bin-by-bin average WT MEF transition magnitudes. The average magnitude 
of transition vectors are plotted as a colored surface plot on a bin-by-bin basis in the morphology space defined by 
PC1 vs. PC2, binned into a 60x60 bin array. Transition vectors were calculated at 4h time intervals such that the 
origin of each vector is found at (PC1(t), PC2(t)) and the terminus of each vector found at (PC1(t+4h), PC2(t+4h)). This 
colored surface plot reveals that, on average, WT MEFs occupying morphological states closer to the center (0, 0) of 
PC space exhibit smaller morphological changes when compared to those occupying more peripheral states of 
morphology space. This reveals that WT MEF morphology space is dynamically non-uniform and that the extent of 
morphological change is influenced by the existing morphological state.  
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 The transition vector maps are notably absent of closed flux loops, suggesting that morphological 

transitions cannot be described as a deterministic process. In other words, the next morphological state of 

a cell cannot be readily predicted from its current state. In theory, the lack of population-scale 

deterministic dynamics does not necessarily imply a purely stochastic process, as subsets of cell may still 

exhibit distinctive patterns in subspace (e.g. subsets of cells may be constrained to subspaces of 

morphology space, or display more or less morphological heterogeneity over a given time interval). To 

better understand the extent of intercellular heterogeneity in both state space occupancy and transition 

dynamics, we calculated the mean (PC1, PC2) coordinate as well as transition vector for each cell across 

all time frames and plotted these into morphology space (Fig. 14). This plot revealed that WT MEFs 

display intercellular heterogeneity in the average magnitude, magnitude variance, and directionality of 

their morphology space transitions. 

 

  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 14. Plot of mean morphology space states and transition vectors of single WT MEF cells. Plot of the 
average coordinate and average transition vector on a single-cell basis. Each vector represents a different cell, 
tracked over a 60h time course. The average (PC1, PC2) coordinate of each cell is found at the origin of each vector. 
The radius of the circle at the origin of each vector is defined as 2x the variance of the positional variance of that 
cell. Smaller radii circle indicate more localized movement of the cell in morphology space, while larger radii circle 
indicate more extensive movement of that cell in morphology space. Transition vectors were calculated at 4h time 
intervals such that the origin of each vector is found at (PC1(t), PC2(t)) and the terminus of each vector found at 
(PC1(t+4h), PC2(t+4h)). This map of the average transition vectors reveals significant intercellular variability in 
morphology space occupancy and transition dynamics. Transition vectors have been scaled down by a factor of 1.5 
to facilitate visualization of vectors. 
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 To develop a more spatially nuanced understanding of the space state organization of transition 

dynamics, we binned WT MEF morphology space into a 10x10 bin array and plotted the probability 

density function (pdf; Fig. 15, far left) of WT MEFs on a bin-by-bin basis. This revealed a peak in the 

probability density function near the central (0, 0) region of PC space. This result is in agreement with 

earlier observations (Fig. 12, Fig. 13) of transitions originating from this central region being, on average, 

of smaller magnitude than those originating along the periphery. These smaller magnitude transitions are 

predictive of and in agreement with the observed increase in probability density in this region.  

 After establishing the probability density function of WT MEF morphology space, we developed 

a series of probability plots to probe the dynamics underlying this probability density function. We began 

by plotting the probabilities of entering (penter; Fig. 15, near left) and exiting (pexit; Fig. 15, center) each 

bin. An entry event is defined as a transition vector terminating within a specific bin, while an exit event 

is defined as a transition vector originating within a specific bin. The probabilities were calculated by 

summing the total number of entry/exit events across the 60h time course and calculating the probability 

of entry/exit events occurring within each specific bin. For example, if there were N total tallied 

transitions, if nx of these transitions originated in binx, the calculated pexit of binx would be nx/N, while if 

ny of these transitions terminated in biny, then the calculated penter of biny would be ny/N. 

 The combination of penter and pexit plots revealed a higher-than-average probability of entering 

bins in the central (0, 0) region relative to peripheral bins, further underlining the non-uniform nature of 

transition dynamics in WT MEF morphology space. Though there were higher-than-average probabilities 

of entering these central bins, these were accompanied by concomitant higher-than-average probabilities 

of exit. These results suggest an interpretation of these central bins as an energetically favorable subspace 

acting as a local state space attractor and producing increased probability density in this region. In more 

biological terms, these results indicate that WT MEFs exhibit biases towards specific morphologies, but 

that transitions into these morphologies are not irreversible, as evidenced by the observed higher-than-

average exit probabilities.   
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 To test this hypothesis, we plotted the probability of staying within the same bin between adjacent 

time points (pstay; Fig. 15, near right). This plot revealed dramatically increased probabilities of staying 

within these central bins relative to peripheral bins, supporting our interpretation of an energetically 

favorable subspace in this central region. To test the lifetime of this state space bias, we plotted the 

probability, over a 60h time course, that the bin currently occupied would be the same bin in which the 

cell concluded its time course (pend; Fig. 15, far right). This calculation represents a rough measure of 

long-term occupancy and revealed a mildly higher-than-average pend within the central region; however 

this increase in probability was minimal in comparison with that observed in the plot of pstay. These results 

suggest that, while there is a bias towards occupancy of this central region due to the existence of a local 

state space attractor, entry into these states is reversible and does not impose long-term occupancy.   

 

 

 

 
 
Figure 15. Probability plots of WT MEF density functions and transition dynamics. Colored surface plots to 
visualize various aspects of WT MEF transition dynamics. A plot of the probability density function (pdf, far left) 
shows non-uniform occupancy of WT MEF morphology space, with a higher density of cells in the central (0, 0) 
region of morphology space. A plot of the probability of entering a bin (penter, near left) reveals a higher probability 
of entering these central states, while a plot of the probability of exiting a bin (pexit, center) reveals a corresponding 
higher probability of exiting these central states, suggesting that entry into this space is energetically favorable, but 
not irreversible. This interpretation is further supported by a plot of the probability of staying in the same bin 
between time points (pstay, near right), which shows a short-term preference for continued occupancy of these central 
states, while a plot of the probability of being in the same bin as that occupied at the end of the time course (pend, far 
right) reveals a mild long-term occupancy, again supporting the interpretation of an energetically favorable subspace 
in morphology space that acts as a local attractor but does not impose long-term occupancy.  
 
3d. Boltzmann Statistics and Energy Landscapes 

 While transition vector maps and probability plots provided several important insights into the 

dynamics of WT MEF morphology space, our observations up to this point had been primarily qualitative 

in nature. To develop a more quantitatively rigorous understanding of WT MEF morphology space, we 

turned to statistical mechanical theory. We developed an adaptation of the Boltzmann distribution (Eq. 

10), which describes the probability density function of a system as a function of the temperature and 
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energy states of that system, and applied this to our two-dimensional Principal Component-based 

morphology space. We then used this adaptation to map out the underlying energy landscape of WT MEF 

morphology space. 

                    !!
!
=  !!!!!

!!!!!!
=  !

!!!!

!
               (Eq. 10) 

The equation for the Boltzmann distribution is as stated in (Eq. 10), where 𝑛! is the average number of 

particles found in a state s with energy level, ξs, N is the total number of particles in the system, r is the 

total number of energy states of the system, and β = 1 / kBT, where kB is the Boltzmann constant (kB = 

1.381*10-23 m2 kg s-2 K-1) and T is the temperature of the system. Z represents the partition function, or the 

sum of 𝑒!!!! over all possible energy states, which is equal to 1. 

 In our case, we were able to use our experimental data to calculate values for several of the above 

variables. The value 𝑛! 𝑁, is simply the probability density at each bin, while T is the “temperature” of 

WT MEF morphology space. To calculate an effective temperature for WT MEF morphology space, we 

abstracted transition vectors to represent particle velocity vectors and used the equipartition theorem to 

derive temperature from the average velocity of a particle in a two-dimensional plane, where each 

available dimension of movement contributes ½*kBT kinetic energy to the system. Given a two-

dimensional plane, the total kinetic energy of the system is equal to kBT. We then derived the following: 

                                                         !
!
𝑚𝑣! =  𝑘!𝑇                                       (Eq. 11) 

                𝑇 =  !!
!

!!!
               (Eq. 12) 

Using this approach, we calculated thea average transition vector magnitude and ensuing effective 

temperature, TWT, of WT MEF morphology space.  

 A complication arose when we tried to solve for ξs in the Boltzmann distribution in that we lacked 

a priori information about the energy states (ξ1, ξ2, ξ3, ξ4, … , ξs) of the system, information that is needed 

to calculate the partition function, Z, in the denominator. However, since we have information about the 

occupancy density of each state, we can mathematically manipulate (Eq. 10) to eliminate the partition 
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function from this equation. If we consider a system with 5 possible energy states, ξ1, ξ2, ξ3, ξ4, and ξ5, we 

can write the following equation:  

                             !!! !!! !!! !!! !!
!

=  !!!!!

!!!!!!
+  !!!!!

!!!!!!
+  !!!!!

!!!!!!
+  !!!!!

!!!!!!
+  !!!!!

!!!!!!
           (Eq. 13) 

We know that the sum of the probability density function must equal 1 and that each term on the right-

hand side of the equation is equal to the corresponding 𝑛! 𝑁 term on the left-hand side of the equation. 

Since there is a uniform denominator on the right-hand side, the denominator here essentially acts as a 

weighting factor. We can thus eliminate it, despite the fact that we cannot directly calculate its value. A 

simplification of (Eq.10) produces: 

                                    !!! !!! !!! !!! !!
!

=  𝑒!!!! +  𝑒!!!! +  𝑒!!!! +  𝑒!!!! +  𝑒!!!!                 (Eq. 14) 

where 𝑛! 𝑁 =  𝑒!!!!, 𝑛! 𝑁 =  𝑒!!!!, 𝑛! 𝑁 =  𝑒!!!!, etc. This allows us to write the generalized form 

of this equation as:  

                 !!
!
= 𝑒!!!!              (Eq. 15) 

From our dataset we can directly calculate values for 𝑛! 𝑁, as well as β, leaving us with a single 

unknown: the energy level, ξs. We solve for ξs by rearranging (Eq. 15) to give: 

                𝜉! =  
!" ( !!!  )

!!
              (Eq. 16) 

We use a Boltzmann constant of kb = 1.381*10-23 m2 kg s-2 K-1
 and calculated values of the effective WT 

temperature, TWT, and probability density function, to calculate the effective energy landscape of WT 

MEF morphology space. A surface plot of the energy landscape (Fig. 16) revealed a single global 

minimum near the central (0, 0) region of morphology space, in agreement with the observations of 

increased population density in this subspace as well as transitions originating from this subspace being of 

smaller-than-average magnitude. This adaptation of the Boltzmann distribution provides a quantitative 

framework for calculating the energy landscapes underlying morphology space, allowing us to 

meaningfully compare morphology space dynamics under different perturbations, as we discuss in 

Chapter 4.   
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Figure 16. Plot of the effective energy landscape of WT MEF morphology space. Colored surface plot of the 
calculated effective energy landscape of WT MEF morphology space. The landscape was calculated using the 
Boltzmann distribution by abstracting transition vectors as velocity vectors and calculating an effective temperature. 
A plot of the effective energy landscape reveals a single global minimum at the center (0, 0) of PC space, in 
agreement with earlier observations of increased population density at these locations as well as smaller-magnitude 
transition vectors. This energy landscape effectively explains the non-uniform occupancy and transition dynamics of 
WT MEF morphology space. All energy values were shifted down by 0.4*10-19 (plotted energy = calculated energy - 
0.4*10-19) to facilitate visualization of the energy landscape.  
 
3e. Results and Interpretation 

 Our live cell experiments revealed several interesting characteristics of WT MEF morphology 

space. First, plots of the transition vectors of WT MEFs within morphology space are not characterized by 

closed flux loops, indicating that morphological transitions cannot be described as a deterministic process. 

Instead, they are likely, at least in part, driven by stochastic processes. Secondly, the magnitude of 

morphological transition varies as a function of space state, where transition vectors originating in the 

central region near (0, 0) of tend to be of smaller-than-average magnitude, while those originating from 

more peripheral states tend to be of larger-than-average magnitude. These results suggest that morphology 

space is energetically non-uniform, an interpretation supported by observations of smaller-than-average 

magnitude transition vectors as well as increased probability density in this cell region. 

 Through an adaptation of the Boltzmann distribution, we were able to use live cell morphology 

data to map out the energy landscape underlying WT MEF morphology space, discovering that it is 

characterized by a single global minimum in the central (0, 0) region of PC space. Through a series of 

probability plots, we determined that entry into this space is energetically favorable, but not irreversible. 
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Further analysis of the time scales of occupancy reveal a bias towards short-term occupancy of these 

central bins, but that this bias does not extend into long-term occupancy. The ensemble of these results 

lead us to a model of WT MEF morphology space characterized by a single global minimum that acts as a 

state space attractor, entry into which is reversible and does not entail long-term commitment.  
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CHAPTER 4. Relationships Between Morphological and  
Functional Heterogeneity 

 
 In this chapter we look to expand our understanding of morphological heterogeneity by exploring 

the relationship between morphological and functional heterogeneity. There have been many studies over 

the years indicating that isogenic populations can exhibit functional heterogeneity. These include 

variability in drug survival rates (Bigger, 1944), DNA competency (Maamar et al., 2007), and 

differentiation potential (Chang et al., 2008). In these examples, the observed functional variability was 

shown to correlate with variability in gene expression, driven by the stochastic nature of the cellular 

transcription process. Here we investigate morphological heterogeneity as a potential sister mode of non-

genetic heterogeneity and discover that morphological heterogeneity exhibits correlative links to 

functional heterogeneity. These findings contribute to our understanding of the myriad ways in which ex-

genome factors can influence cellular state and behavior.  

4a. Heterogeneous Response to Apoptosis Induction 

 To investigate the relationship between morphological and functional heterogeneity, we screened 

a panel of five apoptosis inducers (Apoptosis Inducer Kit, abcam ab102480) for conditions inducing a 

non-uniform apoptotic response in WT MEFs. We decided to assay apoptotic response as opposed to 

other functional outputs due to several favorable factors, including ease of induction, a diverse array of 

available induction agents, and the existence of a visually identifiable endpoint. The drug panel, 

consisting of actinomycin D, camptothecin, cycloheximide, dexamethasone, and etoposide, was screened 

across a range of concentrations for conditions producing non-uniform apoptosis in WT MEFs. We 

identified 2µM camptothecin as a promising candidate (Fig. 17) due to it producing a noticeable, but 

incomplete apoptotic response across the population. We decided to further study this phenomenon at the 

single-cell level and investigate the possibility of a correlation between morphological heterogeneity and 

heterogeneity in apoptotic response.  
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Figure 17. Non-uniform apoptotic response in WT MEFs in response to camptothecin induction. Phase 
microscopy images taken of WT MEFs under 2µM camptothecin induction. Images taken at 0h (left panels), 48h  
(center panels), and 96h (right panels) post-induction. Cells were incubated under either 2µM camptothecin cell 
culture media (top panels), or in a negative control 0µM camptothecin cell culture media (bottom panels). Fractional 
depletion of cells can be seen in response to 2µM camptothecin, with increasing population sparsity but a lack of 
global/complete/total apoptosis. Over the same time course, negative control cells are observed to exhibit increasing 
density and expand to high confluence. Images taken at 4x magnification. 
 
4b. Time-Lapse Imaging of Live Cell Response to Camptothecin 

 To investigate the morphological behavior of WT MEFs under camptothecin induction, we 

followed a series of experimental steps similar to those initially developed for the WT MEF live cell 

tracking experiments. We began by preparing cells for live cell imaging following Step 11 (Chapter 3, pg. 

29-30) of the previously established protocol. We then imaged cells at the UCSF Nikon Imaging Center 

(NIC) on a high-speed confocal microscope fitted with a Plan Apo λ 40x objective (NA 0.95) equipped 

with 405, 488, 561, and 640 nm laser lines and 450/50m (DAPI), 525/50m (FITC), 600/50m (Cy3), and 

700/75m (Cy5) filters. A stage-top temperature and CO2 control chamber was set to 37°C and 0.3 l/min to 

mimic tissue culture conditions. Cells were imaged at 2h intervals over a 64h time course in the 

brightfield (BF), GFP (EGFP-tubulin), RFP (tdTomato-mito-7), and Cy5 (mIFP-H2B) channels at 100ms, 

300ms, 300ms, and 300ms exposure, respectively (FIG). To induce apoptosis, we added the appropriate 

volume and concentration of camptothecin at the second time interval (4h into the experiment) to bring 

the total well volume to 200µL and the final camptothecin concentration to 2µM. 
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4c. Changing Dynamics of Morphology Space in Response to Camptothecin 

 We visually examined the series of time lapse images and identified a total of 33 cells that were 

suitable for further analysis. In these cells, the fluorescence signal was bright enough to permit 

segmentation and feature analysis; cells eliminated from analysis were eliminated for having weak 

fluorescence signal, being in contact with other cells and/or the well edge, and/or having frames 

compromised by floating debris. Over the course of a 64h time lapse, we identified 17 of 33 (52%) cells 

that underwent apoptosis, while 16 of 33 (48%) cells showed no visible signs of apoptosis (Fig. 18). 

 Cells that either did or did not undergo apoptosis over the course of the 64h time lapse time were 

classified as either Apoptosis[+] or Apoptosis[-] cells, respectively. Operating under the hypothesis that 

morphological heterogeneity might engender functional heterogeneity, we plotted the two classes of cells 

into WT MEF morphology space and examined their dynamics in morphology space. To better 

understand the dynamical behavior of each class of cells, we plotted three transition vector maps for each 

class; these vector maps were analogous to those first developed to analyze the dynamics of untreated WT 

MEFs (Chapter 3, pg. 31-34). In combination, these maps present a strong case for a relationship between 

dynamical and state space variability and functionally divergent behavior at the cellular level.  

 

 

 

 

 

 
 
Figure 18. Example fluorescence images of WT MEFs under camptothecin induction. The images above are 
live-cell images of WT MEFs transduced with the 3-Reporter lentivirus; EGFP-α-tubulin is shown in green 
(microtubule cytoskeleton), mIFP-H2B is shown in blue (nucleus), and tdTomato-mito-7 is shown in red 
(mitochondria). The two panels on the left are images of a cell that we identified as having undergone apoptosis 
(Apoptosis[+]); the far left panel is the first frame of a 64h time course, while the near left panel is the last frame. 
The characteristic blebbing and implosion of apoptotic cells can be observed. The two panels on the right are images 
of a cell that we identified as not having undergone apoptosis (Apoptosis[-]); the near right panel is the first frame of 
a 64h time course, while the far right panel is the last frame. Images taken at 40x magnification on a spinning disk 
confocal microscope. 
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 To better understand potential variability in the dynamics of Apoptosis[+] and Apoptosis[-] cells 

in morphology space, we plotted raw transition vector plots for each class of cells, with vector origins 

defined at (PC1(t), PC2(t)) and vector termini defined at (PC1(t+4h), PC2(t+4h)). In these plots, Apoptosis[+] 

cells exhibited increased population density in the central (0, 0) region of morphology space and a distinct 

directional bias towards the upper left (-30, 30) corner of morphology space. Meanwhile, Apoptosis[-] 

cells similarly exhibited increased population density in this central region (0, 0) of PC space, but their 

transition vectors appeared, on average, to be of smaller magnitude than those of Apoptosis[+] cells. 

Furthermore, there was no indication of a directional bias towards the upper left (-30, 30) corner of PC 

space. Instead, we observed several large-magnitude transition vectors in the far right (30, 0) region of PC 

space, suggesting a directional bias towards this region. In contrast, Apoptosis[+] cells exhibit no 

occupancy in this region. 

 To distill the raw transition vector map into a more interpretable vector map, we binned 

morphology space into a 60x60 bin array and plotted the average transition vector on a bin-by-bin basis 

(Fig. 20). We observed again that the two classes of cells exhibited directional biases towards different 

regions of morphology space, with Apoptosis[+] cells biased towards the upper left (-30, 30) corner of PC 

space, and Apoptosis[-] cells biased towards the far right (30, 0) region of PC space.  

 

 

 

 

 

 
 
 
 
Figure 19. Plots of raw Apoptosis[+]/[-] transition vectors. Changes in morphology are depicted as transition 
vectors in the morphology space defined by PC1 vs. PC2, with Apoptosis[+] transition vectors plotted on the left, 
and Apoptosis[-] transition vectors plotted on the right. Transition vectors were calculated at 4h time intervals such 
that the origin of each vector is found at (PC1(t), PC2(t)) and the terminus of each vector found at (PC1(t+4h), 
PC2(t+4h)). Transition vectors have been scaled down by a factor of 1.5 to facilitate visualization of vectors. 
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Figure 20. Plots of bin-by-bin average Apoptosis[+]/[-] transition vectors. Transition vectors are averaged on a 
bin-by-bin basis in the morphology space defined by PC1 vs. PC2, binned into a 60x60 bin array, with Apoptosis[+] 
transition vectors plotted on the left, and Apoptosis[-] transition vectors plotted on the right. Transition vectors were 
calculated at 4h time intervals such that the origin of each vector is found at (PC1(t), PC2(t)) and the terminus of each 
vector found at (PC1(t+4h), PC2(t+4h)). Apoptosis[+] cells exhibit larger-than-average transition vectors along with a 
directional bias towards the upper left (-30, 30) region of morphology space. In contrast, Apoptosis[-] cells exhibit 
smaller-than-average transition vectors, along with a directional bias towards the far right (30, 0) region of 
morphology space. Transition vectors have been scaled down by a factor of 1.5 to facilitate visualization of vectors. 
 
 
 

 

 

 

 

 

 

 
Figure 21. Plots of mean morphology space states and transition vectors of Apoptosis [+]/[-] cells. Plots of the 
mean space state coordinates and mean transition vectors on a single-cell basis, with Apoptosis[+] cells plotted on 
the left and Apoptosis[-] cells plotted on the right. Each vector represents a different cell, tracked over a 64h time 
course. The average (PC1, PC2) coordinate of each cell is found at the origin of each vector. The radius of the circle 
at the origin of each vector is defined as 2x the variance of the positional variance of that cell. Smaller radii circle 
indicate more localized movement of the cell in morphology space, while larger radii circle indicate more extensive 
movement of that cell in morphology space. Transition vectors were calculated at 4h time intervals such that the 
origin of each vector is found at (PC1(t), PC2(t)) and the terminus of each vector found at (PC1(t+4h), PC2(t+4h)). 
Apoptosis[+] cells are characterized by higher positional variance, higher-than-average vector magnitudes, and a 
directional bias towards (-30, 30). Apoptosis[-] cells are characterized by smaller positional variance and smaller-
than-average vector magnitudes. Transition vectors have been scaled down by a factor of 1.5 to facilitate 
visualization of vectors. 
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Furthermore, while both classes of cells exhibit significant state occupancy in the central (0, 0) region of 

PC space, the vector magnitudes of Apopotosis[-] cells were noticeably smaller than those of 

Apoptosis[+] cells. This suggested the interesting possibility that different cells exhibit different degrees 

of morphological change even when at similar positions in morphology space, and that these differences 

in degree of morphological change may correlate directly with divergent behaviors at the cellular level.  

