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ntroduction 

RISPR-Cas ( c lustered r egularly i nterspaced s hort
 alindromic r epeats, C RISPR- as sociated) systems pro-
ide adaptive immunity in bacteria and archaea through
NA-guided recognition and Cas-mediated destruction of

oreign nucleic acids ( 1 ,2 ). These immune systems are excep-
ionally diverse, occurring as 6 types and 33 subtypes in line
ith recent classification ( 3 ). Beginning with the discovery
f RNA-guided endonuclease activity conferred by Cas9,
nsights into the enzymatic activities of CRISPR Cas en-
ymes have precipitated a veritable wave of biotechnological
nnovation ( 4–6 ). 

In particular, the Class 2 Cas enzymes have been a driver
f biotechnological development owing to their single-protein
ature. Class 2 Cas enzymes can be separated into 3 fami-
ies: Cas9, Cas12 and Cas13 from Type II, V and VI CRISPR
ystems respectively ( 3 ). Because these proteins all employ
 processed CRISPR RNA (crRNA) to guide protein activ-
ty towards a sequence of interest, these proteins can all
e easily ‘programmed’ to target unique sequences of inter-
st by simple design of a spacer (i.e. targeting) sequence.
owever, as researchers have explored the genetic diver-

ity of these systems, it has become clear that (i) the RNA-
uided biochemical activity, (ii) constraints on targeting con-
ext and (iii) ways crRNAs are processed differ dramatically
us 10257, Lithuania 
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ely used for biotechnological applications including genome editing.
as13 f amilies), ha v e been deplo y ed f or numerous research, clinical

cal diversity of these proteins in the public domain poses a barrier for
ttp://caspedia.org ), the Cas Protein Effector Database of Information
cation for hundreds of different Cas enzymes across 27 phylogenetic
ily related IscB and TnpB proteins. All enzymes in CasPEDIA were an-
arget requirements and guide-RNA design constraints. Our functional
lassification, allo wing users to search related orthologs b y enzymatic
l that summarizes and conte xtualiz es enzymatic properties of widely
chnological development. CasPEDIA complements phylogenetic Cas
ic-acid targeting rules of diverse Class 2 Cas enzymes. 

across - and within - families. While these differences re-
flect opportunities for biotechnological development, there
does not yet exist a centralized resource for comparing bio-
chemical activity to complement existing genetic classifica-
tion efforts ( 3 ). It remains difficult for these enzymes to
be functionally compared and contrasted across and within
subfamilies. 

Here, we present CasPEDIA, http://caspedia.org , providing
users with summary information about the capabilities and
limitations of Class 2 Cas technologies to facilitate tool selec-
tion and to highlight opportunities for future biotechnolog-
ical development. We introduce CasID, a Cas enzyme classi-
fication scheme, to facilitate functional comparison between
RNA-guided Class 2 Cas enzymes. The optimal selection of
a CRISPR enzyme depends heavily on the intended applica-
tion and CasPEDIA allows for efficient comparison between
enzymes by both their biochemical properties and their previ-
ously established uses. As a flexible database, CasPEDIA can
be updated to accommodate the emergence of novel CRISPR-
Cas enzymes and their applications. 

Main features of CasPEDIA 

CasPEDIA introduces a systematic, enzymatic nomenclature
for the functional classification of Class 2 Cas proteins, sum-
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stract 

SPR-Cas enzymes enable RNA-guided bacterial immunity and are w
articular, the Class 2 CRISPR-associated enzymes (Cas9, Cas12 and
 agricultural applications. Ho w e v er, the immense genetic and biochem
earchers seeking to le v erage their activities. We present CasPEDIA 

 Assessment, a curated encyclopedia that integrates enzymatic class
ups spanning the Cas9, Cas12 and Cas13 families, as well as evolution
ated with a standard w orkflo w based on their primary nuclease activity
sification sc heme, CasID , is described alongside current ph ylogenetic
ction and sequence similarity. CasPEDIA is a comprehensive data po
d Cas enzymes, equipping users with valuable resources to foster bio
enclature and enables researchers to le v erage the multi-faceted nuc

 aphical abstr act 
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Table 1. Cas Enzyme Classification. See http://caspedia.org for diagrams 

Dimension Value Description 

Primary Nuclease 
Activity 

1 Targets dsDNA + no trans -activity. Clea v age products are predominantly blunt. However, 
additional trimming of DNA cleavage products may occur on a timescale much slower than that 
of the initial cuts. RNA-guided RuvC domains are also capable of targeted, PAM-independent 
ssDNA cleavage. 

2 Targets dsDNA + no trans -activity. Staggered clea v age products. RNA-guided RuvC domains are 
also capable of targeted, PAM-independent ssDNA cleavage. 

