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ABSTRACT OF THE DISSERTATION
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by
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Doctor of Philosophy in Mathematics
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Professor Christian Haesemeyer, Chair

We study toric varieties over arbitrary fields with an emphasis on toric surfaces in the

Merkurjev-Panin category of “K-motives”. We explore the decomposition of certain toric

varieties as K-motives into products of central simple algebras (CSA), the geometric and

topological information encoded in these CSAs, and the relationship between the decompo-

sition of the K-motive and the semiorthogonal decomposition of the derived category. We

obtain the information mentioned above for toric surfaces by classifying all minimal smooth

projective toric surfaces.
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CHAPTER 1

Introduction

Throughout, we fix the base field k, which is arbitrary. Let X be a scheme over k and let

K/k be a field extension. We say a scheme Y over k is a K/k-form of X if base change

from k to K, the schemes XK := X ⊗k K and YK are isomorphic as schemes over K [Ser97,

Chapter III §1]. For ks the separable closure of k, a ks/k-form is simply called a form or

twisted form. The scheme Xks has a natural Γ = Gal(ks/k)-action.

We will focus on the study of toric varieties over k. Let X be a normal geometrically

irreducible variety over k and let T be an algebraic torus acting on X over k. The variety X

is a toric T -variety if there is an open orbit U such that U is a principal homogeneous space

or torsor over T . A toric T -variety is called split if the torus T is split. The case of split

toric varieties have been extensively studied, for example in [Dan78][Ful93][CLS11]. Since

any toric variety X has a torus action over k and is a twisted form of a split toric variety,

the study of X is equivalent to the study of the split toric variety Xks with a Γ-action on the

fan structure as well as the open orbit U under the torus action, see §2.2. The main result

is the classification of minimal smooth projective toric surfaces:

Theorem 1 (Theorem 3.1.10). The surface X is a minimal smooth projective toric surface

if and only if X is (i) a P1-bundle over a smooth conic curve; (ii) the Severi-Brauer surface;

(iii) an involution surface; (iv) the del Pezzo surface of degree 6 with Picard rank 1.

This paper is motivated by ideas in [MP97], which studies toric varieties over an arbitrary

field in the motivic category C defined in loc. cit., and in particular by the following question:

Question 1. If X is a smooth projective toric variety over k, is K0(Xks) always a permu-

tation Γ-module?
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Definition 1.0.1. A Γ-module M is a permutation Γ-module if there exists a Γ-invariant

Z-basis of M . We call such a basis a permutation Γ-basis or Γ-basis.

The reason that we care about the Γ-action on K0(Xks) is that it in some way determines

X, cf §4.1. For example, if X has a rational point and K0(Xks) is a permutation Γ-module,

then X is isomorphic to the étale algebra corresponding to any Γ-basis of K0(Xks) in the

motivic category C [MP97, Proposition 4.5]. In general, if K0(Xks) has a permutation Γ-basis

of line bundles over Xks , then X has a decomposition into a finite product of finite Azumaya

algebras in the motivic category C completely described by this Γ-basis as follows:

Theorem 2 (Theorem 4.1.5). Let X be a smooth projective toric T -variety over k that splits

over l and G = Gal(l/k). Assume K0(Xl) has a permutation G-basis P of line bundles on

Xl. Let {Pi | 1 6 i 6 t} be G-orbits of P , and let π : Xl → X be the projection. For any

Si ∈ Pi, set Bi = EndOY (π∗(Si)) and B =
∏t

i=1Bi, then the map u =
⊕t

i=1 π∗(Si) : X → B

gives an isomorphism in the motivic category C.

Using the classification of minimal toric surfaces, we obtain that any smooth projective

toric surface satisfies the conditions of the above theorem:

Theorem 3 (Theorem 3.2.2). Let X be a smooth projective toric T -surface over k that splits

over l and G = Gal(l/k). Then K0(Xl) has a permutation G-basis of line bundles on Xl.

The original motivation for finding the decomposition of a smooth projective variety over

k into a product of finite Azumaya algebras in C is to compute higher algebraic K-theory of

the variety. Quillen [Qui73] computed higher algebraic K-theory for Severi-Brauer varieties,

cf Example 2.2.5, and Swan [Swa85] for quadric hypersurfaces. Panin [Pan94] generalized

their results by finding the decomposition in C for twisted flag varieties.

As a matter of fact, these Azumaya algebras also encode arithmetic/geometric informa-

tion about the variety, and in nice cases, classify all its twisted forms. Blunk investigated del

Pezzo surfaces of degree 6 over k in [Blu10] in this direction, cf Example 2.2.6. He showed

that a del Pezzo surface of degree 6 is determined by a pair of Azumaya algebras and the

surface has a rational point if and only if the corresponding pair of Azumaya algebras are
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both split. We will investigate the same information for all smooth projective toric surfaces

over k, cf §4.2. More generally, if the Picard group Pic(Xks) of a smooth projective toric

variety X is a permutation Γ-module, the open orbit U is determined by a set of Azumaya

algebras, each corresponding to a Γ-orbit of Pic(Xks), see Corollary 4.2.3. This implies that

the toric variety X has a rational point if and only if every Azumaya algebra in the set is

split. For example, we obtain that a P1-bundle over a smooth conic curve is isomorphic to

k×Q×k×Q in C and the surface is determined by the quaternion algebra Q corresponding

to the conic curve.

Moreover, since Tabuada [Tab14, Theorem 6.10] showed that the motivic category C is a

part of the category of noncommutative motivesHmo0, it implies that certain semiorthogonal

decompositions of the derived category of a smooth projective variety will give a decompo-

sition of the variety in C as follows:

Theorem 4 (Theorem 5.1.4). Let X be a smooth projective variety over k. Assume Db(X)

has a full exceptional collection of objects {V1, . . . , Vn} where Vi is Ai-exceptional and Ai is

a finite simple k-algebra, then X ∼=
∏n

i=1Ai in the motivic category C.

We will also briefly discuss the possibility of lifting the decomposition in the motivic

category of a smooth projective toric variety to the derived category, cf §5.1. A partial

result is the following:

Theorem 5 (Lemma 5.1.6, Theorem 5.1.7). Using the same notation as Theorem 2 and

assume dimX > 3, then any G-orbit Pi forms an exceptional block. If there is an ordering

for G-orbits {Pi}ti=1 of P such that {P1, . . . , Pt} forms a full exceptional collection of Db(Xl),

then for any Si ∈ Pi, {π∗S1, . . . , π∗St} is a full exceptional collection of Db(X).

By the classification of minimal toric surfaces and the known results of semiorthogonal

decompositions of geometrically rational surfaces, there is always such an ordering for smooth

projective toric surfaces. However, for higher dimensional toric varieties, it is still unclear.

The organization of the dissertation is as follows:
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Sections 2.1 and 2.2 introduce the background on the motivic category C and toric va-

rieties over k, including some basic facts and examples needed for the paper. For more

details about C, see [MP97, §1] or [Mer05, §3]. Section 3.1 classifies minimal smooth pro-

jective toric surfaces over k via toric geometry. Section 3.2 verifies that K0(Xks) has a

permutation Γ-basis of line bundles for toric surfaces. In section 4.1, we consider smooth

projective toric varieties X of all dimensions where K0(Xks) has a permutation Γ-basis of

line bundles. We reinterpret the construction for the separable algebra corresponding to a

toric variety in [MP97], and deduce that it provides exactly a decomposition of a smooth

projective toric variety with the aforementioned property in terms of such a basis. In section

4.2, we apply the construction in §4.1 to toric surfaces. Moreover, we relate the constructed

algebras to the open orbit U via Galois cohomology. For details of Galois cohomology, see

[Ser97][KMR98][GS06]. In section 5.1, we discuss the relationship between the semiorthogo-

nal decomposition of the derived category and the decomposition in the motivic category of

toric varieties via noncommutative motives and descent theory for derived categories.

Most of the time, instead of working with Xks and Γ-action, we work with Xl and

G = Gal(l/k)-action where l is the splitting field of the torus T .