 To understand the extent of intercellular heterogeneity in transition dynamics, we plotted the 

mean morphology space coordinate as well as mean transition vector of each cell (Fig. 21). These plots 

confirmed that, compared to Apoptosis[-] cells, Apoptosis[+] cells exhibited higher variability in their 

state space coordinates as well as larger vector magnitudes. In contrast, Apoptosis[-] cells exhibited 

significantly less space state variance and smaller-than-average transition vector magnitudes. Taken 

together, these three sets of transition vector maps reveal three characteristic differences in the 

morphology space dynamics of Apoptosis[+] and Apoptosis[-] cells: 

 1) Apoptosis[+] cells exhibit, on average, greater positional variance in WT MEF morphology 

     space when compared to Apoptosis[-] cells, indicating that over the same time interval,     

     Apoptosis[+] cells exhibit a more diverse set of morphologies than Apoptosis[-] cells. 

 2) Apoptosis[+] cells exhibit, on average, transition vectors of larger magnitude than those of   

     Apoptosis[-] cells, indicating that, over the same time interval, Apoptosis[+] cells undergo   

     more dramatic morphological changes.  

 3) As a whole, Apoptosis[+] cells exhibit a directional preference towards the (-30, 30) corner of 

     PC space; Apoptosis[-] cells do not display this directional bias and instead either cluster   

     locally near (0, 0) or exhibit a weak directional bias towards the far right (30, 0) region of PC   

     space.  

 To develop a deeper understanding of the subspace localization of morphology space dynamics, 

we binned morphology space into a 10x10 bin array and plotted a series of probability plots (Fig. 22) 

analogous to those originally developed for analyzing untreated WT MEFs (Chapter 3, pg. 36). These 

include plots of the probability density function (pdf), probability of entering into a bin (penter), probability  
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Figure 22. Probability plots of Apoptosis[+]/[-] density functions and transition dynamics. Colored surface 
plots to visualize various aspects of Apoptosis[+] (top) and Apoptosis[-] (bottom) transition dynamics. Plots of the 
probability density function (pdf, far left), probability of entering (penter, near left), probability of exiting (pexit, 
center), probability of stay in the same bin between time intervals (pstay, near right), and probability of being in the 
same bin as that occupied at the end of the time course (pend, far right) The ensemble of these probability plots 
presents a model where Apoptosis[-] cells exhibit a more constrained range of movement within morphology space 
and are drawn to local space state attractors that act as protective barriers to apoptosis.  
 
of exiting from a bin (pexit), probability of staying within the same bin between adjacent time intervals 

(pstay), and probability of being in the same bin as that occupied at the end of the time course (pend).  

 These plots point to deep underlying differences in the transition dynamics of Apoptosis[+] and 

Apoptosis[-] cells in morphology space. Plots of the probability density function (pdf, Fig. 22, far left) 

reveal non-uniform occupancy of morphology space in both Apoptosis[+] and Apoptosis[-] cells, with 

Apoptosis[-] cells exhibiting more concentrated pockets of non-uniformity relative to Apoptosis[+] cells. 

Plots of the probabilities of entering (penter, Fig. 22, near left) and exiting (pexit, Fig. 22, center) indicate 

that the probabilities of entering and exiting are both higher in Apoptosis[+] cells relative to Apoptosis[-] 

cells, indicating that Apoptosis[-] cells are less likely to transition between bins during time intervals. A 

plot of the probability of staying in the same bin between time intervals (pstay, Fig. 22, near right) indicates 

high rates of short-term occupancy in both Apoptosis[+] and Apoptosis[-] cells, particularly in the central 

bins near (0, 0) of PC space. However, plots of the probability of a cell being in the same bin as that 

occupied at the end of the time course (pend, Fig. 22, far right) indicate that Apoptosis[-] cells also exhibit 

long-term occupancy of this space, whereas Apoptosis[+] cells do not. These probability plots lead us to a 

model in which Apoptosis[-] cells are less motile within morphology space and are drawn to energetically 

favorable state space attractor(s), entry into which often results in long-term occupancy. To test whether 
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these probability plots differ significantly from their WT counterparts, we ran a series of Kolmogorov-

Smirnov tests, which incorporate the spatial organization of data and allow us to run significance tests on 

two-dimensional datasets. The Kolmogorov-Smirnov test calculates the supremum, or largest absolute 

value, between two x-axis aligned points of the cumulative probability distribution (Fig. 23). By summing 

the cumulative probability distribution in a consistent way across the 10x10 bin probability plots, we 

preserve the spatial orientation of the datasets, allowing us to run two-sample Kolmogorov-Smirnov 

significance tests between analogous probability plots. The Kolmogorov-Smirnov statistic is calculated as 

follows:  

                  𝐷!,! = sup 𝐹!,! 𝑥 −  𝐹!,!(𝑥)              (Eq. 17) 

where Dn,m is the Kolmogorov-Smirnov statistic, sup is the supremum function, and F1,n and F2,m are the 

cumulative distribution functions of the two samples being compared. We reject the null hypothesis that 

the two samples are not significantly different if:   

                  𝐷!,! > 𝑐(𝛼) !!!
!"

                  (Eq. 18) 

where n and m are the sizes of the two samples being compared, and c(α) is defined as  

                 𝑐 𝛼 = − !
!
ln !

!
                  (Eq. 19) 

where α is the user-defined statistical significance level.  

 

 

 

 

 
 
 
 
 
Figure 23. Example two-sample Kolmogorov-Smirnov significance test. The cumulative probability distribution 
functions of two sample datasets are depicted in red and blue, respectively. The black double-headed arrow 
identifies the x-axis aligned points at which the two cumulative probability distribution functions differ the most, 
otherwise known as the supremum. This value is considered the Kolmogorov-Smirnov statistic value. 
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 The statistic values were calculated for various Kolmogorov-Smirnov significance tests run 

across two-sample permutations of untreated WT, Apoptosis[+], and Apoptosis[-] cells. Bar plots of these 

values are shown in (Fig. 24). These plots revealed that both Apoptosis[+] and Apoptosis[-] cells differ 

significantly from untreated WT cells in their pdf, penter, pexit, pstay, and pend, statistically confirming our 

observations of altered transition dynamics of morphology space in response to camptothecin induction. 

A comparison of the probability plots of Apoptosis[+] and Apoptosis[-] cells revealed statistically 

significant differences in their penter, pexit, and pend, but a lack of statistically significant differences in their 

pdf and pstay. These results are in agreement with earlier observations and lend themselves to a model in 

which Apoptosis[+] and Apoptosis[-] cells are dynamically different in WT MEF morphology space and 

that this dynamical variability correlates directly with functional heterogeneity at the population level.  

 The results of the probability maps, coupled with the transition vector maps, convincingly 

illustrate clear differences in the dynamic behavior of Apoptosis[+] and Apoptosis[-] cells in WT MEF 

morphology space. To develop a more nuanced understanding of the changes to morphology space that 

underlie the observed functional divergence, we again turned to statistical mechanical theory to construct 

an energy landscape underlying camptothecin-treated WT MEF morphology space.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 24. Camptothecin produces significant changes in transition probability plots. Two-sample 
Kolmogorov-Smirnov significance tests were used to compare probability plots between untreated WT, 
Apoptosis[+], and Apoptosis-] cells. Asterisks indicate significance values above α = 0.05. Untreated WT and 
Apoptosis[+] cells (red bars) differed significantly in their pdf, penter, pexit, pstay, and pend. Untreated WT and 
Apoptosis[-] cells (blue bars) differed significantly in their pdf, penter, pexit, pstay, and pend. Apoptosis[+] and 
Apoptosis[-] cells (orange bars) differed significantly in their penter, pexit, and pend, and did not differ significantly in 
their pdf and pstay.  
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4d. Camptothecin Creates Local State Space Attractors  

 As previously described, the Boltzmann distribution describes the occupancy of an energy state as 

a function of the temperature and available energy states of the system. We can calculate values for these 

first two variables from our experimental data, with the energy state occupancy represented by the 

probability density function, and the temperature calculated by abstracting transition vector magnitudes in 

morphology space as “speeds” of particles in a two-dimensional plane.  

 A comparison of the transition vectors of camptothecin-treated versus untreated WT MEFs 

indicated that camptothecin induction produced a 36% decrease in the average magnitude of transition 

vectors in morphology space. To understand if this reduction in magnitude was constrained to specific 

subspaces, or occurred more generally across morphology space, we plotted a colored surface plot of the 

bin-by-bin mean transition vector magnitude of a 60x60 bin array of PC space (Fig. 25), revealing that 

camptothecin induction produces a near-universal decrease in the average magnitude of transition vectors 

across WT MEF morphology space.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 25. Camptothecin induction decreases the average transition vector magnitude of WT MEFs. The 
average magnitude of transition vectors of untreated (left) vs. camptothecin-treated (right) WT MEFs are plotted as 
colored surface plots on a bin-by-bin basis in the morphology space defined by PC1 vs. PC2, binned into a 60x60 
bin array. Transition vectors were calculated at 4h time intervals such that the origin of each vector is found at 
(PC1(t), PC2(t)) and the terminus of each vector found at (PC1(t+4h), PC2(t+4h)). These colored surface plot reveal that 
camptothecin induction produces a near-universal decrease in the average transition vector magnitude of cells in WT 
MEF morphology space.  
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 In the context of our adaptation of the Boltzmann distribution, a decrease in the mean transition 

vector magnitude indicates a decrease in the effective temperature of morphology space, signaling a 

“cooling” of the system. The temperature of a system is an important variable in the Boltzmann 

distribution, as it directly influences the predicted occupancies of available energy states. We earlier 

demonstrated that camptothecin induction produces statistically significant changes to the probability 

density function in morphology space; however, it was unclear whether these changes were entirely due 

to the decrease in effective temperature, or if there had been a concomitant change to the underlying 

energy landscape of WT MEF morphology space.  

 To address this question, we used our adaptation of the Boltzmann distribution (Eq. 10) to 

calculate the probability density function expected from occupation of our previously calculated untreated 

WT MEF energy landscape over a range of temperatures. We then ran a series of two-sample 

Kolmogorov-Smirnov (K-S) significance tests to compare these expected probability density functions to 

that observed experimentally in response to camptothecin induction. We plotted the K-S statistic values as 

a function of temperature (Fig. 26), where small K-S values indicate high similarity between datasets, and 

large K-S values indicate low similarity between datasets. Our plot indicated that maximum similarity at 

an effective temperature of 1.04 TWT, where TWT is the effective temperature of untreated WT MEF 

morphology space. Our experimental data, however, indicated that camptothecin-treated morphology  

 

 

 
 
 
 
 
 
 
 
 
Figure 26. Statistic values for Kolmogorov-Smirnov tests of camptothecin-treated cells. Plot of the 
Kolmogorov-Smirnov statistic value (y-axis) as a function of the temperature of the system. The minimum occurs at 
T = 1.04TWT, whereas the observed effective temperature is 0.41TWT, indicating a concomitant change in the 
underlying energy landscape of morphology space. 
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space was characterized by an effective temperature of 0.41 TWT. These results suggest that the change in 

effective temperature alone was not sufficient to explain the observed change in morphology space 

occupancy and that the change in effective temperature had been accompanied by a concomitant change 

in the energy landscape underlying morphology space.   

 Using the theoretical framework developed to construct an energy landscape of untreated WT 

MEF morphology space (Chapter 3, pg. 36-39), we used the new effective temperature of 0.41 TWT, 

coupled with the observed probability density function, to calculate an energy landscape describing WT 

MEF morphology space occupancy under 2µM camptothecin induction (Fig. 27). This plot revealed 

several significant changes to the energy landscape. While the untreated energy landscape was 

characterized by a single global minimum, the camptothecin-treated energy landscape instead expressed 

several local minima. These appeared in the upper left (-30, 30) as well as far right (30, 0) corners of PC 

space and were accompanied by a deep minimum in the central (0, 0) region of PC space.  

 To better compare the untreated and camptothecin-treated energy landscapes, we plotted the 

relative differences between the two landscapes (Ecamptothecin – Euntreated) (Fig. 28). This plot revealed that, 

within the same morphology space state, camptothecin-treated cells occupied a lower energy level than  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 27. Plot of the effective energy landscape of camptothecin WT MEF morphology space. Colored surface 
plot of the calculated effective energy landscape of WT MEF morphology space under 2µM camptothecin induction. 
The landscape was calculated using the Boltzmann distribution by abstracting transition vectors as velocity vectors 
and calculating an effective temperature. A plot of the effective energy landscape reveals local minima in the upper 
left (-30, 30), far right (30, 0), and central (0, 0) regions of PC space. All energy values were shifted down by 
0.4*10-19 (plotted energy = calculated energy - 0.4*10-19) to facilitate visualization of the energy landscape.  
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their untreated counterparts, indicating a relative increase in energetic favorability. This is in agreement 

with the observed decrease in mean transition vector magnitude under camptothecin induction. This plot 

additionally reveals that camptothecin induction produces a mild deepening of the energy landscape in the 

central region (0, 0) of PC space, as well as more dramatic deepening in the far left (-30, 0) and far right 

(30, 0) regions. Though the original plot of the camptothecin-treated energy landscape (Fig. 27) revealed 

a local minimum in the upper left corner (-30, 30) of PC space, this does not appear in the differential 

plot, as only bins for which information was available for both the treated and untreated energy 

landscapes were included. This decision was made to avoid misleading representation of differentials 

resulting solely from a lack of data in specific subspaces.  

 Camptothecin induction effectively shifted the energy landscape of WT MEF morphology space 

from one characterized by a single global minimum to one characterized by several local minima. Given 

the hypothesized relationship between morphological and functional heterogeneity, we wanted to 

investigate whether the appearance of these new minima coincided with the observed functional 

heterogeneity of Apoptosis[+] and Apoptosis[-] cells. To do this, we separately calculated an effective 

temperature and energy landscape for each class and plotted the differentials between their energy 

landscapes and that of untreated WT MEFs.  

 The differential plot of the Apoptosis[+] and untreated energy landscapes (EApoptosis[+] – Euntreated) 

(Fig. 29) revealed that the energetics of Apoptosis[+] cells differed significantly from those of untreated 

cells in only one subspace, located in the far/upper left (-30, 10-30) corner of PC space. Since 

Apoptosis[+] cells are defined as cells that underwent apoptosis over the course of the 64h time lapse, we 

hypothesized that this energy minimum acts as a local space state attractor that functions to induce and/or 

facilitate apoptosis. In contrast, the differential plot of the Apoptosis[-] and untreated energy landscapes 

(EApoptosis[-] – Euntreated) (Fig. 30) did not exhibit the same local energy differential in the far/upper left 

corner of PC space. Instead, it indicated two new energy minimizations in Apoptosis[-] morphology 

space: one in the far right (30, 0) region of PC space, and a second, milder minimization in the central 

region (0, 0) of PC space, coinciding with the global energy minima observed in the untreated energy 
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Figure 28. Plot of the differential between camptothecin and untreated energy landscapes. Colored surface plot 
of WT MEF (camptothecin energy landscape – untreated energy landscape). Plot indicates deepening of the original 
global minima as well as the appearance of new local minima in PC space. 
 
 
 

 

 

 

 

 

 
 
Figure 29. Plot of the differential between Apoptosis[+] and untreated energy landscapes. Colored surface plot 
of WT MEF (Apoptosis[+] energy landscape – untreated energy landscape). Plot indicates the appearance of a new 
local minimum in the far/upper left corner (-30, 30) of PC space. 
 
 
 
 
 
 

 

 

 

 
 
 
Figure 30. Plot of the differential between Apoptosis[-] and untreated energy landscapes. Colored surface plot 
of WT MEF (Apoptosis[-] energy landscape – untreated energy landscape). Plot indicates deepening of the original 
global minima near (0, 0), as well as the appearance of a new local minimum in the far right (30, 0) of PC space.  
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landscape. Several important insights can be garnered from this plot. First, the dramatic deepening of the 

far right (30, 0) region suggests that camptothecin induction produces an energetically favorable subspace 

from which exit may be energetically prohibitive. This hypothesis is supported by the earlier plot of bin-

by-bin average transition vectors (Fig. 20), which revealed large-magnitude vectors entering this space, 

but minimal to no vectors leaving this space. Furthermore, since this energy minima appears exclusively 

in Apoptosis[-] cells, which are defined as cells that did not undergo apoptosis over the course of the 64h 

time lapse, we hypothesized that this subspace acts as an energetically favorable state space attractor that 

functions as a protective barrier to apoptosis, preventing cells from transitioning to the state space 

attractor in the upper left (-30, 10-30) corner associated with cellular apoptosis.  

 The second energy minimization observed in Apoptosis[-] cells occurred in the central (0, 0) 

region of PC space. Interestingly, both Apoptosis[+] and Apoptosis[-] cells exhibit occupancy in this 

region, suggesting that this subspace is not characterized by the all-or-none properties hypothesized for 

the two previously discussed energy minima. An examination of the transition vector maps (Fig. 19, Fig. 

20) revealed that vectors both enter and exit from this subspace, suggesting that, though energetically 

favorable, entry into this subspace is non-binding and exit from this subspace is not energetically 

prohibited. This leads to our hypothesis that this region functions as an “intermediate” subspace, both 

spatially and functionally, that confers partial, but non-absolute, protection against apoptosis.  

 To test our hypothesis regarding the functional importance of each of these energy minima, we 

generated a heat map of the probability of undergoing apoptosis given the space state of a cell (Fig. 31). 

This plot strongly supports our interpretation of the functional equivalence of the three aforementioned 

subspaces of WT MEF morphology space:  

 1) a subspace in the far/upper left (-30, 10-30) of PC space functions as an apoptotic “death” well   

     that induces and/or facilitates cellular apoptosis; occupancy of this well carries a 100%    

     probability of apoptosis; 

 2) a subspace in the far right (30, 0) of PC space that functions as a protective barrier against   

     apoptosis; occupancy into this well carries a 100% probability of survival;  
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 3) a central subspace in the (0, 0) region of PC space functions as a moderately protective barrier   

     against apoptosis; occupancy of this space confers partial, but non-absolute, protection against    

     apoptosis. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 31. Heat map of apoptosis probability as a function of morphology space state. The probability of a cell 
undergoing apoptosis is represented along the color bar, with deep blue corresponding to a 0% probability of 
apoptosis and deep red corresponding to a 100% probability of apoptosis. Probabilities of apoptosis were calculated 
by summing the morphology space states of all cells across the 64h time course and calculating the probability of 
apoptosis given occupancy in a space state at any point in time. 
 
4e. Results and Interpretation 

 These results produce several important insights into the effects of camptothecin induction on the 

topology and dynamics of morphology space We show here that apoptotic induction of WT MEFs under 

2µM camptothecin produces a decrease in the mean magnitude of transition vectors in morphology space. 

Biologically speaking, this means that, over the same time interval, cells under camptothecin induction 

undergo less extensive morphological changes compared to their untreated counterparts, providing strong 

evidence that exogenous inputs can directly influence the morphological behavior of cells. It may be of 

interest in the future to determine the mechanism(s) responsible for the observed dampening of 

morphological transitions, as well as to identify additional exogenous inputs capable of either increasing 

or decreasing the speed of morphological transitions.  

 Perhaps the most important result of this chapter is the observation of a clear correlative 

relationship between morphological and functional heterogeneity. We demonstrate here that camptothecin 
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induction fundamentally shifts the energy landscape underlying morphology space from one characterized 

by a single global minimum to one characterized by several local minima. These energy minima facilitate 

functional heterogeneity by acting as local state space attractors, producing spatially isolated subspaces 

within morphology space that attract separate subsets of cells within the population. We find that each 

subspace is correlated with varying degrees of apoptotic potential, providing a working model for the 

observed non-uniform apoptotic response of an isogenic population.  
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CHAPTER 5. Conclusion and Future Directions 
 

 In this work we present a framework for investigating the topology and dynamics of 

morphological heterogeneity in isogenic populations. We discover several important principles of 

morphological heterogeneity, namely that it is driven by the non-uniform energetics of morphology space 

and that the parameters of morphological heterogeneity can be fundamentally altered upon drug 

induction. These alterations facilitate functional heterogeneity within an isogenic population, providing 

the first body of evidence for morphological heterogeneity as an important and functionally consequential 

form of non-genetic heterogeneity.  

 The first part of this work consisted of developing a framework for the quantification of 

morphological heterogeneity in isogenic populations. Accordingly, we developed a set of molecular 

biology, feature extraction, and statistical analysis tools to accurately capture high-dimensional feature 

sets across a large number of cells and dimensionally reduce this dataset into an interpretable 

representation of morphology space. We demonstrated that this approach is capable of capturing 

morphological heterogeneity within isogenic populations and, more specifically, that WT MEFs occupy a 

heterogeneous and largely continuous region of morphology space rather than clustering into discrete 

subspaces.  

 To better understand the dynamics underlying morphology space, we developed methods for 

imaging morphological structures in live cells. We designed and engineered a plasmid for lentivirus-based 

delivery of a 3-Reporter cassette encoding fluorescent reporters targeted to the microtubule cytoskeleton, 

nucleus, and mitochondria. This approach allowed us to simultaneously visualize multiple morphological 

structures of interest in live cells. We imaged 3-Reporter transduced WT MEFs over a 60h time course 

and developed transition vector maps to visualize morphological changes. This work produced several 

important insights into the dynamics underlying morphological space in WT MEFs. First, morphological 

transitions cannot be described by a deterministic process, as indicated by a lack of closed flux loops 

within the transition vector map. Secondly, transition vector magnitudes are non-uniform across 
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morphology space, with central space states displaying, on average, smaller-magnitude transition vectors 

than more peripherally located space states. These findings illustrate non-uniformity in the dynamics 

underlying morphology space and indicate that, within the same time interval, the degree of 

morphological changes varies as a function of the starting morphological state of a cell. 

 To develop a more quantitative understanding of these dynamics, we adapted concepts from 

statistical mechanical theory that allowed us to use transition vector magnitudes and probability density 

functions derived from experimental data to construct a map of the effective energy landscape underlying 

WT MEF morphology space. We discovered that this energy landscape is characterized by a single global 

minimum, indicating dynamical heterogeneity in morphology space, with some morphological states 

being more energetically favorable than others. Hypothesizing that the observed morphological 

heterogeneity might correlate with functional heterogeneity at the population level, we screened a panel 

of apoptosis inducers for conditions producing a heterogeneous response in WT MEFs. We identified 

camptothecin as a promising candidate and tracked and quantified the morphological behavior of WT 

MEFs under camptothecin induction, discovering several interesting effects of drug induction on 

morphology space. First, camptothecin induction slowed the rate of morphological transitions by 

approximately 36%, indicating that, over the same time interval camptothecin-treated cells exhibited 

morphological changes that were 36% less extensive than those exhibited by untreated cells. Perhaps 

most interestingly, we showed that drug exposure can fundamentally alter the energetics of morphology 

space, shifting the energy landscape from one characterized by a single global minimum to one 

characterized by several local minima. Furthermore, these nascent energy minima correlated directly with 

divergent functional responses to apoptotic induction, suggesting that localized changes to the topology of  

morphology space might serve as a mechanism for producing functional heterogeneity within isogenic 

populations.  

