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Abstract

Predictive simulation of grain boundary evolution

on a finite element mesh

The topological transitions of the grain boundary network during grain growth under

uniform grain boundary energies are believed to be known. However, this is not true for

more realistic materials with varying grain boundary energies that, in principle, allow many

different grain boundary configurations. A grain growth simulation for such a material

therefore requires a procedure to enumerate all possible topological transitions and select

the most energetically favorable one. Such a procedure is developed and implemented

here for a microstructure represented by a volumetric finite element mesh. The method is

implemented as a C++ library called VDlib based on SCOREC, an open source massively

parallelizable library for finite element simulations with adaptive meshing. To test the

implementation, a Voronoi tessellated microstructure composed of one hundred grains is

generated and evolved under constant grain boundary properties until half of the grains

remained. The evolution of the individual grains is compared to what is expected from

the MacPherson-Srolovitz relation and is found to be in good match.

As with all numerical techniques, it is important to identify systematic sources of

error. Such studies for grain growth simulations are either missing from or not uniform

across the literature. To address this issue and enable comparison across grain growth

simulations, a set of benchmark cases, one for each boundary type of surfaces, lines, and

points with analytical solutions are identified. These are used to compare a recently

developed discrete-interface method for microstructure evolution to a state of the art

diffuse interface (multiphase field method). In each case, the discrete method is found

to meet or outperform the multiphase field method in terms of accuracy for comparable

levels of refinement, demonstrating its potential efficacy as a numerical approach for

microstructure evolution.

Last, a novel invariant of ideal grain growth process is defined that ideally can be used

to calculate the number of topological entities in a microstructure and only changes as

xvi



the topology changes. VDlib is used to test the invariant on a simulated microstructure

composed of a periodic arrangement of Kelvin cells. A convergence study reveals that

the invariant converges to the ideal case with increasing levels of refinement, however

predicting the number of entities without bounds on number of entities proves unpractical.

Two error measures based on this novel invariant are proposed which can potentially

be used to quantitavely measure how much simulations deviate from ideal grain growth

process and experimental microstructures.
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Chapter 1

Introduction1

1.1 Motivation

One of the overarching goals of integrated computational materials engineering (ICME) [2]

is to accurately predict microstructure and property evolution during thermomechanical

processing. At a minimum this would require a simulation incorporating crystal plasticity

and grain boundary motion, and ideally interactions involving multiple phases and other

material physics. Such simulations would benefit from recent advances in three-dimensional

microscopy [3], and specifically three-dimensional X-ray diffraction microscopy (3DXRD)

that enables non-destructive three-dimensional imaging of millimeter-sized samples [4, 5].

These could both provide initial conditions for and allow verification of the output of

predictive simulations of microstructure evolution.

Historically, one of the major difficulties with simulations of microstructure evolution

has been the use of unrealistic grain boundary energy (GBE) functions. Such functions

are difficult to determine experimentally due to the number of independent variables,

but Morawiec recently suggested a procedure to estimate the GBE from distributions

of grain boundary angles around triple junctions [6]. Saylor et al. subsequently used a

related technique to estimate the GBE from EBSD analysis of the surface of aluminum

samples [7, 8]. While explicit functions for the grain boundary energy are not yet widely

available (with a few exceptions [9, 10]), this will likely change in the near future. When

1The majority of this chapter has been previously published in Ref. [1].
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that happens, a code for microstructure evolution that is able to make full use of them

would ideally already be available. Existing simulations of microstructure evolution include

Monte Carlo (MC) Potts, cellular automata (CA), phase field (PF) and front tracking

models, though these do not satisfy the requirements of the problem as is described in

more detail below.

1.2 State of the art

1.2.1 Implicit interface models

The MC Potts [11, 12] and CA [13–15] methods are popular partly because of their

low computational complexity and ease of implementation, but suffer from two relevant

shortcomings. First, the underlying voxel lattice introduces an artificial anisotropy that

can be difficult to overcome [16, 17], and a predictive model should respect the isotropy

of space with kinetics that are relatively independent of the underlying grid. Second, it

can be difficult to connect the MC Potts and CA models with physical units of measure.

Zhang et al. scaled quantities defining characteristic time, length and energy but observed

that the grid size affected the bulk energy driving force [18]. Mason established spatial

and temporal dimensions in a CA model using the Turnbull relation and a uniform grain

boundary energy, but the technique is not easily generalized to other situations [17].

The phase field method is an implicit boundary approach that was initially developed

to study phase transitions [19], and can be modified to include small deformations and

mildly anisotropic interface energies [20]. One drawback is the high memory and computa-

tional demand associated with representing grains by continuous fields, since numerical

instabilities associated with steep gradients limit the time step. Modern implementations

often use sparse data structures [21–23] and adaptive meshing [24] to address this issue.

