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ABSTRACT OF THE DISSERTATION 

 

 

 

Infrared Nano-Spectroscopy and Nano-Imaging of Graphene Plasmons 

 

 

by 

 

 

Zhe Fei 

 

 

Doctor of Philosophy in Physics 

 

 

University of California, San Diego, 2014 

 

 

Professor Dimitri N. Basov, Chair 

 

This dissertation presents infrared nano-spectroscopy and nano-imaging studies of 

graphene plasmons using scattering-type scanning near-field microscope – a unique 

technique allowing efficient excitation and high-resolution imaging of graphene 

plasmons. With this technique, we show in real space that common graphene/SiO2/Si 

back-gated structure support propagating surface plasmons in the infrared frequencies. 
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The observed plasmons are highly confined surface modes with a wavelength around 200 

nm that are conveniently tunable by the back gate voltages. In addition, we perform 

spectroscopic studies on graphene by varying the probing frequencies. The spectroscopy 

results not only show direct signature of graphene plasmons but also provide evidence of 

strong coupling between graphene plasmons and SiO2 optical phonons. Furthermore, we 

investigate the plasmonic properties of Bernal-stacking bilayer graphene (BLG) and find 

that BLG supports gate-tunable infrared plasmons with higher confinement compared to 

graphene and randomly stacked graphene layers. Moreover, BLG plasmons can be turned 

off completely in wide gate voltage close to the charge neutrality point. Those unique 

plasmonic properties are attributed to both interlayer tunneling and bandgap opening in 

BLG. Finally, we are able to map and characterize grain boundaries inside graphene film 

fabricated with chemical vapor deposition (CVD) method by launching surface plasmons. 

We found grain boundaries, as well as other line defects in CVD graphene, trigger 

distinct plasmonic twin fringes patterns due to plasmon interference. Theoretical 

modeling and analysis unveil unique electronic properties associated with grain 

boundaries. 



 

1 

 

Chapter 1 

Introduction 

 

Plasmonics, which is surface plasmon based nanophotonics, merges electronics 

and photonics at the nanometer length scale. It is promising for future applications in 

nanoscale information transfer, photodetection nanosensing, and transformation optics. 

Graphene was predicted to be a novel plasmonic material supporting propagative surface 

plasmons since years ago. But this remains a prediction other than an established fact 

only until recently, when groundbreaking works about nano-spectroscopy and 

nano-imaging of graphene plasmons were reported. 

In this dissertation, we employ tip-based infrared nanoscope to investigate 

graphene plasmons both in both frequency space and real space. Our nanoscope, which is 

called scattering-type scanning near-field microscope (s-SNOM), allows us to investigate 

infrared properties of samples with nanometer scale resolution and wide momenta range. 

This technique has been widely applied in studying surface phonon polariton of polar 

materials, surface plasmon polaritons of bulk metals, metal-insulator transitions and so on. 



 2 

 

As shown in Fig. 1.1, the s-SNOM is built based on a tapping-mode atomic force 

microscope (AFM). The AFM tip that is illuminated by infrared light from various laser 

sources acts like both launcher and probe of graphene plasmons underneath it.  

 

 

Figure 1.1: Launch and probe graphene plasmons with tip-based nanoscope. 

 

In Chapter 2 we introduce the first nano-spectroscopy of graphene plasmons 

revealing strong plasmon-phonon interaction. Infrared nano-spectroscopy has becoming a 

powerful technique in characterizing and fingerprinting materials with nanoscale 

resolution. In our experiment, in order to gain spectral properties of graphene, we 

employed both tunable continuous-wave lasers and broadband pulse lasers as excitation 

sources in our nano-optic system. Those lasers cover a broad range of mid-infrared 

frequencies, where the most dominate spectra feature is a strong resonance originated 

from the surface optical phonon of SiO2 at around 1130 cm
-1

. Remarkably, graphene, one 
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atomic layer of carbon atoms, greatly enhances the resonance and causes obvious 

blue-shift to higher frequencies. Further analysis and modeling indicate that such 

enhancement and blue-shift are due to strong coupling between graphene plasmons and 

SiO2 surface optical phonons. Our spectroscopy results not only show direct signature of 

graphene plasmons but also provide evidence of strong mode-repulsion phenomenon that 

strongly enhance the light-matter interaction in the nanometer length scale. Such a novel 

phenomenon can only be observed in nano-optic regime thus has never been reported in 

traditional far-field optics.  

In Chapter 3 we introduce the first nano-imaging of gate-tunable propagating 

graphene plasmons. By using s-SNOM operating in the mid-infrared frequencies, we 

showed for the first time the real-space features of graphene plasmons. Quantitative 

analysis unveiled all the essential properties of graphene plasmons such as confinement, 

damping, reflection, interference and so on. According to our experiments, graphene 

plasmons appear at infrared frequencies with higher confinement and relative lower 

losses compared to plasmons in noble metals. In addition, we were able to control and 

manipulate graphene plasmons by back gating – a common structure similar to the 

state-of-the-art MOSFET. Furthermore, we found that the plasmon damping in graphene 

is much higher than theoretical predictions based on a single-particle picture. Such a high 

damping was attributed to many-body physics such as electron-electron interaction, 

electron-phonon interaction and so on.  
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Chapter 4 introduces a novel nano-characterization technique based on surface 

plasmon interference and how we implemented this technique in characterization of 

electronic and plasmonic properties of atomic scale line defects in graphene fabricated 

with chemical vapor deposition (CVD) method. For centuries, scientists strive to design 

more efficient and effective techniques to characterize material structures and properties. 

Those techniques apply various types of probing media such as photons, electrons, 

neutrons, scanning probes and so on. We demonstrated for the first time that surface 

plasmons are also powerful probing media for surface nano-characterization. The general 

mechanism is based on the fact that plasmon waves are able to be reflected or scattered 

by any physical or electronic discontinuities. And interference between launched and 

reflected/scattered waves generates real-space patterns containing rich information about 

the sample surface. We showed that this method enables high resolution, high efficiency, 

and spectroscopic study of surface nanostructures in ambient conditions. It can be widely 

applied in any plasmonic materials, such as metals, superconductors, topological 

insulators, graphene, and so on. Our testing sample is graphene fabricated with CVD 

method. We were able to map and characterize grain boundaries in CVD graphene film 

by exploring real space patterns of propagating surface plasmons. We found that grain 

boundaries trigger distinct plasmonic features due to plasmon interference. Further 

modeling and analysis indicate that grain boundaries form electronic barriers that impede 

both charge transport and plasmon propagation. 
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Lastly, Chapter 5 introduces the first nano-imaging of surface plasmons in bilayer 

graphene (BLG) − closest relative of graphene. BLG shares nearly all the supreme 

electrical, mechanical and thermal properties of graphene. Nevertheless, it has many 

unique electronic properties, such as split bands due to interlayer coupling, field-induced 

bandgap, massive quasiparticles close to charge neutrality point, et al. All these 

fundamental properties make BLG behave differently from graphene in (opto)electronic 

responses and functionalities. By using s-SNOM, we demonstrate that BLG also support 

gate-tunable surface plasmons in the mid-infrared frequencies, with nevertheless higher 

confinement compared to graphene and randomly-stacked graphene layers. More 

interesting, these plasmons can be turned off effectively and efficiently by back gate 

voltages. Further analysis indicated that these intriguing plasmonic properties were 

attributed to both interlayer tunneling and bandgap opening in BLG.  
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Chapter 2 

Infrared nanoscopy of Dirac plasmons 

at the graphene-SiO2 interface 

 

2.1  Abstract 

 We report on infrared (IR) nanoscopy of 2D plasmon excitations of Dirac 

fermions in graphene. This is achieved by confining mid-IR radiation at the apex of a 

nanoscale tip: an approach yielding two orders of magnitude increase in the value of 

in-plane component of incident wavevector q compared to free space propagation. At 

these high wavevectors, the Dirac plasmon is found to dramatically enhance the 

near-field interaction with mid-IR surface phonons of SiO2 substrate. Our data augmented 

by detailed modeling establish graphene as a new medium supporting plasmonic effects 

that can be controlled by gate voltage. 
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2.2  Introduction 

 Surface plasmons are fundamental collective modes of electrons that enable 

functionalities at the intersection of nanophotonics and electronics [1-5]. Dirac plasmons 

of graphene, which are the density waves of Dirac fermions, are predicted to enable both 

low loss and efficient wave localization up to mid-IR frequencies [6-10]. Theoretical 

studies show that the combination of tunability and low loss is highly appealing for 

implementation of nanophotonics, optoelectronics, and transformation optics based on 

Dirac plasmons [9-12]. Electron-energy-loss spectroscopy studies of epitaxial graphene 

on SiC substrate verified plasmonic effects [13-15]. So far, optical phenomena associated 

with surface plasmons of the massless quasi-particles in graphene have remained 

unexplored. This is in part due to the difficulty of carrying out IR experiments at 

wavevectors matching those of plasmons, which are beyond the reach of conventional 

transmission or reflection measurements [16]. To overcome this limitation, we employed 

scattering-type scanning near-field optical microscope (s-SNOM). Previously, this 

technique was widely applied to studying surface phonons and phonon polaritons [17,18]. 

In this letter, we identified spectroscopic signatures attributable to the Dirac plasmon and 

its interaction with the surface phonon of the SiO2 substrate. Our work affirms the 

under-exploited capability of tip-based optical nanoscopy to probe collective charge 

modes far away from q ~ 0 of conventional optical spectroscopy. 
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2.3  Experimental details 

 In our experiments, we utilized a commercial s-SNOM (NeaSNOM, neaspec.com) 

coupled to several interchangeable lasers: two quantum cascade lasers 

(daylightsolution.com) and two CO2 lasers (accesslaserco.com). These lasers allow 

coverage of the mid-IR region from 883 to 1270 cm
-1 

(Figs. 2.1 and 2.2). This region 

accommodates characteristic features of the electromagnetic response of monolayer 

graphene [19-21] along with vibrational modes of SiO2. The IR nanoscope is built on the 

basis of an Atomic Force Microscope (AFM) operating in tapping mode. We acquired 

near-field images with tapping frequency 270 kHz and tapping amplitude z = 40 nm 

at ambient conditions. The back-scattered signal is demodulated at the 2
nd

, 3
rd

 and 4
th

 

harmonics of the tapping frequency yielding background-free images [22]. The scattering 

amplitude s and phase  at all harmonics are obtained simultaneously with AFM 

topography by pseudo-heterodyne interferometric detection [23].  

 Figure 2.1a displays a schematics of the nanoscopy experiment. The beam of an 

IR laser is focused on the metalized tip of an AFM cantilever. The strong near-field 

confinement of mid-IR radiation at the tip apex has two principal effects. First, the 

collection of back-scattered light from a confined volume characterized by the tip radius 

a enables IR imaging/spectroscopy at sub-diffractional resolution [22]. Second, the 

light-matter interaction induced at the vicinity of the tip peaks for in-plane momenta 

1/q a  far beyond the light line given by q = /c. It is this combination of high spatial 
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resolution and high-q coupling that enables us to investigate the spectroscopic signatures 

of Dirac plasmons by means of IR nanoscopy.  

 Graphene samples were fabricated by mechanical cleavage of graphite and then 

transferred to the surface of a 300 nm thick SiO2 on a Si wafer. Commonly, graphene on 

SiO2 is characterized by a rather high carrier density due to unintentional doping [24,25]. 

Raman spectroscopy [26] was used to select monolayer samples with nearly identical 

hole doping n = (2.9 ± 1.0) × 10
12

 cm
-2

 corresponding to a chemical potential of ||= 

(1600 ± 300) cm
-1

 that we determined as | | Fv n   ( 61 10 /Fv m s   is the Fermi 

velocity of graphene). The uncertainty in the estimate of the graphene chemical potential 

is due to ambiguities in Raman measurements of the carrier density as well as data for the 

Fermi velocity of graphene. For the purpose of absolute spectroscopic measurements, we 

etched off SiO2 in several regions of the wafer to access the Si surface. The near-field 

response of Si is frequency-independent in the mid-IR region. Therefore, Si can serve as 

a convenient reference for a quantitative analysis of the nanoscale electrodynamics of 

graphene on SiO2. For gating experiments, we fabricated electric contacts to the graphene 

surface. By varying back-gate voltage Vg, we are able to tune the carrier density of 

graphene n = Cg×|Vg-VCN|/e, where Cg = 115 aF m
-2

, and VCN is the gate voltage 

corresponding to the charge neutral graphene. 
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2.4  Experimental data 

In Fig. 2.1b we show representative IR nanoscopy images, in which we plot the 

backscattering amplitude normalized to Si: Si

3 3( ) ( ) / ( )s s s   . Here, the 

backscattering amplitude s3() is demodulated at the 3
rd

 harmonic of the tip tapping 

frequency. The simultaneously recorded AFM topography is displayed in Fig. 2.4 in the 

Supplementary Information. These images reveal nearly uniform signals in either SiO2 or 

graphene regions with characteristics varying systematically with IR frequency. In Fig. 

2.2a,c we present these results in the form of both amplitude s() and phase 

3 3( ) ( ) ( )Si        spectra. Each data point in Fig. 2.2a,c was obtained by averaging 

over corresponding areas in images similar to those displayed in Fig. 2.1b.   

We first consider the amplitude spectra of SiO2 which reveal a near-field resonance 

centered at = 1128 cm
-1

 due to the surface phonon of SiO2 in accord with the earlier data 

[27,28].
 
The dominant feature of the s() spectrum for graphene on SiO2 is similar to that 

for SiO2 alone. However, the most surprising finding is that graphene strongly enhances 

the amplitude s() in the 1110 - 1250 cm
-1

 spectral region and also blue-shifts the peak 

frequency by about 10 cm
-1

. We hypothesize that both effects are related to the high 

density of mobile carriers present in our graphene samples. In order to verify this 

hypothesis, we monitored the evolution of the resonance with gating voltage Vg that 

enables controlled variation of the carrier density in graphene. In the inset of Fig. 2.2a, 

we show the results of gating experiments performed at  = 1150 cm
-1

 where 
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graphene-induced enhancement of the scattering amplitude is most prominent (160% 

compared to SiO2). At negative Vg corresponding to the increase of the hole density, the 

scattering amplitude is further enhanced (up to 300% at Vg = -50 V). On the contrary, 

positive Vg, which reduces the hole density, significantly suppresses the contrast between 

graphene and the oxide. The contrast is minimized at Vg = (40 ± 5) V, which we assign to 

charge neutrality voltage VCN. This estimate of VCN is in accord with the Raman probe of 

the carrier density in ungated graphene layers (see Supplementary Information). In 

addition, graphene induces a steep increase of the near-field phase below 970 cm
-1 

(Fig. 

2.2c). We will show that the latter effect stems from direct interaction of ultra-localized 

IR light with the Dirac plasmon whereas SiO2 resonance modifications originate from 

plasmon-phonon coupling at the graphene-SiO2 interface.  

 

2.5  Theory and Analysis 

2.5.1  Near-field coupling 

 The physics of the near-field interaction is that the tip, polarized by incident IR 

light, gives rise to evanescent fields with a wide range of in-plane momenta q. When the 

tip approaches a polar and/or conducting surface, the evanescent fields are altered which 

in turn affects the tip polarization. To quantify this interaction we introduce the reflection 

coefficient, rP(q,), defined as the ratio of the amplitude of the P-polarized reflected field 

Er to that of the P-polarized incident field Ei. This frequency- and momentum-dependent 
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response function completely describes the electrodynamics of the graphene-SiO2 

interface, not only in the near field, but also in the far field (see Supplementary 

Information):  

1 0 0 1 0 1

1 0 0 1 0 1

(4 / )
( , )

(4 / )
P

k k k k
r q

k k k k

    


    

 


 
                 

(2.1) 

 In Eq. 2.1, 0 is the dielectric constant of vacuum,1 is the complex dielectric 

function of SiO2, 
2 2( / )j jk c q    are the out-of-plane components of momenta, 

and qis the in-plane optical conductivity of graphene that was obtained from 

the Random Phase Approximation (RPA) method (see Supplementary Information). 

 From Eq. 2.1, one can see that the in-plane properties of graphene are responsible 

for its response in sSNOM experiments. This is possibly due to the radial component of 

the tip’s scattered field, which drives charges within graphene. Likewise, these charges 

impact the tip polarization in response. Note that rP(q,) diverges at q and  values given 

by the dispersion of the two surface modes at the graphene/SiO2 interface: the SiO2 

surface phonons 1128 cm
-1

 and Dirac plasmon of graphene. A formal connection between 

rP(q,) and the direct experimental observable of IR nanoscopy, se
i

, is worked out in the 

Supplementary Information (Eq. 2.4) by modeling the apex of the tip as a point dipole. 

Here we only briefly comment on the essential aspects of the modeling procedure. An 

important parameter of our point-dipole model is the AFM tip radius a, which we have 

set at a = 30 nm according to the specifications of our cantilevers. The tip radius 
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determines the effective dipole polarizability a
3
. Another significant parameter b is the 

distance between the point dipole and the apex of the tip. Finally, we stress the central 

result of the dipole-model analysis: the near-field coupling integral G has the weight 

function of the form 2

dexp( 2 )q qz , where zd = b+z(1-cost) is the distance between 

the tip dipole and the sample surface (Eq. 2.3 in Supplementary Information). The 

magnitude of zd is varying with time due to tip tapping. The plot of the time-averaged 

weight function 
2

dexp( 2 )
t

q qz
 
reveals a bell-shaped momentum dependence that 

peaks around q = 1/a (Fig. 2.3a). Thus the dominant in-plane momenta contributing to 

near-field coupling are distributed around q = 1/a (dashed line in Fig. 2.3a-d). For that 

reason, the s() spectra show resonances if and only if the dispersion curve of a mode 

intersects the dashed line that marks the dominant near-field momentum. For a typical 

value of our tip radius, a = 30 nm, the probing in-plane momentum exceeds that of the 

incident light at ~ 1000 cm
-1

 by about two orders of magnitude. These virtues of 

tip-enhanced near-field coupling enable the exploration of both the Dirac plasmon of 

graphene and plasmon-phonon coupling, which are fundamentally finite-momenta 

effects.  