 Here we present, to our knowledge, the first body of evidence establishing a relationship between 

native morphological heterogeneity in isogenic populations and functionally divergent behavior. Whether 

this link is correlative or causative remains to be explored, but this work suggests that morphological 
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heterogeneity may function as a facilitator of functional heterogeneity in isogenic populations. As a result, 

we make the case for further studies of morphological heterogeneity, as it holds the potential to reveal 

fundamental insights into the nature of non-genetic heterogeneities in biological systems.  

 The results of this study set the groundwork for many additional lines of inquiry into 

morphological heterogeneity in isogenic populations. Morphology exists at an intermediate scale between 

the molecular microstate and physiological behavior of cells and there remain many questions at both 

ends of this spectrum. At the molecular scale, we are particularly interested in developing our 

understanding of factors that contribute to the establishment and control of morphological heterogeneity. 

In theory, there may be “noise-controlling” factors that influence the type and extent of morphological 

heterogeneity within a population. Through the development of more high-throughput and automated 

imaging and feature analysis approaches, we will be able to screen for both endogenous and exogenous 

factors capable of controlling or altering the topology of morphology space.   

 Numerous studies over the years have identified noise in gene expression as a fundamental 

contributor to functional heterogeneity within isogenic populations. This study presents clear evidence 

that morphological heterogeneity may be similarly consequential. In particular, it will be important to 

establish whether morphological heterogeneity arises as a strict function of transcriptional and/or 

epigenetic heterogeneity, or if there are additional layers of “noise” at the morphological scale. If one 

abstracts a molecule as a bipolar magnetic bar, one can imagine that if a collection of such bars were 

repeatedly tossed together, they would fall into a variety of spatial arrangements despite the type and 

number of starting materials being identical. Similarly, identical numbers and types of molecules could, in 

theory, produce morphologically variable structures, which themselves may exhibit functional variability. 

By this mechanism, morphological “noise” would be another non-genetic source of functional 

heterogeneity on top of that engendered by molecular “noise.” Additionally, there are many functional 

factors beyond mRNA and proteins (e.g. siRNAs, lncRNAs, microRNAs, protein modifications, etc.) 

that, in theory, could contribute to the determination of morphological structures. A clearer understanding 
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of the relationship between molecular microstate and morphology will help us better understand the 

validity and utility of morphology as a coarse-grain proxy for the molecular state of a cell. 

 In this study we demonstrate a relationship between heterogeneity in morphology space dynamics 

and functional heterogeneity at the population level. In particular, we observe specific subspaces of WT 

MEF morphology space that are associated with either increased or decreased sensitivity to apoptotic 

induction. An important next step in this work is to understand the generalizability of these findings. In 

other words, if we functionalize WT MEFs to be either more or less sensitive to apoptotic induction, how 

would their occupancy of morphology space change and would they natively adapt more locally 

constrained subspaces of morphology space? One could, for example, create a line of p53 KO MEFs and 

map out their probability density function in WT MEF morphology space, under the hypothesis that a 

more apoptotic-resistant variant of WT MEFs may natively occupy those subspaces associated with 

decreased sensitivity to apoptotic induction. If proven true, this would point to a deeper underlying 

relationship between morphology and function than the correlative relationship demonstrated thus far. 

 Finally, this study develops a framework that allows for further investigation of causative and 

functional properties of morphological changes observed in numerous disease states. If established that 

there truly is a 1:1 correlation between morphology and function, we would, in theory, be able to use the 

more easily-accessible parameter of morphology to assess the internal microstate of a cell. For example, 

physicians may be able to use morphology-based tools to more accurately screen and diagnose for 

diseases, or to monitor disease progression and therapeutic response. It remains to be established the 

fidelity of morphology as a functional indicator, understanding that this may vary as a function of cell 

type, morphological structure, and/or disease state. Additionally, if determined that morphology in and of 

itself is not a sufficient indicator of the functional state of a cell, it may still be useful when coupled with 

other cellular assays (e.g. adhesion assays, substrate stiffness assays, growth assay, etc.) to develop a 

complete picture of the functional state of a cell. This study serves to position morphology as a potentially 

useful clinical tool that merits further investigation.  
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 We present here the first body of work, to our knowledge, that demonstrates that heterogeneities 

in the topology and dynamics of morphology space correlate directly with functional heterogeneity in an 

isogenic population. These results position morphological heterogeneity as a potentially important novel 

mode of non-genetic heterogeneity, sister to the more widely studied forms of transcriptional and 

epigenetic heterogeneity. We hope that, in future years, morphology and statistical analysis tools will 

continue to be developed and a more precise and wide-ranging understanding of the sources and 

consequences of morphological heterogeneity in isogenic populations established. By illuminating the 

principles intertwining the molecular microstate, morphology, and function, of a cell, we hope that this 

work will contribute to a deeper understanding of the fundamental building block of all living organisms. 
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APPENDIX 

 
 
                             Principal Component 1; variance explained = 23.4% 

Feature Name Feature Type Loading 
CellMeanCentroidDist Cell morphometry 0.1324 
CellConvexPerimeter Cell morphometry 0.1321 
NucEquivDiameterArea Nucleus morphometry 0.1307 
CellEquivDiameterArea Cell morphometry 0.1305 
CellLowSmoothPerimeter Cell morphometry 0.1296 
NucMeanCentroidDist Nucleus morphometry 0.1295 
CellPerimeter Cell morphometry 0.1292 
CellEquivDiameterPerim Cell morphometry 0.1292 
CellHighSmoothPerimeter Cell morphometry 0.1290 

 
                       Principal Component 2; variance explained = 11.8% 

Feature Name Feature Type Loading 
NucMinContrast Nucleus texture 0.1583 
CellMinContrast Cell texture 0.1563 
CellMeanContrast Cell texture 0.1551 
CellMeanHomogeneity Cell texture -0.1538 
CellMaxHomogeneity Cell texture -0.1530 
CellMeanCorrelation Cell texture -0.1529 
CellMaxCorrelation Cell texture -0.1526 
CellMinHomogeneity Cell texture -0.1524 
CellMinCorrelation Cell texture -0.1519 
NucMaxHomogeneity Nucleus texture -0.1515 

 
         Principal Component 3; variance explained = 8.6% 

Feature Name Feature Type Loading 
NucCVDisc3 Nucleus texture 0.1919 
NucCVDisc4 Nucleus texture 0.1902 
NucCVCentroidDist Nucleus morphometry 0.1825 
NucFracTotalDisc1 Nucleus texture 0.1786 
NucVarDisc3 Nucleus texture 0.1745 
NucRatioMajorMinor Nucleus morphometry 0.1741 
NucCircularity Nucleus morphometry -0.1726 
NucCVDisc2 Nucleus texture 0.1693 
NucFracTotalDisc2 Nucleus texture 0.1658 
NucVarDisc2 Nucleus texture 0.1652 

 
 
