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ABSTRACT

Objective: To describe a configurable mobile health (mHealth) framework for integration of physiologic and en-

vironmental sensors to be used in studies focusing on the domain of pediatric asthma.

Materials and Methods: The Biomedical REAl-Time Health Evaluation (BREATHE) platform connects different

sensors and data streams, contextualizing an individual’s symptoms and daily activities over time to under-

stand pediatric asthma’s presentation and its management. A smartwatch/smartphone combination serves as a

hub for personal/wearable sensing devices collecting data on health (eg, heart rate, spirometry, medications),

motion, and personal exposures (eg, particulate matter, ozone); securely transmitting information to

BREATHE’s servers; and interacting with the user (eg, ecological momentary assessments). Server-side integra-

tion of electronic health record data and spatiotemporally correlated information (eg, weather, traffic) elabo-

rates on these observations. An initial panel study involving pediatric asthma patients was conducted to assess

BREATHE.

Results: Twenty subjects were enrolled, during which BREATHE accrued seven consecutive days of continuous

data per individual. The data were used to confirm knowledge about asthma (use of controller inhalers, time-

activity behaviors, personal air pollution exposure), and additional analyses provided insights into within-day

associations of environmental triggers and asthma exacerbations. Exit surveys focusing on mHealth usability,

while positive, noted several translational challenges.

Discussion: Based on these promising results, a longitudinal panel study to evaluate individual microenviron-

ments and exposures is ongoing. Lessons learned thus far reflect the need to address various usability aspects,

including convenience and ongoing engagement.

Conclusion: BREATHE enables multi-sensor mHealth studies, capturing new types of information alongside an

evolving understanding of personal exposomes.
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INTRODUCTION

Pediatric asthma is one of the most prevalent childhood diseases in

the United States, affecting upwards of 6 million individuals.1 A pri-

mary reason for hospitalization for those under age 10, asthma is a

leading cause of student absenteeism: almost 14 million school days

are lost per year due to asthmatic symptoms.2–7 Uncontrolled

asthma can limit the ability of a child to participate in outdoor or

athletic activities, and pediatric patients with poorly controlled

asthma report a decreased health-related quality of life.8 A deeper

understanding of the factors influencing pediatric asthma and its ef-

fective management are needed.

Given the growing potential of mobile health (mHealth), in 2014

the National Institutes of Health (NIH) launched the Pediatric Re-

search using Integrated Sensor Monitoring Systems (PRISMS) initia-

tive. PRISMS’ mandate was to link cutting-edge wearable and

environmental sensors with new informatics platforms to enable epi-

demiological studies of pediatric asthma.9 As part of this effort, the

Los Angeles PRISMS Center designed BREATHE (Biomedical

REAl-Time Health Evaluation), an mHealth integration framework

for both off-the-shelf and newly developed sensors, with software

for real-time data collection and interaction with subjects.

BREATHE combines sensors with a smartwatch/phone platform, in-

formation from external resources (eg, electronic health record

[EHR], local traffic, weather, air quality services), and server-side

analysis to provide context around health-related events (eg, asthma

symptoms/attacks) as they occur. As data accrues, a longitudinal

picture of the individual is established, elucidating specific triggers

and clinical response.

This article overviews BREATHE. We start with a summary of

related mHealth research, providing perspective around our plat-

form’s design and objectives. We describe BREATHE’s hardware

and software architecture including sensors, devices, data sources,

and collection framework. We also present initial results from a

study demonstrating BREATHE’s abilities and lessons learned

around the translational challenges of mHealth studies.

BACKGROUND AND SIGNIFICANCE

Early examples of technology to instruct and monitor asthmatic

patients show positive impact on patient education and adher-

ence.10–15 Reviews of digital asthma self-management systems find

benefit in regards to outcomes,16–18 highlighting a variety of inter-

ventional approaches including education, electronic action plans,

and reminders.19–25 However, these prior demonstrations mostly re-

lied on self-reporting, with no incorporation of sensor-based tech-

nologies to automate data collection. Recently, several mHealth

efforts have looked at asthma and related data collection and analy-

sis issues. One of the first Apple ResearchKit apps captured regional

air quality and health tracking.26,27 One study assessed the use of

Bluetooth-enabled asthma inhalers in a large population to inform

public policy around environmental exposures.28 More generally,

under NIH’s Big Data to Knowledge program, the Mobile Data to

Knowledge Center and Mobilize Center examined computational in-

frastructure related to machine learning at scale for mHealth

data.29,30 These projects were contemporaneous to BREATHE,

allowing us to learn from our colleagues to design an open, end-to-

end platform for multiple sensor and data integration able to sup-

port epidemiological studies.