We will use the following notations:

Fix the base field k and a separable closure ks of k. Let Γ = Gal(ks/k). T is an algebraic

torus over k. l is the splitting field of T and G = Gal(l/k) unless otherwise stated. For any

object Z (algebraic groups, varieties, algebras, maps) over k and any extension K/k, write

Z ⊗k K as ZK . For a split toric variety Y , we denote Σ as the fan structure and AutΣ as

the group of fan automorphisms. We will freely use the same notation for the ray in the fan,

the minimal generator of the ray in the lattice and the Weil divisor corresponding to the ray

when the context is clear. For an algebra A, denote Aop as its opposite algebra. Denote Sn

as the permutation group of a set of n elements.
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CHAPTER 2

Background

2.1 Motivic Category C

Definition 2.1.1. The motivic category C = Ck over a field k has:

• Objects: The pair (X,A) where X is a smooth projective variety over k, A is a finite

separable k-algebra

• Morphisms: HomC((X,A), (Y,B)) = K0(X × Y,Aop ⊗k B)

The Grothendieck group K0 of a pair is defined below. A k-algebra A is finite separable

if dimk(A) is finite and for any field extension K of k, AK is semisimple. Equivalently we

have:

Definition 2.1.2. The algebra A is a finite separable k-algebra if it is a finite product of

central simple algebras Ai where centers li are finite separable field extensions of k.

Let u : (X,A) → (Y,B) and v : (Y,B) → (Z,C) be morphisms in C. Since u ∈

K0(X × Y,Aop ⊗k B) ∼= K0(Y × X,B ⊗k Aop), the map u can also be viewed as uop :

(Y,Bop)→ (X,Aop). The composition v ◦ u : (X,A)→ (Z,C) is given by

π∗(q
∗v ⊗B p∗u)

where p : X × Y × Z → X × Y , q : X × Y × Z → Y × Z, π : X × Y × Z → X × Z are

projections.

We write X for (X, k) and A for (Spec k,A). Since the morphisms are defined in K0, the

category is also called K-correspondences.
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2.1.1 Algebraic K-theory of a pair

The algebraic K-theory of a pair (X,A) is defined in the following way and it generalizes

the Quillen K-theory of varieties:

Let P(X,A) be the exact category of left OX ⊗k A-modules which are locally free OX-

modules of finite rank and morphisms of OX ⊗k A-modules. The group Kn(X,A) of the

pair (X,A) is defined as KQ
n (P(X,A)), the Quillen K-theory of P . Let M(X,A) be the

exact category of left OX ⊗k A-modules which are coherent OX-modules and morphisms of

OX ⊗kA-modules. The group K ′n(X,A) of the pair (X,A) is defined as KQ
n (M(X,A)). The

embedding P ⊂ M induces a map Kn(X,A) → K ′n(X,A) and it is an isomorphism if X is

regular (resolution theorem). Note that Kn(X, k) is the usual Kn(X) and Kn(Spec k,A) =

Kn(Rep(A)) is the K-theory of representations of A.

In fact, Kn defines a functor Kn : C → Ab which sends (X,A) to Kn(X,A). For u :

(X,A)→ (Y,B), x ∈ Kn(X,A), we can define

Kn(u)(x) = q∗(u⊗A p∗x)

where p : X × Y → X, q : X × Y → Y are projections.

Similarly we can define, for any variety V over k, a functor KV
n : C → Ab where on

objects KV
n (X,A) = K ′n(V ×X,A).

Example 2.1.3. [MP97, Example 1.6(1)] Mn(k) ' k in C.

Example 2.1.4. [MP97, Example 1.6(3)], see also [Tab14, Theorem 9.1]. Let A and B be two

central simple k-algebras. Then A ∼= B in C if and only if [A] = [B] ∈ Br(k).

Proof. Previous example indicates that Brauer equivalences give isomorphisms in C, so [A] =

[B] ∈ Br(k) implies A ∼= B in C.

For the opposite direction, since each central simple k-algebra is Brauer equivalent to a

unique division k-algebra, we can assume A,B are division algebras. Let M : A → B and

N : B → A be inverse maps in C. Since K0(Aop ⊗k B) ∼= ZR and K0(Bop ⊗k A) ∼= ZRop for

R the unique simple A-B-bimodule, we have M = nR and N = mRop for some m,n ∈ Z.
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N◦M = N⊗BM ∼= mnRop⊗BR ∼= A, M◦N = M⊗AN ∼= mnR⊗ARop ∼= B. Since A,B are

simple modules, we have mn = 1 and we can assume M = R,N = Rop. As a right A-module

and a left B-module respectively, we have MA
∼= Ar and BM ∼= Bs. Similarly, AN ∼= Ap and

NB
∼= Bq. The left A-module isomorphism N ⊗B M ∼= N ⊗B Bs ∼= N s ∼= Aps ∼= A implies

that p = s = 1. Similarly r = q = 1. In particular, this implies dimk A = dimk B.

Finally consider the k-algebra homomorphism f : B → EndA(MA) ∼= A by sending b to

lb left multiplication by b. This is obviously injective, and it is surjective because A,B have

the same dimension, so A ∼= B as k-algebras.

2.2 Toric Varieties

Let T be an algebraic torus over k.

Definition 2.2.1. A toric T -variety X over k is a normal geometrically irreducible variety

with an action of the torus T and an open orbit U which is a principal homogeneous space

over T .

By definition, the torus Tks ∼= Gn
m,ks splits where n = dimX. The torus T corresponds to

a cocycle class [ρ] ∈ H1(Γ,Autgp,ks(Gn
m,ks)) = H1(Γ,GL(n,Z)). Moreover, the torus T splits

over a finite Galois extension l of k (Tl ∼= Gn
m,l), which is called the splitting field of T .

Explicitly, tori Tks and Gn
m,ks have natural Galois actions with Γ acting on the factor

ks. This Galois action gives group automorphisms of Tks over k, but not over ks because

Γ also acts on the scalar ks. Let φ : Tks → Gn
m,ks be an isomorphism, then we obtain

ρ : Γ → GL(n,Z) by sending g to φgφ−1g−1, and we have ker(ρ) = Gal(ks/l) where l is

the splitting field. Conversely, the torus T can be constructed from ρ as follows, cf [VE83,

§1]. Let ρ′ : G = Gal(l/k) → GL(n,Z) be induced by ρ and let µ : G → Autk(Gn
m,l) act on

Gn
m,k ⊗k l via µ(g) = ρ′(g)⊗ g, g ∈ G, then T ∼= Gn

m,l/µ(G).

Definition 2.2.2. A toric T -variety X over k is called a toric T -model if the open orbit U

has a rational point.
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In this case, the open orbit U ∼= T and there is an T -equivariant embedding T ↪→ X. If

X is smooth, by [VA85, §4 Proposition 4], the set U(k) is nonempty if and only if X(k) is.

Definition 2.2.3. A toric T -variety is split if T splits, and is non-split otherwise.

Let Xks (or Xl) be the split toric variety with the fan structure Σ. Since the Γ-action on

Tks is compatible with the one on Xks , the image of ρ is contained in AutΣ, namely

ρ(Γ) = Gal(l/k) ⊆ AutΣ ⊂ GL(n,Z).

Let XΣ be the split toric variety over k with fan structure Σ. If X is a toric T -model, then

similarly as the torus T , the variety X can be recovered from ρ and Σ as (XΣ⊗k l)/µ(G). In

general, for each toric T -variety X, there is a unique (up to T -isomorphism) toric T -model

X∗ such that Xks
∼= (X∗)ks . We call X∗ the associated toric T -model of X. In detail, the

toric T -model X∗ = (X × U)/T where T acts on X × U diagonally, and the toric T -variety

X = (X∗ × U)/T where T acts on X∗ × U via t · (x, y) = (tx, yt−1), cf [VA85, §4].

In summary, an algebraic torus T is uniquely determined by a 1-cocycle (class) ρ : Γ→

GL(n,Z). A toric T -model X is uniquely determined by ρ and fan Σ with the restriction

ρ(Γ) ⊆ AutΣ. A toric T -variety is uniquely determined by its associated T -model X∗ and a

principal homogeneous space U ∈ H1(k, T ).

Lemma 2.2.4. Let φ : XΣ1 → XΣ2 be a toric morphism of split smooth projective toric

varieties over ks, and let φ̄ : N1 → N2 be the induced Z-linear map of lattices that is

compatible with fans Σ1,Σ2 for each i. Let ρi : Γ → Aut(Ni) be a Galois action on Ni that

is compatible with fan Σi (ρi(Γ) ⊆ AutΣi) such that φ̄ is Γ-equivariant. Let Ti be the torus

corresponding to ρi. Then, for any U1 ∈ H1(k, T1), there exists U2 ∈ H1(k, T2) such that φ

descends to a map X1 → X2 where Xi is the toric variety corresponding to (ρi,Σi, Ui) for

i = 1, 2.