3 Targets dsDNA (or ssDNA) + trans -ssDNase activity. Staggered clea v age products. RNA-guided 
RuvC domains are also capable of PAM-independent ssDNA cleavage. 

4 Targets dsDNA (primarily nicking) + trans -ssDNase activity. Cleavage products are predominantly 
nicked on a single strand on short timescales, but these enzymes retain the capacity to create 
double-strand breaks at a slow rate. 

5 Targets dsDNA (binding only) 
6 Targets RNA + trans -RNase activity 
7 Targets RNA + trans -RNase + trans -ssDNase activity 
8 Targets RNA + trans -RNase + trans -ssDNase + trans -dsDNase activity 
- Unknown 

Target Requirement 1 3 ′ Protospacer-adjacent motif (PAM). This is a required sequence encoded in the non-targeted 
strand. 3 ′ positioning also means the 3 ′ CRISPR repeat is used. 

2 3 ′ Protospacer-flanking sequence (PFS) . This is a prohibited sequence encoded in the targeted 
strand also referred to as an anti-tag. 3 ′ positioning also means the 3 ′ CRISPR repeat is used. 

3 3 ′ No constraints. 3 ′ positioning means the 3 ′ CRISPR repeat is used. 
4 5 ′ Protospacer-adjacent motif (PAM). This is a required sequence encoded in the non-targeted 

strand. 5 ′ positioning also means the 5 ′ CRISPR repeat is used. 
5 5 ′ Protospacer-flanking sequence (PFS) . This is a prohibited sequence encoded in the targeted 

strand also referred to as an anti-tag. 5 ′ positioning also means the 5 ′ CRISPR repeat is used. 
6 5 ′ No constraints. 5 ′ positioning means the 5 ′ CRISPR repeat is used. 
- Unknown 

Guide RNA (gRNA) 
design + Multiplexing 

1 crRNA + tracrRNA + non-CRISPR-associated endogenous factors in the native host required for 
CRISPR processing 

2 crRNA + tracrRNA required for CRISPR processing 
3 crRNA required for CRISPR processing 
4 ω RNA 

- Unknown 

The website’s Tool Finder ( http:// caspedia.org/ tool _ finder.html ) may be used to explore and tabulate enzymes that possess each feature below. 

marized in Table 1 . This classification, termed CasID, is di- 
rectly inspired by the ENZYME Classification (E.C.) system, 
but is tailored to the unique properties of these RNA-guided 

enzymes ( 7 ). Each enzyme in CasPEDIA receives a 3-decimal 
number reflecting its biochemical activities as RNA-guided en- 
zymes. Briefly, CasPEDIA’s classification schema can be seen 

in Table 1 and is summarized here. Familiar to most CRISPR 

biotechnologists is ‘Nuclease Activity’, describing which nu- 
cleic acids are predominantly cut in cis (i.e. guide RNA- 
targeted) or in trans (i.e. non-guide RNA targeted). Addi- 
tionally, we provide insight into ‘Targeting Context’ or con- 
straints on sequences that neighbor the targeted sequence 
(e.g. protospacer -adjacent motif (P AM) (required adjacent se- 
quence for targeting) or protospacer-flanking sequence (PFS) 
(activity-suppressing, adjacent sequence during targeting)). Fi- 
nally, we provide ‘gRNA Design and Multiplexability” to en- 
able design of multiplexed guide RNAs (gRNAs) from a native 
CRISPR locus. For instance, as exhibited in Figure 1 A, Spy- 
Cas9 can be summarized by CasID 1.1.1, meaning SpyCas9 is 
an RNA-guided enzyme with targeted double-stranded DNA 

(dsDNA) activity with blunt cleavage and no trans -activity, 
employs a 3 

′ PAM positioning, and requires multiple synthetic 
gRNAs for multiplexable design. The enzymatic classification 

of Class 2 CRISPR proteins is intended to complement evo- 
lutionary classification efforts ( 3 ,8 ). In tandem with phyloge- 
netic classification, we hope that the consolidation of enzy- 

matic and sequence information fosters the further develop- 
ment of CRISPR-based biotechnologies. 