MATERIALS AND METHODS

Figure 1 illustrates BREATHE’s high-level design, an interactive eco-

system involving different types of end-users: children with pediatric

asthma and their caregivers; clinicians overseeing patient care; and

researchers, including epidemiologists, biostaticians, and other

health service researchers. BREATHE serves as an informatics layer

that connects sensor developers by enabling data collection in a stan-

dardized framework; and facilitates data transfer and curation, with

information relayed to a final data repository. Table 1 overviews the

variety of data BREATHE presently collects.

Figure 1. High-level architecture overview for the BREATHE platform. The system comprises three interacting components addressing sensor and data integra-

tion, user interaction, and analysis. A smartwatch/smartphone is the cornerstone for sensor connectivity and communication with the child/caregiver. BREATHE

sends data to a cloud-based server in real-time, enabling continuous monitoring of events. Real-time dashboards permit biomedical researchers (eg, epidemiolo-

gists, environmental health scientists) to track subject progress and identify study issues. Healthcare providers can also view data through customized reports.

Data are accrued over time in the backend to develop an individually tailored understanding of each child’s asthma. BREATHE: Biomedical REAl-Time Health

Evaluation; EMA: ecological momentary assessment; PM: particulate matter.
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Integrating different sensors
We use an Android-based smartwatch and smartphone combination

to facilitate ongoing interaction and data acquisition in our target

demographic:

• Smartwatch: BREATHE’s smartwatch serves as the primary hub

for connecting registered devices via Bluetooth low energy (BLE)

protocol. An on-watch app combines real-time data streams

from local environmental and physiological sensors in real-time

alongside on-device measurements (eg, heart rate, accelerome-

try). Using the smartwatch for sensor connectivity provides more

reliable data collection, buffering, and transmission in a multi-

sensor monitoring study—particularly in children—as it is wear-

able throughout the day and across different activities (eg,

school, exercise). The smartwatch also provides a simple inter-

face for limited sensor/device interaction (eg, indicating if proper

spirometry is captured). All smartwatch data are directed to the

smartphone for timestamping and geotagging.
• Smartphone: As the power and processing resources of a smart-

watch are limited, we use a smartphone to perform more compu-

tationally intensive tasks including data encryption and

transmission to and from BREATHE’s cloud-based servers. The

smartphone, with its larger screen, permits more involved user

interactions including completion of ecological momentary as-

sessment (EMA) surveys (see below).

One advantage of this setup for the pediatric population is that

users do not have to always carry the smartphone given a wireless

network or BLE connection to the smartwatch that remains active

when in range (20–100 m, depending on the device and power31,32).

Table 2 presents current commercial and PRISMS-specific sensors

linked to BREATHE. We record metadata regarding the sensors,

smartwatch, and smartphone (eg, sensor state, battery levels) to doc-

ument the state in which data are captured. Given the variety of

(proprietary) data formats from different sensors and manufac-

turers, we defined a standardized BREATHE JSON model for data

transfer and storage to normalize representation (existing standards,

like Open mHealth,37 were used when possible). In creating our

platform, we also recognized the need to accommodate other modes

of sensor connectivity. For example, some systems do not implement

Bluetooth but instead use WiFi or their own centralized servers. We

therefore established an application program interface to

BREATHE’s server. The server is implemented in a Health Insurance

Portability and Accountability Act-compliant Amazon Web Services

framework and handles real-time requests including data pushes

using hybrid encryption.38 Once data are received and decrypted,

they are parsed, reformatted into BREATHE’s JSON format, and re-

layed to PRISMS’ Data Software and Coordinating Integration Cen-

ter (DSCIC) for long-term archiving.