Table A1. Dominant loadings of the first three Principal Components of live WT MEFs. The top 10 loadings of 
the first three principal components of a 205-feature set analysis of WT MEF morphology. Principal Component 1 
captures 23.4% of total variance and is dominated by cell and nucleus morphometric features. Principal Component 
2 captures 11.8% of total variance and is dominated by cell and nucleus textural features. Principal Component 3 
captures 8.6% of total variance and is dominated by nucleus morphometric and textural features. Mitochondrial 
features do not factor heavily into the first three Principal Components. 
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Feature Name Feature Type PC1 (fixed) PC2 (fixed) PC3 (fixed) 
CellArea Cell morphometry 0.1025 -0.0494 -0.0633 
CellConvexArea Cell morphometry 0.0995 -0.0786 -0.0426 
CellEccentricity Cell morphometry -0.0350 -0.0841 0.1133 
CellEquivDiameterArea Cell morphometry 0.1185 -0.0230 -0.0359 
CellMajorAxisLength Cell morphometry 0.0971 -0.0946 0.0498 
CellMinorAxisLength Cell morphometry 0.1126 -0.0122 -0.0589 
CellPerimeter Cell morphometry 0.1068 -0.0787 -0.01367 
CellSolidity Cell morphometry -0.0167 0.1191 -0.1204 
CellConvexPerimeter Cell morphometry 0.1133 -0.0731 0.0151 
CellEquivDiameterPerim Cell morphometry 0.1068  -0.0787 -0.0137 
CellRatioMajorMinor Cell morphometry -0.0527 -0.1147 0.1160 
CellCircularity Cell morphometry 0.0372 0.1216 -0.1464 
CellMeanCentroidDist Cell morphometry 0.1151 -0.0593 0.0065 
CellMaxCentroidDist Cell morphometry 0.1010 -0.0926 0.0507 
CellMinCentroidDist Cell morphometry 0.0878 0.0444 -0.0818 
CellCVCentroidDist Cell morphometry -0.0338 -0.1318 0.1546 
CellVarCentroidDist Cell morphometry 0.0554 -0.1169 0.0625 
CellLowSmoothArea Cell morphometry 0.1022 -0.0478 -0.0645 
CellLowSmoothPerimeter Cell morphometry 0.1090 -0.0709 -0.0145 
CellLowSmoothOrigAreaChange Cell morphometry -0.0202  0.0597 -0.0348 
CellLowSmoothOrigAreaChangeRel Cell morphometry 0.0495 0.0904 -0.0571 
CellLowSmoothOrigPerimeterChange Cell morphometry -0.0792 0.0804 0.0089 
CellLowSmoothOrigPerimeterChangeRel Cell morphometry -0.0290 0.0639 -0.0388 
CellLowSmoothOrigAreaRatio Cell morphometry 0.0495 0.0904 -0.0571 
CellLowSmoothOrigPerimeterRatio Cell morphometry -0.0290 0.0639 -0.0388 
CellHighSmoothArea Cell morphometry 0.1023 -0.0404 -0.0571 
CellHighSmoothPerimeter Cell morphometry 0.1132 -0.0437 -0.0388 
CellHighSmoothOrigAreaChange Cell morphometry -0.0284 0.0855 -0.0664 
CellHighSmoothOrigAreaChangeRel Cell morphometry 0.0777 0.1119 -0.0199 
CellHighSmoothOrigPerimeterChange Cell morphometry -0.0770  0.1047 -0.0079 
CellHighSmoothOrigPerimeterChangeRel Cell morphometry 0.0122 0.1223 -0.0446 
CellHighSmoothOrigAreaRatio Cell morphometry 0.0777 0.1119 0.0034 
CellHighSmoothOrigPerimeterRatio Cell morphometry 0.0122 0.1223 -0.0547 
NucNumber Nucleus morphometry 0.0253 -0.0495 -0.0288 
NucArea Nucleus morphometry 0.1084 -0.0587 -0.0434 
NucMeanArea Nucleus morphometry 0.1025 -0.0395 -0.0283 
NucCellAreaRatio Nucleus morphometry -0.0936 -0.0338 -0.0423 
NucCellCentroidDist Nucleus morphometry 0.0606 -0.0669 0.0127 
NucConvexArea Nucleus morphometry 0.1077 -0.0628 -0.0472 
NucEccentricty Nucleus morphometry -0.0166  -0.0815 0.0542 
NucEquivDiameterArea Nucleus morphometry 0.1173 -0.0374 -0.0222 
NucMajorAxisLength Nucleus morphometry 0.1051 -0.0661 -0.0035 
NucMinorAxisLength Nucleus morphometry 0.1145 -0.0134 -0.0391 
NucPerimeter Nucleus morphometry 0.1118 -0.0591 -0.0313 
NucMeanPerimeter Nucleus morphometry 0.1005 -0.0271 -0.0093 
NucCellPerimeterRatio Nucleus morphometry -0.0885 0.0217 -0.0955 
NucSolidity Nucleus morphometry -0.0078 0.0824 0.0795 
NucConvexPerimeter Nucleus morphometry 0.1143 -0.0519 -0.0205 
NucEquivDiameterPerim Nucleus morphometry 0.1118 -0.0591 -0.0313 
NucRatioMajorMinor Nucleus morphometry -0.0139  -0.0913 0.0607 
NucCircularity Nucleus morphometry 0.0168 0.0941 -0.0506 
NucMeanCentroidDist Nucleus morphometry 0.1166 -0.0424 -0.0181 
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Feature Name Feature Type PC1 (fixed) PC2 (fixed) PC3 (fixed) 
NucMaxCentroidDist Nucleus morphometry 0.1055 -0.0698 -0.0121 
NucMinCentroidDist Nucleus morphometry 0.1047 0.0143 -0.0115 
NucCVCentroidDist Nucleus morphometry -0.0155 -0.1018 0.0338 
NucVarCentroidDist Nucleus morphometry 0.0373 -0.0898 0.0077 
NucLowSmoothArea Nucleus morphometry 0.1084 -0.0585 -0.0432 
NucLowSmoothPerimeter Nucleus morphometry 0.1130 -0.0548 -0.0248 
NucLowSmoothOrigAreaChange Nucleus morphometry -0.0241 0.0439 0.0482 
NucLowSmoothOrigAreaChangeRel Nucleus morphometry 0.1021  0.0425 0.0516 
NucLowSmoothOrigPerimeterChange Nucleus morphometry -0.0329 0.07571 0.0907 
NucLowSmoothOrigPerimeterChangeRel Nucleus morphometry 0.0088 0.07282 0.1059 
NucLowSmoothOrigAreaRatio Nucleus morphometry 0.1021 0.04250 0.0516 
NucLowSmoothOrigPerimeterRatio Nucleus morphometry 0.0088 0.0728 0.1059 
NucHighSmoothArea Nucleus morphometry 0.1084 -0.0585 -0.0432 
NucHighSmoothPerimeter Nucleus morphometry 0.1140 -0.0513 -0.0212 
NucHighSmoothOrigAreaChange Nucleus morphometry -0.0401 0.0437 0.0451 
NucHighSmoothOrigAreaChangeRel Nucleus morphometry 0.1089 0.03579 0.0369 
NucHighSmoothOrigPerimeterChange Nucleus morphometry -0.0271 0.0882 0.0962 
NucHighSmoothOrigPerimeterChangeRel Nucleus morphometry 0.0420  0.0871 0.1056 
NucHighSmoothOrigAreaRatio Nucleus morphometry 0.1089 0.0358 0.0369 
NucHighSMoothOrigPerimeterRatio Nucleus morphometry 0.0420 0.0871 0.1056 
CellMeanContrast Cell texture -0.0659 0.0448 0.0497 
CellMinContrast Cell texture -0.0426 0.0957 0.0119 
CellMaxContrast Cell texture -0.0687 0.0107 0.0730 
CellCVContrast Cell texture -0.0585 -0.0933 0.1252 
CellVarContrast Cell texture -0.0438 -0.0303 0.0546 
CellMeanCorrelation Cell texture -0.0343 -0.0721 -0.0892 
CellMinCorrelation Cell texture -0.0199 -0.0409 -0.1279 
CellMaxCorrelation Cell texture -0.0503  -0.0928 -0.0382 
CellCVCorrelation Cell texture -0.0068 -0.0033 0.1573 
CellVarCorrelation Cell texture -0.0101 -0.0185 0.1433 
CellMeanEnergy Cell texture 0.0370 -0.1062 0.0048 
CellMinEnergy Cell texture 0.0405 -0.1019 -0.0019 
CellMaxEnergy Cell texture 0.0331 -0.1096 0.0093 
CellCVEnergy Cell texture -0.0673 0.0182 0.0524 
CellVarEnergy Cell texture -0.0463 -0.0948 0.0676 
CellMeanHomogeneity Cell texture 0.0553 -0.0926 -0.0238 
CellMinHomogeneity Cell texture 0.0615 -0.0734 -0.0442 
CellMaxHomogeneity Cell texture 0.0402  -0.1118 -0.0042 
CellCVHomogeneity Cell texture -0.0736 -0.0013 0.0768 
CellVarHomogeneity Cell texture -0.0713 -0.0342 0.0774 
CellFracTotalDisc1 Cell texture -0.0316 -0.1393 0.1055 
CellCVDisc1 Cell texture -0.0327 -0.1397 0.1245 
CellVarDisc1 Cell texture -0.0686  -0.0826 -0.0200 
CellFracTotalDisc2 Cell texture -0.0194 -0.1021 0.0604 
CellCVDisc2 Cell texture -0.0383 -0.1526 0.1344 
CellVarDisc2 Cell texture -0.0707 -0.0459 -0.0884 
CellFracTotalDisc3 Cell texture -0.0102 -0.0157 -0.0113 
CellCVDisc3 Cell texture -0.0398  -0.1558 0.1324 
CellVarDisc3 Cell texture -0.0636 -0.0209 -0.1152 
CellFracTotalDisc4 Cell texture 0.1032 0.0342 0.0315 
CellCVDisc4 Cell texture -0.0463 -0.1528 0.1208 
CellVarDisc4 Cell texture -0.0602 -0.01498 -0.1191 
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Feature Name Feature Type PC1 (fixed) PC2 (fixed) PC3 (fixed) 
NucMeanContrast Nucleus texture -0.0962  -0.0062 0.0238 
NucMinContrast Nucleus texture -0.0866 0.0138 0.0280 
NucMaxContrast Nucleus texture -0.0986 -0.0201 0.0236 
NucCVContrast Nucleus texture -0.0891 -0.05296 0.0214 
NucVarContrast Nucleus texture -0.0839 -0.0451 0.0101 
NucMeanCorrelation Nucleus texture -0.0467  -0.0860 -0.1183 
NucMinCorrelation Nucleus texture -0.0340 -0.0791 -0.1303 
NucMaxCorrelation Nucleus texture -0.0590 -0.0863 -0.1048 
NucCVCorrelation Nucleus texture 0.0156 0.0729 0.1339 
NucVarCorrelation Nucleus texture 0.0098 0.0664 0.1287 
NucMeanEnergy Nucleus texture 0.0811 0.0348 0.0339 
NucMinEnergy Nucleus texture 0.0817 0.0359 0.0290 
NucMaxEnergy Nucleus texture 0.0806 0.0348 0.0371 
NucCVEnergy Nucleus texture -0.0894 -0.0493 -0.0020 
NucVarEnergy Nucleus texture 0.0498 0.01853 0.0712 
NucMeanHomogeneity Nucleus texture 0.1041  0.02283 0.0212 
NucMinHomogeneity Nucleus texture 0.1065 0.03256 0.0181 
NucMaxHomogeneity Nucleus texture 0.0986 0.01130 0.0214 
NucCVHomogeneity Nucleus texture -0.1028 -0.0605 -0.0202 
NucVarHomogeneity Nucleus texture -0.0929 -0.0697 -0.0134 
NucFracTotalDisc1 Nucleus texture -0.0497 -0.1191 0.0032 
NucCVDisc1 Nucleus texture 0.0310 -0.0271 0.0015 
NucVarDisc1 Nucleus texture -0.0441 -0.0518 -0.0597 
NucFracTotalDisc2 Nucleus texture -0.0541 -0.1134 0.0009 
NucCVDisc2 Nucleus texture 0.0001 -0.0850 0.0185 
NucVarDisc2 Nucleus texture -0.0525  -0.0650 -0.0500 
NucFracTotalDisc3 Nucleus texture -0.0478 -0.0991 -0.0231 
NucCVDisc3 Nucleus texture -0.0279 -0.1161 0.0230 
NucVarDisc3 Nucleus texture -0.0685 -0.07284 -0.0551 
NucFracTotalDisc4 Nucleus texture 0.1058 0.0005 0.0077 
NucCVDisc4 Nucleus texture -0.0305 -0.1204 0.0174 
NucVarDisc4 Nucleus texture -0.0730 -0.0568 -0.0750 
MitoNumber Mito morphometry 0.0926 -0.0221 -0.0650 
MitoSumArea Mito morphometry 0.0965 -0.0542 -0.0721 
MitoMeanArea Mito morphometry -0.0620 -0.0806 -0.0583 
MitoMedianArea Mito morphometry 0.0026  -0.0094 0.0736 
MitoMaxArea Mito morphometry 0.0390 -0.0994 -0.1042 
MitoMinArea Mito morphometry -0.0305 -0.0317 -0.0138 
MitoCVArea Mito morphometry 0.0153 -0.0921 -0.1174 
MitoVarArea Mito morphometry -0.0187 -0.0581 -0.0740 
MitoCellAreaRatio Mito morphometry -0.06 -0.0466 -0.0658 
MitoSumPerimeter Mito morphometry 0.0986 -0.0394 -0.0615 
MitoMeanPerimeter Mito morphometry -0.0419 -0.0649 -0.0025 
MitoMedianPerimeter Mito morphometry 0.0071 -0.0063 0.0795 
MitoMaxPerimeter Mito morphometry 0.0517 -0.0836 -0.0784 
MitoMinPerimeter Mito morphometry -0.0328  -0.0311 -0.0142 
MitoCVPerimeter Mito morphometry 0.0093 -0.0860 -0.1048 
MitoVarPerimeter Mito morphometry -0.0119 -0.0839 -0.0551 
MitoCellPerimeterRatio Mito morphometry 0.0772 0.0569 -0.0500 
MitoCellCentroidDist Mito morphometry 0.05280 -0.0661 0.0128 
MitoNucCentroidDist Mito morphometry 0.0601 -0.0578 0.0017 
MitoObjSkepRatio Mito morphometry -0.0714 -0.0954 -0.0848 
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Feature Name Feature Type PC1 (fixed) PC2 (fixed) PC3 (fixed) 
MitoNumBranchpoints Mito morphometry 0.0945 -0.0558 -0.0736 
MitoNumEndpoints Mito morphometry 0.0962 -0.0291 -0.0677 
MitoNumberFused Mito morphometry 0.0967 -0.0210 -0.0580 
MitoMeanFusedArea Mito morphometry -0.0595  -0.0736 -0.0888 
MitoMaxFusedArea Mito morphometry 0.0390 -0.0994 -0.1042 
MitoMinFusedArea Mito morphometry -0.0338 -0.0131 -0.0571 
MitoCVFusedArea Mito morphometry 0.0372 -0.0830 -0.0875 
MitoVarFusedArea Mito morphometry -0.0168 -0.0559 -0.0705 
MitoPercentFusedTotalArea Mito morphometry -0.0676 -0.0818 -0.0656 
MitoNumberFragmented Mito morphometry 0.0893 -0.0220 -0.0665 
MitoMeanFragmentedArea Mito morphometry 0.0310 -0.0135 0.1068 
MitoMaxFragmentedArea Mito morphometry 0.0689 -0.0345 0.0418 
MitoMinFragmentedArea Mito morphometry -0.0299 -0.0299 -0.0165 
MitoCVFragmentedArea Mito morphometry 0.0165  -0.0502 0.0210 
MitoVarFragmentedArea Mito morphometry 0.0034 -0.0452 0.0543 
MitoRatioFusedFragmented Mito morphometry -0.0327 -0.0173 -0.0406 
MitoPercentFragmentedTotalArea Mito morphometry 0.0676 0.0818 0.0656 
MitoMeanContrast Mitochondria texture -0.0859 0.0268 -0.0188 
MitoMinContrast Mitochondria texture -0.0837 0.0317 -0.0269 
MitoMaxContrast Mitochondria texture -0.0871 0.0193 -0.0099 
MitoCVContrast Mitochondria texture -0.0425 -0.0364 0.0738 
MitoVarContrast Mitochondria texture -0.0802 -0.0015 -0.0211 
MitoMeanCorrelation Mitochondria texture -0.0749 -0.0765 -0.1055 
MitoMinCorrelation Mitochondria texture -0.0695  -0.0670 -0.1279 
MitoMaxCorrelation Mitochondria texture -0.0741 -0.0733 -0.0774 
MitoCVCorrelation Mitochondria texture 0.0625 0.0698 0.1369 
MitoVarCorrelation Mitochondria texture 0.0529 0.0618 0.1436 
MitoMeanEnergy Mitochondria texture 0.0803 0.0075 0.0518 
MitoMinEnergy Mitochondria texture 0.0807 0.0088 0.0479 
MitoMaxEnergy Mitochondria texture 0.0797 0.0066 0.0544 
MitoCVEnergy Mitochondria texture -0.0852 -0.0393 -0.0108 
MitoVarEnergy Mitochondria texture -0.0587 -0.0448 0.0619 
MitoMeanHomogeneity Mitochondria texture 0.0864 -0.0014 0.0458 
MitoMinHomogeneity Mitochondria texture 0.0873  0.0052 0.0392 
MitoMaxHomogeneity Mitochondria texture 0.0849 -0.0072 0.0506 
MitoCVHomogeneity Mitochondria texture -0.0876 -0.0341 -0.0207 
MitoVarHomogeneity Mitochondria texture -0.0846 -0.0499 -0.0131 
MitoFracTotalDisc1 Mitochondria texture 0.0189 -0.1073 0.0938 
MitoCVDisc1 Mitochondria texture 0.0017 -0.0029 0.0584 
MitoVarDisc1 Mitochondria texture -0.0029 0.0034 -0.0567 
MitoFracTotalDisc2 Mitochondria texture 0.0190 -0.0614 0.0612 
MitoCVDisc2 Mitochondria texture 0.0315 -0.1074 0.1725 
MitoVarDisc2 Mitochondria texture -0.0168 0.0258 -0.0779 
MitoFracTotalDisc3 Mitochondria texture 0.0112  0.0107 0.0025 
MitoCVDisc3 Mitochondria texture 0.0339 -0.1069 0.1716 
MitoVarDisc3 Mitochondria texture -0.0194 0.0241 -0.0774 
MitoFracTotalDisc4 Mitochondria texture 0.0961 0.0283 0.0297 
MitoCVDisc4 Mitochondria texture 0.03475 -0.0981 0.1698 
MitoVarDisc4 Mitochondria texture -0.0185 0.0200 -0.0737 
Table A2. Complete loadings of the first three Principal Components of fixed WT MEFs. The loading values of 
the first three principal components of a 205-feature set analysis of WT MEF morphology. Principal Component 1 
captures 29.6% of the total variance; Principal Component 2 captures 10.6% of the total variance; Principal 
Component 3 captures 6.7% of the total variance. 
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Feature Name Feature Type PC1 (live) PC2 (live) PC3 (live) 
CellArea Cell morphometry 0.1240 -0.0392 -0.0452 
CellConvexArea Cell morphometry 0.1284 -0.0459 -0.0215 
CellEccentricity Cell morphometry -0.0032 -0.0439 0.1229 
CellEquivDiameterArea Cell morphometry 0.1301 -0.0391 -0.0492 
CellMajorAxisLength Cell morphometry 0.1124 -0.0677 0.0546 
CellMinorAxisLength Cell morphometry 0.1153 -0.0156 -0.0864 
CellPerimeter Cell morphometry 0.1292 -0.0396 -0.0013 
CellSolidity Cell morphometry -0.0574 0.0336 -0.0731 
CellConvexPerimeter Cell morphometry 0.1321 -0.0541 0.0052 
CellEquivDiameterPerim Cell morphometry 0.1292 -0.0396 -0.0013 
CellRatioMajorMinor Cell morphometry -0.0009 -0.0476 0.1375 
CellCircularity Cell morphometry -0.0131 0.0476 -0.1369 
CellMeanCentroidDist Cell morphometry 0.1324 -0.0537 -0.0051 
CellMaxCentroidDist Cell morphometry 0.1202 -0.0611 0.0379 
CellMinCentroidDist Cell morphometry 0.07416 0.0064 -0.1114 
CellCVCentroidDist Cell morphometry 0.0220 -0.0489 0.1355 
CellVarCentroidDist Cell morphometry 0.0772 -0.0674 0.0879 
CellLowSmoothArea Cell morphometry 0.1239 -0.0394 -0.0454 
CellLowSmoothPerimeter Cell morphometry 0.1296 -0.0502 0.0002 
CellLowSmoothOrigAreaChange Cell morphometry 0.0068 -0.0164 -0.0181 
CellLowSmoothOrigAreaChangeRel Cell morphometry 0.0309 -0.0230 -0.0378 
CellLowSmoothOrigPerimeterChange Cell morphometry -0.0949 -0.0024 0.0053 
CellLowSmoothOrigPerimeterChangeRel Cell morphometry -0.0608 -0.0392 -0.0070 
CellLowSmoothOrigAreaRatio Cell morphometry 0.0309 -0.0230 -0.0378 
CellLowSmoothOrigPerimeterRatio Cell morphometry -0.0608 -0.0392  -0.0070 
CellHighSmoothArea Cell morphometry 0.1226 -0.0383 -0.0469 
CellHighSmoothPerimeter Cell morphometry 0.129 -0.0477 -0.0068 
CellHighSmoothOrigAreaChange Cell morphometry -0.0427 0.0245 -0.0296 
CellHighSmoothOrigAreaChangeRel Cell morphometry 0.0188 0.0126 -0.0646 
CellHighSmoothOrigPerimeterChange Cell morphometry -0.0944  0.0172 -0.0072 
CellHighSmoothOrigPerimeterChangeRel Cell morphometry -0.0575 -0.0038 -0.0311 
CellHighSmoothOrigAreaRatio Cell morphometry 0.0188 0.0126 -0.0646 
CellHighSmoothOrigPerimeterRatio Cell morphometry -0.0575 -0.0038 -0.0311 
NucNumber Nucleus morphometry 0.0550 -0.0218  0.0539 
NucArea Nucleus morphometry 0.1270 -0.0051 0.0368 
NucMeanArea Nucleus morphometry 0.1059 0.0073 0.0121 
NucCellAreaRatio Nucleus morphometry -0.0819 0.0533 0.1070 
NucCellCentroidDist Nucleus morphometry 0.0751 -0.0151 0.0236 
NucConvexArea Nucleus morphometry 0.1257 -0.0008 0.0469 
NucEccentricty Nucleus morphometry 0.0161  -0.0453 0.1496 
NucEquivDiameterArea Nucleus morphometry 0.1307 -0.0043 0.0327 
NucMajorAxisLength Nucleus morphometry 0.1133 -0.0225 0.1046 
NucMinorAxisLength Nucleus morphometry 0.1201 0.0196 -0.0447 
NucPerimeter Nucleus morphometry 0.1219 0.0081 0.0811 
NucMeanPerimeter Nucleus morphometry 0.0832 0.0258  0.0403 
NucCellPerimeterRatio Nucleus morphometry -0.0959 0.0603 0.0622 
NucSolidity Nucleus morphometry -0.0387 -0.0507 -0.1263 
NucConvexPerimeter Nucleus morphometry 0.1259 -0.0055 0.0691 
NucEquivDiameterPerim Nucleus morphometry 0.1219 0.0081 0.0811 
NucRatioMajorMinor Nucleus morphometry 0.0185  -0.0472 0.1741 
NucCircularity Nucleus morphometry -0.0178 0.0455 -0.1726 
NucMeanCentroidDist Nucleus morphometry 0.1295 -0.0059 0.0452 
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Feature Name Feature Type PC1 (live) PC2 (live) PC3 (live) 
NucMaxCentroidDist Nucleus morphometry 0.1139 -0.0117  0.1082 
NucMinCentroidDist Nucleus morphometry 0.0808 0.0213 -0.0987 
NucCVCentroidDist Nucleus morphometry 0.0223 -0.0399 0.1825 
NucVarCentroidDist Nucleus morphometry 0.0627 -0.0272 0.1475 
NucLowSmoothArea Nucleus morphometry 0.1270 -0.0057 0.0363 
NucLowSmoothPerimeter Nucleus morphometry 0.1238 -0.0043 0.0736 
NucLowSmoothOrigAreaChange Nucleus morphometry -0.0328 -0.0708 -0.0721 
NucLowSmoothOrigAreaChangeRel Nucleus morphometry 0.0640  -0.0652 -0.0532 
NucLowSmoothOrigPerimeterChange Nucleus morphometry -0.0491 -0.0931 -0.0956 
NucLowSmoothOrigPerimeterChangeRel Nucleus morphometry -0.0321 -0.1145 -0.0957 
NucLowSmoothOrigAreaRatio Nucleus morphometry 0.0640 -0.0652 -0.0532 
NucLowSmoothOrigPerimeterRatio Nucleus morphometry -0.0321 -0.1145 -0.0957 
NucHighSmoothArea Nucleus morphometry 0.1269 -0.0057 0.0361 
NucHighSmoothPerimeter Nucleus morphometry 0.1253 -0.0090 0.0668 
NucHighSmoothOrigAreaChange Nucleus morphometry -0.0370 -0.0401 -0.0533 
NucHighSmoothOrigAreaChangeRel Nucleus morphometry 0.1069 -0.0262  -0.0166 
NucHighSmoothOrigPerimeterChange Nucleus morphometry -0.0448 -0.0800 -0.1037 
NucHighSmoothOrigPerimeterChangeRel Nucleus morphometry -0.0199  -0.0967 -0.1048 
NucHighSmoothOrigAreaRatio Nucleus morphometry 0.1069 -0.0262 -0.0166 
NucHighSMoothOrigPerimeterRatio Nucleus morphometry -0.0199 -0.0967 -0.1048 
CellMeanContrast Cell texture 0.0149 0.1551 0.0290 
CellMinContrast Cell texture 0.0231 0.1563 0.0205 
CellMaxContrast Cell texture 0.0060 0.1513 0.0391 
CellCVContrast Cell texture -0.0741 -0.0992 0.0781 
CellVarContrast Cell texture -0.0665 0.0004 0.0618 
CellMeanCorrelation Cell texture -0.0297 -0.1529 -0.0137 
CellMinCorrelation Cell texture -0.0269 -0.1520 -0.0182 
CellMaxCorrelation Cell texture -0.0319  -0.1526 -0.0106 
CellCVCorrelation Cell texture -0.0243 0.0920 0.0751 
CellVarCorrelation Cell texture -0.0393 0.0607 0.0773 
CellMeanEnergy Cell texture -0.0523 -0.0696 0.0177 
CellMinEnergy Cell texture -0.0505 -0.0678 0.0151 
CellMaxEnergy Cell texture -0.0540  -0.0707 0.0202 
CellCVEnergy Cell texture -0.0491 -0.0704  0.0905 
CellVarEnergy Cell texture -0.0721 0.0364 0.0629 
CellMeanHomogeneity Cell texture -0.0432 -0.1538 0.0055 
CellMinHomogeneity Cell texture -0.0395 -0.1524 -0.0031 
CellMaxHomogeneity Cell texture -0.0468  -0.1531 0.0126 
CellCVHomogeneity Cell texture -0.0660 -0.0698 0.09765 
CellVarHomogeneity Cell texture -0.0612 -0.0677 0.0966 
CellFracTotalDisc1 Cell texture 0.0285 -0.0942 0.0617 
CellCVDisc1 Cell texture 0.0414 -0.0839 0.1141 
CellVarDisc1 Cell texture 0.0298 -0.0874 0.0810 
CellFracTotalDisc2 Cell texture 0.0108 -0.0717 0.0371 
CellCVDisc2 Cell texture 0.0310 -0.0922 0.1268 
CellVarDisc2 Cell texture -0.0603 -0.0068 0.0497 
CellFracTotalDisc3 Cell texture 0.0002 -0.0399 -0.0173 
CellCVDisc3 Cell texture 0.0213  -0.0913  0.1184 
CellVarDisc3 Cell texture -0.0817 0.0526 0.0052 
CellFracTotalDisc4 Cell texture 0.0442 -0.1036 -0.0330 
CellCVDisc4 Cell texture 0.0017 -0.0936 0.1051 
CellVarDisc4 Cell texture -0.0734 0.0652 -0.0050 
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Feature Name Feature Type PC1 (live) PC2 (live) PC3 (live) 
NucMeanContrast Nucleus texture -0.0036 0.1442 0.0573 
NucMinContrast Nucleus texture 0.0166 0.1583 0.0462 
NucMaxContrast Nucleus texture -0.0274 0.1162 0.0690 
NucCVContrast Nucleus texture -0.0640 -0.1452 0.0037 
NucVarContrast Nucleus texture -0.0816 -0.0773 0.0375 
NucMeanCorrelation Nucleus texture -0.0346  -0.1451 -0.0406 
NucMinCorrelation Nucleus texture -0.0273 -0.1364 -0.0465 
NucMaxCorrelation Nucleus texture -0.0399 -0.1504 -0.0366 
NucCVCorrelation Nucleus texture -0.0639 -0.0902 0.0255 
NucVarCorrelation Nucleus texture -0.0641 -0.0993 0.0236 
NucMeanEnergy Nucleus texture 0.0321 -0.1047 -0.0705 
NucMinEnergy Nucleus texture 0.0336 -0.1035 -0.0716 
NucMaxEnergy Nucleus texture 0.0308 -0.1059 -0.0697 
NucCVEnergy Nucleus texture -0.0888 -0.0231 0.0665 
NucVarEnergy Nucleus texture -0.0191 -0.1131 -0.0214 
NucMeanHomogeneity Nucleus texture 0.0200  -0.1435  -0.0726 
NucMinHomogeneity Nucleus texture 0.0304 -0.1348 -0.0799 
NucMaxHomogeneity Nucleus texture 0.0093 -0.1515 -0.0638 
NucCVHomogeneity Nucleus texture -0.0975 -0.0681 0.0660 
NucVarHomogeneity Nucleus texture -0.0860 -0.0766 0.0608 
NucFracTotalDisc1 Nucleus texture -0.0040 -0.0291 0.1786 
NucCVDisc1 Nucleus texture 0.0067 0.0350 0.0596 
NucVarDisc1 Nucleus texture 0.0111 0.0241 0.0539 
NucFracTotalDisc2 Nucleus texture -0.0180 -0.0208 0.1658 
NucCVDisc2 Nucleus texture 0.0191 -0.0141 0.1693 
NucVarDisc2 Nucleus texture 0.0227  -0.0295 0.1657 
NucFracTotalDisc3 Nucleus texture -0.0311 0.0036 0.1109 
NucCVDisc3 Nucleus texture 0.0033 -0.0338 0.1919 
NucVarDisc3 Nucleus texture 0.0007 -0.0453 0.1745 
NucFracTotalDisc4 Nucleus texture 0.0378 -0.0854 -0.0143 
NucCVDisc4 Nucleus texture -0.0021 -0.0319 0.1902 
NucVarDisc4 Nucleus texture 0.0163 -0.0708 0.0052 
MitoNumber Mito morphometry 0.1054 0.00008 -0.0330 
MitoSumArea Mito morphometry 0.1194 -0.0230 -0.0236 
MitoMeanArea Mito morphometry -0.0645 -0.0177 0.0278 
MitoMedianArea Mito morphometry -0.0274  0.0122 0.0242 
MitoMaxArea Mito morphometry 0.0967 -0.0388 -0.0341 
MitoMinArea Mito morphometry -0.0343 0.0027 0.0152 
MitoCVArea Mito morphometry 0.1004 -0.0202 -0.0472 
MitoVarArea Mito morphometry 0.0062 -0.0471 -0.0129 
MitoCellAreaRatio Mito morphometry -0.0281 0.0309 0.0412 
MitoSumPerimeter Mito morphometry 0.1189 -0.0034 -0.0178 
MitoMeanPerimeter Mito morphometry -0.0577 -0.0050 0.0487 
MitoMedianPerimeter Mito morphometry -0.0215 0.0070 0.0291 
MitoMaxPerimeter Mito morphometry 0.1086 -0.0178 -0.0233 
MitoMinPerimeter Mito morphometry -0.0380  0.0045 0.0156 
MitoCVPerimeter Mito morphometry 0.0865 -0.0110 -0.0389 
MitoVarPerimeter Mito morphometry 0.0220 -0.0241 0.0053 
MitoCellPerimeterRatio Mito morphometry 0.0621 0.0360 -0.0438 
MitoCellCentroidDist Mito morphometry 0.0598 -0.0413 0.0094 
MitoNucCentroidDist Mito morphometry 0.0609 -0.0042 0.0203 
MitoObjSkepRatio Mito morphometry -0.0633 -0.0429 0.0266 
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Feature Name Feature Type PC1 (live) PC2 (live) PC3 (live) 
MitoNumBranchpoints Mito morphometry 0.1038 0.0233 -0.0215 
MitoNumEndpoints Mito morphometry 0.1121 0.0078 -0.0299 
MitoNumberFused Mito morphometry 0.1098 0.0075 -0.0315 
MitoMeanFusedArea Mito morphometry -0.0679  -0.0293 0.0259 
MitoMaxFusedArea Mito morphometry 0.0967 -0.0388 -0.0341 
MitoMinFusedArea Mito morphometry -0.0427 0.0069 0.0295 
MitoCVFusedArea Mito morphometry 0.1122 -0.0164 -0.0520 
MitoVarFusedArea Mito morphometry 0.0116 -0.0541 -0.0233 
MitoPercentFusedTotalArea Mito morphometry -0.0424 0.01715 0.0143 
MitoNumberFragmented Mito morphometry 0.0983 -0.0035 -0.0320 
MitoMeanFragmentedArea Mito morphometry 0.01231 -0.0308 0.0291 
MitoMaxFragmentedArea Mito morphometry 0.06332 -0.0217 0.0140 
MitoMinFragmentedArea Mito morphometry -0.0270 -0.0002 0.0117 
MitoCVFragmentedArea Mito morphometry 0.0540  0.0137 -0.0050 
MitoVarFragmentedArea Mito morphometry 0.0187 -0.0089 0.0313 
MitoRatioFusedFragmented Mito morphometry -0.0544 0.0145 0.0239 
MitoPercentFragmentedTotalArea Mito morphometry 0.0424 -0.0171 -0.0143 
MitoMeanContrast Mitochondria texture -0.0079 0.0694 0.0567 
MitoMinContrast Mitochondria texture 0.0035 0.0990 0.0286 
MitoMaxContrast Mitochondria texture -0.0117 0.0476 0.0750 
MitoCVContrast Mitochondria texture -0.0418 -0.1210 0.0654 
MitoVarContrast Mitochondria texture -0.0237 -0.0144 0.0883 
MitoMeanCorrelation Mitochondria texture -0.0491 -0.0893 -0.0021 
MitoMinCorrelation Mitochondria texture -0.0469  -0.0715 -0.0218 
MitoMaxCorrelation Mitochondria texture -0.0487 -0.1082 0.0166 
MitoCVCorrelation Mitochondria texture 0.0281 0.0084 0.0440 
MitoVarCorrelation Mitochondria texture 0.0223 0.0008 0.0494 
MitoMeanEnergy Mitochondria texture -0.0287 -0.1270 -0.0138 
MitoMinEnergy Mitochondria texture -0.0282 -0.1262 -0.0154 
MitoMaxEnergy Mitochondria texture -0.0294 -0.1278 -0.0123 
MitoCVEnergy Mitochondria texture -0.0435 -0.0005 0.0876 
MitoVarEnergy Mitochondria texture -0.0443 -0.1039 0.0800 
MitoMeanHomogeneity Mitochondria texture -0.0404 -0.1406 -0.0104 
MitoMinHomogeneity Mitochondria texture -0.0384  -0.1380 -0.0169 
MitoMaxHomogeneity Mitochondria texture -0.0427 -0.1428 -0.0041 
MitoCVHomogeneity Mitochondria texture -0.0321 -0.0006 0.0918 
MitoVarHomogeneity Mitochondria texture -0.0462 -0.0442 0.0962 
MitoFracTotalDisc1 Mitochondria texture 0.0766 -0.0533 0.0248 
MitoCVDisc1 Mitochondria texture -0.0131 0.0234 0.0128 
MitoVarDisc1 Mitochondria texture 0.0177 -0.0427 -0.0392 
MitoFracTotalDisc2 Mitochondria texture 0.0762 -0.0251 0.0052 
MitoCVDisc2 Mitochondria texture 0.0698 -0.0376 0.0950 
MitoVarDisc2 Mitochondria texture -0.0877 0.0119 -0.0671 
MitoFracTotalDisc3 Mitochondria texture 0.0598 -0.0110 -0.0167 
MitoCVDisc3 Mitochondria texture 0.0775 -0.0374 0.0812 
MitoVarDisc3 Mitochondria texture -0.0995 0.0093 -0.0442 
MitoFracTotalDisc4 Mitochondria texture 0.1041 -0.0275 -0.0337 
MitoCVDisc4 Mitochondria texture 0.0783 -0.0339 0.0709 
MitoVarDisc4 Mitochondria texture -0.0988 0.0080 -0.0299 
Table A3. Complete loadings of the first three Principal Components of live WT MEFs. The loading values of 
the first three principal components of a 205-feature set analysis of WT MEF morphology. Principal Component 1 
captures 23.4% of the total variance; Principal Component 2 captures 11.8% of the total variance; Principal 
Component 3 captures 8.6% of the total variance. 
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ATGCCAGAGCCAGCGAAGTCTGCTCCCGCCCCGAAAAAGGGCTCCAAGAAGGCGGTGACTAAGGCGC