 

2.5.2  Near-field modeling 

 The dipole model of the near-field interaction [17,27-30], which we have adapted 

to the graphene-SiO2 interface and augmented with the explicit account of the 
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high-momentum coupling, reproduces all aspects of the data (Fig. 2.2b,d). We first 

consider the near-field spectra of SiO2. Comparing the results of dipole-model calculations 

with measurements, we find near quantitative agreement. Despite overall agreement 

between the data and modeling, one witnesses minute discrepancies that may stem from 

two main factors. First, we used bulk optical constants of SiO2 extracted from far-field 

ellipsometry measurements of our wafers in modeling the surface response (see 

Supplementary Information). Second, the point-dipole model neglects the actual geometry 

of the tip that may introduce finite dipole or even higher multi-poles to the near-field 

interaction [28,31,32]. 

 We now proceed to describe the dipole-model results for graphene on SiO2. In Fig. 

2.2b,d we plot spectra of both amplitude and phase, displaying the evolution of the 

near-field response with variations in the chemical potential . For the specific choice of 

|| = 1600 cm
-1

 (consistent with our Raman measurements and also gating experiments), 

we find that the model spectra reproduce the key characteristics of the data: enhancement 

of the resonance and its blue shift. The net result is that the Dirac plasmon of graphene 

radically modifies the SiO2 surface phonon response, which is the experimental 

manifestation of the plasmon-phonon interaction at the graphene/SiO2 interface.  

 

2.5.3  Plasmon dispersion 

 In order to map the dispersion of the plasmon, we evaluated the divergence of 
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rP(q,) using Eq. 2.1 (Fig. 2.3c,d). The dispersion of the Dirac plasmon approximately 

follows the square-root q-dependence  P F Fq v k q 
 
for q values smaller than the 

Fermi wavevector kF [33]. Moreover, the plasmon frequencies are also governed by the 

chemical potential or carrier density n in the graphene layer since Fk n . The value of 

the chemical potential also determines the onset of interband transitions and cut-offs for 

intraband excitations [20] (white dotted lines in Fig. 2.3b-d). Within the RPA 

approximation and considering constant scattering rate of quasiparticles in graphene (due 

to phonons or impurities), the chemical potential alone defines the optical conductivity of 

graphene in the mid-IR region (see Supplementary Information) [19,20,34].  

 In weakly doped graphene, the Dirac plasmon and the surface phonon of SiO2 are 

well separated from each other (Fig. 2.3b). Both modes can be excited in the near-field 

experiment since their dispersion curves fall within the momentum range of the probe. 

We note here that surface phonons are extremely localized in real space: a product of 

their nearly flat dispersion. In contrast, the Dirac plasmon of graphene is a propagating 

mode, and the real-space aspects of this plasmon will be a subject of future imaging 

experiments. At moderate levels of carrier density, the plasmon approaches the surface 

phonon of SiO2 leading to the familiar effects of mode repulsion and hybridization (Fig. 

2.3c). Increasing the carrier density further leads to drastic changes in the dispersion of 

both the plasmon and the surface phonon (Fig. 2.3d). In panels Fig. 2.3b-d one can also 

notice a structure near 850 cm
-1

 originating from the plasmon coupling to a weaker 
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low-frequency phonon mode of SiO2.  

 The dipole model predicts that the plasmon-phonon interaction and hybridization 

at the graphene-SiO2 interface (Fig. 2.3b-d) can be readily observed by near-field 

nanoscopy. We focus again on the chemical potential || = 1600 cm
-1

. The dipole model 

calculations show that the anti-crossing of the Dirac plasmon and the phonon not only 

causes the blue shift of the peak in s() spectra but also increases the strength of the 

resonance (Fig. 2.2b). Both effects were observed by our experiment. Furthermore, the 

model predicts the systematic variation of the scattering amplitude with the chemical 

potential in the 1100 - 1250 cm
-1

 range, which was observed by our gating experiments 

(inset of Fig. 2.2a). Because graphene on SiO2 is unintentionally doped, the enhancement 

of s() is expected to show an non-monotonic variation with the gate voltage, and have the 

minimum near charge neutrality point. This is also in accord with the data presented in the 

inset of Fig. 2.2a. In combination, near-field spectra in Fig. 2.2 and gating data at a selected 

probing frequency attest to the hybrid character of the resonance, involving coupled 

plasmon-phonon oscillations which dominate the mid-IR response of the graphene-SiO2 

interface. One can also anticipate a hardening of the phonon resonance of SiO2 due to 

screening associated with mobile charge in the graphene layer, a complimentary viewpoint 

on the effects reported in Fig. 2.2a.  
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2.5.4  Direct signature of plasmon mode 

 Yet another salient feature of the modeled spectra is a strong near-field resonance 

close to the low-energy cut-off of our data (Fig. 2.2b,d), which originates from the direct 

near-field coupling to the Dirac plasmon of graphene. This low-frequency resonance is 

clearly broadened compared to the hybrid plasmon-phonon mode discussed above. A 

detailed discussion about the linewidth of both modes is provided in the Supplementary 

Information. Resonance structure due to the Dirac plasmon is clearly visible both is in the 

s() and () spectra (Fig. 2.2b,d); these features systematically shift to higher 

frequencies with increasing doping level of graphene. For ||= 1600 cm
-1

, the amplitude 

resonance of the Dirac plasmon appears at  = 600 cm
-1

, which is beyond the accessible 

range of our lasers. Modeling also shows that the feature in the phase spectra  

originating from the Dirac plasmon occurs at higher frequency compared to the amplitude 

spectra, and can therefore be probed by our experimental setup (Fig. 2.2d). We attribute 

the observed increase of the phase at low frequencies (Fig. 2.2c) to direct near-field 

coupling to the Dirac plasmon. This finding, along with the fingerprints of 

plasmon-phonon interaction, establishes graphene as a new medium supporting 

plasmonic effects. Unlike noble metals: traditional materials supporting surface plasmons, 

graphene is inherently tunable by electric and magnetic fields, thus enabling 

functionalities not attainable with metal plasmonics. 
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2.6  Conclusion and Outlook 

 The combination of high-momentum spectroscopy and nano-imaging 

demonstrated in our work sets the stage for studying many other properties of Dirac 

plasmons in graphene. Of special interest are effects pertaining to the real-space 

confinement and propagation of plasmons in nano-structures/ribbons [35,36]. A 

modification of the plasmon dispersion and/or ultra-fast modulation [37]
 
of the Dirac 

plasmon can be conveniently carried out through back-gating with a degree of control 

that is difficult to obtain within all-metal plasmonics. Turning to the high-q spectroscopy 

aspects of tip-induced light-matter interaction, we wish to point out that a much broader 

range of q may be interrogated using super sharp silicon tips (a < 10 nm) and even 

sharper tips based on carbon nano-tubes (a down to 1 nm) [38]. Such a further expansion 

of the momentum space accessible by IR nanoscopy, combined with the improved spatial 

resolution, is especially appealing in the context of studying collective modes in the 

vicinity of the single-particle excitation continuum, and manipulating light in 

graphene-based nanostructures or transformation optics elements.  

 

2.7  Supplementary information 

2.7.1  Addition experimental information 

 AFM images were collected simultaneously with the infrared (IR) images 

displayed in Fig. 2.1b. In Fig. 2.4, we show two separate parts of a typical AFM image 
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together with two height profiles. The profile across the SiO2/graphene boundary shows 

about 1 nm thickness which is typical for exfoliated monolayer graphene on SiO2/Si 

substrate. The profile across the Si/SiO2 boundary shows that the 300 nm thick SiO2 layer 

is etched away in the left part where we can get access to the Si surface. Thus, we are 

able to use Si as the reference for quantitative near-field analysis of both SiO2 and 

graphene on SiO2. 

 The approach curves shown in Fig. 2.5 measure the IR amplitude as a function of 

the separation between the oscillating tip apex and the sample surface. The observed 

sharp decrease within a 20 nm scale verifies that the experimental parameters are set to 

record the genuine near-field interaction [31].  

 Raman spectroscopy was used to select monolayer graphene samples with nearly 

identical doping level. According to Refs. 24 and 25, ungated graphene can be doped either 

by SiO2 substrate or ambient atmosphere. Raman spectroscopy was performed with a 

homebuilt Raman microscope system using excitation at 514.5 nm provided by mixed-gas 

Kr-Ar laser (Coherent Innova 70C). In Fig. 2.6, we show Raman spectra for two graphene 

samples studied in this work (Figs. 2.1 and 2.2). We stress that the 2D mode reveals 

symmetric single peak for both samples. The full widths at half maximum (FWHM) of the 

2D mode are 29 and 27 cm
-1

 for sample 1 and 2 respectively. Both facts attest that the 

samples are monolayer graphene [40,41]. The Raman shift for the G mode of both samples 

is close to (1587.6 ± 0.2) cm
-1

 corresponding to charge density of n = (2.9 ± 1.0) × 10
12
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cm
-1

 according to Ref. 26. This carrier density yields the chemical potential |= (1600 ± 

300) cm
-1

 calculated with | | Fv n   ( Fv = 1.0 × 10
6 

m/s is the Fermi velocity of 

graphene,). Therefore the charge neutral point in either sample is expected to be close to 

VCN = 40 V for our back-gated structures with 300 nm of SiO2 gate insulator. In such 

structure, n = Cg×|Vg-VCN|/e, where Cg = 115 aF m
-2

, and VCN is the gate voltage 

corresponding to the charge neutral graphene. The expectation of VCN here is consistent 

with our near-field gating result (inset of Fig. 2.2a). 

 In order to model the near-field response of our SiO2/Si wafers we performed 

ellipsometric characterization of these wafers. We performed the measurement using 

commercial IR-VASE Woollam ellipsometer capable of covering the frequency range 

400 - 5600 cm
-1

. Ellipsometric data were acquired at incident angles of 60
o
 and 75

o
 at 

room temperature. By constructing a two-layer model for the SiO2/Si substrate and fitting 

the two ellipsometry parameters  and defined by the equation tan( ) /i

P Se R R   , 

where PR  and SR  are the reflection coefficients for P- and S-polarized light, we are 

able to get  the opt ical  constants  of SiO2  that  are shown in Fig.  2.7. 

 

2.7.2  Point-dipole model 

The experimental technique used in this work is commonly referred to as 

scattering-type scanning near-field optical microscopy (s-SNOM) [28,29]. Our theoretical 

analysis follows the formalism developed previously for multilayer systems [27] with 
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some modifications needed to account for the 2D nature of graphene.  

The measured s-SNOM signal represents the electromagnetic field backscattered 

by the tip and the scanned sample. In the tapping mode, the distance z between the 

sample and the tip apex undergoes harmonic oscillations with a typical tapping amplitude 

z = 40 nm. As a result, the complex amplitude s(,t) of the backscattered field varies 

periodically with the tapping frequency . The experimental observables are the absolute 

values sn() and phases n() of n-th tapping harmonics. Extracting sn and n from s(,t) 

is termed demodulation. The data presented in the Figs. 2.1 and 2.2 were demodulated at 

order n = 3. The demodulation suppresses the unwanted background and isolates the part 

of the signal scattered by the appex of the tip (size of tip radius a). Therefore, the 

demodulation procedure allows one to study the genuine near-field interaction between 

the tip and the sample, which modifies the dipole moment ( ) tz e 
p  induced on the tip 

by the incident light. 

 Previous s-SNOM studies demonstrated that the dipole moment p can be 

computed analytically if the tip is approximated by a spheroid [32,42,43], a small sphere 

[43-47], a ―finite‖ dipole [28,31], or a point dipole [29,27,30]. Adopting the last model, 

we characterize the tip by two parameters: tip radius a that determines the tip 

polarizability a
3
, and the distance b between the effective dipole and the tip apex. Tip 

radius a = 30 nm accrding to manufacturer specifications. The distance between the 

dipole and the sample interface is therefore: 
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 ( ) = ( ) = (1 cos ).dz t b z t b z t                     (2.2) 

Considering that the actual AFM tip has the highest polarizability along its longest 

dimension (similar to an antenna), we used P-polarized incident light to get maximum tip 

polarization in our experiment. The reflection coefficient rP(q, ) for the P-polarization is 

important for computing the tip-sample coupling function G:  

22

0

( , ) = ( , ).
qz

d
d PG z dq q e r q 




                    (2.3) 

The weight function 
22 qz

dq e


 inside the integral is a function of time. Time averaged 

result  
22 qz

d
tq e


   has a maximum centered at q ~ 1/a (Fig. 2.3a) and defines a range 

of momenta where the s-SNOM can probe the surface excitations of the system most 

effectively. In our experiments, this range of memonta is peaked at 

5 1

0~ 3.4 10 cm /q c   .The final result for the demodulated signal is (cf. Ref. 7) 
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e d
s e
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 
 

 


                    (2.4) 

As a first application of Eqs. 2.3 and 2.4, consider a bulk SiO2 sample. The 

reflection coefficient is given by the Fresnel formulae:  

1 0 0 1

1 0 0 1

( , ) = ,P

k k
r q

k k

 


 




                        (2.5) 

where subscripts j = 0 and 1 refer to vacuum and SiO2, respectively, 
j  are the 

dielectric functions (e.g., 0 = 1), and 
jk  are the z-components of the momenta:  

2
2

2
= , Im 0.j j jk q k

c


                         (2.6) 
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At 0 /q c  , the reflection coefficient Pr  becomes q -independent. In previous 

literature
1,16,17

 this q-independent value was denoted by ( )  :  

1 0 0

1 0

( ) 1 ,
( )

Pr
  

 
   


   


                    (2.7) 

0 1( ) = .
2

 
 



  
  (2.8) 

The main spectroscopic feature of | ( ) |   is a maximum at the surface phonon 

frequency, which is approximately 1150 cm
-1

 in our sample. Function | |G  mirrors the 

behavior of | ( ) |  because for q-independent rP, Eq. 2.3 yields 

3 3 3( , ) ( ) / 4d dG z a a z   . 

 The 3
rd

 harmonic component 3
3

i
s e


 of the s-SNOM signal, needed for 

comparison with the experiment, is obtained from G via the nonlinear operation of 

demodulation (Eq. 2.4). Using a = 30 nm and treating b as an adjustable parameter, we 

find good agreement between this simple model and the measurements for = 0.7b a  (Fig. 

2.2). Note that demodulation causes a red shift of the s3 to 
11128 cm  . Our results 

for SiO2 are also in a good agreement with a recent s-SNOM study of SiO2 (both 

crystalline and amorphous), in which the main maxima in ns  were found at 1120 – 1130 

cm
-1

 (In crystalline SiO2 additional weak maxima have also been reported.) [28].  

 

2.7.3  Near-field response of the graphene-SiO2 interface 

We now apply point dipole model to the case where the surface of SiO2 is 
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covered with graphene. Consider the in-plane momenta satisfy the strong inequality /c 

<< q << / Fv . For q satisfying the above inequality, the expression for rP(q,) can be 

brought to the form analogous to Eq. 2.7: 

0( , ) =1 ,
( ) ( , )

Pr q
q




   


                     

(2.9) 

where the 2D dielectric function of graphene (q,) calculated with Random Phase 

Approximation (RPA) method is given as: 

22 | | 1 2 | |
( , ) =1 ln

( ) 4 2 | |

e q
q

  
 

     

  
   

  
,  .i        (2.10) 

 is the chemical potential of graphene, and 0   is the phenomenological scattering 

rate of quasiparticles [33,48,49]. In our calculations, we adopted ~ 0.09   to mimic 

experimental optical conductivity of graphene in Ref. 20.  

 The P-polarized (i.e. TM) collective mode spectra of the graphene-SiO2 interface 

can be extracted from Eq. 2.9 and 2.10 as follows. The first method is to look for poles of 

rP. This leads us to the equation:   

( , ( )) = 0,Pq q                         (2.11) 

which is a familiar result for the dispersion of a plasmon. Under the earlier assumption 

 >> Fv q, it has a solution of the form [6,33,48,50-52] ( ) 2 ( ) ,P P Fq v k q  
 
where 

2( ) = / ( )e v     is a dimensionless measure of the Coulomb interaction strength. For 

constant  , Eq. 2.11 gives the usual q -dispersion of a 2D plasmon. A 

frequency-dependent dielectric function of the substrate causes   to become a 
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complex-valued function of  . This introduces shift and broadening of the plasmon 

mode [13,14,53,54].  

 Equation 2.11 has another solution, which becomes more apparent if this equation 

is rewritten as:  

22 | | 1 2 | |
( ) ln

4 2 | |

e q   
 

   

  
   

     

             (2.12) 

At = 0q  and 0  , it gives ( ) = 0  , which corresponds to the pole of rP in the 

absence of graphene, cf. Eq. 2.7. Therefore, this solution represents the surface phonon. 

By continuity, it gives rise to the entire branch of dispersion — surface phonon coupled 

with plasmon — at finite q . Therefore, our formalism captures both types of surface 

collective modes as well as their interaction. 

Solving Eq. 2.12 is not the most practical way to extract the desired mode 

spectra. Instead, we follow another common procedure and obtain these spectra from the 

condition of maximum dissipation, which is realized at the maxima of Im Pr . The spectra 

can be conveniently visualized by a pseudocolor plot of Im Pr  as a function of q and . 

These plots for various choices of  are presented in Fig. 2.3 where one can clearly see 

two sets of dispersion curves.. We remark that the blue shift of the 1150 cm
-1

 mode in Fig. 