Proof. Restrict φ to tori φ|TN1
: TN1 → TN2 . Since φ̄ is Γ-equivariant, maps φ and φ|TN1

descend to ϕ : X∗1 → X∗2 where X∗i is the toric Ti-model corresponding to Σi and ψ : T1 → T2.

ψ induces H1(k, T1) → H1(k, T2) and let U2 be the image of U1 under this map. Set

Xi = (X∗i × Ui)/Ti, then φ descends to a map X1 → X2.

8



Example 2.2.5. Severi-Brauer variety X (Xks
∼= Pn) . Let A be a central simple k-algebra of

degree n + 1, then X = SB(A) is a toric variety with torus T = RE/k(Gm,E)/Gm,k where E

is a maximal étale k-subalgebra of A. X has a rational point if and only if A = Mn+1(k) if

and only if X ∼= Pn.

Quillen [Qui73, §8 Theorem 4.1] showed that Km(SB(A)) ∼= Km(k)×
∏n

i=1Km(A⊗i) for

m > 0, and Panin [Pan94] further showed that SB(A) ∼= k ×
∏n

i=1A
⊗i in C.

Example 2.2.6. Let X be a del Pezzo surface of degree 6 over k (KX is anti-ample with

K2
X = 6, Xks

∼= Blp1,p2,p3(P2) where p1, p2, p3 are not collinear). It is a toric T -variety where

T is the connected component of the identity of Autk(X).

Blunk [Blu10] showed that X ∼= k × P × Q in C where P is an Azumaya K-algebra of

rank 9 (dimk(P )/ dimk(K) = 9) and Q is an Azumaya L-algebra of rank 4 where K,L are

étale k-algebras of degree 2 and 3 respectively.

Example 2.2.7. Involution surface X (Xks
∼= P1×P1). The surface X corresponds to a central

simple algebra (A, σ) of degree 4 with a quadratic pair σ, the even Clifford algebra C0(A, σ)

is a quaternion algebra over K, the discriminant extension of X. Write B = C0(A, σ), then

X is the Weil restriction RK/kSB(B), cf [AB15, Example 3.3]. Denote the torus of SB(B) in

Example 2.2.5 as T , then X is a toric variety with torus RK/kT .

Panin [Pan94] showed that X ∼= k ×B × A in C.

2.2.1 K0 of split toric varieties

Let Y be a split smooth proper toric T -variety with fan Σ.

For σ ∈ Σ, denote Oσ the closure of the T -orbit corresponding to σ and Jσ the sheaf of

ideals defining Oσ. Write σ(1) as the set of rays span σ. For σ, τ ∈ Σ, if σ(1)∩ τ(1) = ∅ and

σ(1) ∪ τ(1) span a cone in Σ, denote the cone by 〈σ, τ〉, otherwise 〈σ, τ〉 = 0.

From [AA92], we have

Theorem 2.2.8 (Klyachko, Demazure). As an abelian group, K0(Y ) is generated by Oσ =

9



1− Jσ with relations

Oσ · Oτ =

 O〈σ,τ〉, 〈σ, τ〉 6= 0

0, otherwise
(2.2.1)

∏
e∈Σ(1)

Jf(e)
e = 1, f ∈ Hom(N,Z) = M = T ∗ (2.2.2)

where T ∗ is the group of characters of T .

Theorem 2.2.9 (Klyachko). The abelian group K0(Y ) is free with rank equal to the number

of the maximal cones. In addition, sheaves Oy and Oy′ coincide in K0(Y ) for any rational

closed points y, y′ ∈ Y .
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CHAPTER 3

Main Results for Toric Surfaces

3.1 Minimal Toric Surfaces

Let X be a smooth projective toric surface over k. We say X is minimal if any birational

morphism f : X → X ′ from X to another smooth projective surface X ′ defined over k is an

isomorphism. In this section, we will classify minimal smooth projective toric surfaces.

Definition 3.1.1. Define TG,K = {Y |G can be embedded into AutΣ(Y )}/ isomorphisms

over K, where Y is a split smooth projective toric surface with fan Σ over a field K, the

group AutΣ(Y ) is the group of fan automorphisms of Y andG is a finite subgroup of GL(2,Z).

We will simply write TG if the base field K is not important. Note that TG only depends

on the conjugacy classes of G in GL(2,Z) and for a surface Y ∈ TG, there is an induced

G-action on Y . For any two varieties Y1, Y2 with G-actions, we say a morphism h : Y1 → Y2

is a G-morphism if h is G-equivariant.

Definition 3.1.2. The split smooth projective toric surface Y is G-minimal over K if

Y ∈ TG,K and any birational G-morphism f : Y → Y ′, Y ′ ∈ TG,K defined over K is a

G-isomorphism.

We can redefine minimal toric surfaces as follows:

Definition 3.1.3. Let X be a smooth projective toric T -surface over k and let ρ : Γ →

GL(2,Z) be the map corresponding to the torus T . We say X is a minimal toric surface if

Xks is G = ρ(Γ)-minimal over ks.

This definition is equivalent to the one given at the beginning of the section. This is

because for a smooth projective toric T -surface X, the exceptional locus of a birational
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morphism f : X → X ′ is T -invariant. Thus, the surface X ′ also has a toric structure with

the same torus T . On the other hand, the existence of a birational morphism f : X → X ′

where X ′ is smooth projective is equivalent to the existence of a G-birational morphism

h : Xks → Y where Y is a split smooth projective toric surface such that the G-action on Y

is torus invariant, i.e the group G can be embedded into AutΣ(Y ).

In general, there is a finite chain of blow-ups of toric T -surfaces

X = X0 → X1 → · · · → Xn = X ′

where (X ′)ks is G-minimal.

Now, to classify all minimal smooth projective toric surfaces over k is the same as clas-

sifying, for each finite subgroup G of GL(2,Z), G-minimal surfaces over ks. It is well

known that, when G is trivial, the minimal (toric) surfaces are P2 and Hirzebruch surfaces

Fa = Proj(OP1 ⊕OP1(a)) for a > 0, a 6= 1.

There are 13 non-conjugate classes of finite subgroups of GL(2,Z) and they can only be

either cyclic or dihedral groups. See Table 3.1 below.

Table 3.1: Non-conjugate classes of finite subgroups of GL(2,Z) and their generators

Cyclic Dihedral Generators

C1 = 〈I〉 D2 = 〈C〉
A =

 1 −1

1 0


D′2 = 〈C ′〉

C2 = 〈−I〉 D4 = 〈−I, C〉
B =

 0 −1

1 0


D′4 = 〈−I, C ′〉

C3 = 〈A2〉 D6 = 〈A2, C〉
C =

 0 1

1 0


D′6 = 〈A2,−C〉

C4 = 〈B〉 D8 = 〈B,C〉
C ′ =

 1 0

0 −1


C6 = 〈A〉 D12 = 〈A,C〉

We will make use of the following simple fact from toric geometry [OM78, Proposition

6.7]:
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Proposition 3.1.4. Let Y be a split smooth projective toric surface with the fan structure

Σ. Counterclockwise label (the minimal generators of) the rays of Σ as y1, ..., yn and denote

Di the divisor corresponding to yi, then yi−1 + yi+1 + aiyi = 0 where ai = D2
i (yn+1 = y1).

Definition 3.1.5. Let Y be a split smooth projective toric surface. We can assign a sequence

a = (a1, ..., an) to Y where ai comes from Proposition 3.1.4. We refer this sequence as the

self-intersection sequence of Y .

There is an induced action of AutΣ(Y ) on a = (a1, ..., an) that fixes this sequence: Let

α ∈ AutΣ(Y ) and define α(i) so that α(yi) = yα(i), then α(a) = (aα(1), ..., aα(n)). Applying α

to the relation yi−1 + yi+1 + aiyi = 0, we get ai = aα(i) and thus α(a) = a.