AGAAGAAAGGCGGCAAGAAGCGCAAGCGCAGCCGCAAGGAGAGCTATTCCATCTATGTGTACAAGGT

TCTGAAGCAGGTCCACCCTGACACCGGCATTTCGTCCAAGGCCATGGGCATCATGAATTCGTTTGTGA

ACGACATTTTCGAGCGCATCGCAGGTGAGGCTTCCCGCCTGGCGCATTACAACAAGCGCTCGACCATC

ACCTCCAGGGAGATCCAGACGGCCGTGCGCCTGCTGCTGCCTGGGGAGTTGGCCAAGCACGCCGTGTC

CGAGGGTACTAAGGCCATCACCAAGTACACCAGCGCTAAGGATCCACCGGTCGCCACCATGTCGGTAC

CGCTGACTACCTCAGCATTCGGCCACGCGTTTCTGGCTAACTGTGAACGCGAGCAGATCCACCTGGCG

GGCTCCATTCAGCCGCACGGTATCCTGCTGGCTGTGAAAGAGCCGGACAACGTGGTGATCCAGGCTTC

TATTAACGCTGCGGAGTTCCTGAACACCAACTCTGTTGTTGGCCGTCCGCTGCGTGACCTGGGCGGCG

ATCTGCCTTTGCAGATCCTGCCGCACCTGAACGGCCCGCTGCACCTGGCTCCGATGACCCTGCGTTGTA

CCGTGGGTTCTCCGCCGCGTCGTGTGGACTGTACCATTCATCGTCCGTCTAACGGCGGCCTGATCGTAG

AACTGGAACCAGCAACCAAGACCACTAACATTGCGCCGGCTCTGGACGGTGCGTTTCATCGTATCACT

TCTTCATCCTCCCTGATGGGCCTGTGTGACGAAACCGCGACTATTATCCGTGAGATTACTGGCTACGAC

CGTGTGATGGTAGTACGTTTCGATGAAGAGGGTAATGGCGAAATTCTGTCCGAACGTCGTCGTGCGGA

CCTGGAAGCGTTCCTGGGTAACCGCTACCCGGCGTCTACTATTCCGCAGATCGCTCGTCGCCTGTACGA

ACATAACCGTGTTCGCCTGCTGGTAGATGTGAACTATACTCCGGTTCCGCTACAGCCGCGCATCAGCCC

GCTGAACGGTCGTGATCTGGATATGTCCCTGTCTTGCCTGCGCTCTATGTCCCCGATCCACCAGAAATA

CATGCAGGACATGGGCGTTGGCGCGACCCTGGTTTGCTCTCTGATGGTGTCTGGTCGTCTGTGGGGTCT

GATCGCTTGCCACCACTACGAACCGCGCTTCGTTCCGTTCCACATTCGCGCTGCTGGCGAAGCGCTGGC

GGAAACTTGTGCGATCCGCATCGCGACGCTGGAGAGCTTTGCACAGTCTCAGTCCAAAGGAAGCGGA

GCTACTAACTTCAGCCTGCTGAAGCAGGCTGGAGACGTGGAGGAGAACCCTGGACCTTCCGTCCTGAC

GCCGCTGCTGCTGCGGGGCTTGACAGGCTCGGCCCGGCGGCTCCCAGTGCCGCGCGCCAAGATCCATT

CGTTGGGGGATCCACCGGTCGCCACCATGGTGAGCAAGGGCGAGGAGGTCATCAAAGAGTTCATGCG

CTTCAAGGTGCGCATGGAGGGCTCCATGAACGGCCACGAGTTCGAGATCGAGGGCGAGGGCGAGGGC

CGCCCCTACGAGGGCACCCAGACCGCCAAGCTGAAGGTGACCAAGGGCGGCCCCCTGCCCTTCGCCTG

GGACATCCTGTCCCCCCAGTTCATGTACGGCTCCAAGGCGTACGTGAAGCACCCCGCCGACATCCCCG

ATTACAAGAAGCTGTCCTTCCCCGAGGGCTTCAAGTGGGAGCGCGTGATGAACTTCGAGGACGGCGGT

CTGGTGACCGTGACCCAGGACTCCTCCCTGCAGGACGGCACGCTGATCTACAAGGTGAAGATGCGCGG
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CACCAACTTCCCCCCCGACGGCCCCGTAATGCAGAAGAAGACCATGGGCTGGGAGGCCTCCACCGAG

CGCCTGTACCCCCGCGACGGCGTGCTGAAGGGCGAGATCCACCAGGCCCTGAAGCTGAAGGACGGCG

GCCACTACCTGGTGGAGTTCAAGACCATCTACATGGCCAAGAAGCCCGTGCAACTGCCCGGCTACTAC

TACGTGGACACCAAGCTGGACATCACCTCCCACAACGAGGACTACACCATCGTGGAACAGTACGAGC

GCTCCGAGGGCCGCCACCACCTGTTCCTGGGGCATGGCACCGGCAGCACCGGCAGCGGCAGCTCCGGC

ACCGCCTCCTCCGAGGACAACAACATGGCCGTCATCAAAGAGTTCATGCGCTTCAAGGTGCGCATGGA

GGGCTCCATGAACGGCCACGAGTTCGAGATCGAGGGCGAGGGCGAGGGCCGCCCCTACGAGGGCACC

CAGACCGCCAAGCTGAAGGTGACCAAGGGCGGCCCCCTGCCCTTCGCCTGGGACATCCTGTCCCCCCA

GTTCATGTACGGCTCCAAGGCGTACGTGAAGCACCCCGCCGACATCCCCGATTACAAGAAGCTGTCCT

TCCCCGAGGGCTTCAAGTGGGAGCGCGTGATGAACTTCGAGGACGGCGGTCTGGTGACCGTGACCCAG

GACTCCTCCCTGCAGGACGGCACGCTGATCTACAAGGTGAAGATGCGCGGCACCAACTTCCCCCCCGA

CGGCCCCGTAATGCAGAAGAAGACCATGGGCTGGGAGGCCTCCACCGAGCGCCTGTACCCCCGCGAC

GGCGTGCTGAAGGGCGAGATCCACCAGGCCCTGAAGCTGAAGGACGGCGGCCACTACCTGGTGGAGT

TCAAGACCATCTACATGGCCAAGAAGCCCGTGCAACTGCCCGGCTACTACTACGTGGACACCAAGCTG

GACATCACCTCCCACAACGAGGACTACACCATCGTGGAACAGTACGAGCGCTCCGAGGGCCGCCACC

ACCTGTTCCTGTACGGCATGGACGAGCTGTACAAGGGAAGCGGAGCTACTAACTTCAGCCTGCTGAAG

CAGGCTGGAGACGTGGAGGAGAACCCTGGACCTGTGAGCAAGGGCGAGGAGCTGTTCACCGGGGTGG

TGCCCATCCTGGTCGAGCTGGACGGCGACGTAAACGGCCACAAGTTCAGCGTGTCCGGCGAGGGCGA

GGGCGATGCCACCTACGGCAAGCTGACCCTGAAGTTCATCTGCACCACCGGCAAGCTGCCCGTGCCCT

GGCCCACCCTCGTGACCACCCTGACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATGAAG

CAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCAAGGA

CGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGAACCGCATCGAG

CTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGCTGGAGTACAACTACAACA

GCCACAACGTCTATATCATGGCCGACAAGCAGAAGAACGGCATCAAGGTGAACTTCAAGATCCGCCA

CAACATCGAGGACGGCAGCGTGCAGCTCGCCGACCACTACCAGCAGAACACCCCCATCGGCGACGGC

CCCGTGCTGCTGCCCGACAACCACTACCTGAGCACCCAGTCCGCCCTGAGCAAAGACCCCAACGAGAA

GCGCGATCACATGGTCCTGCTGGAGTTCGTGACCGCCGCCGGGATCACTCTCGGCATGGACGAGCTGT

ACAAGTCCGGACTCAGATCTCGAGTGCGTGAGTGCATCTCCATCCACGTTGGCCAGGCTGGTGTCCAG
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ATTGGCAATGCCTGCTGGGAGCTCTACTGCCTGGAACACGGCATCCAGCCCGATGGCCAGATGCCAAG

TGACAAGACCATTGGGGGAGGAGATGACTCCTTCAACACCTTCTTCAGTGAGACGGGCGCTGGCAAGC

ACGTGCCCCGGGCTGTGTTTGTAGACTTGGAACCCACAGTCATTGATGAAGTTCGCACTGGCACCTAC

CGCCAGCTCTTCCACCCTGAGCAGCTCATCACAGGCAAGGAAGATGCTGCCAATAACTATGCCCGAGG

GCACTACACCATTGGCAAGGAGATCATTGACCTTGTGTTGGACCGAATTCGCAAGCTGGCTGACCAGT

GCACCGGTCTTCAGGGCTTCTTGGTTTTCCACAGCTTTGGTGGGGGAACTGGTTCTGGGTTCACCTCCC

TGCTCATGGAACGTCTCTCAGTTGATTATGGCAAGAAGTCCAAGCTGGAGTTCTCCATTTACCCAGCAC

CCCAGGTTTCCACAGCTGTAGTTGAGCCCTACAACTCCATCCTCACCACCCACACCACCCTGGAGCACT

CTGATTGTGCCTTCATGGTAGACAATGAGGCCATCTATGACATCTGTCGTAGAAACCTCGATATCGAG

CGCCCAACCTACACTAACCTTAACCGCCTTATTAGCCAGATTGTGTCCTCCATCACTGCTTCCCTGAGA

TTTGATGGAGCCCTGAATGTTGACCTGACAGAATTCCAGACCAACCTGGTGCCCTACCCCCGCATCCA

CTTCCCTCTGGCCACATATGCCCCTGTCATCTCTGCTGAGAAAGCCTACCATGAACAGCTTTCTGTAGC

AGAGATCACCAATGCTTGCTTTGAGCCAGCCAACCAGATGGTGAAATGTGACCCTCGCCATGGTAAAT

ACATGGCTTGCTGCCTGTTGTACCGTGGTGACGTGGTTCCCAAAGATGTCAATGCTGCCATTGCCACCA

TCAAAACCAAGCGCAGCATCCAGTTTGTGGATTGGTGCCCCACTGGCTTCAAGGTTGGCATCAACTAC

CAGCCTCCCACTGTGGTGCCTGGTGGAGACCTGGCCAAGGTACAGAGAGCTGTGTGCATGCTGAGCAA

CACCACAGCCATTGCTGAGGCCTGGGCTCGCCTGGACCACAAGTTTGACCTGATGTATGCCAAGCGTG

CCTTTGTTCACTGGTACGTGGGTGAGGGGATGGAGGAAGGCGAGTTTTCAGAGGCCCGTGAAGATATG

GCTGCCCTTGAGAAGGATTATGAGGAGGTTGGTGTGGATTCTGTTGAAGGAGAGGGTGAGGAAGAAG

GAGAGGAATACTAA 

 
Figure A1. Sequence of 3Reporter Cassette. Full sequence of the 3ReporterCassette inserted into the pWPXL 
lentivirus expression vector. cyan = H2B; green = mIFP; red = P2A; blue = mitochondria localization sequence; 
yellow = tdTomato dimer; magenta = EGFP; grey = α-tubulin 
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% Algorithm to segment and categorize cells, and stitch necessary ones 
% (using MIJ ImageJ interface). 
% Revised 03/02/2017 by Amy Chang (Marshall Lab, UCSF) 
  