2.3c-d originated from the phonon-plasmon hybridization and can also be understood as 

the result of screening effects. At frequencies near the phonon resonance of SiO2, Eq. 

2.10 can be witten as 2 2( , ( )) =1 ( ) /P pq q q    . Thus ( , ( ))Pq q   of graphene is 
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smaller than 1 close to SiO2 phonon frequency, which hardens the frequency of the 

resonance in accord with the data.  

Finally, after substituting Eq. 2.9 into Eqs. 2.3 and 2.4 and with doing numerical 

quadrature, we compute the near-field coupling G and the demodulated s-SNOM signal for 

the point-dipole model of the tip. We use the same parameters a and b as in the previous 

section. As shown in Fig. 2.2, the amplitude s3() has two resonances: the high-freqeuncy 

one corresponds to surface phonon resonance and the low-frequency one corresponds to 

the plasmon resonance. This latter mode is somewhat red-shifted compared to the 

intrinsic plasmon frequency estimated from dispersion diagram in Fig. 2.3b: about 800 

cm
-1

 at the dominating momentum q = 1/a. Various factors can impact the frequencies of 

both resonances in the model spectra including: tip geometry, modulation amplitude, and 

others. 

Now we discuss the lineshape characteristics of both resonances in the amplitude 

spectra in Fig. 2.2b. The low-frequency plasmon resonance shows up as a rather broad 

feature. The width of the high-frequency plasmon-phonon resonance is systematically 

enhanced by highly-doped graphene. To understand these special spectral features, it is 

imperative to consider the tip coupling weight function in Fig. 2.3a and dispersion 

diagrams in Fig. 2.3b-d. From Fig. 2.3a, one can see that the tip is coupled to a wide range 

of momenta centered at q = 1/a with a full width at half maximum (FWHM) of about q = 

1.25/a. Because of this rather broad spread of momenta, the actual width of the near-field 
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resonanceis enhanced by a factor related to the group velocity of a given mode ug = 

d/dq. For weakly doped graphene (Fig. 2.3b), plasmon and phonon modes are separated. 

In this case the phonon mode is flat (ug=0), so the observed phonon resonance (Fig. 2.2a) 

is quite narrow. In contrast, the plasmon mode is quite dispersive (ug>0) in the region 

near q = 1/a, thus the predicted plasmon resonance is much wider than phonon resonance 

(Fig. 2.2b). At higher dopings (Fig. 2.3c,d), the plasmon and phonon become coupled. 

The new hybrid plasmon-phonon mode acquires dispersion (ug>0), which increases the 

near-field resonance width. In the case of low-frequency resonance that is due to direct 

coupling to the plasmon, the issue of the resonance width is more complex. The 

increasing doping level can certainly increase the group velocity ug of plasmon. However, 

as soon as the doping level becomes sufficiently high to promote plasmon-phonon 

coupling, the magnitude of ug is suppressed. These two effects compete with each other. In 

addition, the resonance strength of a given mode and damping by free electrons excitation 

will also affect the lineshape of the near-field resonance.  
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Figure 2.1: Schematics and imaging data of our near-field measurement. (a) Schematics 

of the near-field nanoscopy experiment used to study monolayer graphene on top of 

SiO2/Si substrate. In the bottom left corner of the structure, SiO2 has been etched away to 

enable tip contact with Si wafer. (b) Infrared near-field images displayed at four 

representative frequencies. The strong IR contrast between Si, SiO2 and graphene (G) is 

clearly seen to vary systematically with the probing frequency. The plotted quantity s() 

is the normalized backscattering amplitude defined in the text.  
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Figure 2.2: Spectra of the near-field amplitude s() and phase (). Panels (a),(c): 

experimental data extracted from images as in Fig. 2.1b for SiO2 (black squares) and 

graphene on SiO2 (red circles). The inset of Fig. 2.2a shows gating measurement results 

for the graphene near-field amplitude at 1150 cm
-1

. The dotted line marks the value 

of gate-independent SiO2 amplitude also probed at 1150 cm
-1

. Top axis of the inset marks 

the calculated chemical potential of graphene. Panels (b),(d): dipole model spectra for 

SiO2 (black) and graphene on SiO2 (colors) for three different choices of the chemical 

potential ||= 600, 1600, and 2400 cm
-1

; the predicted low-frequency resonance, the 

onset of which is seen in (c), reveals direct near-field coupling to the Dirac plasmon of 

graphene 
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Figure 2.3: Dispersion diagrams of graphene plasmons and SiO2 phonons. (a) The 

momentum dependence of time-averaged near-field coupling weight function 
2

dexp( 2 )q qz  which peaks at q = 3.4 × 10
5 

cm
-1

 for our tip radius a = 30 nm. (b)-(d) 

Imaginary part of the reflection coefficient rP(q, ) calculated using Eq. 2.1 with chemical 

potentials ||= 600, 1600, and 2400 cm
-1

, respectively and displayed in false color scale. 

Vertical yellow dashed lines in (a)-(d) mark the dominant q for maximum near-field 

coupling. White dotted lines in (b)-(d) mark the boundaries of single-particle intra- and 

inter-band excitation continua of graphene; these two boundaries meet at (q = kF, = ||/

). 
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Figure 2.4: AFM topography and horizontal line profiles of graphene and SiO2.  

 

 

 

Figure 2.5: Near field approach curves of graphene, SiO2 and silicon. 
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Figure 2.6: Raman spectroscopy data of our graphene samples. 

 

 

 
Figure 2.7: Real and imaginary part of SiO2 permittivity from ellipsometry. 
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Chapter 3 

Gate-tuning of graphene plasmons 

revealed by infrared nano-imaging 

 

3.1  Introduction 

Surface plasmons are collective oscillations of electrons in metals or 

semiconductors enabling confinement and control of electromagnetic energy at 

subwavelength scales [1-5]. Rapid progress in plasmonics has largely relied on advances 

in device nano-fabrication [5-7], whereas less attention has been paid to the tunable 

properties of plasmonic media. One such medium—graphene—is amenable to convenient 

tuning of its electronic and optical properties with gate voltage [8-11]. Through infrared 

nano-imaging we explicitly show that common graphene/SiO2/Si back-gated structures 

support propagating surface plasmons. The wavelength of graphene plasmons is of the 

order of 200 nm at technologically relevant infrared frequencies, and they can propagate 

several times this distance. We have succeeded in altering both the amplitude and 

wavelength of these plasmons by gate voltage. We investigated losses in graphene using 
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plasmon interferometry: by exploring real space profiles of plasmon standing waves 

formed between the tip of our nano-probe and edges of the samples. Plasmon dissipation 

quantified through this analysis is linked to the exotic electrodynamics of graphene [10]. 

Standard plasmonic figures of merits of our tunable graphene devices surpass that of 

common metal-based structures. 

 

3.2  Experimental details 

In general, surface plasmons can exist in any material with mobile charge carriers 

whose response to electric field remains reactive, i.e., whose in-plane momentum- and 

frequency-dependent complex conductivity, (q,)=1+i2, is predominantly imaginary. 

Of particular interest are plasmons with high momenta qp >> /c, which may be utilized 

for extreme concentration of electromagnetic energy [1-5]. In conventional bulk metals, 

the frequencies of such high-q plasmons reside in the visible or ultraviolet ranges. In 

graphene, they are expected to appear in the terahertz and infrared (IR) domains [12]. 

However, these high-q IR plasmons are dormant in conventional spectroscopy of 

graphene. Here we utilized the scattering-type scanning near-field optical microscope 

(s-SNOM) to experimentally access high-q plasmons by illuminating the sharp tip of an 

atomic force microscope (AFM) with a focused IR beam (Fig. 3.1a). The momenta 

imparted by the tip extend up to a few times 1/a, where 25 nma   is the curvature 

radius of the tip [13], thus spanning the typical range of IR plasmon momenta qp in 

graphene [12]. The spatial resolution of s-SNOM is also set by a, and proves to be an 

order of magnitude smaller than the plasmon wavelength p. The direct observable of our 
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method—the scattering amplitude s()—is a measure of the electric field strength inside 

the tip-sample nanogap. Consequently, the s-SNOM technique enables spectroscopy [13] 

and IR nano-imaging of graphene plasmons without the need to fabricate specialized 

periodic structures [14]. Our imaging data elucidate real-space characteristics of IR 

plasmons in graphene such as reflection, interference and damping. All these phenomena 

can be readily manipulated with gate voltage – a noteworthy property unattainable in 

metal-based plasmonics.  

 

3.3  Experimental data 

 To probe directly the properties of graphene plasmons, we utilize a frequency = 

892 cm-1 corresponding to the wavelength IR = 11.2 m in the IR regime where the 

plasmon is unimpeded by the surface optical phonon supported in graphene/SiO2/Si 

structures [13]. The nano-imaging results are shown in Figs. 3.1b-e, where we plot 

normalized near-field amplitude 
Si

3 3( ) ( ) / ( )s s s   . Here, s3() and 
Si

3 ( )s   are the 

3rd order demodulated harmonics of the near-field amplitude measured for the given 

sample and for a Si reference sample, respectively. The near-field amplitude s() tracks 

real-space variations in the local electric field underneath the tip, enabling exploration of 

surface phonon polaritons and surface plasmons [17,18]. 

In Fig. 3.1b, we present a s() image acquired at the graphene-SiO2 interface 

revealing periodic oscillations of the s() signal extending along the graphene edge. 

Point and circular defects (Fig. 3.1d) trigger circular fringe patterns. Line defects (Fig. 

3.1b) produce elongated, elliptical patterns. We observed fringes at both sides of the 
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single/bilayer graphene boundary (Fig. 3.1c). Finally, strongly tapered corners of 

graphene (Fig. 3.1e) reveal the two groups of fringes oriented along both edges of 

graphene in the field of view. In all cases, the periodicity of the fringe patterns is around 

100 nm. 

 

3.4  Theory and Analysis 

Images in Fig. 3.1 are consistent with the following scenario. Illuminated by 

focused IR light, the AFM tip launches plasmon waves of wavelength p propagating 

radially outward from the tip. Sample edges or defects act as (imperfect) reflectors of the 

plasmon waves, directing them back to the tip. Therefore complex patterns of 

interference between launched and reflected plasmons should form inside graphene. We 

emphasize that our experimental technique does not capture instantaneous snapshots of 

these complex patterns. Instead, while the tip ―launches‖ plasmon waves propagating in 

all directions, it only ―detects‖ the cumulative near-field plasmonic signal arising 

underneath it. This stands in rough analogy with the operating principle of sonar 

echolocation. In Fig. 3.2a, we sketch the plasmon interference pattern in the form of 

plasmon amplitude revealing standing wave oscillations between the tip and sample edge. 

As the tip is scanned towards the edge, it registers these oscillations with periodicity 

given by p/2 as shown in bottom panels of Fig. 3.2a. Our plasmon interference 

interpretation is supported by theoretical estimates of the wavelength p. The plasmon 

dispersion of a two-dimensional (2D) metal residing at the interface of vacuum (dielectric 

constant 0 = 1) and a substrate with dielectric function sub() is given by the formula: 
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Assuming that the conductivity  of graphene takes a Drude form with relaxation 

time , one can rewrite Eq. 3.1 as: 
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Derivation of these equations and further refinements are discussed in the Supplementary 

Information. The real part of qp = q1 + iq2 determines the plasmon wavelength p = 2/q1 

and the ratio between imaginary part and real part defines the plasmon damping rate p = 

q2/q1. In graphene, the Dirac-like dispersion of the Fermi energy F F FE v k  with Fermi 

momentum | |Fk n  [8], implies 1/2| |n   scaling of the plasmon momentum with the 

carrier density n at fixed . Here 
6/ 300 10  m/sFv c   is the Fermi velocity. Finally, 

using frequency  = 892 cm-1 and 12 28 10  cmn    determined from the micro-Raman 

probe (see below) at the graphene edge, we find 200 nmp   from Eq. 3.2, which is 

roughly twice the distance between fringes in Figs. 3.1b-e. 

The images in Figs. 3.1b-e contain rich insights on processes governing plasmon 

propagation and losses on the surface of graphene. It is therefore instructive to examine 

line profiles along the direction normal to the sample edges. In Fig. 3.2b we show a plot 

obtained by averaging 150 such profiles—a procedure used to improve the 

signal-to-noise ratio. We find that the fringe widths increase from the interior to the edge 

of graphene, implying the plasmon wavelength p likewise increases. This behavior is 

due to enhancement of the carrier density n near the sample edge, which is verified by 
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our micro-Raman experiments (inset of Fig. 3.2b) [20,21]. Thus, plasmonic interference 

patterns reported in Fig. 3.2b uncover a utility of IR imaging for the nanoscale 

determination of local carrier density in graphene. In Fig. 3.2b we also show modeling 

results of plasmon profiles following a procedure detailed in the Supplementary 

Information. Our modeling provides a quantitative account of plasmon interferometry 

data. The carrier density profile (red curve in the inset of Fig. 3.2b) and the damping rate 

p constitute the adjustable parameters of the model. Since plasmons in our experiments 

are launched and detected by the same point source (AFM tip), the interference amplitude 

necessarily exhibits decay from the sample edge even when the damping rate is assumed 

to be vanishingly small (blue trace in Fig. 3.2b). The best fit to the amplitude profile is 

achieved for significantly stronger damping with p = 0.135.  

According to Eqs. 3.1 and 3.2, the plasmon wavelength p is directly determined 

by the carrier density n. We experimentally demonstrate this unique aspect of graphene 

plasmonics through imaging under gate bias, displayed in Fig. 3.3a. Over a range of Vg 

values from +30 V to -20 V, the hole density n in our samples increases monotonically, a 

consequence of significant unintentional hole doping present even in ungated 

graphene/SiO2/Si structures (inset of Fig. 3.2b). This tuning of carrier density produces 

systematic variations in the plasmonic profiles: fringe amplitude and periodicity are both 

enhanced with increasing n. By inferring p directly from the fringe width, we observe a 

systematic decrease in p with the reduction in hole density. Our gate-dependent data for 

p approximately follow the 
1/2| |p n   law predicted for monolayer graphene [22]. In 

contrast, the plasmon damping rate does not show clear gate dependence and is roughly 
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equal to 0.135 0.015  at all Vg. This magnitude of p significantly exceeds theoretical 

estimates for graphene with similar electronic mobility 28000 cm / V s    [12]. 

 

3.5  Discussion 

It is important to understand why plasmon damping in our structures is 

abnormally strong. According to Eqs. 3.1 and 3.2 two additive contributions define 

damping rate as 1 2 2 1( / ) ( / )p      . The first term is associated with plasmonic 

losses implicit to graphene, whereas the second term describes losses due to the SiO2 

substrate. At  = 892 cm-1, we estimate  = 2.52 + 0.13i  and hence, 2 1/ 0.05   , 

based on our ellipsometric measurements of SiO2/Si wafers. The resulting value of 

1 2/ 0.08    is unexpectedly high, three to four times higher than the estimate of 1/2 

= ()
-1 one obtains from Eq. 3.2 using the relaxation rate 1 1~ 20 cm   , corresponding 

to a typical DC mobility of our samples. This discrepancy affords two possible 

interpretations. Excessive losses may originate from an enhanced electronic relaxation 

rate at infrared frequencies compared to that established in DC transport. Alternatively, 

losses may be unrelated to free carrier mobility/dynamics and may instead be associated 

with extrinsic factors such as surface irregularities. Our plasmonic interferometry data in 

Figs. 3.2 and 3.3 provide strong support for the former hypothesis. Indeed, these images 

yield p and p (Fig. 3.3b) and thus allow us to determine the complex optical 

conductivity of graphene (inset of Fig. 3.3b) based on the formulae: 

2 1 2 2 12
; ( / )

4
p p


      


   . We remark that these relations between plasmonic 
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parameters (p, p) and the complex optical conductivity  of graphene hold true for any 

plasmonic material for which 1<<2.  Therefore these expressions apply even if the 

frequency-dependent conductivity deviates from the simple Drude model. The appeal of 

this analysis lies in establishing a link between real-space plasmonic profiles and the 

optical constants inferred from conventional IR spectroscopy. Our imaging data reveal 

that the real part of the conductivity of graphene is as high as 
2

1 0.5 /e h  . This value 

greatly exceeds the theoretical estimate of 
1
( = 892 cm-1, n = 8 ×1012 cm-2, 

-1 = 20 

cm-1) = 0.13e2/h obtained from a model of non-interacting Dirac quasiparticles weakly 

scattered by disorder [23-25], but is comparable to IR spectroscopy results for back-gated 

graphene on SiO2/Si [10]. In an ideal, non-interacting graphene 1( < 2EF) is 

vanishingly small due to the phenomenon of ―Pauli blocking‖ [10]. Thus the source of 

strong plasmonic losses in our back-gated samples is traced to the unexpectedly large 

magnitude of 1. This result supports the notion of prominent many-body effects in 

graphene beyond the picture of non-interacting Dirac fermions [27-29]. Further 

experiments on suspended graphene as well as devices employing various types of 

dielectric substrates such as BN are needed to disentangle the roles of electron-electron 

and graphene-substrate interactions in the dissipation we observe at infrared frequencies. 

Our work uncovers an experimental path and analysis methodology for these future 

studies of many-body interactions in graphene.   