More specifically, consider the case where AutΣ(Y ) ∩ SL(2,Z) = Ct is nontrivial and let

us look at the action of Ct on a. As indicated in Table 3.1, the cyclic group Ct is generated

by powers of A or B where B is the rotation by π/4 and A is conjugate in GL(2,R) to

the rotation by π/3. In particular, the action of Ct on the fan Σ is free which implies

t |n. Let n = tm and let σ be the generator of Ct that rotates counterclockwise, then

σ(a) = (am+1, ..., am) = a.

Lemma 3.1.6. Let AutΣ(Y )∩ SL(2,Z) = Ct be nontrivial (i.e, t = 2, 3, 4, 6). If the number

of rays of the fan > max{4, t}, then Y is not Ct-minimal, that is, there exists a split smooth

projective toric surface Y ′ such that Y → Y ′ is a blow-up along torus invariant points and

the group of fan automorphisms of Y ′ contains Ct.

Therefore, Ct-minimal surfaces have the number of rays 6 max{4, t}.

Proof. Denote counterclockwise y1, ..., yn as rays of Σ and let a = (a1, ..., an) be its self-

intersection sequence. If n > 4, Y is not P2 or Fa, then there exists i such that ai = −1.

Let σ be a generator of Ct and as discussed above, σ rotates the rays. If n > t, then the ray

σ(yi) is not adjacent to yi and thus σ(yi) stays a (-1)-curve after Y blowing down yi. Hence

Y ′ can be obtained by successively blowing down yi, σ(yi), . . . , σ
t−1(yi).

Lemma 3.1.7. D2 fixes rays generated by ±(1, 1) or maximal cones generated by (1, 0) and

(0, 1) or by (−1, 0) and (0,−1); D′2 fixes rays generated by ±(1, 0).
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Now we are ready to classify G-minimal toric surfaces for G a finite subgroup of GL(2,Z).

Proposition 3.1.8. Let Y be a split smooth projective toric surface and let G be a finite

subgroup of GL(2,Z). If Y is G-minimal, then Y must be one of the following varieties:

1. G = D2: Y = P2,P1 × P1, F2a+1, a > 1;

2. G = D′2: Y = F2a, a > 0;

3. G = C2: Y = P1 × P1;

4. G = D4 or D′4: Y = P1 × P1;

5. G = C3: Y = P2;

6. G = D6: Y = P2;

7. G = D′6: Y = S;

8. G = C4: Y = P1 × P1;

9. G = D8: Y = P1 × P1;

10. G = C6: Y = S;

11. G = D12: Y = S

where Fa = Proj(OP1 ⊕OP1(a)) is the Hirzebruch surface and S is the blow-up Blp1,p2,p3(P2)

of P2 along three torus invariant points.

Proof. Let Σ be the fan structure of Y .

G = D2 If D2 fixes at least one maximal cone, then Y = P2 or P1×P1 = F0. Otherwise Σ has

rays ±(1, 1), and the rays counterclockwise before and after (1, 1) must be (a + 1, a)

and (a, a + 1) respectively. Y is isomorphic to F2a+1 in this case. For F1, it has a

G-invariant (−1)-curve so it is the blow-up of a rational point on P2, not minimal. So

we have a > 1.
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G = D′2 Σ has rays ±(1, 0), and the rays counterclockwise before and after (1, 0) are (a,−1)

and (a, 1) respectively. Y is isomorphic to F2a, a > 0.

G = C2 Σ should have rays x, y,−x,−y and x, y form a basis of the lattice, thus Y ∼= P1×P1.

G = D4, D
′
4 Y ∼= P1 × P1 which follows from the case G = C2.

For cases G ⊇ Ct, t > 2, let n be the number of rays of Σ. Recall that t |n and by Lemma

3.1.6, n 6 max{4, t}.

G = C3 3 |n, n 6 4, so n = 3 and Y ∼= P2.

G = C4 4 |n, n 6 4, so n = 4 and Y ∼= P1 × P1.

G = C6 6 |n, n 6 6, so n = 6. Following from the case G = C3, Y is the blow up of P2 along

three torus invariant closed points.

G = D6 Following from the case G = C3, Y ∼= P2.

G = D′6 Following from the case G = C3, Y is either P2 or the blow-ups of P2 along three

torus invariant points. As AutΣ(P2) is isomorphic to the conjugacy class of D6, Y can

not be P2.

G = D8 Following from the case G = C4, Y ∼= P1 × P1.

G = D12 Following from the case G = C6, Y is the blow up of P2 along three torus invariant

closed points.

Lemma 3.1.9. Let X be a toric surface that is a form of Fa, a > 1, then X is a P1-bundle

over a smooth conic curve. If X has a rational point, then X ∼= Fa.

Proof. Let X correspond to (ρ1,Σ1, U1) and let Σ1 be the fan of Fa with rays (1, 0), (0, 1),

(−1, a), (0,−1). Let φ̄ : Z2 → Z be the projection to the first factor, which corresponds to

φ : Fa → P1. Let ρ2 = det ◦ρ1 : Γ → GL(1,Z), then φ̄ is Galois equivariant with respect

to ρ1 and ρ2. By Lemma 2.2.4, φ descends to X → C. As a form of P1, C is a smooth
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plane conic curve ([GS06, Corollary 5.4.8] for characteristic not 2 and [EKM08, §45A] for

any characteristic).

Either X ∼= Fa or ρ1 permutes rays (1, 0), (−1, a). Let D′ be the Cartier divisor corre-

sponding to the ray (0,−1), then it is Galois invariant in both cases. Thus, D′ descends to

a Cartier divisor D on X, and X ∼= Proj(OC ⊕ OC(D)) is a P1-bundle over C. If X has a

rational point, so does C. Therefore, C ∼= P1, X ∼= Fa.

By Proposition 3.1.8, a minimal smooth projective toric surface X is a form of (i) Fa, a >

2; (ii) P2; (iii) P1 × P1; (iv) Blp1,p2,p3(P2) where p1, p2, p3 are not collinear. Furthermore, we

have

Theorem 3.1.10. The surface X is a minimal smooth projective toric surface if and only

if X is (i) a P1-bundle over a smooth conic curve; (ii) the Severi-Brauer surface; (iii) an

involution surface; (iv) the del Pezzo surface of degree 6 with Picard rank 1.

Proof. It follows from Lemma 3.1.9, Example 2.2.5, 2.2.6, 2.2.7 and the fact that a minimal

del Pezzo surface of degree not equal to 8 has Picard rank 1 [CKM08, Theorem 2.4].

3.2 K0 of Toric Surfaces

In this section, we will show that K0(Xks) is a permutation Γ-module for X smooth projective

toric surface over k. First recall how K0 behaves under blow-ups:

Theorem 3.2.1. [GI71, VII 3.7] Let X be a noetherian scheme and let i : Y → X be a

regular closed immersion of pure codimension d. Let p : X ′ → X be the blow up of X along

Y and Y ′ = p−1Y . There is a split short exact sequence

0→ K0(Y )
u→ K0(Y ′)⊕K0(X)

v→ K0(X ′)→ 0

and the splitting map w for u is given by w(y′, x) = p|Y ′∗(y′), y′ ∈ K(Y ′), x ∈ K(X).

This gives us an isomorphism K0(X ′) ∼= ker(w) ∼= K0(X)⊕
⊕d−1K0(Y ) which fits into
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the split short exact sequence

0→ K0(X)
p∗→ K0(X ′)→

d−1⊕
K0(Y )→ 0.

Now let X be a smooth projective toric T -surface over k that splits over l. Let Y be a T -

invariant reduced subscheme of X of dimension 0, then Yl is a disjoint union of Tl-invariant

points fixed by G = Gal(l/k). Set X ′ = BlYX. We have

0→ K0(Xl)
p∗→ K0(X ′l)→ K0(Yl) =

⊕
Z→ 0

where p∗ is aG-homomorphism. Each Z is generated by exceptional divisors Ei corresponding

to the points in Yl and G permutes Ei the same way as G permutes the points in Yl.

If we know K0(Xl) has a permutation G-basis γ, then K(X ′l) has a permutation G-basis

consisting of p∗γ (total transforms of γ) and Ei.

Theorem 3.2.2. Let X be a smooth projective toric T -surface over k that splits over l and

G = Gal(l/k). Then K0(Xl) has a permutation G-basis of line bundles on Xl.