javaaddpath('/Applications/MATLAB_R2014b.app/java/mij.jar') 
javaaddpath('/Applications/MATLAB_R2014b.app/java/ij.jar') 
MIJ.start('/Applications/ImageJ/ImageJ/ImageJ/plugins') 
alphabet = 'ABCDEFGHIJKLMNOP' 
column = 1:24 
Cy5_7x7 = cell(7); 
FITC_7x7 = cell(7); 
DAPI_7x7 = cell(7); 
DAPI_7x7orig = cell(7); 
DAPIlines = zeros(1024, 1024); 
for i = 2:length(alphabet); 
    for j = 24:length(column); 
        for k = 1:49; 
            Cy5file = strcat('/Volumes/Fantom 
HD/20141223/Amy_Chang/Amy_Chang_Chang1_2014.12.24.20.10.07/', 
alphabet(i), ' -', {' '}, num2str(j), '(fld ', {' '} , num2str(k), ' wv 
Cy5 - Cy5).tif'); 
            FITCfile = strcat('/Volumes/Fantom 
HD/20141223/Amy_Chang/Amy_Chang_Chang1_2014.12.24.20.10.07/', 
alphabet(i), ' -', {' '}, num2str(j), '(fld ', {' '} , num2str(k), ' wv 
FITC - FITC).tif'); 
            DAPIfile = strcat('/Volumes/Fantom 
HD/20141223/Amy_Chang/Amy_Chang_Chang1_2014.12.24.20.10.07/', 
alphabet(i), ' -', {' '}, num2str(j), '(fld ', {' '} , num2str(k), ' wv 
DAPI - DAPI).tif'); 
            Cy5image = imread(Cy5file{1}); 
            FITCimage = imread(FITCfile{1}); 
            DAPIimage = imread(DAPIfile{1}); 
            Cy5_7x7{k} = Cy5image; 
            FITC_7x7{k} = FITCimage; 
            DAPI_7x7orig{k} = DAPIimage; 
            DAPIlines = DAPIimage; 
            DAPIlines(:, 1023) = 1; 
            DAPIlines(:, 1024) = 1;                                  % 
Add line on right side of FOV 
            DAPIlines(1023, :) = 1;  
            DAPIlines(1024, :) = 1;                                  % 
Add line on bottom of FOV 
            DAPI_7x7{k} = DAPIlines;        
        end 
        DAPImatrixorig = [DAPI_7x7orig{1} DAPI_7x7orig{2} 
DAPI_7x7orig{3} DAPI_7x7orig{4} DAPI_7x7orig{5} DAPI_7x7orig{6} 
DAPI_7x7orig{7}; 
                    DAPI_7x7orig{8} DAPI_7x7orig{9} DAPI_7x7orig{10} 
DAPI_7x7orig{11} DAPI_7x7orig{12} DAPI_7x7orig{13} DAPI_7x7orig{14}; 
                    DAPI_7x7orig{15} DAPI_7x7orig{16} DAPI_7x7orig{17} 
DAPI_7x7orig{18} DAPI_7x7orig{19} DAPI_7x7orig{20} DAPI_7x7orig{21}; 
                    DAPI_7x7orig{22} DAPI_7x7orig{23} DAPI_7x7orig{24} 
DAPI_7x7orig{25} DAPI_7x7orig{26} DAPI_7x7orig{27} DAPI_7x7orig{28}; 
                    DAPI_7x7orig{29} DAPI_7x7orig{30} DAPI_7x7orig{31} 
DAPI_7x7orig{32} DAPI_7x7orig{33} DAPI_7x7orig{34} DAPI_7x7orig{35}; 
                    DAPI_7x7orig{36} DAPI_7x7orig{37} DAPI_7x7orig{38} 
DAPI_7x7orig{39} DAPI_7x7orig{40} DAPI_7x7orig{41} DAPI_7x7orig{42}; 
                    DAPI_7x7orig{43} DAPI_7x7orig{44} DAPI_7x7orig{45} 
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DAPI_7x7orig{46} DAPI_7x7orig{47} DAPI_7x7orig{48} DAPI_7x7orig{49}]; 
        Cy5matrix = [Cy5_7x7{1} Cy5_7x7{2} Cy5_7x7{3} Cy5_7x7{4} 
Cy5_7x7{5} Cy5_7x7{6} Cy5_7x7{7}; 
                    Cy5_7x7{8} Cy5_7x7{9} Cy5_7x7{10} Cy5_7x7{11} 
Cy5_7x7{12} Cy5_7x7{13} Cy5_7x7{14}; 
                    Cy5_7x7{15} Cy5_7x7{16} Cy5_7x7{17} Cy5_7x7{18} 
Cy5_7x7{19} Cy5_7x7{20} Cy5_7x7{21}; 
                    Cy5_7x7{22} Cy5_7x7{23} Cy5_7x7{24} Cy5_7x7{25} 
Cy5_7x7{26} Cy5_7x7{27} Cy5_7x7{28}; 
                    Cy5_7x7{29} Cy5_7x7{30} Cy5_7x7{31} Cy5_7x7{32} 
Cy5_7x7{33} Cy5_7x7{34} Cy5_7x7{35}; 
                    Cy5_7x7{36} Cy5_7x7{37} Cy5_7x7{38} Cy5_7x7{39} 
Cy5_7x7{40} Cy5_7x7{41} Cy5_7x7{42}; 
                    Cy5_7x7{43} Cy5_7x7{44} Cy5_7x7{45} Cy5_7x7{46} 
Cy5_7x7{47} Cy5_7x7{48} Cy5_7x7{49}]; 
        FITCmatrix = [FITC_7x7{1} FITC_7x7{2} FITC_7x7{3} FITC_7x7{4} 
FITC_7x7{5} FITC_7x7{6} FITC_7x7{7}; 
                    FITC_7x7{8} FITC_7x7{9} FITC_7x7{10} FITC_7x7{11} 
FITC_7x7{12} FITC_7x7{13} FITC_7x7{14}; 
                    FITC_7x7{15} FITC_7x7{16} FITC_7x7{17} FITC_7x7{18} 
FITC_7x7{19} FITC_7x7{20} FITC_7x7{21}; 
                    FITC_7x7{22} FITC_7x7{23} FITC_7x7{24} FITC_7x7{25} 
FITC_7x7{26} FITC_7x7{27} FITC_7x7{28}; 
                    FITC_7x7{29} FITC_7x7{30} FITC_7x7{31} FITC_7x7{32} 
FITC_7x7{33} FITC_7x7{34} FITC_7x7{35}; 
                    FITC_7x7{36} FITC_7x7{37} FITC_7x7{38} FITC_7x7{39} 
FITC_7x7{40} FITC_7x7{41} FITC_7x7{42}; 
                    FITC_7x7{43} FITC_7x7{44} FITC_7x7{45} FITC_7x7{46} 
FITC_7x7{47} FITC_7x7{48} FITC_7x7{49}]; 
        DAPImatrix = [DAPI_7x7{1} DAPI_7x7{2} DAPI_7x7{3} DAPI_7x7{4} 
DAPI_7x7{5} DAPI_7x7{6} DAPI_7x7{7}; 
                    DAPI_7x7{8} DAPI_7x7{9} DAPI_7x7{10} DAPI_7x7{11} 
DAPI_7x7{12} DAPI_7x7{13} DAPI_7x7{14}; 
                    DAPI_7x7{15} DAPI_7x7{16} DAPI_7x7{17} DAPI_7x7{18} 
DAPI_7x7{19} DAPI_7x7{20} DAPI_7x7{21}; 
                    DAPI_7x7{22} DAPI_7x7{23} DAPI_7x7{24} DAPI_7x7{25} 
DAPI_7x7{26} DAPI_7x7{27} DAPI_7x7{28}; 
                    DAPI_7x7{29} DAPI_7x7{30} DAPI_7x7{31} DAPI_7x7{32} 
DAPI_7x7{33} DAPI_7x7{34} DAPI_7x7{35}; 
                    DAPI_7x7{36} DAPI_7x7{37} DAPI_7x7{38} DAPI_7x7{39} 
DAPI_7x7{40} DAPI_7x7{41} DAPI_7x7{42}; 
                    DAPI_7x7{43} DAPI_7x7{44} DAPI_7x7{45} DAPI_7x7{46} 
DAPI_7x7{47} DAPI_7x7{48} DAPI_7x7{49}]; 
        composite_adjusted = cat(3, imadjust(FITCmatrix), 
imadjust(Cy5matrix), imadjust(DAPImatrixorig)); 
        figure, imshow(composite_adjusted) 
        Cy5matrix_adjusted = imadjust(Cy5matrix); 
        figure, imshow(Cy5matrix_adjusted) 
        BW = edge(Cy5matrix_adjusted, 'sobel'); 
        se90 = strel('line', 6, 90); 
        se0 = strel('line', 6, 0); 
        BWdil = imdilate(BW, [se90, se0]); 
        BWfill = imfill(BWdil, 'holes'); 
        seD = strel('diamond', 1); 
        BWsmooth = imerode(BWfill, seD); 
        L = bwlabel(BWsmooth); 
        stats = regionprops(L, 'Area'); 
        areas = cat(1, stats.Area); 
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        BWsmooth_clean = BWsmooth; 
        for m = 1:length(stats); 
            if stats(m).Area < 1000 
                I = find(L==m); 
                for n = 1:length(I); 
                    p = I(n); 
                    BWsmooth_clean(p) = 0; 
                end 
            end 
        end 
        BWoutline = bwperim(BWsmooth_clean); 
        %at this point, have the outline of each segmented cell 
        %need to present each cell to user to identify whether or not 
it is 
        %an acceptable cell (isolated, single cell) and also figure out 
        %which cells span FOVs and need to be stitched 
        outline_blue = DAPImatrix; 
        outline_blue(BWoutline) = 65535; 
        combo_segmented = imfuse(imadjust(Cy5matrix), 
imadjust(outline_blue)); 
        figure, imshow(combo_segmented), title(strcat('Well', {' '}, 
alphabet(i), ' -', {' '}, num2str(j))) 
        L_clean = bwlabel(BWsmooth_clean);              %enumerates 
each object in BWsmooth_clean (each cell) 
        stats_clean = regionprops(L_clean, 'Centroid', 'BoundingBox');  
%BoundingBox returns the smallest rectangle  
        centroids = cat(1, stats_clean.Centroid);                       
%containing the object 
        bboxes = cat(1, stats_clean.BoundingBox); 
        hold on 
        for p = 1:length(centroids); 
            text(centroids(p,1), centroids(p,2), num2str(p), 'color' , 
'r', 'fontsize', 14) 
        end 
        hold off 
        cellinfo = struct('cellnumber', (1:length(bboxes)).', 
'coordinates', bboxes(:, :)) 
        for u = 1:length(bboxes); 
            if floor(cellinfo.coordinates(u,1)) < 11 
                left_x = 1; 
            else 
                left_x = floor(cellinfo.coordinates(u,1)) - 10; 
            end 
            if floor(cellinfo.coordinates(u,2)) < 11 
                upper_y = 1; 
            else 
                upper_y = floor(cellinfo.coordinates(u,2)) - 10; 
            end 
            if ceil(cellinfo.coordinates(u,3) + 
cellinfo.coordinates(u,1)) > 7158 
                right_x = 7168; 
            else 
                right_x = ceil(cellinfo.coordinates(u,3) + 
cellinfo.coordinates(u,1) + 10); 
            end 
            if ceil(cellinfo.coordinates(u,4) + 
cellinfo.coordinates(u,2)) > 7158 
                lower_y = 7168; 
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            else  
                lower_y = ceil(cellinfo.coordinates(u,4) + 
cellinfo.coordinates(u,2) + 10); 
            end 
            boxedDAPIlines = outline_blue(upper_y:lower_y, 
left_x:right_x); 
            boxedDAPIorig = DAPImatrixorig(upper_y:lower_y, 
left_x:right_x); 
            boxedFITC = FITCmatrix(upper_y:lower_y, left_x:right_x); 
            boxedCy5 = Cy5matrix(upper_y:lower_y, left_x:right_x); 
            comboboxedadjusted = cat(3, imadjust(boxedFITC), 
imadjust(boxedCy5), imadjust(boxedDAPIlines)); 
            origwith_outline = cat(3, boxedFITC, boxedCy5, 
boxedDAPIlines); 
            orig = cat(3, boxedFITC, boxedCy5, boxedDAPIorig); 
            cellnumber = cellinfo.cellnumber(u); 
            if cellinfo.coordinates(u,1) < 1; 
                category = 5; 
                filename = sprintf('/Users/amychang/Documents/Marshall 
Lab/20170117_NewWTAlgorithms/Plate1_Well%c%d/Plate1_Well%c%d_Cell%d_Typ
e%d.tif', alphabet(i), j, alphabet(i), j, u, category); 
                imwrite(origwith_outline, filename) 
                filename3 = sprintf('/Users/amychang/Documents/Marshall 
Lab/20170117_NewWTAlgorithms/Plate1_Well%c%d/Plate1_Well%c%d_Cell%d_Typ
e%doriginal.tif', alphabet(i), j, alphabet(i), j, u, category); 
                imwrite(orig, filename3) 
            elseif cellinfo.coordinates(u,2) < 1; 
                category = 5; 
                filename = sprintf('/Users/amychang/Documents/Marshall 
Lab/20170117_NewWTAlgorithms/Plate1_Well%c%d/Plate1_Well%c%d_Cell%d_Typ
e%d.tif', alphabet(i), j, alphabet(i), j, u, category); 
                imwrite(origwith_outline, filename) 
                filename3 = sprintf('/Users/amychang/Documents/Marshall 
Lab/20170117_NewWTAlgorithms/Plate1_Well%c%d/Plate1_Well%c%d_Cell%d_Typ
e%doriginal.tif', alphabet(i), j, alphabet(i), j, u, category); 
                imwrite(orig, filename3) 
            elseif ceil(cellinfo.coordinates(u,1) + 
cellinfo.coordinates(u,3)) > 7067 
                category = 5; 
                filename = sprintf('/Users/amychang/Documents/Marshall 
Lab/20170117_NewWTAlgorithms/Plate1_Well%c%d/Plate1_Well%c%d_Cell%d_Typ
e%d.tif', alphabet(i), j, alphabet(i), j, u, category); 
                imwrite(origwith_outline, filename) 
                filename3 = sprintf('/Users/amychang/Documents/Marshall 
Lab/20170117_NewWTAlgorithms/Plate1_Well%c%d/Plate1_Well%c%d_Cell%d_Typ
e%doriginal.tif', alphabet(i), j, alphabet(i), j, u, category); 
                imwrite(orig, filename3) 
            elseif ceil(cellinfo.coordinates(u,2) + 
cellinfo.coordinates(u,4)) > 7067 
                category = 5; 
                filename = sprintf('/Users/amychang/Documents/Marshall 
Lab/20170117_NewWTAlgorithms/Plate1_Well%c%d/Plate1_Well%c%d_Cell%d_Typ
e%d.tif', alphabet(i), j, alphabet(i), j, u, category); 
                imwrite(origwith_outline, filename) 
                filename3 = sprintf('/Users/amychang/Documents/Marshall 
Lab/20170117_NewWTAlgorithms/Plate1_Well%c%d/Plate1_Well%c%d_Cell%d_Typ
e%doriginal.tif', alphabet(i), j, alphabet(i), j, u, category); 
                imwrite(orig, filename3) 
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            else 
                figure, imshow(comboboxedadjusted) 
                query = sprintf('This is cell %d. How should it be 
categorized? ', cellnumber); 
                category = input(query);    
                if category == 1; 
                    filename = 
sprintf('/Users/amychang/Documents/Marshall 
Lab/20170117_NewWTAlgorithms/Plate1_Well%c%d/Plate1_Well%c%d_Cell%d_Typ
e%d.tif', alphabet(i), j, alphabet(i), j, u, category); 
                    imwrite(origwith_outline, filename) 
                    filename3 = 
sprintf('/Users/amychang/Documents/Marshall 
Lab/20170117_NewWTAlgorithms/Plate1_Well%c%d/Plate1_Well%c%d_Cell%d_Typ
e%doriginal.tif', alphabet(i), j, alphabet(i), j, u, category); 
                    imwrite(orig, filename3) 
                    close 
                end 
                if category == 2; 
                    filename = 
sprintf('/Users/amychang/Documents/Marshall 
Lab/20170117_NewWTAlgorithms/Plate1_Well%c%d/Plate1_Well%c%d_Cell%d_Typ
e%d.tif', alphabet(i), j, alphabet(i), j, u, category); 
                    imwrite(origwith_outline, filename) 
                    filename3 = 
sprintf('/Users/amychang/Documents/Marshall 
Lab/20170117_NewWTAlgorithms/Plate1_Well%c%d/Plate1_Well%c%d_Cell%d_Typ
e%doriginal.tif', alphabet(i), j, alphabet(i), j, u, category); 
                    imwrite(orig, filename3) 
                    yesno = 0; 
                    while yesno == 0 
                        figure, imshow(mat2gray(boxedCy5)) 
                        h2 = imcontrast(gca) 
                        waitfor(h2) 
                        Cy5manual = getimage(gca); 
                        BW = edge(Cy5manual, 'sobel'); 
                        se90 = strel('line', 6, 90); 
                        se0 = strel('line', 6, 0); 
                        BWdil = imdilate(BW, [se90, se0]); 
                        BWfill = imfill(BWdil, 'holes'); 
                        seD = strel('diamond', 1); 
                        BWsmooth = imerode(BWfill, seD); 
                        L = bwlabel(BWsmooth); 
                        stats = regionprops(L, 'Area'); 
                        areas = cat(1, stats.Area); 
                        BWsmooth_clean = BWsmooth; 
                        for m = 1:length(stats); 
                            if stats(m).Area < 1000 
                                I = find(L==m); 
                                for q = 1:length(I); 
                                    p = I(q); 
                                    BWsmooth_clean(p) = 0; 
                                end 
                            end 
                        end 
                        BWoutline2 = bwperim(BWsmooth_clean); 
                        outline_blue2 = boxedDAPIorig; 
                        outline_blue2(BWoutline2) = 65535; 
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                        compositeoutlined = cat(3, boxedFITC, boxedCy5, 
outline_blue2); 
                        figure, imshow(imfuse(imadjust(boxedCy5), 
imadjust(outline_blue2))) 
                        askyesno = sprintf('Is the segmentation 
acceptable? (0 = No, 1 = Yes) '); 
                        yesno = input(askyesno); 
                    end 
                    filename4 = strcat(filename(1:(length(filename)-
4)), '_Type1.tif'); 
                    imwrite(compositeoutlined, filename4) 
                    filename5 = strcat(filename(1:(length(filename)-
4)), '_Type1original.tif'); 
                    composite5 = cat(3, boxedFITC, boxedCy5, 
boxedDAPIorig); 
                    imwrite(composite5, filename5) 
                    close 
                end 
                if category == 3;                       %Category 3 
means cell spans multiple FOVs and needs to be stitched 
                    filename = 
sprintf('/Users/amychang/Documents/Marshall 
Lab/20170117_NewWTAlgorithms/Plate1_Well%c%d/Plate1_Well%c%d_Cell%d_Typ
e%d.tif', alphabet(i), j, alphabet(i), j, u, category); 
                    imwrite(origwith_outline, filename) 
                    filename3 = 
sprintf('/Users/amychang/Documents/Marshall 
Lab/20170117_NewWTAlgorithms/Plate1_Well%c%d/Plate1_Well%c%d_Cell%d_Typ
e%doriginal.tif', alphabet(i), j, alphabet(i), j, u, category); 
                    imwrite(orig, filename3)  
                    askwhichFOVs = sprintf('Which FOVs need to be 
stitched? '); 
                    whichFOVs = input(askwhichFOVs); 
                    askstitch = 0; 
                    while askstitch == 0  
                        for z = 1:length(whichFOVs) 
                            Cy5filename = strcat('path=[/Volumes/Fantom 
HD/20141223/Amy_Chang/Amy_Chang_Chang1_2014.12.24.20.10.07/', 
alphabet(i), ' -', {' '}, num2str(j), '(fld ', {' '} , 
num2str(whichFOVs(z)), ' wv Cy5 - Cy5).tif]'); 
                            FITCfilename = 
strcat('path=[/Volumes/Fantom 
HD/20141223/Amy_Chang/Amy_Chang_Chang1_2014.12.24.20.10.07/', 
alphabet(i), ' -', {' '}, num2str(j), '(fld ', {' '} , 
num2str(whichFOVs(z)), ' wv FITC - FITC).tif]'); 
                            DAPIfilename = 
strcat('path=[/Volumes/Fantom 
HD/20141223/Amy_Chang/Amy_Chang_Chang1_2014.12.24.20.10.07/', 
alphabet(i), ' -', {' '}, num2str(j), '(fld ', {' '} , 
num2str(whichFOVs(z)), ' wv DAPI - DAPI).tif]'); 
                            MIJ.run('Open...', Cy5filename) 
                            MIJ.run('Open...', FITCfilename) 
                            MIJ.run('Open...', DAPIfilename) 
                            MIJ.run('Merge Channels...', strcat('c1=[', 
alphabet(i), ' -', {' '}, num2str(j), '(fld ', {' '} , 
num2str(whichFOVs(z)), ' wv FITC - FITC).tif]', 'c2=[', alphabet(i), ' 
-', {' '}, num2str(j), '(fld ', {' '} , num2str(whichFOVs(z)), ' wv Cy5 
- Cy5).tif]', 'c3=[', alphabet(i), ' -', {' '}, num2str(j), '(fld ', {' 
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'} , num2str(whichFOVs(z)), ' wv DAPI - DAPI).tif] create')); 
                            A = MIJ.getCurrentImage; 
                            A1 = uint16(A(:,:,1)); 
                            A2 = uint16(A(:,:,2)); 
                            A3 = uint16(A(:,:,3)); 
                            filename2 = 
sprintf('/Users/amychang/Documents/Marshall 
Lab/20170117_NewWTAlgorithms/Plate1_Well%c%d/Plate1_Well%c%d_FOV%d.tif'
, alphabet(i), j, alphabet(i), j, whichFOVs(z)); 
                            imwrite(cat(3,A1,A2,A3), filename2) 
                            MIJ.closeAllWindows 
                        end 
                        for z = 1:length(whichFOVs) 
                            filename2 = 
sprintf('/Users/amychang/Documents/Marshall 
Lab/20170117_NewWTAlgorithms/Plate1_Well%c%d/Plate1_Well%c%d_FOV%d.tif'
, alphabet(i), j, alphabet(i), j, whichFOVs(z)); 
                            MIJ.run('Open...', strcat('path=[', 
filename2, ']')) 
                            askchannels = sprintf('Channels set to 
tubulin? '); 
                            if input(askchannels) == 1 
                                MIJ.run('Enhance Contrast', 
'saturated=0.35'); 
                            end 
                        end 
                        askready = sprintf('FOVs cropped and ready? '); 
                        if input(askready) == 1 
                            MIJ.run('Pairwise stitching', 
'fusion_method=[Linear Blending] check_peaks=100 compute_overlap 
subpixel_accuracy x=0.0000 y=0.0000 registration_channel_image_1=[Only 
channel 2] registration_channel_image_2=[Only channel 2]'); 
                        end 
                        askchannels = sprintf('Channels set to tubulin? 
'); 
                        if input(askchannels) == 1 
                            MIJ.run('Enhance Contrast', 
'saturated=0.35'); 
                        end 
                        askstitch = sprintf('Stitching looks ok? '); 
                        askstitch = input(askstitch); 
                    end 
                    B = MIJ.getCurrentImage; 
                    C = uint16(B); 
                    composite = cat(3, C(:,:,1), C(:,:,2), C(:,:,3)); 
                    yesno = 0; 
                    while yesno == 0 
                        figure, imshow(mat2gray(C(:,:,2))) 
                        h2 = imcontrast(gca) 
                        waitfor(h2) 
                        Cy5manual = getimage(gca); 
                        BW = edge(Cy5manual, 'sobel'); 
                        se90 = strel('line', 6, 90); 
                        se0 = strel('line', 6, 0); 
                        BWdil = imdilate(BW, [se90, se0]); 
                        BWfill = imfill(BWdil, 'holes'); 
                        seD = strel('diamond', 1); 
                        BWsmooth = imerode(BWfill, seD); 
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                        L = bwlabel(BWsmooth); 
                        stats = regionprops(L, 'Area'); 
                        areas = cat(1, stats.Area); 
                        BWsmooth_clean = BWsmooth; 
                        for m = 1:length(stats); 
                            if stats(m).Area < 1000 
                                I = find(L==m); 
                                for q = 1:length(I); 
                                    p = I(q); 
                                    BWsmooth_clean(p) = 0; 
                                end 
                            end 
                        end 
                        BWoutline2 = bwperim(BWsmooth_clean); 
                        outline_blue2 = C(:,:,3); 
                        outline_blue2(BWoutline2) = 65535; 
                        compositeoutlined = cat(3, C(:,:,1), C(:,:,2), 
outline_blue2); 
                        figure, imshow(imfuse(imadjust(C(:,:,2)), 
imadjust(outline_blue2))) 
                        askyesno = sprintf('Is the segmentation 
acceptable? (0 = No, 1 = Yes) '); 
                        yesno = input(askyesno); 
                    end 
                    celloutline = outline_blue2; 
                    celloutline(outline_blue2 < 65535) = 0; 
                    BWfill = imfill(celloutline); 
                    Lfill = bwlabel(BWfill); 
                    statsFill = regionprops(Lfill, 'Area', 'Centroid', 
'BoundingBox'); 
                    area = cat(1, statsFill.Area); 
                    maxPos = find(area == max(area)); 
                    rectangleDim = size(BWfill); 
                    centroid = statsFill(maxPos).Centroid; 
                    bbox = statsFill(maxPos).BoundingBox; 
                    if floor(bbox(1,1)) < 11 
                        left_x = 1; 
                    else 
                        left_x = floor(bbox(1,1)) - 10; 
                    end 
                    if floor(bbox(1,2)) < 11 
                        upper_y = 1; 
                    else 
                        upper_y = floor(bbox(1,2)) - 10; 
                    end 
                    if ceil(bbox(1,1) + bbox(1,3)) + 10 > 
(rectangleDim(2) - left_x) 
                        right_x = rectangleDim(2); 
                    else 
                        right_x = ceil(bbox(1,1) + bbox(1,3)) + 10; 
                    end 
                    if ceil(bbox(1,2) + bbox(1,4)) + 10 > 
(rectangleDim(1) - upper_y) 
                        lower_y = rectangleDim(1); 
                    else 
                        lower_y = ceil(bbox(1,2) + bbox(1,4)) + 10; 
                    end 
                    compositeBoxed = cat(3, C(upper_y:lower_y, 
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left_x:right_x, 1), C(upper_y:lower_y, left_x:right_x, 2), 
outline_blue2(upper_y:lower_y, left_x:right_x)); 
                    filename4 = strcat(filename3(1:(length(filename)-
4)), 'Stitched_Type1.tif'); 
                    imwrite(compositeBoxed, filename4) 
                    filename5 = strcat(filename(1:(length(filename)-
4)), 'Stitched_Type1original.tif'); 
                    composite5 = cat(3, C(upper_y:lower_y, 
left_x:right_x, 1), C(upper_y:lower_y, left_x:right_x, 2), 
C(upper_y:lower_y, left_x:right_x, 3)); 
                    imwrite(composite5, filename5) 
                    MIJ.closeAllWindows 
                    close 
                end 
                if  category == 4; 
                    filename = 
sprintf('/Users/amychang/Documents/Marshall 
Lab/20170117_NewWTAlgorithms/Plate1_Well%c%d/Plate1_Well%c%d_Cell%d_Typ
e%d.tif', alphabet(i), j, alphabet(i), j, u, category); 
                    imwrite(origwith_outline, filename) 
                    filename3 = 
sprintf('/Users/amychang/Documents/Marshall 
Lab/20170117_NewWTAlgorithms/Plate1_Well%c%d/Plate1_Well%c%d_Cell%d_Typ
e%doriginal.tif', alphabet(i), j, alphabet(i), j, u, category); 
                    imwrite(orig, filename3) 
                    close 
                end 
                if category == 6; 
                    filename = 
sprintf('/Users/amychang/Documents/Marshall 
Lab/20170117_NewWTAlgorithms/Plate1_Well%c%d/Plate1_Well%c%d_Cell%d_Typ
e%d.tif', alphabet(i), j, alphabet(i), j, u, category); 
                    imwrite(origwith_outline, filename) 
                    filename3 = 
sprintf('/Users/amychang/Documents/Marshall 
Lab/20170117_NewWTAlgorithms/Plate1_Well%c%d/Plate1_Well%c%d_Cell%d_Typ
e%doriginal.tif', alphabet(i), j, alphabet(i), j, u, category); 
                    imwrite(orig, filename3) 
                    close 
                end 
            end 
        end 
    end 
end 
  
  
  
% CATEGORIES 
% 1 = properly segmented, ready for parameterization 
% 2 = improperly segmented, needs manual segmentation 
% 3 = needs stitching (found at borders of FOVs, overlap is incorrect)  
% 4 = binucleate/overlapping cells, not analysable 
% 5 = in contact with edge of well (not useful) 
% 6 = trash / not analysable 
  
  
  
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure A2. Cell segmentation algorithm. Script written in MATLAB 2014b to segment cells based on a 
microtubule cytoskeleton stain. 
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% This is an algorithm to measure various size and shape parameters of 
the 
% input image. Useful primarily for nuclear and cellular analysis. 
% Revised 03/02/2017 by Amy Chang (Marshall Lab, UCSF) 
  
directory = cd; 
D = dir(directory); 
b = zeros(1, length(D)); 
for a = 1:length(D) 
    b(a) = isempty(strfind(D(a).name, 'Type1.tif')); 
end 
  
measurements = struct([]); 
counter = 0; 
for i = 1:length(b) 
    if b(i) == 0 
        counter = counter + 1; 
        measurements(counter).SegmentedFilename = D(i).name; 
        temp = D(i).name; 
        k = length(temp) - 4; 
        temp = temp(1:k); 
        measurements(counter).OriginalFilename = strcat(temp, 
'original.tif'); 
        i = i + 1; 
    elseif b(i) == 1 
        i = i + 1; 
    end 
end 
  
for m = 1:length(measurements) 
    segmented = imread(measurements(m).SegmentedFilename); 
    original = imread(measurements(m).OriginalFilename); 
    segmentedBlue = segmented(:,:,3); 
    originalBlue = original(:,:,3); 
    allOutlines = segmentedBlue - originalBlue; 
    originalGreen = original(:,:,2); 
    measurements(m).CellImage = originalGreen; 
    L = bwlabel(allOutlines); 
    statsOutline = regionprops(L, 'Area', 'PixelIdxList'); 
    cellIndex = find([statsOutline.Area] == max([statsOutline.Area])); 
    cellOutline = zeros(size(originalBlue)); 
    cellOutline(statsOutline(cellIndex).PixelIdxList) = 65535; 
    figure, imshow(imfuse(imadjust(originalGreen), cellOutline)) 
    askyesno = sprintf('This is the cell outline. Enter 1 to 
acknowledge. '); 
    yesno = input(askyesno); 
    if yesno == 1 
        close all 
    end 
    measurements(m).CellOutline = cellOutline; 
    measurements(m).CellOutlinePixels = 
statsOutline(cellIndex).PixelIdxList; 
    cellFilled = imfill(cellOutline); 
    measurements(m).CellMask = cellFilled; 
    L = bwlabel(cellFilled); 
    stats = regionprops(L, 'Area', 'Centroid', 'ConvexArea', 
'ConvexHull', ... 
                            'ConvexImage', 'Eccentricity', 
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'EquivDiameter', ... 
                            'MajorAxisLength', 'MinorAxisLength', 
'Perimeter', ... 
                            'PixelList', 'Solidity') 
    measurements(m).CellArea = stats.Area; 
    measurements(m).CellCentroid = stats.Centroid; 
    measurements(m).CellConvexArea = stats.ConvexArea; 
    measurements(m).CellConvexHull = stats.ConvexHull; 
    measurements(m).CellConvexImage = stats.ConvexImage; 
    measurements(m).CellEccentricity = stats.Eccentricity; 
    measurements(m).CellEquivDiameterArea = stats.EquivDiameter; 
    measurements(m).CellMajorAxisLength = stats.MajorAxisLength; 
    measurements(m).CellMinorAxisLength = stats.MinorAxisLength; 
    measurements(m).CellPerimeter = stats.Perimeter; 
    measurements(m).CellPixelList = stats.PixelList; 
    measurements(m).CellSolidity = stats.Solidity; 
end 
  
% Calculate parameters not included in the 'regionprops' function of 
MATLAB. 
  
% Calculate ConvexPerimeter, the perimeter of the convex hull. 
for n = 1:length(measurements) 
    A = measurements(n).CellConvexImage; 
    L = bwlabel(A); 
    convexLabel = regionprops(L, 'Perimeter'); 
    measurements(n).CellConvexPerimeter = convexLabel.Perimeter; 
end 
  
% Calculate EquivDiameterPerim, the diameter of an equivalent perimeter 
circle 
for p = 1:length(measurements) 
    perimeter = measurements(p).CellPerimeter;     % perimeter of a 
circle is pi*diameter 
    diameter = perimeter / pi; 
    measurements(p).CellEquivDiameterPerim = diameter; 
end 
     
% Calculate ratio between the major axis and minor axis lengths. 
for q = 1:length(measurements) 
    ratioMajorMinor = (measurements(q).CellMajorAxisLength) / 
(measurements(q).CellMinorAxisLength); 
    measurements(q).CellRatioMajorMinor = ratioMajorMinor; 
end 
  
% Calculate the area filled by the cell vs area of a circle w/ diameter 
% equal to the major axis length (a rough measure of the "circularity" 
of the object). 
for r = 1:length(measurements) 
    circleArea = (((measurements(r).CellMajorAxisLength) / 2)^2) * pi; 
    measurements(r).CellCircularity = measurements(r).CellArea / 
circleArea; 
end 
  
% Calculate pairwise distances between all perimeter pixels and the 
cell 
% centroid. Calculate MeanCentroidDist, MaxCentroidDist, 
MinCentroidDist, CVCentroidDist, and VarCentroidDist.  