 

3.6  Conclusion and Outlook 

Infrared nano-imaging experiments reported here established graphene/SiO2/Si 
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structures as a potent plasmonic medium that enables voltage control of both the plasmon 

wavelength and amplitude. Higher gate voltages than used in our study will allow for the 

binary on/off switching of plasmon propagation with a possibility of potentially local 

control by a top gate or a biased tip. The plasmon wavelength in graphene 200 nmp   

is one of the shortest imaged for any material whereas the propagation length is on par 

with Au in experiments monitoring strongly confined plasmons launched by AFM tips 

[18]. An important figure of merit IRp = 50-60 for our back-gated devices surpasses 

that of conventional Ag-based structures [12]. Intrinsic plasmonic losses in graphene that 

we analyzed in detail can be substantially reduced or even eliminated through population 

inversion [30]. We stress that plasmon tuning is realized here in the architecture of a 

Metal(graphene)-Oxide-Semiconductor(Si) device: a ubiquitous system in modern 

information processing. Furthermore, the performance of even the first generation of 

plasmonic devices reported here and in Ref. 15 is rather promising against non-tunable 

metal-based structures [12]. For all these reasons we believe that graphene may be an 

ideal medium for active infrared plasmonics.  

 

3.7  Methods summary 

Infrared nano-imaging using s-SNOM: Our s-SNOM apparatus (Neaspec) is 

based on an atomic force microscope (AFM) operating in tapping-mode. Measurements 

were performed at an AFM tapping frequency of  = 270 kHz and tapping amplitude of 

40 nm. The shaft of the conducting AFM tip acts as an antenna that boosts the efficiency 

of near-field interaction [26]. The back-scattered signal registered by the detector is 
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strongly dependent on the tip-sample distance.  This enables isolation of the genuine 

near-field contribution from the overall back-scattered signal, which is periodically 

modulated at harmonics of the tapping frequency . The mth harmonic component of this 

signal mi

ms e


, termed the mth demodulated signal (here m = 3), represents the desired 

near-field contribution.  

Samples and devices: Our graphene samples were obtained by mechanical 

cleavage of bulk graphite and then transferred to SiO2/Si substrate. To avoid surface 

contamination by lithographic procedures, bulk graphite connected to our graphene 

sample was utilized as an electrode in our back-gating experiments. To verify the gating 

functionality of our devices, we first performed a spectroscopic study of the hybrid 

plasmon-phonon resonance at various gate voltages and found good agreement with the 

published data [13]. Transport measurements of graphene samples fabricated following 

identical procedures indicate that the typical mobility of our graphene samples is about 

8000 cm2/Vs. Plasmon imaging experiments were completed for more than 30 graphene 

samples. All these structures exhibited highly reproducible behavior and consistent values 

for the plasmon wavelength and damping. The data displayed in Figs. 3.1-3.3 were 

obtained for devices with some of the weakest damping revealing the largest number of 

plasmonic oscillations. Nevertheless, even in these devices the plasmonic losses are 

stronger than expectations based on typical electronic mobility measurements. 

Micro-Raman measurements: According to previous studies, the G-peak position 

of the graphene Raman signal is directly linked to its carrier density [20-22]. Therefore, 

the G-peak profile shown in the inset of Fig. 3.2b reflects the range of the variation in 

graphene carrier density close to the edge [21-22]. Our micro-Raman experiments were 
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carried out using a Renishaw inVia Raman microscope equipped with a 50 , NA = 0.75 

long-distance objective, a 1800 l/mm grating and an XY stage with the resolution of 100 

nm. The spot size in these experiments is limited by diffraction. Therefore, the fragment 

of the line profile of the G-peak frequency shown in the inset of Fig. 3.2b is 

instrumentally broadened.  

 

3.8  Supplementary information 

3.8.1  Origin of the observed spatial modulations 

The qualitative explanation of the observed interference patterns is as follows. The 

tip of the near-field nanoscope excites a circular surface plasmon. A complex pattern of 

interference between the launched plasmon and its reflection off the sample edges is 

formed, as sketched in Fig. 3.1. The signal s(x, y) detected by the nanoscope is proportional 

to the plasmonic amplitude directly underneath the tip, i.e., at the same in-plane point (x, y). 

For simplicity, let us treat graphene as a half-infinite homogeneous medium. 

Denote by A(r) be the complex amplitude of a circular wave at a distance r from its origin 

that would be excited in an infinite sample. Function A(r) oscillates with plasmon 

momentum q1 and decays as 2q re  due to damping. According to the method of images, for 

our half-infinite sample (with the edge at x = 0) the near-field amplitude registered by the 

tip is given by 

( , ) | (0) (2 ) |is x y A e A x                            (3.3) 

Here the term A(0) is due to the tip-launched wave, the term eiA(2x) is due to its image, i.e., 

the reflected wave, and  is the phase shift upon reflection (a number close to ). The 
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interference underneath the tip is constructive at 

2 2

p

jx j
 



 
  

 
                              (3.4) 

This condition implies that the interference fringes are straight lines parallel to the edge. 

The distance between adjacent fringes is one half of the plasmon wavelength 12 /p q  . 

The first fringe at x = x1 is expected to be the strongest. The amplitude of the subsequent 

fringes should monotonically decrease because the total amount of damping grows with 

the roundtrip distance 2xj. 

The described physical picture is sufficient for a qualitative explanation of our 

experiments. In the remaining sections we develop it into a quantitative model by properly 

taking into account response functions of graphene and its SiO2 substrate, as well as the 

interaction between the tip and the sample. 

 

3.8.2  Optical conductivity of graphene 

Within the linear-response theory, in-plane electric field ||E  and current density j  

in graphene are related by the momentum and frequency dependent conductivity (q, ): 

||( , ) ( , ) ( , ).q q q  j E                            (3.5) 

(Here and below the tilde marks the Fourier transforms.) In this section we summarize the 

main properties of function (q, ) and clarify assertions made about it in the main text.  

The conductivity of the two-dimensional (2D) electron gas in graphene is related to 

its polarization function P(q, ) by 2 2( , ) ( / ) ( , )q ie q P q    . The formula for P(q, ) 

has been derived within the random-phase approximation for zero temperature and no 



50 

disorder [22,31]. We assume that the latter can be introduced by replacing  with 

1i     , where  is the phenomenological relaxation time. In this way, we arrive at 

2

0 2

2 2 2
( , ) ( , ) 1 ( ) ( ) ,

( )

F F FE E e Ei
q q

vq vq vq

  
   



  
    

 
      (3.6) 

where 

2

0
2 2 2

( , )
4

e
q i

v q


 


 


                        (3.7) 

is the conductivity of undoped graphene and function ( )  is defined by 

 21
( ) 1 arccos .   


                         (3.8) 

In our model and simulations we neglect the momentum dependence of (q, ). This is 

justified in the q << /v limit, where Eq. 3.6 simplifies to [31] 

2 1 1 2
( , ) ln , 

4 2 F

i e
q

E

 
  

  

  
    

  
                (3.9) 

The disappearance of the q-dependence means that quasiparticles perceive the perturbing 

electric field as locally uniform. This is because the quasiparticle displacement 2v/ over 

the time period of the field is much smaller than its wavelength 2/q. 

If, in addition to q << /v, the condition FE   is also met, so that 1  , Eq. 

3.9 reduced to the Drude-like formula 

2

2
( ) ,

1

FEe

i


 

 



                           (3.10) 

which was used in Eq. 3.2.  
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3.8.3  Local approximation for graphene response 

The characteristic in-plane momenta q relevant in our experiments are of order of 

the plasmon momentum  

/ (2 )pq i                                (3.11) 

[same as qp in Eq. 3.1]. It can be verified that such momenta satisfy the conditions q << kF, 

/vF. As explained in Sec. II above, in this case the q-dependence of the conductivity can 

be neglected. Eq. 3.5 can therefore be replaced by the simplified local relation 

( ) ( ) ( ),  ( ) ( ),  ( / , / ),x y        || ||j r r E r E r r           (3.12) 

which is valid even for systems without translational invariance. Below we use this relation 

to derive a closed system of equations that describe the response of graphene to an arbitrary 

external potential ext(r).  

Within the quasi-static approximation, valid if all distances of interest are much 

shorter than the optical wavelength 2c/, the total in-plane potential (r) is given by 

2 2

1 1
( ) ( ) ( ,0)* ( ),  ( , ) ,

| |
ext V V r z

r z



   


r r r r           (3.13) 

where  is defined in Eq. 3.1, the star denotes convolution, 

2( * )( ) ( ) ( ),A B d A B r r' r r' r                        (3.14) 

And ( ) r  is the charge density induced in graphene. Combining Eqs. 3.12 and 3.13, and 

the continuity relation, ( ) 0i  r j , we get the single equation for (r): 

1( ) ( ,0)*( ( ) ) ( ).
2

p extV r q




    r r r                  (3.15) 

In general, it has to be solved numerically. The analytical solution can be obtained for an 
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infinite system of constant  using the Fourier transform method, which yields  

( ) ( ).
| |

p

ext

p

q
q

q
  


q

q
                          (3.16) 

The plasmon momentum qp correspond to the poles of ( ) q  in the complex q plane. 

Consider, in particular, the external potential 

| |

2 2 3/2

1 2
( ) ,  ( )

(| | )
d di zd

d d

d d

z
e

z



 

 
   

 

qr q
r q

r r
         (3.17) 

created by a unit dipole located at (rd, zd). Later we will need an expression for the electric 

field Eg = (Eg,||, Eg,z) induced by electrons in graphene at an arbitrary point in space (rc, zc) 

in response to this dipole:  

,|| ,( , ) ( ( , )* )( ),     ( , ) ( ( , )* )( )
cg c c r c c g z c c c c

c

E r z V r z r E r z V r z r
z

 


   


  (3.18) 

Using Eqs. 3.16, 3.17, and 3.18, we find 

3
2

,

0

1
( , ) ,dqz

g z d d

p

q dq
E r z e

q q




 

                    (3.19) 

as in our previous work [13]. The induced electric field has another contribution E from 

charges on the surface of the substrate. Using the method of images, we get 

2

5

ˆ ˆ3( ) 1
( , ) ,  1 , ( , ).s c c c c d

R
z z z

R
 




     d

zR R z
E r R r r         (3.20) 

Consider next a situation where graphene occupies 0x   half-plane, which is 

relevant for s-SNOM imaging near the graphene edge. Eq. 3.15 is still valid if we define 

( 0) 0x    and also add a boundary condition / 0x    so that jx = 0 at x = 0 to avoid 

infinite charge accumulation at the edge. Let us assume that  = (x) is invariant along y 

but may be a function of x. Without loss of generality, we can choose the dipole 
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y-coordinate to be zero, yd = 0. Taking the one-dimensional Fourier transform in y of both 

sides of Eq. 3.15, we obtain 

0 1

2 2
( ) ( | |)* ( , ) ( , ) | | ( | |),d

y y d y y y

z
x K x q x q x q q K r q

r


 
         (3.21) 
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

 
    

  
             (3.22) 

where the convolution (*) is now done along the x only, 2 2( )d dr x x z   , and ( )K z  

is the modified Bessel function of the second kind. The equations for the induced field 

become 

, 1

0

2
( , ) | | ( | |) ( , ),  { , },

2

y

g c c y y y

dq u
E x z dx q K u q x q x z

r


  

 

 



        (3.23) 

where ux = xc- L, uz = zc, and 2 2

x zu u u  . 

In our simulations we had to compute Eg, numerically for a large number of 

collocation points (xc, zc) and source dipole positions (xd, zd). For this purpose, we 

converted the above integral equations into linear equations of a finite size. Instead of a 

semi-infinite plane, we assumed that graphene occupies a strip 0 < x < 2w of a large width 

2w. We discretized the x coordinates and replaced all derivatives by finite differences. The 

convolution integral was replaced by an integral sum. A special care was taken to 

regularize the divergence of the modified Bessel functions at zero arguments by requiring 

that the convolution gives the same result for const  whether it is computed 

numerically or analytically at all points of the x-grid. Similarly, we introduced a grid of qy 

extending up to a suitably large value. Grid parameters were adjusted to ensure that the 

accuracy of our solution was never less than 1%. The sequence of steps involved in our 
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numerical simulations is explained further in Sec. IV. 

 

3.8.4  Tip-sample coupling 

The goal of the modeling was to understand the imaging contrast, i.e., relative 

variations of the scattering amplitude S measured by s-SNOM as a function the AFM tip 

position.  

Fully realistic simulations of the tip-sample coupling are computationally 

prohibitive, and so we tried several approximations. The first approximation we considered 

was the conventional the point-dipole model [32-34]. This simple model did grasp some of 

the key characteristics of the imaging contrast. However, it came short of a quantitative 

account of the experimental data. Much better agreement was obtained using the model in 

which the AFM tip is approximated by a metallic spheroid [35]. The spheroid is defined by 

the equation  

2( ) ( )(2 ),  z 2 ,tip tip tip tip tip tip

tip

x L z z L z z z z L
L


                  (3.24) 

where L is the x-coordinate of the tip, 2Ltip is its total length, and a is its radius of curvature 

at the ends. The desired scattering amplitude $S$ is proportional to the total radiating 

dipole pz of the spheroid. (For a strongly elongated spheroid, Ltip >> a, its in-plane dipole 

moment is much smaller than pz and can be neglected.) In order to compute pz, we assume 

that the electric potential ext(r, z) outside both the tip and the sample can be represented as 

a superposition of potentials of a large number Nd of point dipoles positioned inside the tip: 

, ,

1

( , ) ( ,  ).
dN

ext j d d j d j

j

z p r r z z


    r                     (3.25) 
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Using the formalism developed in Sec. III, we compute the full potential (r, z) and the 

corresponding electric field (r, z) at Nd collocation points (xc,j, zc,j) at the spheroid surface. 

Imposing the boundary condition that the component of E(r, z) tangential to this surface is 

zero, we obtain the system of linear equations for the individual dipole moments pj. The 

total dipole moment pz of the tip is their sum. 

We tested this algorithm first on the case of infinite graphene, where the accuracy 

of the solution for pz as a function of ztip, Ltip, and a can be verified by independent 

numerical methods [7]. We found that accuracy better than 1% can be reached by working 

with tip2 /dN L a  dipoles positioned equidistantly on the spheroid axis zd,j = ztip + 

2Ltip/Nd) (j - 1/2). The z-coordinates of the collocation points were taken to coincide with 

those of the dipoles, zc,j = zd,j. Their x-coordinates were all chosen to be on the same side of 

L, i.e., xc,j > L. The same sets of points were later used for the problem of the graphene strip. 

In principle, in this case the off-axis placement of the dipoles may be warranted and also 

both xc,j > L and xc,j < L should be considered. However, investigation of these issues 

requires time-consuming computations and so it is left for future work. In any case, for 

aspect ratios Ltip/a = 2-10, we found our numerical results to be stable as long as Nd was 

about 2Ltip/a or larger and at the same time the minimal distance between the tip and the 

sample was not smaller than 0.1a. Regarding the latter, we note that although the distance 

between the tip and the sample can nominally be zero, the tip is covered by a Pt-Ir film with 

a skin depth ~ 20nm. Therefore, even in this case using some finite positive value for ztip is 

physically justified in our electromagnetic calculations. 

In the experiment the AFM is used in the tapping mode and the tapping harmonics 
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mi

ms e


 are recorded. We modeled this by considering the time-dependent ztip in the form   

min( ) (1 cos ),tipz t z z t                            (3.26) 

Computing ( ) ( )zS t p t  for a suitably dense grid of t-points and taking the discrete 

Fourier transform at frequency m, the desired demodulated amplitudes mi

ms e


 can be 

obtained.  

The simulations proceed as follows. Given a profile of qp(x) (see Sec. V) and a pair 

of the tip coordinates (L, ztip), the matrices of the linear systems are generated as discussed 

above. These linear equations are solved and the magnitudes of the effective dipoles are 

computed. Their sum is taken to be the scattering amplitude S (up to an unimportant 

multiplicative constant). These calculations are repeated for a grid of tip positions L 

(typically, a hundred points) and heights ztip (20 points). Upon demodulation, the spatial 

profile of s3(L) is computed. Normalizing it by s3 calculated for the reference Si substrate 

(without graphene), the relative amplitude s(L) is obtained. These results are then utilized 

to fit the experimental data for s(L) (Fig. 3.1), as described in the next section.  

 

3.8.5  Data fitting procedure 

The input into our simulation consists of the tip modeling parameters a, Ltip, zmin, 

the known tapping amplitude z = 40 nm, the value of ( = 892 cm-1) = 2.52 + 0.13i  

(based on our ellipsometric measurements of SiO2/Si wafers), and also the spatial profile of 

qp(L). For notation consistency with Fig. 3.2c, we relabel x to L in this section. 

We fixed a = 30 nm, similar to our previous work [13]. We tried several Ltip/a ratios 

and found the results not to be very sensitive to this parameter, as long as it is large. We 
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settled on Ltip/a = 9 for numerical efficiency. For qp(L) = q1(L) + iq2(L) we adopted the 

polynomial form 

6

1 2 1

0

( ) ,   ( ) ( ).j

j p

j

q x a L q L q L


                       (3.27) 

For simplicity, the plasmon damping parameter p was taken to be 

position-independent. The coefficients aj were iteratively adjusted until a good agreement 

with the measured s3 profile was obtained, see Fig. 3.4. The minor discrepancies between 

the experiments and simulations could be due to a systematic error introduced by the 

spheroid approximation (after all, the tip is not an ideal metallic spheroid) and the lack of 

perfect translational invariance of the system along the edge.  

For ungated sample, Vg = 0, we made additional checks. The fitted q1(L) was 

converted into the profile of the carrier (in this case, hole) density n(L) with the help of the 

relation 

2
2

2

1

1 | |
( ) ( ),   ( ) ,

2 ( )
F Fn L k L k L

e v q L

 


                      (3.28) 

which follows from Eqs. 3.10 and 3.11. This determination of n(L) was verified by 

micro-Raman measurements. As one can see from Fig. 3.2c, both the magnitude of the 

carrier density increase toward the graphene edge and the length scale over which this 

increase occurs are consistent with the Raman data. In fact, the near-field and the Raman 

methods give complementary information about the local density. The former is most 

reliable in the range 0 400 nmL   while the latter is accurate at 1 mL  . These two 

groups of results were interpolated by another polynomial function  
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

                      (3.29) 

where c7 = -4.06219110-21, c6 = 2.99973010-17, c5 = -8.64694110-14, c4 = 

1.21009210-10, c3 = -8.23303810-8, c2 = 2.50646510-5, c1 = -0.008350, and c0 = 

8.861376. This interpolation is shown by the solid line in Fig. 3.2c of the main text. 
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Figure 3.1: Infrared nano-imaging experiment and results. (a) Schematic of an infrared 

nano-imaging experiment at the surface of graphene (labeled as G) on SiO2. Green and 

blue arrows display the directions of incident and back-scattered light, respectively. 