Proof. By previous discussion and the fact that G ⊆ AutΣ, it suffices to prove that K0(Xl)

has a permutation AutΣ-basis of line bundles for X minimal. By Theorem 3.1.10, we only

need to consider the following cases for Xl:

(i) Fa, a > 2, AutΣ = S2.

(ii) P2, AutΣ = D6.

(iii) P1 × P1, AutΣ = D8.

(iv) del Pezzo surface of degree 6, AutΣ = D12.

We will use Equation (2.2.2) in Theorem 2.2.8 with f = (1, 0) and (0, 1) in producing

relations and finding a permutation basis. We will write xi for rays in the fan and Ji =

O(−Di) where Di is the divisor corresponding to xi.
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(i): Rays x1 = (1, 0), x2 = (0, 1), x3 = (−1, a), x4 = (0,−1). S2 fixes x2, x4 and permutes

x1, x3. Relations are:  J3 = J1

J4 = J2J
a
3

Let x be a rational point of Xl, then the sheaf Ox = (1− J1)(1− J2) in K0. A permutation

basis is 1, J1, J2, J1J2.

(ii): Rays x1 = (1, 0), x2 = (0, 1), x3 = (−1,−1). D6 rotates xi and reflects along lines

in x1, x2, x3. Relations are J1 = J2 = J3. A permutation basis is 1, J1, J
2
1 .

(iii): Rays x1 = (1, 0), x2 = (0, 1), x3 = (−1, 0), x4 = (0,−1). D8 rotates xi and reflects

along lines in x1, x2, (1, 1), (−1, 1). Relations are: J3 = J1

J4 = J2

A permutation basis is 1, J1, J2, J1J2.

(iv): Rays x1 = (1, 0), x2 = (0, 1), x3 = (−1,−1), y1 = (−1, 0), y2 = (0,−1), y3 = (1, 1).

D12
∼= S2 × S3 (S2, S3 permutation groups). S2 = 〈−1〉 switches between xi and yi. S3

permutes the pair of rays (xi, yi). Let J ′i correspond to yi. Relations are

J1

J ′1
=
J2

J ′2
=
J3

J ′3

As proved in [Blu10, Theorem 4.2], we have a permutation basis 1, P1, P2, P3, Q1, Q2 where

P1 = J1J
′
2

P2 = J2J
′
3

P3 = J3J
′
1

Q1 = J1J2J
′
3

Q2 = J ′1J
′
2J3

Remark 3.2.3. The difficulties to generalize Theorem 3.2.2 to higher dimensions are:
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(1) The classification of conjugacy classes of finite subgroups of GL(n,Z) is difficult and

not complete which often only provides algorithms and requires the help of computer even

for small n. Also, the number of those finite subgroups grows very fast as n increases. For

example, there are total of 73 for GL(3,Z) and 710 for GL(4,Z).

(2) The K-group K0(Xl) in question may not stay a permutation module after blow-ups

if X is not a surface.
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CHAPTER 4

Construction of Separable Algebras

4.1 Construction of Separable Algebras

Let X be a smooth projective toric T -variety over k that splits over l, and X∗ be its associated

toric model, cf §2.2. [MP97, Theorem 5.7] states that there is a split monomorphism u :

X∗ → A in the motivic category C from X∗ to an étale k-algebra A and u is represented by

an element Q in Pic(X∗ ⊗k A). We can construct u′ : X → B out of u. [MP97, Theorem

7.6] states that u′ is also a split monomorphism in C. In this section, we will recall the

construction of u′ and consider the case when u is an isomorphism.

Write XA = X⊗kA and we have f : Xl → X∗l , a Tl-isomorphism. Consider the diagram:

XA⊗kl X∗A⊗kl

XA X∗A

fA

πXA πX∗
A

(4.1.1)

Let P ′ = f ∗(π∗X∗A(Q)), then B = EndXA(πXA∗(P
′)) ∈ Br(A) and u′ : X → B is repre-

sented by πXA∗(P
′), namely, u′ = φ∗(P

′) ∈ K0(X,B) where φ is the projection XA⊗kl → X.

The following criterion, which is [MP97, Proposition 4.5], checks when a toric model is

isomorphic to an étale algebra in C:

Proposition 4.1.1. Let X∗ be a smooth projective toric model over k that splits over l and

G = Gal(l/k). Assume that K0(X∗l ) is a permutation G-module, then X∗ ∼= HomG(P, l) in

the motivic category C for any permutation G-basis P of K0(X∗l ).

Remark 4.1.2. In particular, this implies that for any split smooth projective toric variety

Y over k, Y ∼= kn in C where n equals to the rank of K0(Y ) (also equals to the number of
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maximal cones of the fan). Note that a smooth projective toric variety Y over k where the

fan of Yl has no symmetry is automatically split.

Lemma 4.1.3. Let X∗, G be the same as before, then there is an isomorphism u : X∗ → A

in C where A is an étale k-algebra and u is represented by an element Q ∈ Pic(X∗A) if and

only if K0(X∗l ) has a permutation G-basis of line bundles on X∗l .

Proof. ⇒: decompose A as
∏t

i=1 ki where ki is a finite separable field extension of k, then

X∗A =
∐t

i=1 X
∗
ki

is the disjoint union of X∗ki and Q =
∐t

i=1 Qi where Qi is a line bundle on

X∗ki . Let qi : X∗ki → X∗ be the projections, then u =
⊕t

i=1 qi∗Qi. Let pi : X∗ks → X∗ki be

the projections and Gi = Gal(ki/k), then uks =
⊕t

i=1 p
∗
i q
∗
i qi∗(Qi) =

⊕t
i=1

⊕
g∈Gi p

∗
i (gQi)

and Aks ∼= (ks)n where n =
∑t

i=1 |Gi|. View u as uop : Aop = A → X∗, then uop
ks induces

an isomorphism K0((ks)n) → K0(X∗ks) where the canonical basis of the former sends to

{p∗i (gQi) | g ∈ Gi, 1 6 i 6 t} and this set gives a permutation Γ-basis of K0(X∗ks) of line

bundles. As Gal(ks/l) acts trivially on K0(X∗ks), this basis descends to X∗l .

⇐: Assume P is a permutation G-basis of K0(X∗l ) of line bundles on X∗l and P divides

into t G-orbits. Let {Pi | 1 6 i 6 t} be the set of representatives of G-orbits, and Gal(l/ki)

be the stabilizer of Pi. Set A = HomG(P, l), then A ∼=
∏t

i=1 ki. As X∗ has a rational point,

by [CKM08, Proposition 5.1], Pi ∈ Pic(X∗l )Gal(l/ki) ∼= Pic(X∗ki), namely Pi ∼= p∗i (Qi) for some

Qi ∈ Pic(X∗ki) where pi : X∗l → X∗ki is the projection. There is a morphism u : X∗ → A

which is represented by
∐t

i=1Qi ∈ Pic(X∗A), and by construction, ul induces an isomorphism

K0(X∗l ) ∼= K0(Al). Using the following lemma, we have u is an isomorphism.

Lemma 4.1.4. Let X∗ be the same as before and A is an étale k-algebra. If u : X∗ → A is

a morphism in C such that K0(uks) : K0(X∗ks)→ K0(Aks) is an isomorphism, then so is u.

Proof. There is a commutative diagram:

K0(X∗) K0(A)

K0(X∗ks)
Γ K0(Aks)

Γ

K0(u)

K0(uks )
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The right vertical map is an isomorphism as A is étale and so is K0(uks) by assumption.

The left vertical map is an isomorphism by [MP97, Corollary 5.8]. Thus, K0(u) is also an

isomorphism.

Write w = uop : A→ X∗, then by the splitting principle [MP97, Proposition 6.1 and the

proof], KX∗
0 (w) : K0(X∗, A)→ K0(X∗×X∗) is surjective. Thus, there exists v ∈ K0(X∗, A) :

X∗ → A such that w ◦ v = KX∗
0 (w)(v) = 1X∗ , and then K0(w ◦ v) = K0(w)K0(v) = 1K0(X∗).

Since K0(w) = φ is an isomorphism, K0(v) = φ−1 and K0(v ◦ w) = K0(v)K0(w) = 1K0(A).

This implies v ◦ w = 1A and thus v is a two sided inverse of w in C.