Deploying EMA surveys
EMA entails repeated sampling of subjects’ current behaviors and

experiences in real-time and natural settings. Its aim is to minimize

recall bias, maximize validity, and allow study of microprocesses

that influence behavior in real-world contexts.39 Here, EMA enables

an unfolding view of an individual’s reports about his/her asthma

and environment over time. BREATHE allows EMA delivery in dif-

ferent ways:

• Scheduled EMAs: Akin to a standardized daily or periodic ques-

tionnaire (eg, for assessing asthma symptoms), EMA delivery is

tailored to an individual’s daily schedule (interval-contingent

prompting). For instance, EMAs are not sent during school

hours, but instead on waking up, immediately after school, and

in the early evening.
• Random EMAs: In line with traditional EMA methods, random

surveys occur within a predesignated window of time to inform

behaviors throughout the day (signal-contingent prompting).
• Triggered EMAs: BREATHE’s background sensor monitoring

mobile app processes incoming data streams to trigger system

“intents” that will in real-time request users to answer EMA sur-

veys “in the moment” on the smartphone when a given event (or

context) of interest occurs (eg, usage of an emergency inhaler,

worsening personal air quality; sensor-informed event-contingent

prompting). Triggers are defined for a given study/sensor and

comprise a logical rule or algorithm that outputs a Boolean

value; and an action to execute, such as a specific EMA survey,

given positive activation.

A subset of questions was always included in each EMA survey

regardless of type, covering: asthma control (based on the Asthma

Control Test and adapted to the past hour) on symptoms of chest

tightness, wheezing, trouble breathing, and cough; context (eg, what

were you doing and where were you before the phone alert

appeared); nearby air pollution sources; and compliance with proper

use and placement of the air monitor.

To support EMA survey design, delivery, and collation, we use

ohmage40 for mobile data storage and a custom-built accompanying

PRISMS smartphone app (Figure 2). Notifications are sent to the

Table 1. BREATHE enables collection of a variety of data (physiologic, environmental, behavioral, clinical) to shed light on the diverse fac-

tors that contribute to pediatric asthma and its management

Sensors Self-reported measures Geospatial data Electronic health record

• GPS
• Spirometry
• Inhaler usage
• Activity monitoring
• Environmental measures
• Black/brown carbon
• Particle sensor
• O3 and VOCs

• EMA for asthma symptoms
• Questionnaires (health status,

physical activity)

• Weather
• Air quality indices
• Nearby traffic volumes
• Indoor/outdoor metrics
• Greenness

• Demographics, vitals
• Medications
• Allergies and documented triggers
• Health status and comorbidities
• PFTs
• Past exacerbations (eg, emergency room visits)

Note: The platform provides multiple ways to collect real-time, contextualized information to support epidemiological studies.

Abbreviations: BREATHE: Biomedical REAl-Time Health Evaluation; EMA: ecological momentary assessment; GPS: global positioning system; PFTs: pulmo-

nary function tests; VOCs: volatile organic compounds.
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smartphone with a set number of repeating alerts before the EMA

survey expires after a few minutes (given sufficient lapse in time, a

response is no longer deemed “in the moment”). To entice younger

children, we use gamification and personalization methods, allow-

ing users to name a pet dragon character that “hatches” when the

app is first started. The character “consumes” surveys as food and

broadcasts a “feed me” message when an EMA survey is available

to “eat.” Prizes are then awarded based on how well the dragon is

kept full (ie, the level of survey completion). Markedly, a significant

amount of user interaction and telemetry-related metadata is gener-

ated from the EMA process, providing insight about the individual

and their level of mHealth engagement: the status of what happens

to each notification (eg, suppressed, ignored, expired), the smart-

phone connectivity, and the degree of EMA survey interaction and

adherence are compiled (eg, ignored, completed, partially com-

pleted).

Table 2. Current list of commercial and PRISMS-based sensors connected to the BREATHE platform

Device/sensor Variable Provider Communication

Moto 360 Smartwatch Heart rate Motorola BLE

3-axis accelerometry BLE

3-axis gyroscopy BLE

AirBeam v1.033 PM2.5 (air quality) HabitatMap BLE

Temperature

Relativity humidity

Asma-1 BT spirometer34 FEV1 Vitalograph BLE

PEFR

Bluetooth inhaler sensor35 Controller and rescue medication usage Propeller Health Central server

MA200 (personal device)36 Black carbon PRISMS Columbia/AethLabs BLE

Brown carbon

MA350 þ Dylos (residential device)36 PM2.5 PRISMS Columbia/AethLabs Central server

Black carbon

Brown carbon

ASU sensor O3 PRISMS Arizona State University BLE

Volatile organic compounds

Humidity

Temperature

Note: BREATHE uses a smartwatch to enable data stream integration from local sensors and a smartphone for data transmission. Additional data collection to

create a complete picture of the child’s health and real-time environment is made possible by accessing various online resources.

