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Whena transmissionhotspot for an environmentally persistent pathogen estab-
lishes in otherwise high-quality habitat, the disease may exert a strong impact
on a host population. However, fluctuating environmental conditions lead to
heterogeneity in habitat quality and animal habitat preference, which may
interrupt the overlap between selected and risky habitats. We evaluated
spatio-temporal patterns in anthrax mortalities in a plains zebra (Equus
quagga) population in Etosha National Park, Namibia, incorporating remote-
sensing and host telemetry data. A higher proportion of anthrax mortalities
of herbivores was detected in open habitats than in other habitat types.
Resource selection functions showed that the zebra population shifted habitat
selection in response to changes in rainfall and vegetation productivity. Aver-
age to high rainfall years supported larger anthrax outbreaks, with animals
congregating in preferred open habitats, while a severe drought forced animals
into otherwise less preferred habitats, leading to few anthrax mortalities. Thus,
the timing of anthrax outbreaks was congruent with preference for open plains
habitats and a corresponding increase in pathogen exposure. Given shifts in
habitat preference, the overlap in high-quality habitat and high-risk habitat is
intermittent, reducing the adverse consequences for the population.
1. Introduction
Habitat quality is context-dependent [1], where consumers distribute in
response to resource dynamics on a landscape [2–5]. This habitat heterogeneity
in turn affects disease risk owing to uneven distributions in species diversity of
hosts, vectors and reservoirs [6–8], parasite loads [8,9] and abiotic variation
[7,8]. Moving across diverse and dynamic landscapes, mobile hosts may
encounter different rates of pathogen exposure across habitats [10,11]. Bridging
disease dynamics and animal habitat use, therefore, may help understand
variation in transmission dynamics [12].
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Reservoir dynamics of environmentally transmitted
pathogens are likely to depend upon spatial structure,
which would in turn be affected by habitat heterogeneity.
Aggregation of animal hosts in preferred habitats may
‘seed’ the environment with a higher density of pathogen
propagules, maintaining and spreading infection within
higher resource quality habitats [13]. Because pathogens are
unlikely to be detectable by hosts, transmission hotspots
could establish in otherwise high-quality habitat if animals
are attracted to habitat with heightened disease risk [14].
This habitat would be considered an ‘ecological trap’ if habi-
tat selection preferences lead to lower fitness [15–17].
Ecological trap theory has mainly focused on the effects of
predation, food scarcity or anthropogenic disturbance on off-
spring survival [16–18]. However, habitats with high
concentrations of environmentally transmitted pathogens
might also have potential to form ecological traps [13,14].

This study aims to understand the effects of habitat qual-
ity and disease exposure on a susceptible and mobile host
population, coupling habitat heterogeneity in disease risk,
dynamics in habitat quality and host habitat use. We evaluate
whether a population of plains zebra (Equus quagga) suscep-
tible to anthrax experiences an overlap in high-quality habitat
and transmission hotspots, which could potentially lead to
the formation of an ecological trap. Anthrax is a highly
lethal, acute to peracute disease caused by the bacterium,
Bacillus anthracis. Given its lethality, anthrax has potential fit-
ness consequences for the zebra population, by reducing
average fitness of individuals. Although an earlier demo-
graphic study concluded that anthrax may be limiting
growth of this zebra population [19], we cannot assess
whether an anthrax transmission hotspot is also an ecological
trap, because we did not measure fitness differences
among habitats.

Anthrax only transmits via the environment, and not
directly between hosts [20], and hence provides an opport-
unity to evaluate the spatial variation in pathogen
exposure. Transmission relies upon contact with long-lived
spores in soil environmental reservoirs. These reservoirs are
generated from host disease mortality and subsequent
exposure of susceptible hosts through foraging at B. anthra-
cis-laden carcass sites [21–24]. Thus, anthrax is a good
candidate for investigating how an infectious disease could
turn preferred habitat into a disease transmission hotspot.