 88 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 

for s = 1:length(measurements) 
    [I J] = find(measurements(s).CellOutline > 0);      % convert 
perimeter pixels to Euclidean coordinates 
    centroid = measurements(s).CellCentroid;          % cell centroid 
    distances = pdist2([J I], centroid, 'Euclidean'); 
    measurements(s).CellMeanCentroidDist = mean(distances); 
    measurements(s).CellMaxCentroidDist = max(distances); 
    measurements(s).CellMinCentroidDist = min(distances); 
    measurements(s).CellCVCentroidDist = 
(std(distances))/(mean(distances)); 
    measurements(s).CellVarCentroidDist = var(distances); 
end 
   
%smoothness/roughness measurements 
for t = 1:length(measurements) 
    A = measurements(t).CellOutline; 
    H1 = fspecial('gaussian', [10 10], 2); 
    A1 = imfilter(A, H1); 
    A1Thinned = bwmorph(A1, 'thin', inf); 
    A1Filled = imfill(A1Thinned, 'holes'); 
    SE1 = strel('disk', 1); 
    A1Eroded = imerode(A1Filled, SE1); 
    A1Dilated = imdilate(A1Eroded, SE1); 
    L1 = bwlabel(A1Dilated); 
    stats1 = regionprops(L1, 'Area', 'Perimeter', 'PixelIdxList'); 
    u = cat(1, stats1.Area); 
    w = find(u == max(u)); 
    A1Cleaned = zeros(size(A)); 
    A1Cleaned(stats1(w).PixelIdxList) = 65535; 
    figure 
    subplot(1,2,1), imshow(A), title('original') 
    subplot(1,2,2), imshow(A1Cleaned), title('low smooth') 
    askyesno = sprintf('This is the low smoothed outline. Enter 1 to 
accept. ');    
    yesno = input(askyesno); 
    if yesno == 1 
        close all 
    end 
    measurements(t).CellLowSmoothMask = A1Cleaned; 
    measurements(t).CellLowSmoothArea = stats1(w).Area; 
    measurements(t).CellLowSmoothPerimeter = stats1(w).Perimeter; 
    measurements(t).CellLowSmoothOrigAreaChange = (stats1(w).Area - 
measurements(t).CellArea); 
    measurements(t).CellLowSmoothOrigAreaChangeRel = 
(measurements(t).CellLowSmoothOrigAreaChange / 
measurements(t).CellArea); 
    measurements(t).CellLowSmoothOrigPerimeterChange = 
(stats1(w).Perimeter - measurements(t).CellPerimeter); 
    measurements(t).CellLowSmoothOrigPerimeterChangeRel = 
(measurements(t).CellLowSmoothOrigPerimeterChange / 
measurements(t).CellPerimeter); 
    measurements(t).CellLowSmoothOrigAreaRatio = (stats1(w).Area / 
measurements(t).CellArea); 
    measurements(t).CellLowSmoothOrigPerimeterRatio = 
(stats1(w).Perimeter / measurements(t).CellPerimeter); 
    H2 = fspecial('gaussian', [20 20], 2); 
    A2 = imfilter(A, H2); 
    A2Thinned = bwmorph(A2, 'thin', inf); 
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    A2Filled = imfill(A2Thinned, 'holes'); 
    SE2 = strel('disk', 1); 
    A2Eroded = imerode(A2Filled, SE2); 
    A2Dilated = imdilate(A2Eroded, SE2); 
    L2 = bwlabel(A2Dilated); 
    stats2 = regionprops(L2, 'Area', 'Perimeter', 'PixelIdxList'); 
    x = cat(1, stats2.Area); 
    z = find(x == max(x)); 
    A2Cleaned = zeros(size(A)); 
    A2Cleaned(stats2(z).PixelIdxList) = 65535; 
    figure 
    subplot(1,2,1), imshow(A), title('original') 
    subplot(1,2,2), imshow(A2Cleaned), title('high smooth') 
    askyesno = sprintf('This is the high smoothed outline. Enter 1 to 
accept. ');    
    yesno = input(askyesno); 
    if yesno == 1 
        close all 
    end 
    measurements(t).CellHighSmoothMask = A2Cleaned; 
    measurements(t).CellHighSmoothArea = stats2(z).Area; 
    measurements(t).CellHighSmoothPerimeter = stats2(z).Perimeter; 
    measurements(t).CellHighSmoothOrigAreaChange = (stats2(z).Area - 
measurements(t).CellArea); 
    measurements(t).CellHighSmoothOrigAreaChangeRel = 
(measurements(t).CellHighSmoothOrigAreaChange / 
measurements(t).CellArea); 
    measurements(t).CellHighSmoothOrigPerimeterChange = 
(stats2(z).Perimeter - measurements(t).CellPerimeter); 
    measurements(t).CellHighSmoothOrigPerimeterChangeRel = 
(measurements(t).CellHighSmoothOrigPerimeterChange / 
measurements(t).CellPerimeter); 
    measurements(t).CellHighSmoothOrigAreaRatio = (stats2(z).Area / 
measurements(t).CellArea); 
    measurements(t).CellHighSmoothOrigPerimeterRatio = 
(stats2(z).Perimeter / measurements(t).CellPerimeter); 
end 
  
close all 
  
save('WT_cellsizeshape.mat', 'measurements') 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A3. Cell morphometric feature extraction algorithm. Script written in MATLAB 2014b to extract 
morphometric features from microtubule cytoskeletal-based fluorescence. 
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% Algorithm to analyze textural/spatial distribution features of the 
% cell/cytoskeleton. 
% Revised 03/02/2017 by Amy Chang (Marshall Lab, UCSF) 
  
load('WT_nucsizeshape.mat') 
  
%Textural calculations (Haralick features). 
  
for a = 1:length(measurements) 
    CellImage = measurements(a).CellImage; 
    CellMask = measurements(a).CellMask; 
    CellImageNoBG = CellImage; 
    CellImageNoBG(CellMask == 0) = 0; 
    measurements(a).CellImageNoBG = CellImageNoBG; 
    CellImageFull = CellImage; 
    CellImageFull(CellMask == 0) = 65535;                   %set bg 
pixels to 65536 so they show up in (16, 16) of the GSCM; true low bin 
interacting pixels are revealed in (1,1) 
    K = unique(CellImageNoBG); 
    minpixel = K(2); 
    maxpixel = max(K); 
    offsets = [0 1; -1 1;-1 0;-1 -1]; 
    glcmsFull = graycomatrix(CellImageFull, 'NumLevel', 16, 
'GrayLimits', [minpixel maxpixel], 'Symmetric', true, 'Offset', 
offsets); 
    glcmsnoBG = graycomatrix(CellImageNoBG, 'NumLevel', 16, 
'GrayLimits', [minpixel maxpixel], 'Symmetric', true, 'Offset', 
offsets);    
    glcmsTrue = glcmsnoBG; 
    for b = 1:4 
        glcmsTrue(1,1,b) = glcmsFull(1,1,b); 
    end 
    stats = graycoprops(glcmsTrue); 
    measurements(a).CellContrast = stats.Contrast; 
    measurements(a).CellMeanContrast = mean(stats.Contrast); 
    measurements(a).CellMinContrast = min(stats.Contrast); 
    measurements(a).CellMaxContrast = max(stats.Contrast); 
    measurements(a).CellCVContrast = (std(stats.Contrast) / 
mean(stats.Contrast)); 
    measurements(a).CellVarContrast = var(stats.Contrast); 
    measurements(a).CellCorrelation = stats.Correlation; 
    measurements(a).CellMeanCorrelation = mean(stats.Correlation); 
    measurements(a).CellMinCorrelation = min(stats.Correlation); 
    measurements(a).CellMaxCorrelation = max(stats.Correlation); 
    measurements(a).CellCVCorrelation = (std(stats.Correlation) / 
mean(stats.Correlation)); 
    measurements(a).CellVarCorrelation = var(stats.Correlation); 
    measurements(a).CellEnergy = stats.Energy; 
    measurements(a).CellMeanEnergy = mean(stats.Energy); 
    measurements(a).CellMinEnergy = min(stats.Energy); 
    measurements(a).CellMaxEnergy = max(stats.Energy); 
    measurements(a).CellCVEnergy = (std(stats.Energy) / 
mean(stats.Energy)); 
    measurements(a).CelVarEnergy = var(stats.Energy);  
    measurements(a).CellHomogeneity = stats.Homogeneity; 
    measurements(a).CellMeanHomogeneity = mean(stats.Homogeneity); 
    measurements(a).CellMinHomogeneity = min(stats.Homogeneity); 
    measurements(a).CellMaxHomogeneity = max(stats.Homogeneity); 
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    measurements(a).CellCVHomogeneity = (std(stats.Homogeneity) / 
mean(stats.Homogeneity)); 
    measurements(a).CellVarHomogeneity = var(stats.Homogeneity);  
end 
  
%Radial distribution calculations. 
for c = 1:length(measurements) 
    NucCentroid = measurements(c).NucCentroid; 
    [J, I] = ind2sub(size(measurements(c).CellImage), 
measurements(c).CellOutlinePixels); %J is rows, I is columns (from top 
left) 
    D = pdist2(NucCentroid, [I J], 'euclidean');         %Euclidean 
distances between nuclear centroid and all perimeter pixels 
    maxD = max(D);                                      %maximum 
distance between nuclear centroid and perimeter 
    [Y, X] = ind2sub(size(measurements(c).CellImage), 
transpose(1:numel(measurements(c).CellImage)));    
    Dall = pdist2(NucCentroid, [X Y], 'euclidean');     %distances 
between nuclear centroid and ALL pixels in image rectangle 
    Disc1Pos = find(Dall < maxD/4); 
    disc1 = []; 
    cellimage = measurements(c).CellImageNoBG; 
    total = sum(sum(measurements(c).CellImageNoBG));    %sum of all 
intensities within the cell (background set to 0) 
    for d = 1:length(Disc1Pos) 
        disc1 = [disc1 cellimage(Disc1Pos(d))]; 
    end 
    measurements(c).CellFracTotalDisc1 = sum(disc1)/total; 
    measurements(c).CellCVDisc1 = std(double(disc1)) / mean(disc1); 
    measurements(c).CellVarDisc1 = var(double(disc1)); 
    Disc2Pos = find(Dall < maxD/2); 
    disc2 = []; 
    for d = 1:length(Disc2Pos) 
        disc2 = [disc2 cellimage(Disc2Pos(d))]; 
    end 
    measurements(c).CellFracTotalDisc2 = sum(disc2)/total; 
    measurements(c).CellCVDisc2 = std(double(disc2)) / mean(disc2); 
    measurements(c).CellVarDisc2 = var(double(disc2)); 
    Disc3Pos = find(Dall < maxD*3/4); 
    disc3 = []; 
    for d = 1:length(Disc3Pos) 
        disc3 = [disc3 cellimage(Disc3Pos(d))]; 
    end 
    measurements(c).CellFracTotalDisc3 = sum(disc3)/total; 
    measurements(c).CellCVDisc3 = std(double(disc3)) / mean(disc3); 
    measurements(c).CellVarDisc3 = var(double(disc3)); 
    Disc4Pos = find(Dall < maxD); 
    disc4 = []; 
    for d = 1:length(Disc4Pos) 
        disc4 = [disc4 cellimage(Disc4Pos(d))]; 
    end 
    measurements(c).CellFracTotalDisc4 = sum(disc4)/total; 
    measurements(c).CellCVDisc4 = std(double(disc4)) / mean(disc4); 
    measurements(c).CellVarDisc4 = var(double(disc4)); 
end 
  
save('WT_celltexture.mat', 'measurements') 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A4. Cell textural feature extraction algorithm. Script written in MATLAB 2014b to extract textural 
features from microtubule cytoskeletal-based fluorescence. 
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% This is an algorithm to segment the nucleus and run shape/size 
analyses. 
% Revised 03/02/2017 by Amy Chang (Marshall Lab, UCSF) 
  
load('WT_cellsizeshape.mat') 
  
for a = 1:length(measurements) 
    filename = measurements(a).OriginalFilename; 
    composite = imread(filename); 
    DAPI = composite(:,:,3); 
    DAPIAdjusted = imadjust(DAPI); 
    BW = edge(DAPIAdjusted, 'sobel'); 
    se90 = strel('line', 6, 90); 
    se0 = strel('line', 6, 0); 
    BWdilate = imdilate(BW, [se90, se0]); 
    BWfill = imfill(BWdilate, 'holes'); 
    seD = strel('diamond', 1); 
    BWsmooth = imerode(BWfill, seD); 
    L = bwlabel(BWsmooth); 
    stats = regionprops(L, 'Area', 'PixelIdxList'); 
    areas = cat(1, stats.Area); 
    b = find(areas == max(areas)); 
    BWsmooth_clean = zeros(size(BWsmooth)); 
    BWsmooth_clean(stats(b).PixelIdxList) = 
BWsmooth(stats(b).PixelIdxList); 
    BWoutline = bwperim(BWsmooth_clean); 
    figure 
    subplot(1,2,1), imshow(imfuse(measurements(a).CellOutline, 
DAPIAdjusted)), title('DAPI, contrast adjusted') 
    subplot(1,2,2), imshow(imfuse(BWoutline, DAPIAdjusted)), 
title('segmented') 
    askyesno = sprintf('This is the nuclear segmentation. Enter 1 to 
accept or 0 to reject. '); 
    yesno = input(askyesno);   
    while yesno == 0 
        figure, imshow(mat2gray(DAPI)); 
        h2 = imcontrast(gca); 
        waitfor(h2) 
        DAPImanual = getimage(gca); 
        BW = edge(DAPImanual, 'sobel'); 
        BWdilate = imdilate(BW, [se90, se0]); 
        BWfill = imfill(BWdilate, 'holes'); 
        BWsmooth = imerode(BWfill, seD); 
        L = bwlabel(BWsmooth); 
        stats = regionprops(L, 'Area', 'PixelIdxList'); 
        areas = cat(1, stats.Area); 
        c = find(areas == max(areas)) 
        BWsmooth_clean = zeros(size(BWsmooth)); 
        BWsmooth_clean(stats(c).PixelIdxList) = 
BWsmooth(stats(c).PixelIdxList); 
        BWoutline = bwperim(BWsmooth_clean); 
        figure 
        subplot(1,2,1), imshow(imfuse(measurements(a).CellOutline, 
DAPIAdjusted)), title('DAPI, contrast adjusted') 
        subplot(1,2,2), imshow(imfuse(BWoutline, DAPIAdjusted)), 
title('segmented') 
        askyesno = sprintf('Is the segmentation acceptable? (0 = No, 1 
= Yes) '); 
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        yesno = input(askyesno); 
    end 
    measurements(a).NucImage = DAPI; 
    nucOutline = zeros(size(DAPI)); 
    nucOutline(BWoutline) = 65535; 
    measurements(a).NucOutline = nucOutline; 
    LOutline = bwlabel(nucOutline); 
    statsOutline = regionprops(LOutline, 'PixelIdxList'); 
    measurements(a).NucOutlinePixels = statsOutline.PixelIdxList; 
    nucFilled = imfill(nucOutline); 
    measurements(a).NucMask = nucFilled; 
    figure, imshow(imfuse(measurements(a).CellOutline, DAPIAdjusted)) 
    nucnumber = input('How many nuclei are there? '); 
    measurements(a).NucNumber = nucnumber; 
    L_clean = bwlabel(BWsmooth_clean); 
    stats_clean = regionprops(L_clean, 'Area', 'Centroid', 
'ConvexArea', 'ConvexHull', ... 
                                        'ConvexImage', 'Eccentricity', 
'EquivDiameter', ... 
                                        'MajorAxisLength', 
'MinorAxisLength', 'Perimeter', ... 
                                        'PixelList', 'Solidity'); 
    measurements(a).NucArea = stats_clean.Area; 
    measurements(a).NucMeanArea = (stats_clean.Area) / nucnumber; 
    measurements(a).NucCellAreaRatio = stats_clean.Area / 
measurements(a).CellArea; 
    measurements(a).NucCentroid = stats_clean.Centroid; 
    measurements(a).NucCellCentroidDist = 
pdist2(measurements(a).NucCentroid, measurements(a).CellCentroid, 
'Euclidean'); 
    measurements(a).NucConvexArea = stats_clean.ConvexArea; 
    measurements(a).NucConvexHull = stats_clean.ConvexHull; 
    measurements(a).NucConvexImage = stats_clean.ConvexImage; 
    measurements(a).NucEccentricity = stats_clean.Eccentricity; 
    measurements(a).NucEquivDiameterArea = stats_clean.EquivDiameter; 
    measurements(a).NucMajorAxisLength = stats_clean.MajorAxisLength; 
    measurements(a).NucMinorAxisLength = stats_clean.MinorAxisLength; 
    measurements(a).NucPerimeter = stats_clean.Perimeter; 
    measurements(a).NucMeanPerimeter = (stats_clean.Perimeter) / 
nucnumber; 
    measurements(a).NucCellPerimeterRatio = stats_clean.Perimeter / 
measurements(a).CellPerimeter; 
    measurements(a).NucPixelList = stats_clean.PixelList; 
    measurements(a).NucSolidity = stats_clean.Solidity; 
    close all 
end 
  
  
% Calculate parameters not included in the 'regionprops' function of 
MATLAB. 
  
% Calculate ConvexPerimeter, the perimeter of the convex hull. 
for n = 1:length(measurements) 
    A = measurements(n).NucConvexImage; 
    L = bwlabel(A); 
    convexLabel = regionprops(L, 'Perimeter'); 
    measurements(n).NucConvexPerimeter = convexLabel.Perimeter; 
end 
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% Calculate EquivDiameterPerim, the diameter of an equivalent perimeter 
circle 
for p = 1:length(measurements) 
    perimeter = measurements(p).NucPerimeter;     % perimeter of a 
circle is pi*diameter 
    diameter = perimeter / pi; 
    measurements(p).NucEquivDiameterPerim = diameter; 
end 
     
% Calculate ratio between the major axis and minor axis lengths. 
for q = 1:length(measurements) 
    ratioMajorMinor = (measurements(q).NucMajorAxisLength) / 
(measurements(q).NucMinorAxisLength); 
    measurements(q).NucRatioMajorMinor = ratioMajorMinor; 
end 
  
% Calculate the area filled by the nucleus vs area of a circle w/ 
diameter 
% equal to the major axis length (a rough measure of the "circularity" 
of the object). 
for r = 1:length(measurements) 
    circleArea = (((measurements(r).NucMajorAxisLength) / 2)^2) * pi; 
    measurements(r).NucCircularity = measurements(r).NucArea / 
circleArea; 
end 
  
% Calculate pairwise distances between all perimeter pixels and the 
nucleus 
% centroid. Calculate MeanCentroidDist, MaxCentroidDist, 
MinCentroidDist, CVCentroidDist, and VarCentroidDist.  
for s = 1:length(measurements) 
    [I J] = find(measurements(s).NucOutline > 0);      % convert 
perimeter pixels to Euclidean coordinates 
    centroid = measurements(s).NucCentroid;          % cell centroid 
    distances = pdist2([J I], centroid, 'Euclidean'); 
    measurements(s).NucMeanCentroidDist = mean(distances); 
    measurements(s).NucMaxCentroidDist = max(distances); 
    measurements(s).NucMinCentroidDist = min(distances); 
    measurements(s).NucCVCentroidDist = 
(std(distances))/(mean(distances)); 
    measurements(s).NucVarCentroidDist = var(distances); 
end 
  
%smoothness/roughness measurements 
for t = 1:length(measurements) 
    A = measurements(t).NucOutline; 
    H1 = fspecial('gaussian', [5 5], 2); 
    A1 = imfilter(A, H1); 
    A1Thinned = bwmorph(A1, 'thin', inf); 
    A1Filled = imfill(A1Thinned, 'holes'); 
    SE1 = strel('disk', 1); 
    A1Eroded = imerode(A1Filled, SE1); 
    A1Dilated = imdilate(A1Eroded, SE1); 
    L1 = bwlabel(A1Dilated); 
    stats1 = regionprops(L1, 'Area', 'Perimeter', 'PixelIdxList'); 
    u = cat(1, stats1.Area); 
    w = find(u == max(u)); 
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    A1Cleaned = zeros(size(A)); 
    A1Cleaned(stats1(w).PixelIdxList) = 65535; 
    figure 
    subplot(1,2,1), imshow(A), title('original') 
    subplot(1,2,2), imshow(A1Cleaned), title('low smooth') 
    askyesno = sprintf('This is the low smoothed outline. Enter 1 to 
accept. ');    
    yesno = input(askyesno); 
    if yesno == 1 
        close all 
    end 
    measurements(t).NucLowSmoothMask = A1Cleaned; 
    measurements(t).NucLowSmoothArea = stats1(w).Area; 
    measurements(t).NucLowSmoothPerimeter = stats1(w).Perimeter; 
    measurements(t).NucLowSmoothOrigAreaChange = (stats1(w).Area - 
measurements(t).NucArea); 
    measurements(t).NucLowSmoothOrigAreaChangeRel = 
(measurements(t).NucLowSmoothOrigAreaChange / measurements(t).NucArea); 
    measurements(t).NucLowSmoothOrigPerimeterChange = 
(stats1(w).Perimeter - measurements(t).NucPerimeter); 
    measurements(t).NucLowSmoothOrigPerimeterChangeRel = 
(measurements(t).NucLowSmoothOrigPerimeterChange / 
measurements(t).NucPerimeter); 
    measurements(t).NucLowSmoothOrigAreaRatio = (stats1(w).Area / 
measurements(t).NucArea); 
    measurements(t).NucLowSmoothOrigPerimeterRatio = 
(stats1(w).Perimeter / measurements(t).NucPerimeter); 
    H2 = fspecial('gaussian', [10 10], 2); 
    A2 = imfilter(A, H2); 
    A2Thinned = bwmorph(A2, 'thin', inf); 
    A2Filled = imfill(A2Thinned, 'holes'); 
    SE2 = strel('disk', 1); 
    A2Eroded = imerode(A2Filled, SE2); 
    A2Dilated = imdilate(A2Eroded, SE2); 
    L2 = bwlabel(A2Dilated); 
    stats2 = regionprops(L2, 'Area', 'Perimeter', 'PixelIdxList'); 
    x = cat(1, stats2.Area); 
    z = find(x == max(x)); 
    A2Cleaned = zeros(size(A)); 
    A2Cleaned(stats2(z).PixelIdxList) = 65535; 
    figure 
    subplot(1,2,1), imshow(A), title('original') 
    subplot(1,2,2), imshow(A2Cleaned), title('high smooth') 
    askyesno = sprintf('This is the high smoothed outline. Enter 1 to 
accept. ');    
    yesno = input(askyesno); 
    if yesno == 1 
        close all 
    end 
    measurements(t).NucHighSmoothMask = A2Cleaned; 
    measurements(t).NucHighSmoothArea = stats2(z).Area; 
    measurements(t).NucHighSmoothPerimeter = stats2(z).Perimeter; 
    measurements(t).NucHighSmoothOrigAreaChange = (stats2(z).Area - 
measurements(t).NucArea); 
    measurements(t).NucHighSmoothOrigAreaChangeRel = 
(measurements(t).NucHighSmoothOrigAreaChange / 
measurements(t).NucArea); 
    measurements(t).NucHighSmoothOrigPerimeterChange = 
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(stats2(z).Perimeter - measurements(t).NucPerimeter); 
    measurements(t).NucHighSmoothOrigPerimeterChangeRel = 
(measurements(t).NucHighSmoothOrigPerimeterChange / 
measurements(t).NucPerimeter); 
    measurements(t).NucHighSmoothOrigAreaRatio = (stats2(z).Area / 
measurements(t).NucArea); 
    measurements(t).NucHighSmoothOrigPerimeterRatio = 
(stats2(z).Perimeter / measurements(t).NucPerimeter); 
end 
  
save('WT_nucsizeshape.mat', 'measurements') 
  
  
  