CasPEDIA is organized in wiki format, with dedicated 

web pages for an initial set of 33 nucleases. Shown in Fig- 
ure 2 , each wiki contains 7 sections: Quick Review, Sum- 
mary, Applications, Experimental Considerations, Nucleotide 
Sequence, and Protein Structure. The Quick Review section, 
located at the top of the page, enables rapid access to essen- 
tial information including: enzyme classification (a descrip- 
tion of the CasID and phylogenetic classification), core prop- 
erties (e.g. protospacer length, PAM / PFS, length of the nu- 
cleotide coding-sequence, etc.) and external resources (e.g. 
RefSeq identifiers for the gene and protein, UniProtKB ID, 
Conserved Domains Database IDs, etc.) ( 9–11 ). Next, is a 
high-level Summary section, detailing the nuclease’s origins, 
novel properties, and common uses. The Applications section 

then provides a literature review for the enzyme with sub- 
headers for Gene Editing examples in model organisms, Tools 
and Diagnostics utilizing the enzyme and Engineered Variants 
with expanded properties. This is followed by the Experimen- 
tal Considerations section, a brief introduction to perform- 
ing experiments with the Cas enzyme. It includes details on 

construct design, appropriate delivery modalities and a list of 
algorithms for gRNA design. Nucleotide Sequence is also dis- 
cussed, complete with downloads and a genome browser, cre- 
ated with igv.js ( 12 ), demonstrating the nuclease’s sequence 

http://caspedia.org
http://caspedia.org/tool_finder.html
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Figure 1. CasID enzymatic labels for biotechnologically important Cas enzymes. Examples are shown for ( A ) SpyCas9a (1 .1 .1), ( B ) Cas9d (2.1.1), ( C ) 
AsCas12a (3.4.3), ( D ) UnCas12c2 (5.4.2), ( E ) LbuCas13a (6.5.3), ( F ) PspCas13b (6.2.3). For a complete description and list of CasID values and their 
definition, please refer to http:// caspedia.org/ . 

Figure 2. Ov ervie w of CasPEDIA Entry f or Sp yCas9a (1 .1 .1) from the database. ( A ) CasID diagram and functional description. ( B ) R esources f or 
accessing native sequences and gRNA design for the Cas enzyme. ( C ) Functional and phylogenetic classification of SpyCas9 (CasID 1 .1 .1). ( D ) Biological 
properties of this Cas enzyme, including protein, gene and gRNA properties. ( E ) Ov ervie w of the Cas enzyme including a summary of the enzyme, 
applications, experimental considerations, protein str uct ure and gene browser (below the visualized portion). ( F ) Link to homepage containing CasID 

Definitions and search bar, accommodating queries for Cas enzymes by CasID, protein name or protein family. ( G ) Icon for Tool Finder, where users can 
search CasPEDIA for enzymes with specific properties. ( H ) Redirects to Cas Phylogeny page for browsing the website by protein family. ( I ) Tool Glossary 
of common CRISPR-Cas systems. ( J ) Contact Page. ( K ) FAQ and general information. 

http://caspedia.org/
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and the architecture of its CRISPR array. The subsequent sec- 
tion covers Protein Structure, which includes a summary of 
the protein’s domains from UniProt ( 11 ), Pfam annotations 
( 13 ) and structures from the PDB ( 14 ), or predicted with Al- 
phaFold2 ( 15 ), visualized using 3Dmol.js ( 16 ). Citations are 
provided for all wiki content and indexed at the bottom of 
the webpage. To assist users in locating relevant wiki entries, 
CasPEDIA includes extensive search features and navigational 
pages, discussed below. 

Na vig ating CasPEDIA 

CasPEDIA provides multiple search tools to connect users 
with pertinent CRISPR-Cas enzymes and wiki content (Fig- 
ure 2 ). Scientists can use the search bar, located on the home- 
page, to search for Cas nucleases by name (e.g. AsCas12a, Spy- 
Cas9a), RefSeq protein ID, or function using CasID nomen- 
clature. Each search returns a table containing matching pro- 
tein entries and displays for each entry: Enzyme Name, CasID, 
Protein Accession (RefSeq protein ID, when available), Nu- 
clease Activity, Targeting Requirement, gRNA Design and 

Multiplexability , and PAM. Similarly , the search bar can also 

be used to query the database for a protein sequence using 
DELTA-BLAST ( 17 ) with default parameters. This approach 

allows for remote homology detection with the support of 
NCBI’s C onserved D omain D atabase (CDD) ( 10 ) for domain- 
enhanced sequence searches across the CasPEDIA database. 
The resulting table is sortable by all fields, including E-value, 
to assist users in finding a nuclease of interest. 

A separate page, entitled Tool Finder, directs users through 

a series of drop-down menus (fields include: Cis-Activity Sub- 
strate, Trans-Activity Substrate, Targeting Requirements and 

gRNA Design and Multiplexability), which generates a table 
of all Class 2 systems within CasPedia that demonstrate or 
conservatively predicted to demonstrate the selected proper- 
ties. 

CasPEDIA also supports phylogenetic navigation, comple- 
menting evolutionary classifications from previous studies 
( 3 ,8 ). The Phylogeny page of the website provides summaries 
of T ype II, T ype V and T ype VI systems which make up Class 
2. We provide dedicated pages for each system type, contain- 
ing subtype descriptions and an interactive tree whose leaves 
redirect to wiki entries. 