Here, we explore the overlap between host habitat selec-
tion and areas of heightened anthrax risk, and how
preference and risk change with variation in resource avail-
ability. We hypothesized that (i) habitat quality is variable
in time (i.e. owing to amount of annual precipitation), (ii)
the ranking of available habitats by quality and attractiveness
is not static, but varies based on context, and (iii) for an envir-
onmentally persistent and highly lethal pathogen with only
environmental transmission, animals are subject to an
overlap in habitats of both high quality and high disease
risk—but only sometimes, depending on environmental con-
ditions. Periods of environmental fluctuation that allow
reprieve from the transmission hotspot will reduce exposure
and the number of pathogen-induced mortalities affecting
the population. We first assessed variation in risk of contact-
ing B. anthracis by habitat type. We then tested the
relationships among habitat dynamics, zebra resource selec-
tion among habitats with differential risk, and anthrax
mortalities, to evaluate how fluctuating habitat quality
affects host habitat use and pathogen exposure, and in
turn disease dynamics.
2 Methods
(a) Study area and periods
Our study was conducted during two time periods (2009–2010;
2018–2020) in Etosha National Park (ENP), a fenced 22 270 km2

reserve located in northern Namibia (figure 1a). ENP is a
semi-arid savannah, with three seasons: cool dry season in
May–August, hot semi-dry season in September–December and
hot wet season in January–April. Rainfall is strongly seasonal
and occurs mainly between November and April, with the great-
est monthly rainfall occurring in January and February [25].
There is a west–east rainfall gradient, increasing from an average
of 200 to 450 mm yr−1. The average annual rainfall in the central
area is 358.0 ± 126.7 mm (mean ± s.d.; Okaukuejo station 1954–
2020). Rainfall is recorded by rainfall years (e.g. July 2009–June
2010 is the rainfall year 2010), not calendar years. The specific
dates of study were May 2009–August 2010 and October
2018–April 2020, during which we collected telemetry data
from collared zebras. Precipitation in 2010 and 2020 was
around or above the average (389.9 and 440.5 mm at Okaukuejo
station, respectively), but 2019 was by far the driest year on
record in ENP (83.7 mm; Okaukuejo station; electronic sup-
plementary material, figure S1a). The 2019 drought was the
most severe drought in Namibia in the last 90 years [26].

Much of ENP is covered by mopane (Colophospermum
mopane) shrubveld or treeveld, and large salt pans, with open
grasslands along the pans. There are seven basic vegetation
types described, including bare ground, grassland, steppe,
grass savannah, shrub savannah, low tree savannah and high
tree savannah [27,28]. For this study, we grouped these seven cat-
egories into four basic habitat types: bare areas (i.e. salt pans),
open plains (grassland, grass savannah and steppe), shrublands
(shrub savannah) and woodlands (high tree and low tree savan-
nah; figure 1a). These habitat types were used to evaluate
resource fluctuation, disease risk and resource selection.

(b) Anthrax risk by habitat
Anthrax is endemic in ENP where plains zebra is the most
common host detected, constituting more than 50% of cases
[29]. An estimated cause of death for every observed mortality
is assigned by an investigation of the carcass remains by park
staff or researchers, and blood swabs for disease diagnosis are
collected regardless of the suspected cause of death. Anthrax
mortality in this study was defined as laboratory-confirmed
cases from bacterial culture and suspected cases based on symp-
toms if diagnostic samples were not collected. Signs of suspected
anthrax mortalities include no evidence of predation, blood exu-
dation and lack of clotting, and rigidly extended fore legs or
oedematous swelling [30]. Zebra anthrax mortalities occur
annually with strong seasonality in cases, which peak in the
late wet season (March–April) [29,31], and case numbers are
positively correlated with annual rainfall [29] (electronic sup-
plementary material, figure S1b). Anthrax transmission relies
on environmental reservoirs created by positive carcasses
[21,22]. Hence, more anthrax carcasses in an area represent a
higher risk of exposure.