The proof of (3) ⇔ (4) in [MP97, Proposition 7.9] shows that the Tl-isomorphism f :

Xl → X∗l induces a G = Gal(l/k)-module isomorphism f ∗ : K0(X∗l ) → K0(Xl). Thus,

K0(X∗l ) has a permutation G-basis of line bundles on X∗l if and only if K0(Xl) has such a

basis. Note that the proof (1) ⇒ (2) (an isomorphism u : X∗ → A gives an isomorphism

u′ : X → B), which uses the construction (4.1.1) recalled at the beginning of the section,

works only when u is represented by an element Q ∈ Pic(X∗A). Thus, we have the following

instead:

Theorem 4.1.5. Let X be a smooth projective toric T -variety over k that splits over l and

G = Gal(l/k). Assume K0(Xl) has a permutation G-basis P of line bundles on Xl. Let

{Pi | 1 6 i 6 t} be G-orbits of P , and let π : Xl → X be the projection. For any Si ∈ Pi,

set Bi = EndOY (π∗(Si)) and B =
∏t

i=1Bi, then the map u =
⊕t

i=1 π∗(Si) : X → B gives an

isomorphism in the motivic category C.

Proof. By Lemma 4.1.3, we have an isomorphism u : X∗ → A represented by Q ∈ Pic(X∗A).

Here A ∼=
∏t

i=1 ki where Gal(l/ki) is the stabilizer of Si under G-action. Q =
∐t

i=1 Qi and

Qi ∈ Pic(X∗ki) descends from (f ∗)−1(Si) ∈ Pic(X∗l )Gal(l/ki). Now we run the construction

(4.1.1) for Qi:

Xki⊗kl X∗ki⊗kl

Xki X∗ki

fi

πX πX∗
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Let p : Xl → Xki and q : Xki → X be the projections, then πX∗f
∗
i π
∗
X∗(Qi) ∼= p∗(Si)⊗k ki

where its OXki -module structure comes from the one on p∗(Si). Thus,

EndOXki
(πX∗f

∗
i π
∗
X∗(Qi)) ∼= EndOXki

(p∗(Si))⊗k Endk(ki)

is Brauer equivalent to B′i = EndOXki
(p∗Si). It remains to prove that Bi

∼= B′i. There is a

G-isomorphism:

Bi ⊗k l ∼= EndOXl (π
∗π∗(Si)) ∼= EndOXl (p

∗q∗q∗p∗(Si))

∼= EndOXl (p
∗p∗(Si)⊗k ki) ∼= EndOXl (p

∗p∗(Si))⊗k ki
∼= (B′i ⊗ki l)⊗k ki ∼= B′i ⊗k l.

The fourth isomorphism follows from Lemma 4.1.6. Take G-invariants on both sides, we

have Bi
∼= B′i.

Lemma 4.1.6. Let X be a proper variety over k and assume that there is a finite group G

acting on Cartier divisors CDiv(X). Let D ∈ CDiv(X) and g ∈ G such that D and gD are

not linearly equivalent, then HomOX (OX(D),OX(gD)) = 0.

Proof. Assume that HomOX (OX(D),OX(gD)) 6= 0, which is equivalent to OX(gD − D)

has a nonzero global section s. Since G is a finite group, gn = 1 for some n. Therefore,

OX(D−gD) = (gn−1⊗· · ·⊗g⊗1)OX(gD−D) has a nonzero global section t = gn−1s⊗· · ·⊗s.

View s, t as s : OX(D)→ OX(gD) and t : OX(gD)→ OX(D). Since st, ts ∈ Γ(X,OX) = k

are nonzero, O(gD −D) ∼= OX , contradiction.

Remark 4.1.7. There is a more “economical” description of an algebra isomorphic to X in

C:

Write Si = O(−Di) where Di is torus invariant. Let Gal(l/li) be the stabilizer of Di

under G-action and let πi : Yli → Y be the projections. Di and thus Si descend to Yli , and

we use the same notation. Then Y ∼=
∏t

i=1 EndOX (πi∗(Si)). In effect, it replaces all Mn(k)

in B constructed in the theorem by k which is an isomorphism in C.

Remark 4.1.8. A question remains: If K0(Xl) is a permutation G-module, can we always

find a permutation G-basis of line bundles?
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Recall that for n > 0, Kn defines a functor Kn : C → Ab, hence we have

Corollary 4.1.9. Kn(X) ∼=
∏t

i=1 Kn(Bi).

4.2 Separable Algebras for Toric Surfaces

4.2.1 Separable algebras for minimal toric surfaces

Recall the families of minimal toric surfaces described in Theorem 3.2.2: Let X be a minimal

smooth projective toric T -surface over k that splits over l, and X∗ be its associated toric

model. Let π : Xl → X be the projection. All isomorphisms below are taken in the motivic

category C.

(i) Xl
∼= Fa, a > 2. X∗ ∼= k4 and X ∼= k×Q×k×Q where Q ∼= EndOX (π∗J1) is a quaternion

k-algebra.

(ii) More generally, let X = SB(A) be a Severi-Brauer variety of dimension n and J =

OXl(−1). X∗ ∼= kn+1 and X ∼= k ×
∏n

i=1 A
⊗i where A⊗i ∼= EndOX (π∗J

i), cf Example

2.2.5.

(iii) Xl
∼= P1×P1. X∗ ∼= k×K×k where K is a quadratic étale algebra and the discriminant

extension of X. X ∼= k×B×A where B ∼= EndOX (π∗J1) is an Azumaya K-algebra of

rank 4 and A ∼= EndOX (π∗(J1J2)) is a central simple k-algebra of degree 4, cf Example

2.2.7.

(iv) See Example 2.2.6 whereX∗ ∼= k×K×L and P ∼= EndOX (π∗P1) andQ ∼= EndOX (π∗Q1).

Now let X be a smooth projective toric T -variety over k that splits over l and G =

Gal(l/k). Recall that X is uniquely determined by the associated toric model X∗, which

corresponds to ρ : Γ → GL(n,Z) and fan Σ such that ρ(Γ) ⊆ AutΣ, and a principal

homogeneous space U ∈ H1(k, T ). Every variety within a family above has the same fan.

Let ρ′ : G ↪→ AutΣ(Xl) be the inclusion induced by ρ. We want to see how the separable

algebras described above relate to ρ′ and U .
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Let dimX = n and N be the number of rays in the fan Σ, then the Picard rank of Xl is

m = N − n. Write M for the group of characters of Tl and CDivTl for Tl-invariant Cartier

divisors. There is a natural action of AutΣ(Xl) on M and CDivTl(Xl) and an induced action

on Pic(Xl) via the canonical morphism CDivTl(Xl)→ Pic(Xl)(D 7→ OXl(D)).

We have a short exact sequence of AutΣ(Xl)-modules and therefore of G-modules via ρ′:

0→M → CDivTl(Xl)→ Pic(Xl)→ 0, (4.2.1)

or simply

0→ Zn → ZN → Zm → 0.

It corresponds to the short exact sequence of tori over l:

1→ Gm
m,l → GN

m,l → Gn
m,l → 1

and the sequence descends to

1→ S → V → T → 1. (4.2.2)

Let i : AutΣ(Xl) ↪→ SN where SN is the group of permutations of the canonical Z-

basis of the lattice ZN and it induces i∗ : H1(G,AutΣ) → H1(G,SN). Let [α] = i∗[ρ
′]

and E be the corresponding étale k-algebra of degree N , then V = RE/k(Gm,E). Let j :

AutΣ(Xl) → GL(m,Z) be the map induced by the action of AutΣ(Xl) on Pic(Xl) and

it induces j∗ : H1(G,AutΣ) → H1(G,GL(m,Z)). Let [β] = j∗[ρ
′], then S is the torus

corresponding to [β].

The short exact sequence of tori over k gives

0→ H1(G, T )
δ→ H2(G,S)→ Br(E).

Here H1(G, V ) = H1(G,RE/k(Gm,E)) =
∏
H1(Gal(Et/k),Gm,Et) = 0 by Hilbert 90 Theorem

where E =
∏
Et and the Et are finite separable field extensions of k.

Let S∗ = Hom(Sl, Gm,l) be the group of characters over l. Then sequence (4.2.1) can be

rewritten as

0→ T ∗ → V ∗ → S∗ → 0
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which induces H0(G,S∗)
∂→ H1(G, T ∗). Geometrically, ∂ is the map Pic(X∗) → Pic(T )

which sends Q ∈ Pic(X∗) to its restriction Q|T on T .