Abbreviations: ASU: Arizona State University; BLE: Bluetooth low energy; BREATHE: Biomedical REAl-Time Health Evaluation; FEV1: forced expiratory vol-

ume in 1 s; PEFR: peak expiratory flow rate; PRISMS: Pediatric Research using Integrated Sensor Monitoring Systems.

Figure 2. Screenshots of BREATHE’s ecological momentary assessment phone app. (A) A notification pops up on the smartphone at certain times throughout the

day to collect information on symptoms, or if a sensed event triggers a specific survey. (B–D) To engage younger children in answering the surveys, gamification

is employed, including the use of an animated dragon the user personally names when first starting the app. The pet dragon can be “fed” and kept happy when-

ever a survey is successfully answered, resulting in rewards. BREATHE: Biomedical REAl-Time Health Evaluation.

JAMIA Open, 2020, Vol. 3, No. 2 193



Elucidating a more complete patient context
Broadly, context provides the basis upon which to properly under-

stand observed data and to subsequently make informed decisions.

By way of illustration, an asthma attack that occurs when a child is

outside playing in a neighborhood close to a busy freeway is very

different from an occurrence when he/she is inside, sleeping. In some

situations, localized sensor data may not be enough (or even be

available) in which case external information must be sought. Con-

text therefore motivates BREATHE’s goal of incorporating as much

relevant and timely information as possible to fully characterize the

patient, environment, and circumstances around observed daily ac-

tivities:

• Environmental asthma triggers: BREATHE gathers information

around the major types of environmental asthma triggers: re-

gional air pollution; local-scale air pollution, primarily from traf-

fic; and greenness. Several online resources provide related real-

time environmental information based on geographic location.

Working with the Environmental Protection Agency’s AirNow

system, BREATHE accesses real-time regional air quality (partic-

ulate matter, PM2.5; NO2, O3) from a national sensor network,

and meteorological data. Different types of traffic data allow for

further modeling of local air quality: information about traffic

speed regarding freeways and major roadways/highways allows

for pollutant concentration and dispersion modeling;41 and in

Los Angeles, city streets are embedded with sensors to provide

continuous traffic volume, speed, and congestion data.42 Proxim-

ity to parks and areas of greenness are given by a normalized dif-

ference vegetation index.
• EHR integration: An important source of insight resides in the

patient’s medical record: data on prescribed medications, aller-

gies, current health status, and past exacerbations are critical to

understanding the individual’s current situation and future risk.

Working with pediatric asthma specialists, we identified key in-

formation to inform retrospective analysis of a subject’s data and

prospective patient monitoring within clinical and epidemiologi-

cal studies. Through our institutional clinical data warehouse,

this patient information is automatically extracted from our

EHR, which BREATHE then utilizes to provide relevant subject-

level information. Notably, we endeavor to remap information

to existing ontologies and data models, leveraging efforts like

NIH’s Children’s Health Exposure Analysis Resource for clarity

and compatibility.

Supporting different types of studies
We developed BREATHE to support several use cases, including

sensor development and testing studies that involve lab and field

evaluation experiments; epidemiological studies deploying sensors

prospectively to collect primary exposure and health outcome data

through passive, observational data collection and/or real-time, con-

text-sensitive interaction (eg, triggering an EMA survey after detect-

ing a peak in combustion-related PM2.5); and health studies using

secondary sources of existing sensor measurement data, such as

from citizen sensor networks (eg, Purple Air), regulatory monitoring

data (eg, AirNow), and from earlier sensor-based studies conducted

within the PRISMS ecosystem. To facilitate these studies BREATHE

has several supportive dashboards for subject and study manage-

ment (Figure 3). For example, study coordinators use BREATHE’s

online portal to register participants under a study protocol and to

assign/release devices. The researcher dashboard provides real-time

aggregate and drill-down individual views of sensor data streams,

EMA survey completion rates, and other BREATHE data to moni-

tor participants’ progress. Collectively, these dashboards support en-

rollment and quick interventions/troubleshooting in the case of

prolonged loss of data transmission or other issues.