We used animal mortalities detected by opportunistic
surveillance [32] to evaluate anthrax risk by habitat type. Oppor-
tunistic mortality surveillance can be biased towards certain
landscape features such as access along the road network or veg-
etation density [33]. Surveillance may also be biased towards
detecting certain types of mortality sources based on how long
the carcass remains on the landscape. Given the challenges in
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Figure 1. The study area of Etosha National Park, Namibia, in southern Africa. (a) The distribution of habitat types. The four habitat types considered included open
plains (light grey), shrublands (medium grey), woodlands (dark grey) and bare areas (large salt pans; tan). White represents areas with vegetation type not avail-
able, which were removed from this study. The blue circle indicates the location of Okaukuejo station. (b) Plains zebra (E. quagga) space use shows the overall
thinned readings of zebra telemetry data (yellow) and their 99.9% kernel density range (blue) which were used to generate available (not used) points for analysis
of resource selection functions. (c) The percentages of the available points randomly generated within 99.9% kernel density range by habitat type.

royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

288:20210582

3

detecting carcasses equally across the landscape, we focus on the
ratio of anthrax cases to other mortalities, as an index of disease
risk among habitats. This method assumes that detection rates of
carcasses do not differ among habitat types based on the cause of
death. We probed this assumption by comparing a subset of the
mortality data during periods of heightened surveillance effort
that would reduce detection biases. During the periods rep-
resented in this study, there was an additional layer of mortality
surveillance based on sites where global positioning system
(GPS)-tagged scavengers clustered [34–36]. This additional effort
yielded mortality records in locations that otherwise would go
undetected, and provided a better estimate of the number of
anthrax mortalities, and their temporal and spatial distribution
during the study periods. The patterns detected during heigh-
tened surveillance effort (electronic supplementary material,
figure S2) reflected those in the larger, opportunistic dataset, and
thus we feel that the patterns of relative anthrax risk among
habitats are robust to differences in surveillance effort.

We compared anthrax mortalities to mortalities from other
natural causes (e.g. predation, old age, starvation), to investigate
anthrax risk in a habitat type. Using mortalities with recorded
GPS positions for herbivore species that had at least one anthrax
case from 1998 to April 2020, we summed the numbers of
anthrax and other mortalities by habitat for all herbivore species.
Bare areas were excluded from these comparisons because ani-
mals infrequently used these areas, and no mortality
surveillance occurred on the salt pans. In total, there were 737
anthrax mortalities, and 28.5% of them were suspected cases.
We used χ2-tests of independence to examine differences in
ratios of anthrax to other mortalities between habitat types,
and further examined the differences by herbivore functional
foraging type (grazing, mixed feeding and browsing). For the
total mortalities and every foraging type, we conducted three
χ2-tests with two habitat types selected for each, and corrected
p-values with the Bonferroni correction.

(c) Dynamics in zebra anthrax cases and habitat quality
We counted accumulated numbers of zebra anthrax mortalities
during the seasons involved in the study periods (2009–2010;
2018–2020), when there was enhanced surveillance, to assess
spatio-temporal patterns in anthrax mortality in the zebra popu-
lation. We summed the numbers of anthrax mortalities within
each season, and further separated them based on habitat types.

We used a remotely sensed index of vegetation primary pro-
duction, the fraction of photosynthetically active radiation
(FPAR) from Moderate Resolution Imaging Spectroradiometer
(Terra MODIS; MOD15A2H) [37] to assess habitat dynamics and
variation in quality during the study periods. FPAR is widely
used to model vegetation biomass and productivity [27,38].
Although it is subject to the change of foliage resulting in different
values across habitat types [27,39], FPAR is a better predictor of
grass biomass in ENP than other remotely sensed data sources
[27]. The spatial and temporal resolution was 500 × 500 m and 8
days starting at the first day of each year. We extracted FPAR
values for the study area (excluding salt pans) and sampling
periods, and calculated averages for each habitat type and season.