Concentric red circles illustrate plasmon waves launched by the illuminated tip. (b-e) 

Images of infrared amplitude s(= 892 cm-1) defined in the text taken at zero gate 

voltage. These images show a characteristic interference pattern close to graphene edges 

(blue dashed lines), defects (green dashed lines), at the boundary between single (G) and 

bilayer (BG) graphene (white dashed line). Additional features marked with the arrows in 

(e) are analyzed in Refs. 15,16. Locations of boundaries and defects were determined 

from AFM topography taken simultaneously with the near-field data. Scale bars are 

100 nm in all panels. All data were acquired at ambient conditions. 
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Figure 3.2: Spatial variation of the near-field amplitude at the graphene edge. For all 

panels, graphene extends at L > 0, and SiO2 not covered by graphene is displayed at L < 0. 

(a) Illustration of interference between tip-launched plasmon waves (white) and their 

reflection (green) from the edge at L = 0. Solid and dashed lines correspond to positive 

and negative field maxima of the propagating plasmon, respectively. False color plots of 

the absolute value of electric field |Ez| reveal standing waves formed between the tip and 

the edge. Left and right panels show snapshots of destructive (minimum signal) and 

constructive (maximum signal) interference underneath the tip, respectively. Scale bar, 

0.5p. We also plot profiles of |Ez| underneath the tip versus its distance to the edge. The 

blue circles and arrows mark the positions of the tip. (b) Experimental (grey) and 

calculated (color) s() line profiles at zero gate voltage. Inset shows the G-peak positions 

inferred from micro-Raman data and the carrier density profile (red line) we used to 

model the plasmonic standing wave (panel b). The Raman G-peak positions are 

associated with the variation of the local carrier density in graphene (right-hand scale) 

[19-21].  
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Figure 3.3: Electrostatically tunable plasmon in back-gated graphene. (a) s() line 

profiles perpendicular to the graphene edge at various gate voltages. Inset illustrates our 

gate bias setup. (b) Gate-dependent plasmon wavelength p. Inset displays the real and 

imaginary part of the optical conductivity of graphene at various gate voltages estimated 

from p and p as described in the text. These conductivity data directly show that the 

response of graphene is predominantly reactive: 2 >>1 thus fulfilling an essential 

precondition for excitation of plasmons. 
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Figure 3.4: Fitting of the graphene plasmon fringe profiles taken at different gate 

voltages. (a-c) Line profiles of the 3rd harmonic near-field amplitude of graphene 

normalized to silicon for gate voltages Vg = -20, -10, and 0 V, respectively. The black dots 

connected by the lines are the experimental data; the blue solid lines are the theoretical fits 

using p = 0.135. 
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Chapter 4 

Electronic and plasmonic phenomena 

at graphene grain boundaries 

 

4.1 Introduction 

Graphene [1], a two-dimensional honeycomb lattice of carbon atoms, is of great 

interest in (opto)electronics [2,3] and plasmonics [4-11] and can be obtained by means of 

diverse fabrication techniques, among which chemical vapor deposition (CVD) is one of 

the most promising for technological applications [12]. The electronic and mechanical 

properties of CVD-grown graphene depend in large part on the characteristics of the 

grain boundaries [13-19]. However, the physical properties of these grain boundaries 

remain challenging to characterize directly and conveniently [15-23]. Here, we show that 

it is possible to visualize and investigate the grain boundaries in CVD-grown graphene 

using an infrared nano-imaging technique. We harness surface plasmons that are reflected 

and scattered by the graphene grain boundaries, thus causing plasmon interference. By 

recording and analyzing the interference patterns, we can map grain boundaries for a 
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large area CVD-grown graphene film and probe the electronic properties of individual 

grain boundaries. Quantitative analysis reveals that grain boundaries form electronic 

barriers that obstruct both electrical transport and plasmon propagation. The effective 

width of these barriers (~10-20 nm) depends on the electronic screening and it is on the 

order of the Fermi wavelength of graphene. These results uncover a microscopic 

mechanism that is responsible for the low electron mobility observed in CVD-grown 

graphene, and suggest the possibility of using electronic barriers to realize tunable 

plasmon reflectors and phase retarders in future graphene-based plasmonic circuits. 

 

4.2 Experimental details 

Our imaging technique, which we refer to as „scanning plasmon interferometery‟, 

is implemented in a setting of an antenna-based infrared (IR) nanoscope [6-8]. A schematic 

diagram of the scanning plasmon interferometry technique is shown in Fig. 4.1a. Infrared 

light focused on a metalized tip of an atomic force microscope (AFM) generates a strong 

localized field around the sharp tip apex, analogous to a “lightning-rod” effect [24]. This 

concentrated electric field launches circular SPs around the tip (pink circles in Fig. 4.1a). 

The process is controlled by two experimental parameters: the wavelength of light IR 

and the curvature radius of the tip R. In order to efficiently launch SPs on our highly 

doped graphene films, we chose IR light with IR close to 10 m and AFM tips with R ≈ 

25 nm (Methods). The experimental observable of the scanning plasmon interferometry is 

the scattering amplitude s that is collected simultaneously with AFM topography.  
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4.3 Data and Analysis 

4.3.1 Crack-type line defect 

Before analyzing the GBs, we first discuss a crack-type line defect with a 

geometric width of ~10 nm, thus visible in the AFM topography (blue arrows in Fig. 

4.1b). The corresponding scanning plasmon interferometry image is displayed in Fig. 

4.1c, where we plot the scattering amplitude s at IR = 11.3 m. The scattering signal 

shows bright twin fringes running along this line defect. In the same field of view, we 

also observed a region of double-layer graphene (blue dashed loop) and a microscopic 

line structure (green shaded region) in Fig. 4.1b. All these features are commonly found 

in CVD graphene (Fig. 4.3a) [12]. The bright circular fringes are observed near the edge 

of the double-layer region (Fig. 4.1c). By tuning IR from 11.3 m (Fig. 4.1c) to 10.5 m 

(Fig. 4.1d), the fringe widths of both types of fringes show evident IR-dependence, 

which is consistent with the plasmonic origin of these patterns [7,8]. Note that the 

scattering amplitude in all our scanning plasmon interferometry images is normalized to 

that of a sample region where no fringes exist (e.g. the green square in Fig. 4.1c).  

In previous studies [7,8], plasmon fringes with a width of half the plasmon 

wavelength p/2 were observed close to the edge of graphene microcrystals. In order to 

validate the plasmonic origin of the fringes found here, we plot in Fig. 4.1f the width of 

the twin fringes (circles) as a function of IR. In the same diagram we also show a 

theoretical cacluation (see Methods for details). The agreement between the experimental 

data and the calculated curve confirms that the bright fringes at the line defects are of the 

plasmonic origin in close analogy with the oscillations of the scattering amplitude at the 
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edges of graphene. In either case, the near-field signal is formed by a standing wave with 

the periodicity p/2 produced by the interference between the tip-launched and reflected 

plasmons [7,8].  

 

4.3.2 Grain boundaries 

We observed twin fringes not only close to the cracks but also near other types of 

line defects that we identified as wrinkles and grain-overlaps based on the AFM 

topography (Fig. 4.4). But the most prevailing line defects are grain boundaries 

(schematically illustrated in Fig. 4.1a with a red line). As a rule, GBs are of the atomic 

length scale thus are invisible in typical AFM scans (Fig. 4.2a). Yet GBs were vividly 

visualized by scanning plasmon interferometry producing characteristic twin fringes (Fig. 

4.2b,d). We examined the IR-dependence of the fringe width and found that it is in 

agreement with the theoretical calculation (red circles in Fig. 4.1f). This latter finding 

attests to the plasmonic origin of the scanning plasmon interferometry signal at GBs.  

So far we discuss mainly the fringe width that is a direct measure of p. Yet 

another important parameter is the separation between twin fringes DTF (Fig. 4.1e). For 

GBs, DTF can be written as ( / 2 )TF pD     , where  is the plasmon phase shift upon 

reflection off a grain boundary set to vary within [-2, 0] (Eq. 4.19). Therefore, for a 

non-zero constant , the magnitude of DTF is proportional to p, which was indeed 

confirmed by our experiment (Fig. 4.1f). Our data indicated that DTF roughly equals to 

1/2p for all GBs, and therefore  is close to -. Note that the parameter  is not solely 

determined by the response of our graphene samples. The AFM tip also plays an 
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important role here. As detailed in Section 4.6.4, it is convenient to write  as sp+t, 

where sp is the plasmon phase shift without tip coupling to graphene, and t is a 

tip-dependent parameter that is around -(0.50.1) based on our numerical modeling (Eq. 

4.19).  

The above analysis for DTF holds true also for other types of line defects with 

geometric features much smaller than p, such as the crack shown in Fig. 4.1b. 

Nevertheless, for line defects such as wrinkles and grain-overlaps (Fig. 4.4), the twin 

fringes are strongly affected by their geometric form. As detailed in Section 2 of the 

Supplementary Information, these two types of line defects generate twin fringes with 

considerable variations of DTF governed by the details of a particular defect. A unique 

feature of GBs and grain-overlaps is that they together form a network of closed regions 

(grains) spanning over the entire graphene film (Figs. 4.2e and 4.5). In contrast, cracks 

and wrinkles are sporadic and discontinuous. From Fig. 4.2e, we were able to measure 

the average grain size (3-5m) of our film, in agreement with reports for graphene 

prepared under identical conditions [21].  

 

4.4 Modeling and Discussion 

In order to gain quantitative understanding of the twin fringes in our scanning 

plasmon interferometry images, we performed numerical modeling that takes into 

account all the experimental details. In our modeling, we assumed that GBs locally 

modify the plasmon wavelength p and damping rate p. Here, p is defined by the ratio 
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between the imaginary and real parts of the plasmon wavevector 
2

(1 )p p

p

q i





  . We 

found that the profiles of p(x) and p(x) displayed in Fig. 4.2f produce an accurate fit of 

the experimental data taken at multiple IR in the range of 10.7–11.3 m (Figs. 4.2c and 

4.9). Details of the modeling are given in Section 4.6.5. The fact that the single set of 

parameters fits the totality of fringe profiles indicates that the choice of these parameters 

is quite robust. For example, an assumption of a dip in p(x) as opposed to a peak at the 

GB would almost double DTF (see Fig. 4.7a and following paragraphs). We remark that 

strong scattering quantified with p in concert with the enhancement of p at the GB is 

needed to reproduce the line shape of the twin fringes. 

We now discuss some of the implications of our modeling. According to the 

plasmon dispersion equation (Section 4.6), p is roughly proportional to EF. In turn, EF 

scales as a square root of the carrier density n. Thus our results imply that our graphene 

film tends to be heavily doped with n  4×10
13 

cm
-2

 at the GBs, corresponding to 0.021 

holes per unit cell. This is expected since GBs are lattice defects that favor molecule 

adsorptions at ambient conditions [25,26]. The role of defects in enhancing doping due to 

molecule adsorption has been extensively studied before [27,28]. In contrast, under 

ultra-high-vacuum conditions, where molecule adsorption is significantly reduced, 

graphene films are close to the charge neutrality point and GBs perturbed the electronic 

properties of graphene in a totally different way as confirmed by scanning tunnel 

microscopy studies [18]. The plasmon damping rate depends on the carrier scattering rate 

of graphene 1  : p ≈ 0.05 + ()-1
 (Eq. 4.21). Therefore, the lineform of (x) inferred 

from modeling implies that charge carriers experience enhanced scattering close to the 



71 

GBs. We speculate that this effect may be caused by the coulomb scattering due to the 

charges at the GBs. Furthermore, modeling indicates that GBs perturb electronic 

properties over a length scale of the order of 20 nm. A wider effective width compared to 

the geometric width is in fact an outcome of electron screening of the charged GBs [29]. 

Indeed, the charge screening length is estimated to be in the order of Fermi wavelength, 

roughly 10 nm in our doping range, consistent with our experimental findings.  

Based on the p(x) and p(x) profiles in Fig. 4.2f, we can calculate the EF(x) and 

1( )x   profiles across GBs. These latter parameters allow us to infer the DC 

conductivity DC of graphene (inset of Fig. 4.2c) with a standard formula [11]: 

2

1

2 F
DC

Ee

h


 
 . This equation is obtained by assuming weak frequency dependence of 

1
 that is valid when coulomb scattering dominates [11]. Although the increase of the EF 

near the GBs would normally boost DC, this expected trend is overwhelmed by the 

increase in 1
. The net effect for GBs is to significantly reduce the local DC of graphene. 

Finally, we wish to point out that the plasmon reflection off GBs can be described 

by a reflection coefficient rsp. By solving analytically the problem of SPs scattering by 

GBs, we were able to obtain a formula: rsp  iWeffqp (Eq. 4.14), where qp is the relative 

change of plasmon wavevector due to GBs and Weff is the effective width. Based on rsp, 

we were able to estimate both the plasmon reflection probability |rsp|
2
 and the phase shift 

sp = arg(rsp). The former is closely related to the fringe intensity, and the latter 

determines DTF as discussed above. Calculations based on the p and p profiles of the 

GB (Fig. 4.2f) yield |rsp|
2
 ≈ 8% and sp ≈ -0.6. The 8% reflectivity is remarkably high. 
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Such a strong reflection is due to the extended effective width of the electronic 

perturbation induced by the GBs (Fig. 4.2f). A phase shift of sp≈-0.6 is an outcome of 

higher doping at the GB. If one switches the GB to a lower doping, spwill undergo a “” 

phase shift and become -1.6, resulting in a dramatic increase of DTF away from the 

experimental value (Fig. 4.7a). The above analysis indicates that |rsp|
2
 and sp are 

sensitive to the doping of the plasmon reflector. Therefore both of these parameters 

governing plasmon propagation can be conveniently tunable by common electronic 

means, e.g. electrostatic gating. 

 

4.5 Conclusion and Outlook 

Our work provided for the first time unambiguous experimental evidence of novel 

plasmonic effects originating from plasmon reflection at GBs in CVD graphene. The 

scanning plasmon interferometry technique, aided with modeling, is a comprehensive 

method capable of mapping and probing the electronic properties of GBs. This method 

can be applied to nano-characterization of plasmonic materials beyond graphene, where 

GBs also play important roles in the plasmonic effects [30]. Moreover, our work provides 

guidelines to designing tunable electronic barriers that would realize reconfigurable 

plasmon reflectors [4] and phase retarders: a milestone towards graphene-based plasmonic 

circuits. 

 

4.6 Methods summary 

 Our graphene films were grown on copper foils using a two-step low pressure 
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CVD method [12], and then transferred to silicon wafers with 300 nm SiO2 layer on top. 

All experiments were performed under ambient conditions and in an atmospheric 

environment. The graphene films were unintentionally hole-doped with a carrier density 

of about 1.0×1013 cm-2 corresponding to a Fermi energy EF of 0.37 eV. Such high doping 

is due to the SiO2 substrate, as well as molecule adsorption in the air atmosphere [26,27]. 

The doping level was inferred from our Raman and near-field gating experiments 

(Section 4.6.1). 

The scanning plasmon interferometry experiments introduced above were 

performed at UCSD using a scattering-type scanning near-field optical microscope 

(s-SNOM) [24]. Our s-SNOM is a commercial system (neaspec.com) equipped with 

mid-IR quantum cascade lasers (daylightsolutions.com) and CO2 lasers (accesslaser.com) 

covering a wavelength range of 9.511.3 m. The s-SNOM equipped with a 

pseudo-heterodyne interferometric detection module is based on an atomic force 

microscope (AFM) operating in the tapping mode with a tapping frequency around 270 

kHz. The output signal of s-SNOM utilized in this work is the scattering amplitude s 

demodulated at n
th

 harmonics of the tapping frequency (n = 2 in the current work).  

In order to efficiently couple IR light to the graphene plasmons, an AFM tip with 

a radius R ≈ 25 nm was chosen as our near-field probe. This scheme allowed us to 

overcome the notorious “momentum mismatch” between plasmons and photons. As 

detailed in Ref. 13, the momenta-coupling function has a bell-shaped momenta 

distribution that peaks at q ~ 1/R. For a typical CVD graphene film on the SiO2 substrate, 

the momentum of IR plasmons at ambient conditions is between 3 - 6×10
5
 cm

-1
. 

Therefore the optimum tip radius for exciting SPs of graphene in our frequency range is 
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about 20-30 nm. 

The plasmon dispersion equation of graphene [7,11] at the interface between air 

and SiO2 substrate with dielectric function sub() is given as 02 ( )

( )
p

i
q

  

 
 , where 

=2c/IRis the IR excitation frequency, sub( ) [1 ( )] / 2     is the effective dielectric 

function of the environment for graphene, () is the optical conductivity of graphene. 

The plasmon wavelength p of graphene can be obtained with p=2/Re(qp). The optical 

conductivity we used to calculate the plasmon wavelength (×1/2) in Fig. 4.1f was 

obtained from the random phase approximation method [6,7]. We find an excellent 

agreement between the experimental data and calculations of 1/2p assuming a Fermi 

energy EF ≈ 0.37 eV that is in accord with our Raman measurements.  