There is a G-equivariant bilinear map S(l)⊗ S∗ → l× which sends x⊗ χ to χ(x), and it

induces a pairing of Galois cohomology groups ∪ : H2(G,S)⊗H0(G,S∗)→ Br(k). Similarly,

we have ∪ : H1(G, T )⊗H1(G, T ∗)→ Br(k).

Lemma 4.2.1. The following diagram is commutative:

H1(G, T )⊗H0(G,S∗) H1(G, T )⊗H1(G, T ∗)

H2(G,S)⊗H0(G,S∗) Br(k)

1⊗∂

δ⊗1 ∪

∪

Proof. Let a ∈ H1(G, T ), ϕ ∈ H0(G,S∗). For each ag ∈ T (l), g ∈ G, pick bg ∈ V (l)

that maps to ag, then (δa)g,h = b−1
gh bg

gbh, g, h ∈ G. Pick φ ∈ V ∗ that maps to ϕ, then

(∂ϕ)g = φ−1gφ. Let α = a ∪ (∂ϕ) and β = (δa) ∪ ϕ, then

αg,h = g(∂ϕ)h(ag) = g(φ−1hφ)(bg) = (gφ−1)(bg) · (ghφ)(bg),

βg,h = (ghϕ)((δa)g,h) = (ghφ)(b−1
gh ) · (ghφ)(bg) · (ghφ)(gbh).

Set θg = (gφ)(bg), then βg,h = θ−1
gh θg

gθhαg,h. Thus, α and β give the same cycle class in

Br(k).

Let P ∈ Pic(Xl) be a line bundle on Xl with stabilizer group Gal(l/κ) under G-action.

Since P ∈ Pic(Xl)
Gal(l/κ) ∼= (S∗)Gal(l/κ), P corresponds to a character χ : Sκ → Gm,κ over κ,

or equivalently χ′ : S → Rκ/k(Gm,κ). Let π : Xl → X be the projection.

Proposition 4.2.2. Consider the composition of maps δP : H1(G, T )
δ→ H2(G,S)

χ′→ Br(κ),

then δP [U ] = [EndOX (π∗P )] ∈ Br(κ).

Proof. First we prove the case when κ = k. In this case, the line bundle P ∈ Pic(Xl)
G ∼=

Pic(X∗). Thus, there is Q ∈ Pic(X∗) such that P ∼= f ∗π∗X∗Q where πX∗ : X∗l → X∗ is

the projection and f : Xl → X∗l is the Tl-isomorphism. [MP97, Lemma 7.3] shows that
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[U ] ∪ [Q|T ] = [EndOX (π∗P )] ∈ Br(k). On the other hand, δP ([U ]) = δ[U ] ∪ [χ′] = δ[U ] ∪ [Q].

By Lemma 4.2.1, δP ([U ]) = [U ] ∪ [∂Q] = [U ] ∪ [Q|T ].

In general, let H = Gal(l/κ) and consider the restriction map Res : H1(G, T ) →

H1(H,Tκ) which sends [U ] to [Uκ]. There is a commutative diagram:

H1(G, T ) H2(G,S) Br(κ)

H1(H,Tκ) H2(H,Sκ) Br(κ)

δ

Res

χ′

Res

δ χ

Thus, δP [U ] = [EndOXκ (πκ∗P )] where πκ : Xl → Xκ is the projection. By the proof of

Lemma 4.1.3, EndOXκ (πκ∗P ) ∼= EndOX (π∗P ).

Corollary 4.2.3. Let X be a smooth projective toric variety over k that splits over l and

G = Gal(l/k). Assume Pic(Xl) is a permutation G-module, i.e, S is quasi-trivial, hence S

has the form
∏t

i=1 Rki/kGm,ki where ki is a finite separable field extension of k. Then the

principal homogeneous space U is uniquely determined by (Bi ∈ Br(ki))16i6t where Bi splits

over E. Let {Pi | 1 6 i 6 t} be the set of representatives for G-orbits of Pic(Xl), then Bi

comes from EndOX (π∗Pi).

Proof. The result follows from the exact sequence 0 → H1(k, T ) →
∏t

i=1 Br(ki) → Br(E)

and Proposition 4.2.2.

Remark 4.2.4. Families (i)(ii)(iii) and their blow-ups have permutation Picard groups.

(ii): X = SB(A) is a Severi-Brauer variety of dimension n, AutΣ(Xl) = Sn+1. We have

1→ Gm,k → RE/k(Gm,E)→ T → 1

which induces

0→ H1(G, T )
δ→ Br(k)→ Br(E).

Then δ(U) = [A] and A splits over E, cf [MP97, Example 8.5].

(i): Xl = Fa, a > 2,AutΣ = S2 and E factors as k×F ×k where F is the quadratic étale

k-algebra corresponding to [ρ′] ∈ H1(G,S2). We have

1→ Gm,k → Gm,k × RF/k(Gm,F )→ T → 1
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where Gm,k → Gm,k is the a-th power homomorphism. It induces

0→ H1(G, T )
δ→ Br(k)→ Br(k)× Br(F )

where [U ] 7→ [Q] 7→ ([Q⊗a], [QF ]). By Lemma 3.1.9, the toric surface X is a P1-bundle

over some conic curve Z. We have the torus of Z is T ′ = RF/k(Gm,F )/Gm,k. There is a

commutative diagram with exact rows:

1 Gm,k Gm,k × RF/k(Gm,F ) T 1

1 Gm,k RF/k(Gm,F ) T ′ 1

h

Hence, the image of [U ] under δ ◦ h∗ : H1(G, T ) → H1(G, T ′) → Br(k) is [Q], and then

Z = SB(Q). Since a quaternion algebra has a period at most 2 in the Brauer group,

[Q⊗a] ∈ Br(k) is trivial implies that Q = M2(k) if a is odd. Thus we have

Proposition 4.2.5. Let X be a toric surface that is a form of F2a+1, then X ∼= F2a+1.

Remark 4.2.6. Iskovskih showed that any form of F2a+1 is trivial [Isk79, Theorem 3(2)]. The

above proposition reproves this result in the case of toric surfaces.

(iii): Xl = P1 × P1,AutΣ = D8. In this case, β : G → GL(2,Z) factors through

γ : G → S2 where S2 permutes O(1, 0) and O(0, 1). Then the quadratic étale algebra K

corresponds to γ. We have

1→ RK/k(Gm,K)→ RE/k(Gm,E)→ T → 1

which induces

0→ H1(G, T )
δ→ Br(K)→ Br(E)

Then δ(U) = [B] and B splits over E. Let NK/k : RK/k(Gm,K) → Gm,k be the norm map

which induces corK/k : Br(K)→ Br(k), then [A] = corK/k[B].
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4.2.2 Separable algebras for toric surfaces

Let X be a smooth projective toric T -surface over k that splits over l and G = Gal(l/k).

Recall that we have a finite chain of blow-ups of toric T -surfaces

X = X0 → X1 → · · · → Xn = X ′

where X ′ is minimal. For 1 6 i 6 n, let fi : (Xi−1)l → (Xi)l and this is a blow-up of a G-set

of Tl-invariant points. Let Ei be the G-set of the exceptional divisors of fi and X ′ ∼= B in C.

Proposition 4.2.7. X ∼= B ×
∏n

i=1 HomG(Ei, l) in C.

Proof. We only need to consider the following simple case:

f : Y → Z is a blow-up of toric T -surfaces and E = {Pj} is the G-set of the exceptional

divisors of g = fl. We assume further that the G-action on E is transitive.

Let p : Yl → Y and q : Zl → Z be the projections, then we have a commutative diagram:

Yl Zl

Y Z

g

p q

f

Recall that if K0(Zl) has a G-basis γ, then g∗(γ) ∪ E is a G-basis of K0(Yl). As Z is a

toric surface, we can assume γ consists of line bundles over Zl. Let P ∈ γ, then

EndOY (p∗g
∗P ) ∼= EndOY (f ∗q∗P ) ∼= HomOZ (q∗P, f∗f

∗(q∗P )) ∼= EndOZ (q∗P )

where f∗f
∗ is identity as f is flat proper and f∗OY = OZ .