Demonstrating BREATHE

We used BREATHE in an initial longitudinal panel study of 20 chil-

dren recruited from the UCLA Pediatric Asthma Center of Excel-

lence for monitoring over a 1-week period during May–December

2018. Individuals were consented in the clinic and trained in the use

Figure 3. BREATHE real-time dashboards supporting the implementation of epidemiological studies. To facilitate study recruitment and monitoring processes we

created specific interfaces to expedite subject enrollment and troubleshooting. (A) An overall screen shows subject enrollment and a snapshot of each partici-

pant’s status toward a snapshot of each participant’s status toward study completion, the status of data transmission from their sensors, as well as the rate of

EMA survey completion. Color coding and progress bars are used to provide visual cues to quick gage study progress. (B) An aggregate view of all participants’

data currently being monitored. The “air monitor” panel shows the time-series of personal PM2.5 concentrations from two ongoing participants (blue and orange

lines) being monitored simultaneously in this example. Similarly, the map illustrates GPS data transmission with concurrent levels of PM2.5 being measured, at a

coarse spatial resolution to protect privacy. This overview interface allows study researchers to drill-down into specific subjects. BREATHE: Biomedical REAl-

Time Health Evaluation; EMA: ecological momentary assessment; GPS: global positioning system; PM: particulate matter.
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of the smartwatch/smartphone, EMA app, and three sensors (per-

sonal PM2.5; spirometry; inhaler). Baseline heart rate and spirometry

values were collected for calibration purposes. The day following re-

cruitment, a detailed baseline questionnaire was conducted over the

phone by a trained research coordinator with the child and caregiver

to collect asthma-related health and environmental data (percep-

tions about symptom control, typical activity patterns of the child,

household operation conditions, indoor sources of air pollution,

etc.). EHR-related data for the subjects were extracted, deidentified,

and made available as part of the study dataset. We conducted tele-

phone exit surveys after the 1-week study period to gather feedback

on BREATHE, asking about users’ experiences, adherence, and

challenges they encountered with the devices or the study. Partici-

pants were compensated for their time. The UCLA Institutional Re-

view Board approved all study procedures and forms.

RESULTS

Data were collected on all 20 subjects (184 subject-days), with vary-

ing degrees of data completion (Table 3). On average, 1.1 GBs of

data were gathered per individual, representing >530 000 observa-

tions/individual. Figures 4 and 5 depict some of this data. Partici-

pants were on average 13 years old (range, 9.8–16.4). Mean (SD)

daily, personal PM2.5, relative humidity (RH), and temperature (T)

exposures were 9.7 mg/m3 (12.3), 45.9% (5.1), and 80.6F (4.7), re-

spectively, with 1-min integrated values similar on average but more

variable (PM2.5 9.5 mg/m3 [17.4], RH 46.8% [6.9], and T 80.5F

[5.4]).

Asthma inhaler medication sensors were provided to all 20 par-

ticipants (6 rescue only, 6 controller only, 8 both); however, 3 par-

ticipants encountered data connectivity issues. Of the 17

participants with active sensor(s), 15 used at least one of their

sensor-enabled inhalers during the 1-week study period (10 used

control, 6 used rescue). The average number of puffs dispensed was

higher for controller inhalers (mean 10.8 puffs, SD 7.6, min 1, max

24 puffs), which are typically prescribed to be used on a regular

daily basis, compared to rescue medications (mean 3.8 puffs, SD

3.2, min 1, max 8), which are taken as needed for symptoms. Only

one of four participants with active rescue and control sensors used

both (18 controller puffs, 1 rescue puff) while the remaining three

used their controller inhaler only during the study. Cough, wheeze,

and chest tightness were reported on 11%, 10%, and 11% of

(n¼82) person-days per EMA responses.

Participants were asked to conduct three “good” spirometry

(peak flow) maneuvers both in the morning and in the evening, with

a maximum of six attempts per session. The quality of spirometry

reading is reported by the sensor. Overall, 487 maneuvers were

attempted by 18 participants (2 had spirometry data transmission

issues). Of 77 total person-days with spirometry data, participants

completed a minimum of six attempts on 40 (52%) days, and 76

days had at least one good maneuver (regardless of number of

attempts). However, the minimum six “good” maneuvers were only

Figure 4. Plots showing the highly time-resolved nature of continuous and intermittent data streams across all subjects. Information on personal environment

(PM2.5, relative humidity, temperature), motion and physical activity (accelerometry, gyroscopy, heart rate), medication usage (rescue/control inhalers), and spi-

rometry (FEV1, PEF) are illustrated. FEV1: forced expiratory volume in 1 s; PEF: peak expiratory flow.