(d) Zebra habitat use
Zebra preferentially select shorter, more palatable grasses in open
plains [28,40], but in ENP, these grasses get depleted in the dry
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season. To determine host habitat selection changes in response to
resource fluctuation, we collected telemetry data with GPS collars
(AfricanWildlife Tracking, Pretoria, South Africa) on adult zebras
(nine females July 2009–August 2010, eight males and 10 females
October 2018–August 2019 and six males and 11 females
September 2019–April 2020) captured in central-eastern ENP.

We divided days into morning (6.00–12.00; GMT+1), after-
noon (12.00–18.00) and night (18.00–6.00), and thinned the data
by extracting readings closest to 9.00, 15.00 and 24.00 for the
three periods of a day for each individual, to reduce autocorrela-
tion in the telemetry data. The distance between locations of two
consecutive readings of the thinned data could potentially be far
enough for an individual to switch habitats (electronic sup-
plementary material, figure S3). If readings for an individual
were fewer than 180 in a season (i.e. two months of sampling),
the individual’s data for that season were removed. Of thinned
readings, 6.8% were in areas where vegetation types were not
available (figure 1), and these readings were excluded from
habitat selection analyses.

We calculated seasonal habitat use for the population, as the
percentage of readings in a habitat type by season. We then eval-
uated habitat selection with resource selection functions (RSFs),
based on a use-availability framework [41] to account for the
habitat availability in the area. These RSFs correspond to
second-order selection, or how individuals select ranges com-
pared to the habitats available in the overall population range
[42]. Used versus available (not used) habitat types were then
compared with logistic regressions. To define an area with suffi-
cient habitat connectivity from which to generate available
locations, we applied a 99.9% kernel density home range esti-
mation to the overall thinned readings from study animals (24
916 readings from 35 individuals) throughout the entire study
(clipped by park fenceline; figure 1). The available points were
generated with 10 times the thinned readings. Individual-
based RSFs were performed to compare the habitats of used
and available points [43] in each season, with habitat type as a
covariate. We used three orthogonal contrast coding variables
for the four-level categorical habitat covariate. The three contrast
coding variables compared the preferences for (i) vegetated habi-
tats over bare areas, (ii) open habitats (open plains) over closed
habitats (shrublands and woodlands), and (iii) shrublands over
woodlands. A regression coefficient represented relative selec-
tion strength of an individual [44], which in this case showed
habitat preference for a specific habitat comparing to the other
habitat type(s). To evaluate whether the RSF findings were
robust to the thinning approach selected, we compared these
results with RSF results for fixed intervals of 1–24 h. The results
of the thinning approach we applied were consistent with
fixed intervals of 1–8 h (electronic supplementary material,
figure S4).

We fit medians of relative selection strengths by season (n = 9
seasons) for the three different comparisons to FPAR with linear
regressions, to evaluate the relationships between habitat selec-
tion and habitat dynamics. Because FPAR varied with habitat
types, we used average FPAR at open habitats as an index of
habitat dynamics.

In addition to habitat preference, we investigated how con-
sistently zebras used open habitats, to evaluate how likely an
individual would be to die in the open habitats after infected
there. We explored the probability that an individual exposed
in open habitats would remain in that habitat for the duration
of the incubation period (electronic supplementary material,
figure S5). From this, we conclude that although daily movement
distances can be relatively long (out to 9 km h−1; electronic sup-
plementary material, figure S3) [45], the average distances are
much smaller (the median across individuals and seasons:
0.26 km h−1; electronic supplementary material, figure S3), and
zebras have the highest probability of remaining in open habitats
when anthrax cases are most prevalent (75% in wet season;
electronic supplementary material, figure S5).