Alternatively, one can use a Drude formula that is valid at a limit of long 

wavelength and low frequency: 
2

2 1
( ) FEe

i
i

 
   




, where e is the elementary charge, 

  is the reduced Plank constant, and -1
 is the charge scattering rate in graphene. In this 

case, plasmon wavelength p adopts an analytic form: 
2 2

F IR

2 2

0 Re
p

e E

h c




 
 .  

 

4.7 Supplementary information 

4.7.1 CVD graphene fabrication and characterization 

Our graphene films were gown on copper foil using a two-step low pressure 

chemical vapor deposition (CVD) method as described in Ref. 12, and then transferred to 
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SiO2/Si wafers. A typical image taken with optical microscope is shown in Fig. 4.3a, 

where one can see that our CVD graphene film is predominantly single layer graphene. In 

addition, there are sporadic dark spots (green arrow) and lines (blue arrows) dispersed 

inside the film: a common occurrence in CVD graphene films [12]. These dark spots are 

the regions of two- or three-layer graphene whereas dark lines are microscopic line 

structures. We remark that these line structures are of the microscopic length scale, orders 

of magnitude wider than the nanoscale line defects investigated in this work. The 

double-layer region in Fig. 4.1b marked with blue dashed loop is one of these dark spots, 

while the green shaded region in Fig. 4.1b is one of these microscopic line structures.  

Raman spectroscopy (Senterra, Bruker Inc.) was applied to characterize our 

graphene films. All our Raman measurements were carried out using a 532 nm excitation 

laser, a 50 (NA=0.75) objective, and a grating with 1200 lines per millimeter. The laser 

spot size is roughly 1 m, and the spectral resolution is 3 cm
-1

. An accuracy of ~1 cm
-1

 

can be achieved by band-fit when determining the peak positions for G and 2D bands. 

We kept our laser power below 2 mW to avoid heating [31]. Raman spectra were 

collected all across our graphene films to characterize our film quality and doping level. 

A typical spectrum taken away from any dark spots or dark lines (Fig. 4.3a) is given in 

Fig. 4.3b. A symmetric 2D peak verified that our film is a single layer graphene, while a 

vanishing D peak indicates that our film is of high crystalline quality. According to 

previous studies, the G peak position is sensitive to the doping level of graphene 

[27,32,33]. The average G peak position of Raman spectra taken at different locations is 

around 1595  1 cm
-1

 indicating extremely high doping in our CVD graphene film.  

To estimate the carrier polarity and density of our graphene film, we investigated 



76 

the gating dependence of the near-field IR response by monitoring the hybrid 

plasmon-phonon resonance around = 1150 cm
-1

. At this frequency, the scattering 

amplitude s scales monotonically with the doping level of graphene [8], thus offering a 

convenient way to estimate the doping level of graphene. As shown in Fig. 4.3c, s(= 

1150 cm
-1

) decreases systematically with increasing gate voltage Vg. The charge neutral 

point VCN is above Vg = 80 V and exceeds the breakdown voltage of the SiO2 layer in our 

structure. Albeit incomplete, these gating results nevertheless conclusively show that our 

graphene films are highly hole-doped at ambient conditions.  

Based on the combination of our Raman and near-field gating experiments, we 

estimated that the hole density of our CVD graphene film was around (1.0±0.3)×10
13

 

cm
-2

. The corresponding Fermi energy EF is about 0.37±0.06 eV estimated from

F FE v n , where vF  1×10
6
 m/s is the Fermi velocity. This high level of doping 

likely originates from both SiO2 substrate and molecule adsorption in air atmosphere 

[26,34]. 

 

4.7.2 Nomenclature of line defects 

In addition to the cracks and grain boundaries (GBs) introduced in above, we also 

found other types of line defects including wrinkles and grain-overlaps. In Fig. 4.4, we 

plot both atomic force microscopy (AFM) (Figs. 4.4a,d) and scanning plasmon 

interferometry (SPI) (Figs. 4.4b,e) images for these two types of line defects. All SPI 

images were taken at IR=11.3 m and share the same color scale. For the purpose of 

quantitative analysis, in the right panels of Fig. 4.4, we plot the line profiles across the 
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twin fringes of these line defects.  

Wrinkles (i.e. film corrugations) in CVD graphene are formed during either 

post-growth cooling or film transfer processes [12]. Here we only discuss wrinkles in the 

nanometer length scale. As shown in Fig. 4.4b, wrinkles also generate twin fringes 

similar to cracks and GBs indicating that they also reflect surface plasmons (SPs). 

Nevertheless, the fringe intensity and separation between the twin fringes DTF for 

wrinkles are different from position to position (Figs. 4.4b). Such differences are due to 

the variations of the structural morphologies [35] of these wrinkles at different locations.  

Grain-overlaps are line defects formed when one grain overlaps with another, so 

that they bridge different grains [17]. Unlike GBs, grain overlaps are clearly visible in 

AFM topography. There are two grain-overlaps here in Fig. 4.4d (marked with OL1 and 

OL2), producing only ~1 nm variation in the AFM topography. Despite their similarity in 

the topography, OL1 and OL2 trigger totally different twin fringes (Fig. 4.4e). The twin 

fringes of OL1 are very close to each other, while those of the OL2 are much further 

apart. Both of them are different from the twin fringes triggered by a GB (marked with a 

red arrow in Fig. 4.4e). The different SPI response of the two grain-overlaps might be 

related to the stacking order of the overlapped region.  

In Fig. 4.5, we show a larger-area scan of our CVD graphene film including 

various types of line defects. Based on the AFM topography (Fig. 4.5a) and SPI (Fig. 

4.5b) images, we were able to sketch a map for various types of line defects (Fig. 4.5c). 

Topographic and SPI signatures allowing us to distinguish different types of line defects 

are described in the manuscript and the above paragraphs. Being sub-nm wide defects, 

GBs have no obvious topography features, yet they trigger clearly observable plasmonic 



78 

twin fringes. Grain overlaps and wrinkles show up in both the AFM topography and the 

SPI images. The main difference between grain-overlaps and wrinkles is the degree of 

continuity and the intensity of the twin fringes. The wrinkles are sporadic and 

discontinuous with fringe intensity varying from position to position. The grain-overlaps 

are continuous (similar to GBs) with almost constant fringe intensities. High-resolution 

AFM and SPI images (like Figs. 4.3 and 4.4) are well suited to discriminate between all 

these different types of line defects.  

 

4.7.3 Reflection of plasmons from a linear defect 

The observed fringes originate from interference of the plasmon waves launched by 

the AFM tip and those backscattered by a linear defect. Here we only consider line defects 

with negligible geometric width, such as a GB. Theoretical modeling of such waves is a 

challenging problem that requires solving complicated integro-differential equations. The 

problem becomes more manageable once one introduces certain approximations for the 

response functions of graphene and the tip, as described in our previous work [6]. However, 

even after these approximations the solution can be obtained only numerically. Before we 

go into details of our numerical simulations (Section 4.6.5), we first consider a simpler 

scattering problem, which can be tackled analytically.  

Instead of a complicated waveform launched by the tip, we consider a plane wave 

incident from the left on the line defect located at x = 0. We take the scalar potential of this 

wave to be ( , ) x yiq x iq y
x y e


  in the graphene plane. The system is assumed to be uniform 

along y, so that qy is conserved. The x-component of the incident plasmon momentum is 
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2 2 ,  Im 0,x y xq q q q                             (1) 

where ( )pq q   , function qp(x) is the local plasmon momentum, 

1
( ) ,  ,

2 ( ) 2

sub
p

i
q x

x







                           (2) 

(x) is the local sheet conductivity of graphene, and  is the effective dielectric constant. 

We parameterize the deviation of qp(x) from its limiting value at infinity by the 

dimensionless function g(x) such that 

1 1 ( )
.

( )p

g x

q x q


                                (3) 

We assume that g(x) rapidly decays with x (faster than 1/x). Note that the plasmon 

wavelength is defined by 1( ) 2 /p x q   with 
1 Re ( )pq q x  

Our goal is to calculate the potential ( ) yiq y
x e  of the scattered wave. In particular, 

we are interested in the behavior of ( )x  at large negative x, 

( ) | | ,x spx
iq x iiq x

sp spx r e r e



 

                           (4) 

which defines the reflection probability |rsp|
2
 and the phase shift spof graphene plasmons. 

Our starting equations are: 

( ) ( ,0) ( ),x x x                                 (5) 

2

1

1 ( ) 1 ( )
( ) *{ ( ) ( )},y x x

g x g x
x V q x x

q q 

 
                     (6) 

where ( )x  is the total potential, 
1

1 0( )yV K q x   is the 1D Fourier transform of the 

Coulomb potential, K0(z) is the modified Bessel function of the second kind, and the star 

denotes convolution, 
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( ) ( ,0) ( ),x x x                                 (7) 

We approach Eq. 4.6 using the Green's function perturbation theory method. The Green's 

function is defined by 

2 2
'

( ) ,  ( , ) 1 .
2 ( , )

ikx
x y

x y

y

k kdk e
G x k k

k q q


  


                     (8) 

The physical meaning of G is the response to the localized disturbance; ( , )x yk k is the 2D 

dielectric function of graphene. Using contour-integration techniques, the Green's function 

can be split into two terms: 

2
| |

( ) ( ).xiq x

x

iq
G x e G x

q

                              (9) 

The first term represents the outgoing plane wave and the second term is a correction 

decaying as 
3/2( ) ~ ( )yG x q x  for 0yq   and 2( ) ~ 2 / ( )G x q x  for 0yq  . In the 

latter case, ( )G x  can be expressed in terms of the standard special functions, the 

cosine-integral Ci(z) and the sine-integral Si(z): 

( ) {Ci( )cos [Si( ) ]sin }.
2

q
G x q x q x q x q x






                   (10) 

Using thus defined Green's function, Eq. 4.6 can be transformed to 

2

1

1
( ) ( * )*{ ( ) ( ) ( ) ( )},y x xx G V g x q x g x x

q




                    (11) 

which is analogous to the Lippmann-Schwinger equation of the usual scattering theory. 

Following the familiar route, at x much longer than plasmon wavelengthp, we neglect the 

correction ( )G x  in ( )G x  and recover Eq. 4.5 with the following reflection coefficient: 
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2[ ( ) ( ) ( ) ( )].xiq x

sp y x x

x

i
r dxe q g x x g x x

q





                      (12) 

We restrict our further analysis to the case of a weak defect, i.e., small g(x). In this case 

| | 1,  ( ) xiq x

spr x e   , and the formula similar to the first Born approximation applies: 

2 2

( 2 ),  ( ) ( ).
x y ikx

sp x

x

q q
r i g q g k dxe g x

q








                      (13) 

Notably, the reflection vanishes at the “Brewster angle” of /4 where qx=qy. However, we 

are primarily interested in the normal incidence (qy = 0). The most important for us is the 

situation where the effective electronic width of the defect is small compared to the 

plasmon wavelength: 
eff pW  . In this case, for qy = 0, Eq. 4.4 acquires a remarkably 

simple form 

1
,  [ ( ) ] .sp eff p p p

eff

r iW q q q x q dx
W

                       (14) 

Parameter pq  has the meaning of the average deviation of ( )pq x  inside the defect 

region from its limiting value q . In turn, the phase shift of graphene plasmons is given by 

arg( ).sp eff piW q                                (15) 

For real pq ,   can take only two values: / 2sp    if 0pq  , (i.e., p inside the 

defect is higher than outside), and 3 / 2sp    otherwise. On the other hand, if pq  

also has an imaginary part, the phase shift can be arbitrary. 

 

4.7.4 Interference pattern formation 

Let us now apply the above results to the task of interpreting the positions of the 
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interference fringes found in the experiment, i.e., the tip positions ( , )t t tx yρ  where the 

nanoscope registers the maxima of the signal ( )ts ρ . The relation between ( )ts ρ  and the 

previously discussed scalar potential ( ) ρ  is complicated and in fact tip-dependent
8
. 

However, according to our numerical simulations, the maxima of ( )ts ρ  occur roughly 

where the scalar potentials ( ) ρ  and ( ) ρ  due to, respectively, the launched and the 

scattered waves, add in phase underneath the tip. The results of the previous section can be 

straightforwardly utilized provided the tip is located far away from the linear defect. 

Assuming that is the case, let us discuss the launched wave ( ) ρ  first. Near the defect, 

which is far from the tip, ( ) ρ  behaves as an outgoing cylindrical wave: 

| |

0

( )
( ) ,  | | 1.

| |

p tt
iqi t

p t

p t

C e e q
q

 


 
  



ρ ρρ
ρ ρ ρ

ρ ρ
              (16) 

The coefficient 0 ~ 1C  and the phase shift t  depend on microscopic parameters of the tip, 

graphene, and the substrate. There is no general reason for t  to be negligible. 

Next, consider the reflected wave ( ) ρ . To compute this function, one can 

decompose ( ) ρ  into Fourier harmonics with all possible qy, determine the reflected 

wave for each harmonic, and then evaluate the inverse Fourier transform at the tip position. 

It is easy to see that the reflected wave is dominated by harmonics of nearly normal 

incidence, 
1/2~| / | .y p t pq q x q This allows one to replace function r(qy) in this 

calculation by the constant r(0). In turn, it means that the method of images applies, so that 

( ) ρ  can be approximated by a cylindrical wave of a certain amplitude radiated from the 

position (-xt, yt). This argument is the theoretical basis for the illustration shown in Fig. 
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4.1a. Adding together the launched and the reflected waves, we find the total potential at 

the tip position: 

2 | |0( ) | (0) |
1 ,  | | 1.

( ) 2 | |

p t g tiq x i it
p t

t p t

C r
e q x

q x

 



 
  

ρ

ρ
               (17) 

According to the earlier assumption, the interference maxima occur when 

12 | |t sp tq x    is an integer multiple of 2. They form a sequence of equidistant points 

on each side of the defect: 

| | { } ,
2 2

p sp t

tx n
  



 
   

 
                          (18) 

where n = 0, 1, … and {z} stands for the fractional part of z. Although Eq. 4.18 was derived 

assuming n >> 1, it should not be grossly incorrect at n = 0. Therefore, the separation 

between the maxima nearest to the defect is: 

.
2

sp t

TF pD
 




 
  
 

                            (19) 

Thus the magnitude of DTF is governed both by the plasmon phase shift sp, and by the 

tip-dependent parameter t. Based on our numerical modeling results given in Fig. 4.7 and 

Eqs. 4.15 and 4.19, we were able to estimate t to be –(0.50.1), which is fairly robust for 

tip radius from 10 nm to 100 nm. The estimation was done by comparing DTF inferred 

using Eq. 4.19 with that obtained from modeled profiles. The value of -(0.50.1) is fairly 

accurate for all the test modeling profiles. Slight deviation (less than 20%) occurs when g(x) 

or pq  is relatively big, i.e. when p
LD

 is 100 nm or 800 nm in Fig. 4.7a. 
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4.7.5 Numerical modeling about the fringe profiles 

Many elements of our numerical modeling have already been described in Ref. 7. 

In short, we model our AFM tip as a metallic spheroid (Fig. 4.6a): the length of the 

spheroid is 2L and the radius of curvature at the tip end is R. Here, R is set to be 25 nm 

according to the manufacturer specification and L is not a sensitive parameter so long as 

it is much larger than R (L is set to be 9R in all our simulations). The scattering amplitude 

S (before demodulation) is proportional to the total radiating dipole pz of the spheroid. 

Therefore, in order to fit the line profiles perpendicular to the twin fringes due to a line 

defect, we need to calculate pz at different spatial coordinates (x, ztip). Here, x and z are 

the x- and z- coordinates of lower end of the AFM tip, respectively. In order to compute 

pz, we assume that the electric potential  outside both the tip and the sample can be 

represented as a superposition of potentials of a large number of point dipoles positioned 

inside the tip. Based on this assumption, we are able to calculate the electric potential  

and field E distribution at every given point of the space. Imposing the boundary 

condition that the component of E tangential to the tip is zero, we obtain individual 

dipole moments. The total dipole moment pz of the tip is their sum. By calculating pz at 

different z, we are able to perform „demodulation‟ of the scattering amplitude S and get 

different harmonics of the scattering signal. While calculating pz at different x allows us 

to plot the modeling scattering amplitude and phase profiles. In all our modeling and 

simulation, we assume no position dependence in the y- direction for the purpose of 

simplicity. In the current work, the scattering amplitude sis normalized to that far away 

from the line defect where no plasmon fringes exist. 
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As for graphene, in our previous work [7] we used the complex plasmon 

wavevector qp (Eq. 4.2) as an input parameter in our modeling. Equivalently here, the 

plasmon wavelength p=2/Re(qp) and the damping rate p=Im(qp)/Re(qp) are the input 

parameters. We start with a model that assumes that graphene has a constant plasmon 

wavelength p
G
 and damping rate p

G
 away from the line defect, and that a line defect 

with an effective width of Weff is characterized by its own plasmon wavelength p
LD

 and 

damping rate p
LD

 as illustrated in Fig. 4.6b. Here and below, this model is referred to as 

the Discontinuous Model. Among the four parameters, both p
G
 and p

G
 can be estimated 

directly from our experimental data. p
G
 is set to be around 260 nm by measuring the 

fringe width of two side fringes at |x| ≈ 230 nm. p
G
 is estimated to be around 0.15 by 

compar ing the  p lasmon damping to  that  of  ex fo l iated  graphene  [7] .  

To understand how p
LD

, p
LD

 and Weff affect the plasmon fringe profile, we first 

perform a series of modeling by varying only one parameter and fixing the other two 

constant. In Fig. 4.7, we show fours representative sets of modeling results by: 

(1) varying p
LD

 from 10 to 800 nm with p
LD

=p
G
 =0.15 and Weff 30 nm (Fig. 4.7a);  

(2) varying p
LD

 from 0.01 to 2.0 with p
LD

=500 nm and Weff 30 nm (Fig. 4.7b);  

(3) varying p
LD

 from 0.01 to 2.0 with p
LD

=100 nm and Weff 30 nm (Fig. 4.7b);  

(4) varying Weff from 5 to 80 nm with p
LD

=500 nm and p
LD

=0.5 (Fig. 4.7d).  