Table 3. Percentage of total monitoring time during a 1-week longi-

tudinal panel study with complete data for continuous sensors (spi-

rometry and medications are summarized differently), including

periods of sleep

Device/sensor 25% 50% Median 75% 100% Max

AirBeam 13.7% 22.2% 36.2% 83.3%

Accelerometer (smartwatch) 19.5% 40.2% 50.4% 75.2%

Gyroscope (smartwatch) 24.5% 45.4% 55.4% 75.3%

Heart rate (smartwatch) 6.5% 16.4% 32.4% 63.0%

JAMIA Open, 2020, Vol. 3, No. 2 195



obtained on 21 (28%) subject-days, with 55 (72%) days having at

least one (median three) “good” maneuver. We calculated predicted

lung function based on age, gender, and height for FEV1 (forced ex-

piratory volume in 1 s [L]) and PEF (peak expiratory flow rate [L/s])

based on equations from Knudson et al.43 Mean Knudson-predicted

FEV1 was 2.69 L (SD 0.61) and mean predicted PEF 5.93 L/s (SD

1.06) for the 20 participants. Daily mean percent predicted FEV1

was 71.5% (SD 26.3%) and PEF was 64.7% (SD 25.6%, n¼29

subject-days with AM and PM measurements) (Table 4).

Asthma symptoms collected in EMAs generally represented good

agreement with the inhaler medication use data. The percentage of

cough, wheeze, and chest tightness symptoms reported was higher

(�25%) on days when rescue inhalers were used (at least one puff)

compared to �8–9% on days when rescue inhalers were not used.

Similarly, the percentage of cough, wheeze, and chest tightness

symptoms was smaller (�7%) on days when controller inhaler med-

ication were used (at least one puff) compared to no use (�11–

13%). However, these comparisons were not statistically significant

given the small sample size.

Example data analyses
Ongoing analyses on this dataset include modeling time-activity pat-

terns and determinants of personal exposures, in addition to investi-

gating exposure–response associations with the goal of identifying

acute triggers of asthma exacerbations at a within-day to daily level.

Initial examination of global positioning system (GPS) trajectories

from our data revealed that participants spent on average approxi-

mately 87% of the time indoors. GPS trajectories are being used to

construct activity space polygons and to assign momentary geospa-

tial exposures (eg, traffic, greenness, proximity to parks, etc.).

Context-sensitive (triggered) EMA’s are informing analyses investi-

gating the effects of peak exposures (number of peaks, height of

peak, dose) and specific air pollution sources related to primary

combustion on acute asthma exacerbation, assessed several times

within-day based on asthma symptom scores and rescue inhaler use.

These analyses will advance our understanding of how multiple, co-

occurring exposures coming from different sources with potentially

lagged effects can interact with behaviors to increase the risk of an

asthma attack.

Exit survey results
Usability

Of the 19 completed exit surveys, most children reported being satis-

fied (12, 63%) or very satisfied (6, 32%) with their overall experi-

ence using BREATHE and found it somewhat easy (10, 53%) or

very easy (9, 47%) to use. Parents/caretakers were similarly very sat-

isfied (9, 47%) or satisfied (8, 42%) with their child’s overall experi-

ence, with only 2 (11%) reporting being dissatisfied. Most parents

agreed (13, 68%) or strongly agreed (5, 26%) that their child’s expe-

rience using BREATHE was enjoyable and easy to remember using

as instructed (12 [63%] agree, 4 [21%] strongly agree, and 3 [15%]

disagree). When asked if using BREATHE every day was burden-

some or took too much time or effort for their child, most parents

disagreed (7, 37%) or strongly disagreed (4, 21%), although 7

Figure 5. Examples of data collection from BREATHE. (A) Map of GPS trajectories across all subjects, correlated with 1-min PM2.5 concentrations. (B) Temporal

variation in personal PM2.5 concentrations colored by subject. BREATHE: Biomedical REAl-Time Health Evaluation; GPS: global positioning system; PM: particu-

late matter.