While CasPEDIA wiki entries are organized by protein type 
(i.e. nuclease name and corresponding species) and CasID, 
users may also locate information for examples of engineered 

variants and gene-editing tools. Term searches for engineered 

variants are unsupported at this time, but variant details can 

be identified by searching the parental enzyme by name, and 

scanning the "Engineered Variants" section of the parental 
wiki entry. Furthermore, a designated page for fusion proteins 
is available (i.e. Tool Glossary), organizing the expanding list 
of base editors and prime editors by function, as well as pro- 
teins used for CRISPR interference (CRISPRi), CRISPR acti- 
vation (CRISPRa) and other tools. 

CasPEDIA data curation 

CasPEDIA is a community project, curated from the litera- 
ture by a panel of CRISPR researchers. Wiki content was 
managed through a series of forms, which were distributed 

amongst curators and editors for completion. To ensure accu- 
racy and objectivity, citations from peer-reviewed publications 

and databases were required. Citations are provided at the 
base of each page. Structural and sequence information were 
taken from literature or databases like PDB, NCBI, UniProt 
and Pfam. The CasPEDIA Consortium and Scientific Commu- 
nications Team at the Innovative Genomics Institute reviewed 

all entries prior to initial release. 
Additionally, we visualized CasPEDIA’s enzymatic classifi- 

cation efforts against the current genetic classification of Class 
2 CRISPR systems ( 3 ,8 ). Phylogenetic trees were constructed 

for each Class 2 Type from comprehensive datasets for Cas9, 
Cas12 and Cas13 proteins ( 3 ,18–21 ). Trees were constructed 

with IQ-TREE from MUSCLE aligned sequences, and visual- 
ized in iTOL ( 22–24 ). 

F uture dev elopments 

Currently, CasPEDIA only contains entries for the enzymatic 
activities of Cas effectors in Class 2 CRISPR-Cas systems, as 
there is limited distinction between the enzymatic activity of 
the protein and the mature CRISPR-Cas complex. The current 
CasPEDIA entries include representatives from all 27 phylo- 
genetic subtypes encoded within the Cas9, Cas12 and Cas13 

families. We also provide entries including related proteins 
IscB (HEARO) and TnpB, important variants used in biotech- 
nological applications, and enzymatic subtypes (ex. Cas12c1 

versus Cas12c2). Class 2 CRISPR system derived enzymes rep- 
resent only a fraction of the overall Cas protein diversity ( 3 ). 
Class 1 CRISPR-Cas systems and CRISPR adaptation, com- 
prise the most abundant CRISPR systems and enzymes across 
bacterial and archaeal genomes ( 3 ). Owing to their multi- 
protein nature, Class 1 CRISPR-Cas interference complexes 
coordinate multiple enzymatic activities in target nucleic acid 

recognition and their adoption for biotechnology has thus 
been difficult ( 2 ,25–27 ). Adaptations of CasID for these en- 
zyme complexes would facilitate greater adoption and subse- 
quent innovation by the biotechnology community and is a 
clear priority for future iterations. Additionally, new Class 2 

CRISPR-Cas systems are emerging at a rapid pace. During the 
preparation of the CasPEDIA database alone, seven new sys- 
tems were reported ( 20 ,28–34 ). We anticipate that many new 

systems will emerge by the next update of CasPEDIA. 
CasPEDIA is an actively evolving database, which will grow 

through community engagement and sustained content man- 
agement. CRISPR scientists are encouraged to contact the 
CasPEDIA Consortium to suggest new wiki entries and fea- 
tures, as well as update current wikis with emergent discover- 
ies. These efforts will maintain the relevancy of the database 
as a useful resource for future scientists. Prospective volun- 
teers can follow detailed directions on the Contact page of 
the website to contribute. 

Data availability 

CasPEDIA is freely accessible at http://caspedia.org , and data 
is licensed under Creative Commons Attribution 4.0 Interna- 
tional License (CC BY 4.0). The website is compatible with 

all devices, including tablets and mobile phones. A complete 
inventory of enzymes in CasPEDIA, along with CasID num- 
bers, can be downloaded on the Tool Finder page. Text con- 
tent for the wikis is available upon request, with more in- 
formation provided on the Contact page of the website. Il- 
lustrations from CasPEDIA are available for non-commercial 
use under a Creative Commons Attribution-NonCommercial- 

http://caspedia.org
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ShareAlike 4.0 International License (CC BY-NC-SA 4.0). 
Please credit “Innovative Genomics Institute, University of 
California, Berkeley”. 
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