(e) Integrating dynamics in habitats, host selection
and anthrax mortality

We evaluated whether seasonal variation in habitat dynamics or
host habitat selection could predict the number of anthrax mor-
talities. We fit anthrax case numbers by season (n = 9 seasons)
with linear regression separately to FPAR and the median of rela-
tive selection strength. We chose the relative selection strength
corresponding to the selection of high- versus low-risk habitats,
based on the results of analysis for anthrax risk by habitat. The
numbers of anthrax mortalities were square-root transformed
owing to overdispersion and small sample size of the dataset.
As in the previous analysis, here average FPAR at open habitats
was used as the index of habitat dynamics.

All analyses were done in R v. 3.6.1 [46]. FPAR was down-
loaded from the National Aeronautics and Space
Administration (NASA) Land Processes Distributed Active
Archive Center by package MODIStsp [47], and values were
extracted by the package raster [48]. Kernel density range was
estimated using the package adehabitatHR [49], and clipped by
fenceline with the package rgeos [50]. Available points were gen-
erated with the package sf [51]. Package sp [52,53] was used to
retrieve vegetation/habitat types for used and available points.
χ2-tests, Bonferroni correction, logistic regression and linear
regression were done using the package stats [46].
3. Results
(a) Anthrax risk by habitat
In general, more herbivore mortalities were found in open
habitats than shrublands or woodlands, and anthrax mor-
tality risk was highest in open habitats (figure 2). Mortality
data from all herbivorous anthrax host species showed rela-
tively more anthrax mortalities than other mortality sources
in open plains than in shrublands (x21 ¼ 14:36, p < 0.001;
figure 2a) or woodlands (x21 ¼ 91:54, p < 0.001; figure 2a),
and relatively more anthrax mortalities in shrublands than
in woodlands (x21 ¼ 32:03, p < 0.001; figure 2a). Comparing
host species by functional foraging types, grazing herbivores
had a higher proportion of anthrax mortalities in open plains
than in woodlands (x21 ¼ 14:93, p < 0.001; figure 2b) and a
higher proportion in shrublands than in woodlands
(x21 ¼ 10:36, p < 0.01; figure 2b). Mixed-feeding herbivores
also had a higher proportion of anthrax mortalities in open
plains than in woodlands (x21 ¼ 10:36, p< 0.01; figure 2c).
Browsing herbivores rarely died of anthrax, with no significant
differences in the proportion of anthrax mortalities between
habitats (figure 2d). More browsing herbivore mortalities
were detected in closed than in open habitats, in contrast
with higher carcass detection in open habitats for other foraging
types. These patterns of relative anthrax risk among habitats for
the longer time series (1998–April 2020) were corroborated by
patterns observed during the shorter periods of increased
surveillance effort (electronic supplementarymaterial, figure S2).

(b) Dynamics in zebra anthrax cases and in habitat
quality

Peaks in total zebra anthrax mortalities correlated with seaso-
nal peaks in vegetation productivity in wet seasons (figure 3),
with more cases in open habitats than closed habitats at those
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productivity peaks. However, inter-annual rainfall patterns
affected the intensity of these seasonal anthrax outbreaks.
Reduced primary production during the 2019 drought corre-
sponded with very few anthrax deaths: there were only 12
zebra anthrax mortalities recorded in 2018–2019, with eight
in the wet season (figure 3). The average and above average
rainfall years had larger anthrax outbreaks but at different
scales, with 144 zebra anthrax mortalities in 2009–2010 (94
cases in the wet season; figure 3) and 18 zebra anthrax
mortalities in the wet season of 2020 (figure 3), respectively.