As for G-orbit E, we have
⊕

j Pj = p∗Q for some locally free sheaf Q on Y . By Lemma

4.1.6 and the assumption that G acts transitively on E, EndOY (Q) ∼= HomG(E, l). It is

Brauer equivalent to EndOY (p∗Pj) for any Pj ∈ E. Thus the result follows from Theorem

4.1.5.
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CHAPTER 5

Derived Categories of Toric Varieties

5.1 Derived categories of toric varieties

Let X be a smooth projective variety over k and Db(X) be the bounded derived category of

coherent sheaves on X. We will define exceptional objects and collections in a generalized

way.

Definition 5.1.1. Let A be a finite simple k-algebra (i,e a central simple algebra where

the center is a finite separable field extension of k). An object V in D = Db(X) is called

A-exceptional if HomD(V, V ) = A and ExtiD(V, V ) = 0 for i 6= 0.

Definition 5.1.2. A set of objects {V1, . . . , Vn} in D = Db(X) is called an exceptional

collection if for each 1 6 i 6 n, Vi is Ai-exceptional for some finite simple k-algebra Ai, and

ExtrD(Vi, Vj) = 0 for any integer r and i > j. The collection is full if the thick triangulated

subcategory 〈V1, . . . , Vn〉 generated by the Vi is equivalent to Db(X).

Definition 5.1.3. A set of objects {V1, . . . , Vn} in D ∈ Db(X) is called an exceptional block

if it is an exceptional collection and ExtrD(Vi, Vj) = 0 for any integer r and i 6= j. Note that

the ordering of the Vi in this case does not matter.

Assume {V1, . . . , Vn} is a full exceptional collection as above. Since 〈Vi〉 is equivalent to

Db(Ai), the bounded derived category of right Ai-modules, we have semiorthogonal decom-

positions Db(X) = 〈V1, . . . , Vn〉 = 〈Db(A1), . . . , Db(An)〉.

The semiorthogonal decomposition of Db(X) can be lifted to the world of dg categories.

For details about dg categories, see [Kel06]. There is a dg enhancement of Db(X), denoted as

Db
dg(X) where Db

dg(X) is the dg category with same objects as Db(X) and whose morphism
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has a dg k-module structure such that H0(HomDbdg(X)(x, y)) = HomDb(X)(x, y). perfdg(X) is

the dg subcategory of perfect complexes. Since X is smooth projective, perfdg(X) is quasi-

equivalent to Db
dg(X). For an A-exceptional object V , the pretriangulated dg subcategory

〈V 〉dg generated by V is quasi-equivalent to Db
dg(A). Therefore, there is a dg enhancement

of the semiorthogonal decomposition Db
dg(X) = 〈V1, . . . , Vn〉dg, which is quasi-equivalent to

〈Db
dg(A1), . . . , Db

dg(An)〉dg.

Let dgcat be the category of all small dg categories, there is a universal additive functor

U : dgcat → Hmo0 where Hmo0 is the category of noncommutative motives, see [Tab15,

§2.1-2.4]. We have U(perfdg(X)) '
⊕n

i=1 U(Db
dg(Ai)) '

⊕n
i=1 U(Ai). On the other hand, the

motivic category C is a full subcategory of Hmo0 by sending a pair (X,A) to perfdg(X,A),

the dg category of complexes of right OX ⊗k A-modules which are also perfect complexes of

OX-modules [Tab14, Theorem 6.10] or [Tab15, Theorem 4.17]. The above discussion gives

the following well-known fact:

Theorem 5.1.4. Let X be a smooth projective variety over k. Assume Db(X) has a full

exceptional collection of objects {V1, . . . , Vn} where Vi is Ai-exceptional, then X ∼=
∏n

i=1Ai

in the motivic category C.

Now we explore the existence of a full exceptional collection for a smooth projective toric

variety of higher dimension.

Lemma 5.1.5. Let Y be a split smooth projective toric variety over k of dimension n > 3

and let D be a Cartier divisor on Y , then H i(Y,O(D)) = 0 for 0 < i < n.

Proof. Let Σ be the fan structure of Y , then the support |Σ| = Rn. Let ϕ be the support

function corresponding to D. [Dan78, Theorem 7.2] states that

H i(Y,O(D)) =
⊕
u∈M

H i
Z(u)(Y,O(D))

where M is the dual lattice and

H i
Z(u)(Y,O(D)) = H i(|Σ|, |Σ| \ Z(u))
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where Z(u) = {v ∈ |Σ| | 〈u, v〉 > ϕ(v)}. Therefore, we have short exact sequences:

0→ H0
Z(u)(Y,O(D))→ H0(|Σ|)→ H0(|Σ| \ Z(u))→ H1

Z(u)(Y,O(D))→ 0

and H i
Z(u)(Y,O(D)) ∼= H i−1(|Σ|\Z(u)) for i > 2. Since Z(u) is a union of cones, |Σ|\Z(u) =

∅,Rn \ {0} or is homotopy equivalent to Rn−1 \ {p1, . . . , pm} for m > 0. From topology, we

have

H i(Rn−1 \ {p1, . . . , pm}) =


k, i = 0

km, i = n− 2

0, otherwise

Therefore, H i(Y,O(D)) = 0 for any D and 1 6 i < n−1. By Serre duality, Hn−1(Y,O(D)) =

0.

Lemma 5.1.6. Let Y,D be the same as before. Let G be a finite group that acts on Cartier

divisors CDiv(Y ) and fixes KY . Assume that D is not linear equivalent to gD for any g ∈ G,

then {O(gD) | g ∈ G} is an exceptional block.

Proof. It suffices to show that H i(Y,O(gD − D)) = 0 for any g ∈ G and i = 0, n. The

case i = 0 is proved in Lemma 4.1.6. By Serre duality, Hn(Y,O(gD − D)) is the dual of

H0(Y,O(KY + D − gD)). Write E = KY + D − gD and there exists m > 1 such that

gm = 1. Assume there is a nonzero global section s ∈ Γ(Y,O(E)), then there is a nonzero

global section ⊗m−1
i=0 g

is of O(E + gE + · · · + gm−1E) = O(mKY ). But since Y is rational,

H0(Y,O(mKY )) = 0, contradiction.

Assume X satisfies the conditions of Theorem 4.1.5, i.e, X is a smooth projective toric

variety over k that splits over l where K0(Xl) has a permutation G = Gal(l/k)-basis P of

line bundles over Xl. Assume dimX > 3, then by Lemma 5.1.6, each G-orbit of P is an

exceptional block. Let π : Xl → X be the projection.

Theorem 5.1.7. If there is an ordering for G-orbits {Pi}ti=1 of P such that {P1, . . . , Pt}

forms a full exceptional collection of Db(Xl), then for any Si ∈ Pi, {π∗S1, . . . , π∗St} is a full

exceptional collection of Db(X).
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Proof. First we show that {π∗S1, . . . , π∗St} is an exceptional collection. Since π is flat and

finite, both π∗ : Db(X)→ Db(Xl) and π∗ : Db(Xl)→ Db(X) are exact functors. The result

follows from

ExtrDb(X)(π∗Si, π∗Sj)⊗k l ∼= ExtrDb(Xl)(π
∗π∗Si, π

∗π∗Sj) ∼=
⊕
g,g′∈G

ExtrDb(Xl)(gSi, g
′Sj).

In particular, π∗Si is an exceptional object, thus 〈π∗Si〉 is an admissible subcategory of

Db(X). Since 〈π∗Si⊗k l〉 = 〈Pi〉 and Db(Xl) = 〈P1, . . . , Pt〉, by [AB15, Lemma 2.3], Db(X) =

〈π∗S1, . . . , π∗St〉.

Remark 5.1.8. In the cases of smooth projective toric surfaces X, using the classification of

minimal toric surfaces and the known results of semiorthogonal decompositions for projective

spaces, projective bundles, del Pezzo surfaces and blow-ups, cf [Kuz14][BSS11][AB15], there

exists such an ordering for the permutation G-basis of line bundles of K0(Xl) constructed in

Theorem 3.2.2. Therefore, the decomposition of X in the motivic category C constructed in

§4.2 can be lifted to the semiorthogonal decomposition of Db(X).

Question 2. Let X be a smooth projective toric variety satisfying the conditions of Theorem

4.1.5 and assume dimX > 3. Is there always a choice of ordering for G-orbits {Pi}ti=1 of P

such that {P1, . . . , Pt} forms a full exceptional collection of Db(Xl)?
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