In all panels of Fig. 4.7, we plot the modeling scattering amplitude s profiles 

along with the experimental data for a GB in Fig. 4.2. The scattering amplitude s is 

normalized to its value far away from the line defect, |x|≥300 nm in Fig. 4.7. We monitor 

the evolution of both the fringe intensity (peak height) and the separation between twin 
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fringes DTF with varying p
LD

, p
LD

 or Weff. As explained above, the fringe intensity is 

related to the reflection probability |r|
2
 (Eq. 4.14), while DTF is determined by the phase 

shift sp (Eq. 4.19).  

As one can see in Fig. 4.7a, the further p
LD

 deviates from p
G
, the higher the 

fringe intensity is. This is consistent with Eq. 4.14 since larger |p
LD

-p
G
| leads to larger 

∆qp and hence higher reflection probability |r|
2
. The separation between the twin fringes 

DTF also depends on p
LD

. Assuming p
LD

 > p
G
, we can find simulation parameters that 

bring DTF close to the experimentally observed width 150 nm. Conversely, if we assume 

that p
LD

 < p
G
, the magnitude of DTF becomes too large, about 260nm, nearly twice the 

observed value. This is again consistent with the analytical theory above. When p
LD

-p
G
 

switches its sign, plasmon phase shift sp = arg(iWeff∆qp) will be shifted by  (Eq. 4.15), 

resulting in drastic change in DTF (Eq. 4.19).  

Now we examine the effects of p
LD

 on the plasmon fringe profiles. In Figs. 4.7b,c, 

we show the modeling results with p
LD

 fixed at 500 nm and 100 nm, respectively. In 

both cases, the fringe profile evolves systematically with varying p
LD

, in agreement with 

Eqs. 4.14 and 4.19. Notably, in the case of p
LD

=500 nm, the scattering amplitude s at the 

line defect (x ≈ 0) shows a sensitive dependence on p
LD

. Good agreement with the 

experimental data can be achieved only if p
LD

>p
G
, i.e., if the GB is more doped than the 

rest of the film  

The modeling results for several Weff are presented in Fig. 4d, where one can see 

that the fringe intensity decreases rapidly with decreasing Weff. This is because |r| scales 

with Weff as shown in Eq. 4.14. At the smallest Weff ≈ 5 nm, the twin fringes almost 
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disappear. As Weff increases, the separation between the twin fringes DTF increases by 

about the same amount. 

Figure 4.7d illustrates how the calculated s(x) profiles change as a function of a 

single parameter of the set (p
LD, p

LD
 or Weff) while the remaining ones are kept fixed. 

Finally, in Fig. 4.8, we vary all the three parameters in order to get the best fit to the data. 

Such a fit is achieved with Weff close to 20 nm, which is much larger than its geometric 

width < 1 nm. Effective widths much smaller than 20 nm, e.g., Weff ≈ 5 nm，require 

settingp
LD

 as high as 3000 nm to fit the data, corresponding to an unrealistic carrier 

density of n = 1.2×10
15 

cm
-2

.  

So far, for the purpose of simplicity and clarity, we use the Discontinuous model 

(Fig. 4.6b) for calculation. Clearly, the model grasps the gross features of the 

experimental data. Nevertheless, in this model both p(x) and p(x) profiles have 

discontinuities close to the line defect (Fig. 4.7). We also considered a more realistic 

model that was referred to as the Gradual Model (Fig. 4.6c). In this model the rapid 

increase of both p and p close to the line defect is modeled by exponential functions:  

G 2| |/ G 2| |/

p p 1 p p 2( ) , ( )x B x Bx Ae x A e        .              (20) 

Here A1, A2 and B are the new adjustable parameters. A1 and A2 determine the peak height 

of p and p at the center of the line defect, respectively (Fig. 4.6c), B is associated with 

the effective width of the line defect.  

 In Fig. 4.9, we show the best-fit results for the GB data taken at IR from 10.7 to 

11.3 m using the Gradual model. The modeling parameters are: A1 = 320 nm, A2 = 0.9, 

B = 20 nm, corresponding p(x) and p(x) profiles are plotted in Fig. 4.2e.  
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4.7.6  Discussion about the modeling results 

Our modeling with both models not only fits well the experimental data, but also 

uncovers many essential properties of GBs. (1) GBs tend to have higher p compared to 

the rest of CVD film. (2) GBs tend to have higher p compared to the rest of CVD film. (3) 

GBs tend to have higher effective width (Weff ~ 20 nm) than their geometric width (W < 

1nm).  

According to Section 4.5, plasmon wavelength p of graphene is proportional to 

its Fermi energy EF. Considering that F FE v n  (vF is the Fermi velocity, n is the 

carrier density of graphene), higher p implies an increase of the carrier densities in the 

vicinity of GBs. This is expected since GBs are lattice imperfections that favor molecule 

adsorptions at ambient conditions [25,36], which will further enhance the hole doping in 

ambient [27,28]. Within the Drude approximation, the plasmon damping rate p in 

graphene can be written as [7]  

2 2 1

1 1 2

1
0.05p

q

q

 


  
     ,                  (21) 

here 1 and 2 are the real and imaginary parts of effective dielectric constant  (Eq. 4.2), 

and 1 and 2 are real and imaginary parts of optical conductivity of graphene , 1/ is 

the scattering rate of the charge carriers (as labeled in Fig. 4.8c). Therefore, higher p 

indicates higher scattering rate 1/ close to the GBs. These additional scattering 

originates presumably from the strong structural and Coulomb disorder at the GB.  

The effective electronic width Weff ~ 20 nm of the GBs revealed by the SPI is 

comparable to the screening length in graphene and is much larger than the sub-nm 
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geometric width of the grain boundaries. The relevant screening problem has been 

considered in Ref. 29 within the perturbation-theory approach.  

Starting from the EF and 1/ profiles displayed in Figs. 4.8b,c, we are able to 

calculate the DC conductivity profile across the GB using the formula obtained under 

Drude approximation: 

2

F2
,DC

Ee

h E




                          (S22) 

here 1E  

   is the scattering energy. The obtained DC(x) is given in the inset of Fig. 

4.2c, where one can see that the GB tends to have a lower DC conductivity compared to 

the rest of the graphene film.  

Previous transport and STM studies [15,16,18,19] of GBs were all performed in 

vacuum. Graphene was much less doped in those studies. On the contrary, our 

experiments were carried out in ambient atmospheric conditions, thus revealing for the 

first time the transport properties of GBs in graphene films that are highly hole-doped 

(presumably, by oxygen and water molecules). We remark that the „electronic‟ nature of 

the GBs are the origin for the lower DC conductivities observed in our experiments.  
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Figure 4.1: Probing CVD graphene with scanning plasmon interferometry. (a) Illustration 

of the scanning plasmon interferometry principle. The AFM tip (silver cone) illuminated 

with infrared (IR) light (purple cone) launches surface plasmon waves (pink circles) in 

graphene. These waves are partially reflected by the line defect (red line) thus causing 

interference between the launched and back-reflected plasmonic waves. (b) AFM 

topography of CVD graphene revealing a crack-type line defect (blue arrows), 

double-layer graphene region (blue dashed loop), and a microscopic line structure (green 

shaded region). (c, d) Scanning plasmon interferometry images taken simultaneously with 

the AFM topography in (b) at IR wavelength IR=11.3 m and 10.5 m, respectively. (e) 

Line profiles taken along the white dashed lines in (c) and (d). Here we also illustrate, for 

the 11.3 m case, a protocol to extract the fringe width (FW) and the separation between 

the twin fringes DTF. (f), Evolution of fringe width (circles) and DTF (triangles) with IR 

for the crack (blue) in Fig. 4.1b and the grain boundary (GB) in Fig. 4.2 (red). The black 

solid line is a theoretical result for the magnitude of 1/2p assuming the Fermi energy EF 

≈ 0.37eV (Methods). Note that p decreases rapidly for IR < 10 m: a consequence of 

the plasmon coupling to the surface optical phonon of SiO2. The data range for GBs is 

narrower than that that of the crack due to the fact that GB is a less efficient plasmon 

reflector compared to the crack. Scanning plasmon interferometry images (c) and (d) 

show the normalized amplitude s of the nano-optic signal as described in the text. Scale 

bars in (b-d) are all 200 nm. 
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Figure 4.2: Grain boundaries observed in CVD graphene films. (a) Topography image of 

graphene containing GBs. (b) Scanning plasmon interferometry image simultaneously 

taken with (a) at IR=11.3 m revealing GBs. (c) Experimental (black squares) and 

modeled (red curves) twin fringe profiles. The experimental profile is taken along the 

dashed line in (b). The inset shows the profile of DC conductivity inferred from modeling. 

(d) Scanning plasmon interferometry image of the same sample area of (b) taken at 

IR=10.7 m. (e) A larger-area scan of a typical sample revealing multiple grains 

(displayed with different false colors) defined by the twin fringes due to GBs and 

grain-overlaps. Details of line defects arrangements in this map are given in Fig. 4.5. (f) 

The profiles of plasmon wavelength p and damping rate p used for modeling the fringe 

profiles of the GB shown in c and Fig. 4.9. Scale bars in (a, b, d) are 200 nm, and the 

scale bar in (e) is 1 m. 
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Figure 4.3: Optical and Raman characterization of CVD graphene. (a) A typical optical 

image of our graphene film. CVD-G represents the CVD graphene film. Green arrow 

marks a dark spot and blue arrows mark a microscopic line structure, both of which are 

commonly seen in graphene films fabricated with CVD methods. Scale bar, 10 m. (b) A 

typical Raman spectrum of our graphene film away from any dark spots or dark lines 

shown in (a). (c) Scattering amplitude s( = 1150 cm
-1

) at various gate voltages Vg 

normalized to that at Vg = 0 V. 

 

 

 

 

 

 

 

 



94 

 

 

 

 

 

Figure 4.4: Near-field characterization of wrinkles and grain-overlaps. (a) Topography 

image showing wrinkles. (b) SPI image taken simultaneously with (a) at IR=11.3 m. 

WR1 and WR2 in (a,b) mark the two wrinkles. (c) The line profiles taken along the 

dashed lines in (b). (d) Topography image of grain-overlaps. (e) SPI image taken 

simultaneously with (d) at IR=11.3 m. Red arrow marks a GB. OL1 and OL2 in (c) and 

(d) mark two different types of grain-overlaps. (f) The line profiles taken along the 

dashed lines in (e). In both (c) and (f), the scattering amplitude s is normalized to the 

places far away from the line defects where no plasmons fringes exist (e.g. green squares 

in (b) and (f)). Scale bars in all panels are 200 nm. 
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Figure 4.5: Large-area scanning revealing various types of line defects. a. AFM 

topography image. b. SPI image simultaneously taken with a at IR=11.3 m. c. The map 

of various types of line defects including GBs (red), grain-overlaps (orange), and 

wrinkles (green). Scale bar width in all the panels is 1 m.  

 

 

 

 

 

 

 

 

 



96 

 

 

 

 

 

 

Figure 4.6: Modeling of the AFM tip and graphene. (a) Modeling parameters of the 

AFM tip. Red dashed line marks a line defect of graphene at x=0. (b) „Discontinuous‟ 

model for a line defect in graphene. (c) „Gradual‟ model for a line defect in graphene. „G‟ 

and „LD‟ in both (b) and (c) stand for graphene film and line defect, respectively. The fill 

colors and the yellow dashed lines in both (b) and (c) illustrate the variation of modeling 

parameters such as p
G
 (as plotted) or p

G
. 
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Figure 4.7: Fringe profile simulation with the Discontinuous parameter model. (a) 

Modeling s profiles with 10 nm<p
LD

<800 nm, p
LD

=p
G
=0.15 and Weff30 nm. (b) 

Modeling s profiles with 0.01<p
LD

< 2, p
LD

 =500 nm and Weff 30 nm. (c) Modeling s 

profiles with 0.01<p
LD

< 2, p
LD

 =100 nm and Weff 30 nm. (d) Modeling s profiles with 

5nm< Weff < 90 nm, p
LD

 =500 nm and p
LD

 =1.0. In all panels,p
G
=260, p

G
=0.15, the 

line defect is at x=0, and experimental data of a GB taken at 11.26 m is plotted with 

black hollow squares. Slightly asymmetry in our modeling results is due to limited 

resolution of our modeling. 
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Figure 4.8: Fringe profile fitting with the Discontinuous model. Calculated s(x) profiles 

for five different effective widths Weff = 5, 10, 20, 50, 90 nm. For each Weff, p
G
=260, 

p
G
=0.15 are fixed but p

LD
 and p

LD
 are adjusted to best reproduce the experimental data 

(squares) taken at 11.26 m. 
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Figure 4.9: Fringe profile fitting with the Gradual parameter model. Line profiles across 

twin fringes at various IR obtained from both experimental data of a GB (black squares) 

and modeling (blue dashed curve). Here, the scattering amplitude s is normalized to that 

far away from the line defect (|x| > 300 nm). All line profiles are vertically displaced for 

clarity. 
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Chapter 5 

Infrared nano-imaging of surface 

plasmons in bilayer graphene 

revealing an effective plasmon-off 

state 

 

5.1  Introduction 

Bernal-stacked bilayer graphene (BLG) has attracted broad interests due to its 

unique electronic [1-5] and photonic [6-9] properties and potential in a wide range of 

applications [10,11]. Recently, plasmonic properties of BLG have also attracted research 

interest [12-17]. Here, we report on infrared nano-imaging of surface plasmons in BLG. 

We found that BLG supports gate-tunable surface plasmons at mid-infrared frequencies 

with higher confinement compared to single layer and randomly-stacked double layer 
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graphene indicating that interlayer tunneling plays an important role in the plasmonic 

responses. Moreover, we were able to shut off BLG plasmons completely through gating 

within a wide voltage range close to the charge neutrality point. Theoretical analysis 

indicates that such a plasmon-off region originates from a gapped insulating state [18.19] 

and is further extended by interband transitions at mid-infrared frequencies. Our work has 

uncovers many essential characteristics of BLG plasmons, and demonstrates the 

feasibility of developing efficient and effective plasmonic transistors and switches [20] 

using BLG.  

 

5.2  Experimental details 

The technique we employed for infrared nano-imaging is an antenna-based 

nanoscopy built on an atomic force microscope (AFM) operating in the tapping mode. As 

shown in Fig. 5.1a, the metalized AFM tip is illuminated by infrared light thus generating 

strong near fields underneath the tip. These fields have a wide range of in-plane momenta 

q therefore facilitating energy transfer and momentum bridging from photons to 

plasmons [21,22]. Our samples were fabricated by mechanical exfoliation of bulk 

graphite and then transferred to SiO2/Si wafers. The thickness and stacking of the 

graphene layers were determined through a combination of optical microscopy, AFM and 

Raman spectroscopy (Fig. 5.5). 
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5.3  Data and Analysis 

5.3.1  Comparison between SLG, BLG and DLG 

 In Figs. 5.1b-d, we show typical infrared nano-imaging data taken at an excitation 

frequency of IR = 883 cm-1, where we plot the amplitude signal s of the back scattered 

radiation (Methods). We chose sample areas where BLG is adjacent to single-layer 

graphene (SLG) and randomly-stacked double-layer graphene (DLG). These DLG areas 

are in fact folded SLG as clearly seen under an optical microscope and further verified by 

Raman spectroscopy (Fig. 5.5). We emphasize that it is critical to compare SLG, BLG 

and DLG that are adjacent to each other so that they share identical substrate and 

environmental conditions. This ensures that the graphene samples will have roughly the 

same carrier densities due to unintentional doping [23]: an assertion that we have 

confirmed by gating experiments (Fig. 5.2).  

 As shown in Fig. 5.1, bright fringes were observed close to the edges of SLG, 

BLG and DLG. According to previous studies [22, 24-26], such fringes are formed when 

surface polariton waves launched by the tip interfere with those reflected by edges or 

defects. These alternating bright and dark fringes have a period p/2, one half of the 

polariton wavelength. To verify the plasmonic origin of the fringes observed here, we 

took imaging data at multiple excitation frequencies. In Figs. 5,1d,e, we present imaging 

data taken on the same sample area with IR = 883 cm
-1

 and 943 cm
-1

, respectively. One 

can see clearly that the fringe period shrinks with increasing IR, which is consistent with 

the dispersion of plasmons.  
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 It is evident from Figs. 5.1b-e that the plasmon fringes of the BLG are slightly 

weaker and narrower than those of SLG, while plasmon fringes of DLG appeared to be 

much stronger and wider than those of SLG. For the purpose of quantitative comparison, 

we plot in Fig. 5.1f the line profiles taken perpendicular to edges of SLG, BLG and DLG 

along the dashed lines shown in Fig. 5.1d. Here, we focus on the plasmon wavelength. 

The plasmon wavelengths, which are read off directly from the profiles by doubling the 

fringe period, are 158, 188 and 240 nm for BLG, SLG and DLG, respectively. We want to 

stress that BLG SLG DLG

p p p     inequality is a common observation for all our graphene 

samples so long as these graphene layers are adjacent to each other (Table 5.1). Therefore 

the plasmon confinement factor C = IR/p for surface plasmons in BLG surpasses those 

of adjacent SLG and DLG. Here IR = 1/IR is the excitation wavelength.  