(c) Zebra habitat use
Zebra habitat selection preferences varied with rainfall
amount and fluctuations in primary production, except for
a consistent avoidance of bare areas (R2 = 0.006, t =−0.21,
p = 0.837, n = 9; figures 4 and 5). Zebra predominantly used
open plains over any closed habitats in the wet season of
years with average and above average rainfall when there
was higher vegetation productivity (figure 4a,b). However,
during the semi-dry season in 2009 and during the 2019
drought, vegetation productivity was reduced, and zebra pri-
marily used woodlands (figure 4a,b). In average and above
average rainfall years, zebra showed tendencies to select
open habitats over closed habitats and shrublands over
woodlands, especially in the wet season (figures 4 and 5).
By contrast, zebra selected closed habitats and woodlands
during the 2019 drought (figures 4 and 5). Both relative
selection strengths for open over closed habitats and for
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( f ) in 2018–2020, and for shrublands over woodlands (g) in 2009–2010 and (h) in 2018–2020. Each point is an individual zebra, with males in grey and females in
yellow. In 2009–2010, all the collared zebras were female. Sample sizes of individual zebras per season ranged from 5 to 17. The boxplots in (c–h) are colour-coded
with the seasonal average values of FPAR at open habitats reflecting vegetation productivity differences by season, with grey to purple to blue representing low to
high FPAR.
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shrublands over woodlands were significantly positively
related to FPAR (R2 = 0.67, t = 3.75, p < 0.01, n = 9; R2 = 0.63,
t = 3.43, p < 0.05, n = 9; figure 5b,c). No obvious sex differences
in habitat selection were detected (figure 4), though sample
sizes were relatively small.
(d) Integrating dynamics in habitats, host selection and
anthrax mortality

The number of anthrax cases recorded in a season can be
linked to the amount of primary productivity and the result-
ing host habitat selection preferences (figure 6). There was a
significantly positive relationship between primary pro-
duction and the square-root transformed number of anthrax
cases recorded per season (R2 = 0.56, t = 2.97, p < 0.05, n = 9;
figure 6a). The relative selection strength shown by zebras
for open habitats over closed habitats also associated with
the number of anthrax mortalities (R2 = 0.60, t = 3.26, p <
0.05, n = 9; figure 6b), where the stronger the preference for
open habitats, the more anthrax cases were recorded.
4. Discussion
This study related resource dynamics and host habitat prefer-
ences to temporal and spatial variation in disease outbreak
dynamics. Host habitat selection varied among seasons and
rainfall years in response to environmental fluctuations and
habitat dynamics. Zebra preferred open habitats with higher
anthrax risk in wet seasons and wetter years, and showed cor-
respondingly higher anthrax mortality associated with higher
primary production. In dry seasons and drought, zebras shifted
their selection preference away from risky habitats, with a cor-
responding reduction in anthrax mortality. Our results suggest
that habitat dynamics and host habitat selection can be used
to predict disease outbreaks for environmentally transmitted
disease agents.

The associations detected between habitat selection and
disease risk are supported by seasonal differences in zebra
diet selection [40] and pathogen exposure [54]. Together,
these indicate that a disease transmission hotspot has devel-
oped in the open habitat preferred by zebras. Given the
long-lived nature of B. anthracis spores, pathogen reservoirs
can survive periods of low host density, and infect zebras
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when conditions support their return to this habitat. The short
latency of infection and highly lethal nature of this disease
[20,55] is likely to maintain the transmission hotspot through
a positive feedback loop. Zebras contracting the disease on
the plains will probably die in these areas and create more
local infectious zones, especially in the anthrax season (elec-
tronic supplementary material, figure S5), and hence
enhance pathogen concentrations in the hotspot habitats.
The lack of fitness data prevented us from determining
whether this transmission hotspot is also an ecological trap.
However, because the transmission hotspot and preferred
habitat only overlapped when resources were abundant,
even if an ecological trap were to form, it would be temporary,
and the detrimental effect on the host population reduced
owing to the reprieve of selecting different habitats in different
periods.

Grazing herbivores may travel long distances, seeking
areas with forage availability in response to a drought
when grass biomass in preferred locations is depleted [56].
The zebra population selected the open plains in the wet
season in the average to above average rainfall years, and it
switched to woodlands in the drought. The plains have pala-
table grasses which zebra preferentially select [40], but they
get depleted in the dry season most years, forcing individuals
to use other habitats [45]. During a drought, grass biomass in
the open plains does not recover, which prevents its selection
by zebra. As a result, they occupy closed habitats where
otherwise less palatable vegetation is found [28,40]. Conse-
quently, zebra use high disease risk habitats when their
resources are abundant, and lower risk habitats when the
more desirable habitat is depleted.