Table 4. Predicted (based on age, gender, and height) and calculated FEV1 and PEF (based on measurements, reported as % predicted) over

study subjects

Parameter N Mean SD Min Max

Knudson predicted values

FEV1 (L) 20 participants 2.69 0.61 1.66 3.91

PEF (L/s) 20 participants 5.93 1.06 4.11 8.10

Study measures, reported as percent of predicted

FEV1 (% predicted), AM 62 subject-days 95 18 49 124

FEV1 (% predicted), PM 61 subject-days 96 19 48 127

PEF (% predicted), AM 62 subject-days 89 23 38 133

PEF (% predicted), PM 61 subject-days 95 23 37 133

PEF lability (%), (PEFam� PEFpm)/PEFam 30 subject-days (AM and PM; excl. 1 outlier) �2.8 17.1 �40.5 35.9

Abbreviations: FEV1: forced expiratory volume in 1 s; PEF: peak expiratory flow; PM: particulate matter.
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(37%) agreed and 1 (5%) strongly agreed. Most parents (14, 74%)

also did not think that carrying the kit every day was uncomfortable

for their child. With respect to the smartphone app specifically, of

17 respondents, 14 (82%) and 3 (18%) thought the smartphone app

was very easy or somewhat easy to use, respectively.

The most commonly mentioned additional features suggested for

ease of use or more pleasant experience were smaller or less bulky

devices (especially the air monitor); more options to bundle the devi-

ces together; and integrating more sensors into the smartwatch (if

not using only a smartwatch) with more durable protection (ie,

more “sports” friendly). When asked what they would like to see to

make BREATHE more useful to learn about their child’s asthma

and triggers, the majority of parents mentioned seeing more infor-

mation, especially about air pollutant exposures and how they relate

to exacerbations specifically at school or during certain activities;

more tracking of symptom responses; and reminders to use medica-

tion as scheduled.

mHealth study perceptions

Most respondents (17 out of 19, 89%) would be willing to partici-

pate in a similar study using mHealth technologies for understand-

ing asthma if asked again (2 responded maybe). When asked about

the longest duration of time the parent and child would consider ac-

ceptable if given the option of using BREATHE for an extended pe-

riod to learn more about the child’s environmental exposures,

experiences, and asthma, 2 weeks (7, or 41% of n¼17), 4 weeks (5,

29%), and 1 week (5, 29%) were the most frequent responses. One

participant responded “Spring” because of the seasonal nature of

the child’s asthma, another with an open-ended “any” duration of

time, and one with 8 weeks as the maximum duration. Two partici-

pants mentioned in-school months as more challenging given limited

device access while at school.

DISCUSSION

We designed BREATHE as a comprehensive mHealth platform to

combine contemporary data sources to characterize symptoms and

context more fully in daily environments. As a sensor integration

framework, BREATHE simplifies connectivity to smart devices and

server-side communication, allowing multiple sensors to be com-

bined in a single study. As an information aggregator, BREATHE

enables personal-level data collection through EMAs and retrieves

additional external data (eg, environmental, clinical) to paint a com-

plete picture of the individual. As a research enablement tool,

BREATHE facilitates real-time study execution and sensor deploy-

ment through a variety of dashboards informing subject compliance

and system status monitoring; combined views of subject data to de-

velop new insights; as well as final deposit of all collected data into

a repository. Collectively, BREATHE’s components aim to help

build deeper, data-driven views of a disease by constructing detailed,

individualized chronologies illuminating etiology and management

over time. Our initial results, reported here, demonstrate an end-to-

end system capable of executing mHealth studies. Building from this

effort, a larger, formal panel study is now in progress using

BREATHE and various PRISMS-based sensors, assessing personal

microenvironments and exposures over a 2-week period in 40 par-

ticipants. One of two funded NIH mHealth informatics PRISMS

Centers, our sister site at the University of Utah44 addresses longitu-

dinal residential monitoring, providing a complementary perspec-

tive. As PRISMS draws to a close, BREATHE will be released as an

open source project with documentation and associated datasets

through the U24.

Some lessons learned
Collaborating across the spectrum of mHealth stakeholders surfaced

recurring themes around system complexity and usability, as well as

subject privacy and confidentiality. We briefly touch upon these

issues below.

Unintended consequences of multiple sensor studies

The appeal of deploying multiple sensors concurrently in a single

study led to a quick realization of the potential interactions between

devices and sensor triggers. For example, alpha testing of some sen-

sors uncovered conflicting BLE implementations that would discon-

nect other devices when deployed together. Piloted study designs

showed during testing that too many EMAs could be sent through-

out the day; and in some situations, multiple different triggers were

occurring simultaneously, creating an overly long series of questions

to be answered. Thus, while enabling complex study designs,

BREATHE did not allow researchers to anticipate the complexity

arising from implementing multiple sensors and EMA surveys.