 The dramatic difference between p in BLG and DLG stems from their distinct 

electronic properties. Unlike Bernal-stacked BLG, the top and bottom layers of DLG are 

stacked randomly and may also be separated slightly by occasional surface deposits. As a 

result, interlayer hopping in DLG is strongly suppressed and the interlayer coupling is 

dominated by Coulomb interaction rather than tunneling. A number of interesting 

many-body effects have been observed in similar structures, e.g., interlay screening and 

Coulomb drag [26,27]. The DLG is predicted to have two branches of plasmon modes: 

„optical‟ plasmon (p ~ q
1/2

) and „acoustic‟ plasmon (p ~ q), where p is the plasmon 

frequency [28]. However, because of small interlayer distance in our sample, the acoustic 
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mode is very close to the single-particle continuum and is presumably too strongly 

damped to be observed experimentally. Therefore the plasmons imaged in our DLG are 

expected to represent the optical mode. According to ref. [28], the ratio between p of 

DLG (optical mode) and SLG scales as DLG SLG

p p top bot SLG/ ( ) /n n n    in the long 

wavelength limit. Here, ntop and nbot is the carrier density of the top and bottom layer of 

DLG, and nSLG is the carrier density of SLG. As discussed above, due to their identical 

environmental conditions, nSLG  ntop + nbot when SLG is adjacent to DLG, so we have 

DLG SLG

p p1 / 2   . Our experimental values of DLG SLG

p p/   are 1.33 and 1.28 for the 

two samples shown in Figs. 5.1c,d respectively, which is consistent with the theoretical 

predictions. 

 

5.3.2  Plasmon-off region of BLG 

 Analysis of BLG is more complicated than DLG due to interlayer electron 

hopping that leads to dramatic changes in the electronic structure. We have thus far 

focused on unintentional doping. In order to get a complete picture of BLG plasmons, it 

is imperative that we explore a broader parameter space. To this end, we employed back 

gating to tune both the Fermi energy and bandgap of BLG [3,6-8]. In Figs. 5.2a-e, we 

show near-field images of a graphene sample containing SLG and BLG taken at various 

gate voltages. Unless otherwise specified, we discuss mainly the voltage difference Vg – 

VCN below for the purpose of clarity, where Vg is the bias we applied to the gate and VCN 
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is voltage for the charge neutrality point (CNP). When Vg = VCN, graphene becomes 

charge neutral and p of SLG drops to the zero. In Fig. 5.2a, both SLG and BLG are 

highly hole doped (Vg – VCN = -80 V), and we observed plasmon fringes at the edges of 

both SLG and BLG samples. When the hole doping is decreased, these plasmon fringes 

first become narrower (Fig. 5.2b, Vg – VCN = -20 V) and then completely disappear close 

to CNP (Fig. 5.2c, Vg – VCN = 0 V). As Vg – VCN increases to positive values, graphene 

become electron doped. Here the plasmon fringes in SLG are clearly visible (Fig. 5.2d, Vg 

– VCN = 20 V), however those in BLG are not observed until Vg – VCN reaches 40 V (Fig. 

5.2e). Plasmon fringes of both BLG and SLG become wider and brighter at higher 

electron doping (Fig. 5.2f, Vg – VCN = 70 V).  

 Based on our real-space gating data (Fig. 5.2), we extract and plot the complete 

gate voltage dependence of p in Fig. 5.3a for BLG (red dots, labeled as BLG-1) and 

SLG (black dots). In addition, we plot data points from another BLG sample (blue dots, 

labeled as BLG-2). From Fig. 5.3a, one can see that p of all the three samples show 

obvious ambipolar gate dependence: p increases with both higher electron and hole 

doping. However, as graphene approaches the CNP, where the carrier density equals to 

zero, the differences between SLG and BLG appear. For SLG, p drops to zero right at 

the CNP. In contrast, for BLG, we observed a wide voltage range where there are no 

detectable plasmons. The width of the plasmon-off region W is 43 ± 5 V (blue double 

arrow in Fig. 5.3a) and 60 ± 5 V (red double arrow in Fig. 5.3a) for BLG-1 and BLG-2, 
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respectively. The uncertainty of the estimation is primarily due to the spatial resolution 

(~20 nm) of our technique.  

 In order to fit the gate-dependence of p, we performed theoretical modeling of 

both SLG and BLG. The calculation of SLG plasmon wavelength is introduced in detail 

in previous studies [22,24]. To calculate p of BLG plasmons, we introduced an 

important parameter V that describes the layer doping asymmetry [29]. The parameter V 

can be controlled, for example, by top gating [6] or surface molecule doping [3]. In our 

case, V is a sample-dependent parameter due to dopants and impurities on the 

graphene-substrate and graphene-air interfaces. Given Vother band parameters 

(Methods), we can determine the band structure [bottom inset of Fig. 5.3b] and Fermi 

energy EF of BLG at all gate voltages based on a tight-binding model [30]. We then 

computed the gate-dependent optical conductivity of BLG using the Kubo formula [29], 

which allows for direct calculation of p in BLG at any given frequency (Methods). The 

best agreement with our data for BLG-1 and BLG-2 taken at IR = 883 cm
-1

 is obtained 

with V = 0.11 and V = 0.41, respectively (Fig. 5.3a). Here, 1 ≈ 0.4 eV is the interlayer 

hopping energy. The difference between BLG-1 and BLG-2 characterized by V0 

manifests itself mainly in the size of the bandgap . As shown in the top inset in Fig. 5.3b, 

of BLG-2 (V = 0.41) is much larger than BLG-1 (V = 0.11) close to the CNP. Based 

on the theoretical curves shown in Fig. 5.3a, we were able to determine the width of the 

plasmon-off region W at various V0. In Fig. 5.3b, we plot the V0-dependence curves of W 
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at IR = 883 cm
-1

 (black solid curve) and found W scales monotonically with V. 

Therefore V, hence the bandgap  of BLG, can be estimated by measuring the width of 

the plasmon-off region experimentally and then comparing with the theory curve.  

 

5.3.3  Origin of the plasmon-off region of BLG 

 In Fig. 5.3b, we also plot the V0-dependent W curve at  = 33 cm
-1

 (black dashed 

curve) which is in the terahertz range – another important regime for graphene 

plasmonics [31]. The width of the plasmon-off region at  = 33 cm
-1

 is clearly smaller 

than that at IR = 883 cm
-1

. To gain a complete picture of the frequency dependence, we 

show in Figs. 5.4a-c the voltage- and frequency- dependent map of the imaginary part of 

the optical conductivity 2(Vg-VCN, ) for SLG, BLG-1 and BLG-2, respectively. 

According to [22], when the optical conductivity is predominantly imaginary (2 >> 1 > 

0), surface plasmons can exist and p is roughly proportional to 2. Therefore, the red 

parts (2 > 0) of the color maps (Figs. 5.4a-c) correspond roughly to the plasmon-on 

region, while those white and blue parts (2 ≤ 0) are the plasmon-off regions. As a result, 

the width of the plasmon-off region W at every given frequency can be read out 

conveniently here. For example, W of BLG-1 and BLG-2 at IR = 883 cm
-1

 are defined 

by the blue and red arrows, respectively.  

 As can be seen in Figs. 5.4a-c, W increases with frequency for both BLG-1 and 

BLG-2. We first focus on the low frequency regime (  0, e.g. terahertz region) where 
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Drude response dominates. Here the width of the plasmon-off region W of SLG is zero, 

making it impossible to turn off plasmons of SLG effectively by gating given the fact that 

residual conductivity always exists at the CNP – a similar dilemma as that faced by SLG 

field effect transistors. In contrast, for BLG, when bandgap opens up close to the CNP, an 

insulating region occurs (between the two black vertical dashed lines in Figs. 5.4b,c) 

[18,19]. Within such a region, plasmons are off over the entire frequency range. 

Therefore such a highly insulating region forms the central part of the plasmon-off region. 

The width of this insulating region Wi is directly related to the bandgap size close to the 

CNP (top inset of Fig. 5.3), so BLG-2 has a larger Wi than BLG-1.  

 Now we look at the mid-infrared regime close to our excitation frequencies. Here 

the plasmon-off region of BLG becomes wider than the insulating region (Figs. 5.4a-c). 

The widening is primarily due to the interband transitions between the nearest conduction 

and valence bands (green arrow in the bottom inset of Fig. 5.3b). The threshold frequency 

of the interband transitions is at  = 2EF, where the 2(Vg-VCN, ) maps show minima 

(V-shaped blue region in Figs. 5.4a-c) [32]. The 2EF interband transition suppresses 2 to 

negative values and thus extends the plasmon-off region (2 < 0) further away from the 

CNP. The width of extended plasmon-off region in gapped BLG is above 30 V for both 

BLG-1 and BLG-2. Note that the 2EF interband transition also open up a tiny 

plasmon-off region in SLG (~6 V at IR = 883 cm
-1

, Fig. 5.4a).  

 To understand better the physical picture of the plasmon-off region, we plot in 
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Figs. 5.4d-f the frequency () – momentum (q) dispersion diagrams for the surface 

modes at the graphene/SiO2 interface at a typical gate voltage Vg-VCN = 15 V (green 

dashed lines in Figs. 5.4a-c. Here surface plasmons in both BLG-1 and BLG-2 are both 

turned off at IR = 883 cm
-1

 (Fig. 5.3b), but only BLG-2 is on the highly insulating state. 

The bright curves in these diagrams are dispersion curves for various surface modes. The 

relatively flat mode above 1100 cm
-1

 is the surface phonon mode of SiO2, while the 

mode below following a q
1/2

 scaling is the surface plasmon mode. When these two modes 

approach each other, an anti-crossing phenomenon occurs due to plasmon-phonon 

coupling [21, 33]. In the current work, we mainly focused on the graphene plasmon mode. 

In order for us to launch and detect the plasmon mode, the plasmon dispersion curve 

should cross the horizontal dashed line, which is set at our excitation frequency IR = 883 

cm
-1

 (Figs. 5.4d-f). Apparently, only the SLG plasmon mode crosses our excitation 

frequency (horizontal dashed line), and can therefore be excited (Fig. 5.3a). For BLG-1, 

the plasmon mode appears at lower frequencies, precluding plasmon excitation at IR = 

883 cm
-1

. In the case of BLG-2 that is on the highly insulating state, no plasmon mode 

can be seen in the entire frequency range. 

 

5.4  Conclusion and Outlook 

 Our work establishes BLG as a novel plasmonic material with high confinement, 

wide tunability, and more importantly, the ability to turn on and off surface plasmons 
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effectively by back gate voltages. The latter unique property makes BLG an ideal material 

to achieve plasmonic transistors and switches − essential components in future plasmonic 

circuitry [20]. In addition, the dramatic difference between BLG and DLG plasmons 

indicates the possibility of achieving novel plasmonic properties by engineering the 

stacking order of graphene layers. Our work paves the way towards all-graphene 

integrated plasmonic circuits where SLG, BLG and stacked graphene layers are all 

functional building blocks.  

 

5.5  Methods summary 

5.5.1  Infrared nano-imaging experiments 

 The infrared nano-imaging experiments in our work were performed using a 

scattering-type scanning near-field optical microscope (s-SNOM). Our s-SNOM is a 

commercial system (neaspec.com) equipped with continuous wave mid-IR quantum 

cascade lasers (daylightsolutions.com) and CO2 lasers (accesslaser.com). The s-SNOM is 

based on an atomic force microscope (AFM) operating in the tapping mode with a 

tapping frequency around 270 kHz and a tapping amplitude around 50 nm. A 

pseudo-heterodyne interferometric detection module is implemented in our s-SNOM to 

extract both scattering amplitude s and phase of the near-field signal. In the current 

work, we discuss mainly the amplitude part of the signal that is sufficient enough. In 

order to subtract the background signal, we demodulated the near-field signal at the n
th
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harmonics of the tapping frequency (n = 3 in the current work). All the infrared 

nano-imaging experiments were performed under ambient conditions and in an 

atmospheric environment. 

 

5.5.2  Sample fabrication and characterization 

 Our graphene layers were obtained by mechanical exfoliation of bulk graphite 

crystals and then transferred to silicon wafers with 300 nm thermal SiO2 on the top. In 

order to determine the thickness and stacking of the graphene samples, we employed 

optical microscopy, Raman spectroscopy, and atomic force microscopy (AFM) to 

characterize all our graphene samples. In Fig. 5.5, we present reprehensive 

characterization results of the samples shown in Figs. 5.1b,c. The optical microscope 

images in Figs. 5.5a,d clearly show thickness contrast of the graphene layers including 

single-layer graphene (SLG), Bernal-Stacking bilayer graphene (BLG) and randomly 

stacked double-layer graphene (DLG) in the two samples. The DLG is in fact folded SLG 

as clearly shown in Fig. 5.1d where a triangle shape SLG (originally sitting in the area 

marked with yellow dashed triangle) was folded to the other side of the sample during 

exfoliation. Raman spectroscopy data taken on different parts of the samples are shown in 

Figs.5.5b,e. The 2D peaks at around 2700 cm-1 show clear signatures both the thickness 

and stacking of graphene layers. For example, both SLG and DLG have symmetric 

single-component 2D peaks while the Bernal-stacking bilayer graphene has a wider 2D 
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peak with a featured four-component shape. White dashed squares in Figs. 5.5a,d are the 

areas we chosen for infrared nano-imaging (Figs. 5.1b,c). Simultaneously collected AFM 

images in these areas are given in Figs. 5.5c,f, where white dashed lines mark the 

boundaries between SLG, BLG and DLG. 

 

5.5.3  Calculation of the BLG plasmon wavelength 

 The plasmon dispersion equation of BLG at the interface between air and SiO2 

substrate with dielectric function sub() is given as 02 ( ) / ( )p BLGq i      , where 

sub( ) [1 ( )] / 2     is the effective dielectric function of the environment for graphene, 

BLG() is the optical conductivity of BLG. The plasmon wavelength p of BLG can be 

obtained with p = 2/Re(qp). In order to calculate BLG(), we adopted the method from 

Ref. 29.  
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Figure 5.1: Infrared nano-imaging revealing plasmons on BLG, SLG and DLG. (a) 

Schematics of our infrared nano-imaging experiment. (b-d) Infrared nano-imaging data of 

graphene samples containing BLG, SLG and DLG taken at an excitation wavelength IR 

= 883 cm
-1

. (e) Infrared nano-imaging data of the same sample area as (d) taken at IR = 

943 cm
-1

. Scale bars, 200 nm. (f) Line profiles taken perpendicular to the edges of BLG 

(red), SLG (black) and DLG (blue) of the sample in (d). The double-sided arrows mark 

the width of plasmon wavelength.  
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Figure 5.2: Infrared nano-imaging of SLG and BLG under back gating. (a-f) Infrared 

nano-imaging data of a graphene sample containing BLG, SLG and TLG taken at an 

excitation wavelength IR = 883 cm
-1

 under various gate voltages Vg – VCN. Here gate 

voltages were applied on the silicon side, so positive Vg – VCN will induce electron doping 

to graphene samples. The white dashed line in b marks the boundary between different 

graphene layers. Green and red dashed lines in b marks the edges where we measure the 

plasmon wavelength of SLG and BLG, respectively. Scale bars, 200 nm. 
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Figure 5.3: Observation of a wide plasmon-off region of BLG. (a) Plasmon wavelength 

taken from nano-imaging data of SLG and two BLG samples. The SLG (black dots) and 

BLG-1 (blue dots) data points were extracted from the profiles taken perpendicular to the 

edges of SLG and BLG in Fig. 5.2 (along dashed color lines as illustrated in Fig. 5.2b). 

The BLG-2 data points (red dots) were obtained from near-field images of a different 

sample (Fig. 5.6). Black, blue and red solid curves are theoretical calculations about SLG, 

BLG with V0 = 0.11 and BLG with V0 = 0.41, respectively. (b) Calculation of the width 

of the plasmon-off region W versus V0 of BLG at  = 883 cm
-1

 (black solid curve) and 33 

cm
-1

 (1 terahertz, black dashed curve). By comparing the experimental W with the theory 

curve, one can estimate V0 of BLG-1 and BLG-2 (blue and red dashed lines, respectively). 

Top inset plots the voltage-dependent bandgap  of BLG-1 and BLG-2. Bottom inset 

plots a typical example of the band structure of gapped BLG. For the purpose of 

illustration, a very large bandgap ( = 1) is used here. The dotted line here denotes the 

Fermi level and the green arrow illustrates the 2EF interband transition.  
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Figure 5.4: Physical picture of the plasmon-off state of BLG. (a-c) Voltage- and 

frequency- dependent map of the imaginary part of the optical conductivity 2(Vg-VCN, ) 

of SLG, BLG-1 and BLG-2. The red/(blue or white) parts of these color maps correspond 

to on/off state of surface plasmons. The black horizontal dashed line denotes our 

excitation frequency IR = 883 cm
-1

. The green vertical dashed line marks the gate 

voltage Vg - VCN = 15 V. The two black vertical dashed lines define the region of the 

gap-induced high insulating state. The blue and red arrows mark the width of the 

plasmon-off region at IR = 883 cm
-1

 for BLG-1 and BLG-2, respectively. The unit G0 is 

e
2
/2h. (d-f) Dispersion diagrams for surface modes of SLG, BLG-1 and BLG-2 on 

SiO2/Si substrate at Vg - VCN = 15 V. Here we plot the imaginary part of the reflection 

coefficient Im(rp). Horizontal dashed lines mark our excitation frequency IR = 883 cm
-1

.  
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Figure 5.5: Thickness and stacking determination of graphene layers. (a-c) Optical 

microscopy, Raman spectroscopy and AFM characterization of graphene sample shown 

in Fig. 5.1b. (d-f) Optical microscopy, Raman spectroscopy and AFM characterization of 

graphene sample shown in Fig. 5.1c. Dashed squares in (a) and (d) mark the areas we 

chosen for infrared nano-imaging. Dashed lines in (c) and (f) mark the boundary between 

SLG and BLG.  
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