The spatial structure of exposure risk and host habitat
selection is most likely to determine outbreak intensity in
the zebra population rather than other potential factors, such
as stress owing to nutritional deprivation. These results
imply that the zebra population never gets a really ‘excellent’
year because it suffers either from a deadly disease or from
food scarcity. However, the population also probably benefits
from this shifting habitat selection, which staggers two nega-
tive impacts. The population is exposed to higher risk areas
when resources are abundant and individuals are less stressed
than in the dry periods [57]. This suggests that better health as
a result of more resource availability may play a factor in pre-
venting massive anthrax outbreaks in locations like ENP with
wet-season outbreaks. In dry-season anthrax outbreaks, which
can be more common in other locations, hundreds of animals
per species can be impacted [58–60], and species-specific mor-
tality rates in these outbreaks can reach higher than 90% [59].
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In comparison, in the wet-season outbreak in 2010 (the biggest
outbreak in ENP in nearly 40 years), the zebra anthrax mor-
tality rate is estimated to be around 3.9%. This calculation is
based upon observed cases corrected with an estimated total
to an observed ratio of 3.8 (2.9–8.2) [32] and a population esti-
mate of 9225 (5138–13 672) in the 99.9% kernel density range
(figure 1; Etosha Ecological Institute unpublished aerial
survey data from 2005).

The anthrax outbreak in 2010 was the largest in ENP since
the early 1970s, and spilled over to the dry seasons. There
was also an outbreak in the wet season of 2020, though at a
smaller scale. The variation in outbreak sizes between 2010
and 2020 may be attributed to factors such as multi-year rain-
fall patterns. Though spores can persist in the environment
for decades, spore concentrations at a site decay over time,
and carcass sites are most infectious within the first few
years after host death [21]. Zebra anthrax cases are positively
correlated with annual rainfall [29]. Hence, periods of above
average rainfall and higher zebra anthrax mortality will
increase the number of highly infectious reservoir sites,
while dry periods will deplete them. High rainfall years
with more zebra anthrax cases preceded the large outbreak
recorded in 2010, while drier years with fewer anthrax
cases preceded the smaller outbreak in 2020 (electronic
supplementary material, figure S1a).

This study provides new insight into spatio-temporal dis-
ease dynamics in mobile hosts. The congruence of anthrax
outbreaks and host habitat preferences in this study suggests
that when disease risk on a landscape is heterogeneous, dis-
ease dynamics can be predicted by host habitat selection.
Other diseases transmitted via environmental reservoirs
such as avian influenza, chronic wasting disease and white-
nose syndrome can also have spatial heterogeneity in disease
risk as well as transmission hotspots on a landscape [61–63].
For these cases, because disease dynamics can be predicted
by habitat use, movement of the host population can be a
key component to understanding infection dynamics.

Ultimately, a long-term study would be required to moni-
tor the host population growth rate as well as disease
dynamics, to determine if this transmission hotspot is also
an ecological trap. In addition, further study is needed to
evaluate other potential mechanisms reinforcing a trans-
mission hotspot, such as changes in host foraging
behaviour [29,40]. Nevertheless, by investigating changes in
habitat quality and animal movements, our study suggests
that disease outbreaks can probably be determined by habitat
dynamics and host resource selection when there is spatial
heterogeneity in exposure to pathogens. Owing to shifts in
host habitat selection in response to resource dynamics, the
detrimental effect of the overlap in high-quality and high-risk
habitat on the host population is only intermittent. Thus, a
heterogeneous landscape and environmental fluctuations
may reduce the impact of an environmentally transmitted
disease on a host population. With the fortuitous circum-
stances of the contrast of rainfall between the two study
periods, our study contributes to better understanding
disease dynamics in a natural system.
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