Usability

Despite the fast-paced change in mHealth technologies, usability

remains a challenge. Usability is paramount to ensure that the end-

user employs the sensors correctly (thereby providing correct con-

textual data and measurements), easily and routinely engages with

the system when asked, and ultimately feels that using the system is

acceptable, worth ongoing effort, and with benefit. mHealth usabil-

ity encompasses multiple considerations and we address three

here:45

1. Battery life and convenience: While sensors and smart devices

are decreasing in physical size, battery life has not significantly

improved, thus introducing added user burden to ensure devices

are appropriately charged. At a minimum, sensors and devices

must last throughout a full day of usage without recharging.

BREATHE attempts to balance ongoing wireless communication

(typically the largest cause of power usage) between devices and

sampling frequency using different algorithms. Newer

approaches to powering sensors may help.46 Pragmatically, hav-

ing multiple devices (eg, watch, phone, sensors) that use different

charging methods (eg, USB 2, USB-C, proprietary) is problem-

atic and confusing for many users. Consensus and integration

around the design of sensors and devices will further usability

and consumer adoption.

2. Physical sensor/device appearance: In working with pediatric-

aged individuals, we were sensitive to how they may feel if seen

wearing a sensor. We posed questions regarding the physical ap-

pearance of devices to participants. Interestingly, while one

PRISMS sensor collaboration indicated that children in their

study liked sensor packaging to be in bright colors, our local

testing instead found that individuals wanted neutral colors (eg,

black), so carried devices would be inconspicuous to peers. This

difference highlights the fact that no single design is likely to uni-

versally work, and flexibility is imperative to achieve acceptance

across various users.

3. User interaction: Many mHealth studies suffer from user fatigue

and disinterest once the novelty fades. More passive

measurements are desirable ensuring minimal complexity with
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interactions designed to be continuously informative and re-

warding (eg, gamification) and/or actionable. Many parents/

caregivers and even the children themselves in our study were in-

terested in seeing the data that BREATHE collected, hoping that

it would directly help with asthma control. We considered the

extent of user interaction given its deviation from a purely obser-

vational epidemiological study, as the return of information or

any intervention may affect and subsequently change behavior

(Figure 6). We were also cautious of how we returned data to

these individuals given the potential to misinterpret information

in the absence of established health evidence (eg, we aggregated

continuous PM2.5 concentrations hourly to prevent users from

associating minute-level, transient peaks as “harmful” or

“concerning” for their health; we also avoided overlaying expo-

sure and health data in the same plot so as not to imply a rela-

tionship). We thus created BREATHE’s end-user displays to

curtail potential false inferences.

Privacy and confidentiality

The PRISMS consortium discussed issues related to GPS information

collected using BREATHE. Others describe similar concerns,47

wherein information about frequented locations (ie, home, school)

are derivable through analyses. We disclosed the use of GPS to

parents/caregivers during subject recruitment; most did not have

concerns given our goal to keep information secure. While there is

clear value in having this information to understand environmental

exposures (eg, duration of time spent in relation to high pollution

areas), generating deidentified GPS tracks for other researchers that

preserves both spatial proximity and subject privacy is an additional

step that must be taken. BREATHE captures GPS and sends this

data to the PRISMS DSCIC, who is responsible for obfuscating indi-

viduals’ locations accordingly.

CONCLUSION

Based on our initial experience, we continue to enhance BREATHE

in several ways including the development of more sophisticated

EMA trigger logic; adaptive data collection methods, particularly as

machine learning-based models accrue information about a given in-

dividual over time (and can thus tailor the types and frequency of

data gathered to optimize decision-making); and assessment of what

data may be usefully incorporated into the EHR.

Our experience thus far exemplifies that comprehensive and

long-term testing with different user groups will be necessary to

reach mHealth’s full promise. The infrastructure and support to exe-

cute these types of studies at scale are not widely in place but plat-

forms like BREATHE can facilitate such development. While our

objective in PRISMS is to support epidemiological studies, elements

of this information could ultimately be useful in clinical monitoring

of symptoms and adherence.
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Figure 6. Return of information to end-users (patients/caregivers). Our design decisions reflected on how a layperson may interpret the information collected by

BREATHE and subsequently draw (incorrect) conclusions. (A) Information on FEV1 spirometry with an explanation is provided. (B) Regional air quality informa-

tion is provided in terms of PM and spatial location, averaged over a period of time to mitigate specific conclusions about location and experienced symptoms.

(C) Basic physiological information. BREATHE: Biomedical REAl-Time Health Evaluation; FEV1: forced expiratory volume in 1 s, PM: particulate matter.
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