  
  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A5. Nucleus morphometric feature extraction algorithm. Script written in MATLAB 2014b to extract 
morphometric features from nucleus-based fluorescence. 
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% Algorithm to analyze textural/spatial distribution features of the 
% nucleus. 
% Revised 03/02/2017 by Amy Chang (Marshall Lab, UCSF) 
  
load('WT_celltexture.mat') 
  
%Textural calculations (Haralick features). 
  
for a = 1:length(measurements) 
    NucImage = measurements(a).NucImage; 
    NucMask = measurements(a).NucMask; 
    NucImageNoBG = NucImage; 
    NucImageNoBG(NucMask == 0) = 0; 
    measurements(a).NucImageNoBG = NucImageNoBG; 
    NucImageFull = NucImage; 
    NucImageFull(NucMask == 0) = 65535;                   %set bg 
pixels to 65536 so they show up in (16, 16) of the GSCM; true low bin 
interacting pixels are revealed in (1,1) 
    K = unique(NucImageNoBG); 
    minpixel = K(2); 
    maxpixel = max(K); 
    offsets = [0 1; -1 1;-1 0;-1 -1]; 
    glcmsFull = graycomatrix(NucImageFull, 'NumLevel', 16, 
'GrayLimits', [minpixel maxpixel], 'Symmetric', true, 'Offset', 
offsets); 
    glcmsnoBG = graycomatrix(NucImageNoBG, 'NumLevel', 16, 
'GrayLimits', [minpixel maxpixel], 'Symmetric', true, 'Offset', 
offsets);    
    glcmsTrue = glcmsnoBG; 
    for b = 1:4 
        glcmsTrue(1,1,b) = glcmsFull(1,1,b); 
    end 
    stats = graycoprops(glcmsTrue); 
    measurements(a).NucContrast = stats.Contrast; 
    measurements(a).NucMeanContrast = mean(stats.Contrast); 
    measurements(a).NucMinContrast = min(stats.Contrast); 
    measurements(a).NucMaxContrast = max(stats.Contrast); 
    measurements(a).NucCVContrast = (std(stats.Contrast) / 
mean(stats.Contrast)); 
    measurements(a).NucVarContrast = var(stats.Contrast); 
    measurements(a).NucCorrelation = stats.Correlation; 
    measurements(a).NucMeanCorrelation = mean(stats.Correlation); 
    measurements(a).NucMinCorrelation = min(stats.Correlation); 
    measurements(a).NucMaxCorrelation = max(stats.Correlation); 
    measurements(a).NucCVCorrelation = (std(stats.Correlation) / 
mean(stats.Correlation)); 
    measurements(a).NucVarCorrelation = var(stats.Correlation); 
    measurements(a).NucEnergy = stats.Energy; 
    measurements(a).NucMeanEnergy = mean(stats.Energy); 
    measurements(a).NucMinEnergy = min(stats.Energy); 
    measurements(a).NucMaxEnergy = max(stats.Energy); 
    measurements(a).NucCVEnergy = (std(stats.Energy) / 
mean(stats.Energy)); 
    measurements(a).NucVarEnergy = var(stats.Energy);  
    measurements(a).NucHomogeneity = stats.Homogeneity; 
    measurements(a).NucMeanHomogeneity = mean(stats.Homogeneity); 
    measurements(a).NucMinHomogeneity = min(stats.Homogeneity); 
    measurements(a).NucMaxHomogeneity = max(stats.Homogeneity); 
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    measurements(a).NucCVHomogeneity = (std(stats.Homogeneity) / 
mean(stats.Homogeneity)); 
    measurements(a).NucVarHomogeneity = var(stats.Homogeneity);  
end 
  
%Radial distribution calculations. 
for c = 1:length(measurements) 
    NucCentroid = measurements(c).NucCentroid; 
    [J, I] = ind2sub(size(measurements(c).CellImage), 
measurements(c).NucOutlinePixels); %J is rows, I is columns (from top 
left) 
    D = pdist2(NucCentroid, [I J], 'euclidean');         %Euclidean 
distances between nuclear centroid and all perimeter pixels 
    maxD = max(D);                                      %maximum 
distance between nuclear centroid and perimeter 
    [Y, X] = ind2sub(size(measurements(c).CellImage), 
transpose(1:numel(measurements(c).CellImage)));    
    Dall = pdist2(NucCentroid, [X Y], 'euclidean');     %distances 
between nuclear centroid and ALL pixels in image rectangle 
    Disc1Pos = find(Dall < maxD/4); 
    disc1 = []; 
    nucimage = measurements(c).NucImageNoBG; 
    total = sum(sum(measurements(c).NucImageNoBG));    %sum of all 
intensities within the nucleus (cell and background set to 0) 
    for d = 1:length(Disc1Pos) 
        disc1 = [disc1 nucimage(Disc1Pos(d))]; 
    end 
    measurements(c).NucFracTotalDisc1 = sum(disc1)/total; 
    measurements(c).NucCVDisc1 = std(double(disc1)) / mean(disc1); 
    measurements(c).NucVarDisc1 = var(double(disc1)); 
    Disc2Pos = find(Dall < maxD/2); 
    disc2 = []; 
    for d = 1:length(Disc2Pos) 
        disc2 = [disc2 nucimage(Disc2Pos(d))]; 
    end 
    measurements(c).NucFracTotalDisc2 = sum(disc2)/total; 
    measurements(c).NucCVDisc2 = std(double(disc2)) / mean(disc2); 
    measurements(c).NucVarDisc2 = var(double(disc2)); 
    Disc3Pos = find(Dall < maxD*3/4); 
    disc3 = []; 
    for d = 1:length(Disc3Pos) 
        disc3 = [disc3 nucimage(Disc3Pos(d))]; 
    end 
    measurements(c).NucFracTotalDisc3 = sum(disc3)/total; 
    measurements(c).NucCVDisc3 = std(double(disc3)) / mean(disc3); 
    measurements(c).NucVarDisc3 = var(double(disc3)); 
    Disc4Pos = find(Dall < maxD); 
    disc4 = []; 
    for d = 1:length(Disc4Pos) 
        disc4 = [disc4 nucimage(Disc4Pos(d))]; 
    end 
    measurements(c).NucFracTotalDisc4 = sum(disc4)/total; 
    measurements(c).NucCVDisc4 = std(double(disc4)) / mean(disc4); 
    measurements(c).NucVarDisc4 = var(double(disc4)); 
end 
  
save('WT_nuctexture.mat', 'measurements') 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A6. Nucleus textural feature extraction algorithm. Script written in MATLAB 2014b to extract textural 
features from nucleus-based fluorescence. 
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% This algorithm calculates mitochondrial morphology parameters 
including 
% network parameters and texture/spatial distribution measurements. 
% Revised 03/02/2017 by Amy Chang (Marshall Lab, UCSF) 
  
load('WT_nuctexture.mat') 
  
for a = 1:length(measurements) 
    segmented = imread(measurements(a).SegmentedFilename); 
    FITC = segmented(:,:,1); 
    cellmask = measurements(a).CellMask; 
    FITCnoBG = FITC; 
    FITCnoBG(cellmask == 0) = 0; 
    thresh = isodata(imadjust(FITCnoBG)); 
    BW = im2bw(imadjust(FITCnoBG), thresh);  
    figure 
    subplot(1,2,1), imshow(imadjust(FITCnoBG)), title('original FITC, 
adjusted') 
    subplot(1,2,2), imshow(BW), title('thresholded with automatic 
threshold') 
    askyesno = sprintf('This is the mitochondria segmentation. Enter 1 
to accept or 0 to reject. '); 
    yesno = input(askyesno);   
    while yesno == 0 
        figure, imshow(mat2gray(FITCnoBG)); 
        h2 = imcontrast(gca); 
        waitfor(h2) 
        FITCmanual = getimage(gca); 
        threshManual = isodata(imadjust(FITCmanual)); 
        BW = im2bw(imadjust(FITCmanual), threshManual);  
        figure, imshow(BW) 
        askyesno = sprintf('Is the segmentation acceptable? (0 = No, 1 
= Yes) '); 
        yesno = input(askyesno); 
    end 
    close all 
    L = bwlabel(BW); 
    stats = regionprops(L, 'Area', 'Centroid', 'Perimeter', 
'PixelIdxList'); 
    areas = cat(1, stats.Area); 
    perimeters = cat(1, stats.Perimeter); 
    centroids = []; 
    for b = 1:length(stats) 
        centroids = [centroids; stats(b).Centroid]; 
    end 
    measurements(a).MitoImage = FITC; 
    measurements(a).MitoImageNoBG = FITCnoBG; 
    measurements(a).MitoMask = BW; 
    measurements(a).MitoPixels = cat(1, stats.PixelIdxList); 
    measurements(a).MitoNumber = length(stats); 
    measurements(a).MitoSumArea = sum(areas); 
    measurements(a).MitoMeanArea = mean(areas); 
    measurements(a).MitoMedianArea = median(areas); 
    measurements(a).MitoMaxArea = max(areas); 
    measurements(a).MitoMinArea = min(areas); 
    measurements(a).MitoCVArea = std(areas) / mean(areas); 
    measurements(a).MitoVarArea = var(areas); 
    measurements(a).MitoCellAreaRatio = sum(areas) / 
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measurements(a).CellArea; 
    measurements(a).MitoSumPerimeter = sum(perimeters); 
    measurements(a).MitoMeanPerimeter = mean(perimeters); 
    measurements(a).MitoMedianPerimeter = median(perimeters); 
    measurements(a).MitoMaxPerimeter = max(perimeters); 
    measurements(a).MitoMinPerimeter = min(perimeters); 
    measurements(a).MitoCVPerimeter = std(perimeters) / 
mean(perimeters); 
    measurements(a).MitoVarPerimeter = var(perimeters); 
    measurements(a).MitoCellPerimeterRatio = sum(perimeters) / 
measurements(a).CellPerimeter; 
    weightedcentroids = []; 
    for c = 1:length(stats) 
        weightedcentroids = [weightedcentroids; 
stats(c).Centroid*stats(c).Area]; 
    end 
    measurements(a).MitoCentroid = sum(weightedcentroids)/sum(areas); 
    measurements(a).MitoCellCentroidDist = 
pdist2(measurements(a).MitoCentroid, measurements(a).CellCentroid, 
'Euclidean'); 
    measurements(a).MitoNucCentroidDist = 
pdist2(measurements(a).MitoCentroid, measurements(a).NucCentroid, 
'Euclidean'); 
    skeleton = bwmorph(BW, 'skel', Inf); 
    figure 
    subplot(1,2,1), imshow(BW), title('segmented mitochondria') 
    subplot(1,2,2), imshow(skeleton), title('skeletonized') 
    statsskel = regionprops(skeleton, 'Area', 'PixelIdxList'); 
    skelareas = cat(1, statsskel.Area); 
    sumskel = sum(skelareas); 
    measurements(a).MitoObjSkelRatio = measurements(a).MitoSumArea / 
sumskel; 
    branchpoints = bwmorph(skeleton, 'branchpoints'); 
    endpoints = bwmorph(skeleton, 'endpoints'); 
    measurements(a).MitoNumBranchpoints = sum(sum(branchpoints)); 
    measurements(a).MitoNumEndpoints = sum(sum(endpoints)); 
    diff = skeleton - branchpoints; 
    mitoFused = zeros(size(FITC)); 
    mitoFragmented = zeros(size(FITC)); 
    IdxBranchpoints = find(branchpoints == 1); 
    for d = 1:length(stats) 
        if isempty(intersect(stats(d).PixelIdxList, IdxBranchpoints)) 
== 0        %if not empty, there is an intersection, and it is a fused 
object 
            mitoFused(stats(d).PixelIdxList) = 1; 
        elseif isempty(intersect(stats(d).PixelIdxList, 
IdxBranchpoints)) == 1 
            mitoFragmented(stats(d).PixelIdxList) = 1; 
        end 
    end 
    figure 
    subplot(1,2,1), imshow(mitoFused), title('fused mitochondria'); 
    subplot(1,2,2), imshow(mitoFragmented), title('fragmented 
mitochondria'); 
    measurements(a).MitoFusedMask = mitoFused; 
    measurements(a).MitoFragmentedMask = mitoFragmented; 
    measurements(a).MitoMaskFull = mitoFused + mitoFragmented; 
    LFused = bwlabel(mitoFused); 
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    statsFused = regionprops(LFused, 'Area'); 
    areasFused = cat(1, statsFused.Area); 
    totalArea = sum(sum(measurements(a).MitoMaskFull)); 
    measurements(a).MitoNumberFused = length(statsFused); 
    measurements(a).MitoMeanFusedArea = mean(areasFused); 
    measurements(a).MitoMaxFusedArea = max(areasFused); 
    measurements(a).MitoMinFusedArea = min(areasFused); 
    measurements(a).MitoCVFusedArea = std(areasFused) / 
mean(areasFused); 
    measurements(a).MitoVarFusedArea = var(areasFused); 
    measurements(a).MitoPercentFusedTotalArea = sum(areasFused) / 
totalArea;  
    LFragmented = bwlabel(mitoFragmented); 
    statsFragmented = regionprops(LFragmented, 'Area'); 
    areasFragmented = cat(1, statsFragmented.Area); 
    measurements(a).MitoNumberFragmented = length(statsFragmented); 
    measurements(a).MitoMeanFragmentedArea = mean(areasFragmented); 
    measurements(a).MitoMaxFragmentedArea = max(areasFragmented); 
    measurements(a).MitoMinFragmentedArea = min(areasFragmented); 
    measurements(a).MitoCVFragmentedArea = std(areasFragmented) / 
mean(areasFragmented); 
    measurements(a).MitoVarFragmentedArea = var(areasFragmented);  
    measurements(a).MitoRatioFusedFragmented = sum(areasFused) / 
sum(areasFragmented); 
    measurements(a).MitoPercentFragmentedTotalArea = 
sum(areasFragmented) / totalArea;  
    close all 
end 
  
for e = 1:length(measurements) 
    cellmask = measurements(e).CellMask; 
    mitoImageNoBG = measurements(e).MitoImageNoBG; 
    mitoImageFull = mitoImageNoBG; 
    mitoImageFull(cellmask == 0) = 65535;               %set bg pixels 
to 65536 so they show up in (16, 16) of the GSCM; true low bin 
interacting pixels are revealed in (1,1) 
    K = unique(mitoImageNoBG); 
    minpixel = K(2); 
    maxpixel = max(K); 
    offsets = [0 1; -1 1;-1 0;-1 -1]; 
    glcmsFull = graycomatrix(mitoImageFull, 'NumLevel', 16, 
'GrayLimits', [minpixel maxpixel], 'Symmetric', true, 'Offset', 
offsets); 
    glcmsnoBG = graycomatrix(mitoImageNoBG, 'NumLevel', 16, 
'GrayLimits', [minpixel maxpixel], 'Symmetric', true, 'Offset', 
offsets);    
    glcmsTrue = glcmsnoBG; 
    for b = 1:4 
        glcmsTrue(1,1,b) = glcmsFull(1,1,b); 
    end 
    stats = graycoprops(glcmsTrue); 
    measurements(e).MitoContrast = stats.Contrast; 
    measurements(e).MitoMeanContrast = mean(stats.Contrast); 
    measurements(e).MitoMinContrast = min(stats.Contrast); 
    measurements(e).MitoMaxContrast = max(stats.Contrast); 
    measurements(e).MitoCVContrast = (std(stats.Contrast) / 
mean(stats.Contrast)); 
    measurements(e).MitoVarContrast = var(stats.Contrast); 
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    measurements(e).MitoCorrelation = stats.Correlation; 
    measurements(e).MitoMeanCorrelation = mean(stats.Correlation); 
    measurements(e).MitoMinCorrelation = min(stats.Correlation); 
    measurements(e).MitoMaxCorrelation = max(stats.Correlation); 
    measurements(e).MitoCVCorrelation = (std(stats.Correlation) / 
mean(stats.Correlation)); 
    measurements(e).MitoVarCorrelation = var(stats.Correlation); 
    measurements(e).MitoEnergy = stats.Energy; 
    measurements(e).MitoMeanEnergy = mean(stats.Energy); 
    measurements(e).MitoMinEnergy = min(stats.Energy); 
    measurements(e).MitoMaxEnergy = max(stats.Energy); 
    measurements(e).MitoCVEnergy = (std(stats.Energy) / 
mean(stats.Energy)); 
    measurements(e).MitoVarEnergy = var(stats.Energy);  
    measurements(e).MitoHomogeneity = stats.Homogeneity; 
    measurements(e).MitoMeanHomogeneity = mean(stats.Homogeneity); 
    measurements(e).MitoMinHomogeneity = min(stats.Homogeneity); 
    measurements(e).MitoMaxHomogeneity = max(stats.Homogeneity); 
    measurements(e).MitoCVHomogeneity = (std(stats.Homogeneity) / 
mean(stats.Homogeneity)); 
    measurements(e).MitoVarHomogeneity = var(stats.Homogeneity);  
end 
  
  
  
  
for f = 1:length(measurements) 
    NucCentroid = measurements(f).NucCentroid; 
    [J, I] = ind2sub(size(measurements(f).CellImage), 
measurements(f).MitoPixels); %J is rows, I is columns (from top left) 
    D = pdist2(NucCentroid, [I J], 'euclidean');         %Euclidean 
distances between nuclear centroid and all mitochondria pixels 
    maxD = max(D);                                      %maximum 
distance between nuclear centroid and any mitochondrial object 
    [Y, X] = ind2sub(size(measurements(f).CellImage), 
transpose(1:numel(measurements(f).CellImage)));    
    Dall = pdist2(NucCentroid, [X Y], 'euclidean');     %distances 
between nuclear centroid and ALL pixels in image rectangle 
    Disc1Pos = find(Dall < maxD/4); 
    disc1 = []; 
    mitoimage = measurements(f).MitoImageNoBG; 
    mitoimage(measurements(f).MitoMask == 0) = 0; 
    total = sum(sum(mitoimage));    %sum of all intensities within the 
nucleus (background set to 0) 
    for d = 1:length(Disc1Pos) 
        disc1 = [disc1 mitoimage(Disc1Pos(d))]; 
    end 
    measurements(f).MitoFracTotalDisc1 = sum(disc1)/total; 
    measurements(f).MitoCVDisc1 = std(double(disc1)) / mean(disc1); 
    measurements(f).MitoVarDisc1 = var(double(disc1)); 
    Disc2Pos = find(Dall < maxD/2); 
    disc2 = []; 
    for d = 1:length(Disc2Pos) 
        disc2 = [disc2 mitoimage(Disc2Pos(d))]; 
    end 
    measurements(f).MitoFracTotalDisc2 = sum(disc2)/total; 
    measurements(f).MitoCVDisc2 = std(double(disc2)) / mean(disc2); 
    measurements(f).MitoVarDisc2 = var(double(disc2)); 



 103 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    Disc3Pos = find(Dall < maxD*3/4); 
    disc3 = []; 
    for d = 1:length(Disc3Pos) 
        disc3 = [disc3 mitoimage(Disc3Pos(d))]; 
    end 
    measurements(f).MitoFracTotalDisc3 = sum(disc3)/total; 
    measurements(f).MitoCVDisc3 = std(double(disc3)) / mean(disc3); 
    measurements(f).MitoVarDisc3 = var(double(disc3)); 
    Disc4Pos = find(Dall < maxD); 
    disc4 = []; 
    for d = 1:length(Disc4Pos) 
        disc4 = [disc4 mitoimage(Disc4Pos(d))]; 
    end 
    measurements(f).MitoFracTotalDisc4 = sum(disc4)/total; 
    measurements(f).MitoCVDisc4 = std(double(disc4)) / mean(disc4); 
    measurements(f).MitoVarDisc4 = var(double(disc4)); 
end 
  
filename = measurements(f).SegmentedFilename 
filesave = strcat('WT_', filename(8:13), '_ALLMEASUREMENTS.mat') 
save(filesave, 'measurements') 
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function level=isodata(I) 
%   ISODATA Compute global image threshold using iterative isodata 
method. 
%   LEVEL = ISODATA(I) computes a global threshold (LEVEL) that can be 
%   used to convert an intensity image to a binary image with IM2BW. 
LEVEL 
%   is a normalized intensity value that lies in the range [0, 1]. 
%   This iterative technique for choosing a threshold was developed by 
Ridler and Calvard . 
%   The histogram is initially segmented into two parts using a 
starting threshold value such as 0 = 2B-1,  
%   half the maximum dynamic range.  
%   The sample mean (mf,0) of the gray values associated with the 
foreground pixels and the sample mean (mb,0)  
%   of the gray values associated with the background pixels are 
computed. A new threshold value 1 is now computed  
%   as the average of these two sample means. The process is repeated, 
based upon the new threshold,  
%   until the threshold value does not change any more.  
   
% 
%   Class Support 
%   ------------- 
%   The input image I can be of class uint8, uint16, or double and it 
%   must be nonsparse.  LEVEL is a double scalar. 
% 
%   Example 
%   ------- 
%       I = imread('blood1.tif'); 
%       level = graythresh(I); 
%       BW = im2bw(I,level); 
%       imshow(BW) 
% 
%   See also IM2BW. 
% 
% Reference :T.W. Ridler, S. Calvard, Picture thresholding using an 
iterative selection method,  
%            IEEE Trans. System, Man and Cybernetics, SMC-8 (1978) 630-
632. 
  
% Convert all N-D arrays into a single column.  Convert to uint8 for 
% fastest histogram computation. 
I = im2uint8(I(:)); 
  
% STEP 1: Compute mean intensity of image from histogram, set T=mean(I) 
[counts,N]=imhist(I); 
i=1; 
mu=cumsum(counts); 
T(i)=(sum(N.*counts))/mu(end); 
T(i)=round(T(i)); 
  
% STEP 2: compute Mean above T (MAT) and Mean below T (MBT) using T 
from 
% step 1 
mu2=cumsum(counts(1:T(i))); 
MBT=sum(N(1:T(i)).*counts(1:T(i)))/mu2(end); 
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mu3=cumsum(counts(T(i):end)); 
MAT=sum(N(T(i):end).*counts(T(i):end))/mu3(end); 
i=i+1; 
% new T = (MAT+MBT)/2 
T(i)=round((MAT+MBT)/2); 
  
% STEP 3 to n: repeat step 2 if T(i)~=T(i-1) 
while abs(T(i)-T(i-1))>=1 
    mu2=cumsum(counts(1:T(i))); 
    MBT=sum(N(1:T(i)).*counts(1:T(i)))/mu2(end); 
     
    mu3=cumsum(counts(T(i):end)); 
    MAT=sum(N(T(i):end).*counts(T(i):end))/mu3(end); 
     
    i=i+1; 
    T(i)=round((MAT+MBT)/2);  
    Threshold=T(i); 
end 
  
 % Normalize the threshold to the range [i, 1]. 
level = (Threshold - 1) / (N(end) - 1); 
  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A7. Mitochondria morphometric and textural feature extraction algorithm. Script written in MATLAB 
2014b to extract morphometric and textural features from mitochondria-based fluorescence. 
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