Still, finite deformations and arbitrary boundary energies that can depend on the grain

boundary plane pose difficulties. Moreover, the use of diffuse boundaries can complicate

the study of topological aspects of the grain boundary network and can introduce subtle

numerical errors. Jin et al. compared the accuracy of level set and phase field methods

coupled with the Finite Element Method (FEM) in representing the motion of triple lines

2



during isotropic and anisotropic grain growth [25]. They observed that under proper

grid and time refinement, both methods performed similarly for the isotropic case. For

anisotropic grain growth though they observed 14.2% error in triple junction velocity for

the level set method and as much as 68.7% error for the PF method. Some recent variants

allow for anisotropic grain boundary properties (GBP) [26], but the modeling of finite

mechanical deformation has still not been addressed.

1.2.2 Explicit interface models

Early front tracking methods had the advantage of concentrating computational resources

just on the boundaries, and were often used to study mean curvature flow [27, 28].

FEM-based approaches are a natural extension of these that can support additional

physics, e.g., boundary energies can be explicitly defined and volumetric meshes allow for

crystal plasticity [29]. However, FEM-based methods introduce additional challenges with

scalability and require explicit handling of the topology and mesh. These complexities

have encouraged use of an MC Potts, CA or PF method in conjunction with a FEM solver.

Such hybrid schemes use an implicit boundary representation to model grain growth,

and transfer the resulting microstructure to the FEM to model deformation. Sequential

evolution is achieved by transferring the microstructure back and forth [30–32]. This does

not resolve accuracy concerns though, since transferring the solution potentially introduces

information loss and increases computational complexity.

1.2.2.1 Finite element based techniques

Of the purely FEM-based approaches, Kuprat developed a three-dimensional gradient-

weighted moving finite element (GWFE) method and implemented GRAIN3D, a serial

finite element framework for microstructure modeling of grain growth [33]. The code uses

an element regularization scheme to improve low-quality elements, handles changes in

the microstructure as boundaries evolve, and supports volumetric physics. While the

initial implementation only supported constant grain boundary energies, more general

energies were investigated by Gruber et al. [34]. There are two main concerns with using

this for general purpose simulations of microstructure evolution though. First, Kuprat

implemented the topological transitions by switching the last remaining set of elements

3



of a collapsing boundary segment or volume to the appropriate neighboring volumes [33].

This is not necessarily physical, and the relabeling can cause a substantial and artificial

perturbation of the boundaries. Although the likely changes to the overall evolution

are limited for an isotropic grain boundary energy, this could substantially affect the

microstructure trajectory for the anisotropic case. Second, the existing implementation

of the implicit finite element solver is serial. This prohibits simulating microstructures

on physically relevant scales, such as the 1 mm3 cylindrical copper sample imaged using

3DXRD by Li et al. [5].

Using a surface mesh representation, Syha and Weygand studied the effects of an

anisotropic grain boundary energy [35]. They proposed to decompose topological transitions

into simpler sequential operations and used a force-based criteria to select changes to

the grain boundary network. While this could accommodate anisotropic grain boundary

energies, decomposing a topological transition into a sequence of simpler ones could alter

the eventual trajectory of microstructure evolution. Moreover, the implementation is not

volumetric and cannot support volumetric physics.

Lazar et al. studied ideal grain growth by using a surface mesh representation, a fixed

set of topological transitions applicable for uniform grain boundary energy, and evolving

the microstructure with a discretized version of the MacPherson–Srolovitz relation [36, 37].

This approach provided insight into ideal grain growth but is not applicable to general

microstructure evolution for two reasons. First, the boundary evolution formulation

assumes that the microstructure is composed of quadruple points and triple junctions at all

times except for the moments where transitions occur. While this is generally applicable

for ideal grain growth, it does not hold for experimental microstructures. For instance,

highly twinned microstructures often contain stable junction lines joining four grain

boundaries, and accommodating such configurations would require implementing more

general topological transitions. Second, the implementation doesn’t support volumetric

physics and is only intended to model ideal grain growth.

A general-purpose FEM code for ICME would ideally be able to handle substantial

volumes of material since many grains are required to accurately reflect variations in the
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local deformation response and model stochastic processes like recrystallization. Tucker et

al. studied the convergence of large scale crack propagation simulations as a function of

the number of grains and mesh refinement in microstructures with abnormal grains [38].

They observed that the overall damage response was not significantly affected by mesh

resolution, but that more than 200 grains were required in the sample microstructure the

local response to converge. This shows that a scalable framework is necessary to accurately

capture the local response during deformation.

In summary, existing implementations of FEM-based grain growth codes are limited

in several respects. First, they are generally serial, prohibiting large scale simulations

[33, 35, 36]. Second, topological transitions are achieved by merging mesh entities with

one of the neighboring grains [33], by sequentially splitting points [35], or selecting from a

restricted set of operations [36], all of which could substantially change the microstructure

evolution trajectory. That is, a general-purpose FEM code to study grain growth and

deformation at physically relevant scales does not appear to exist.

1.3 Summary of contributions

The main goal of this dissertation is to enable predictive simulations of grain boundary

evolution on a volumetric finite element mesh. Chapter 2 describes the underlying

topological and mesh representations. Chapter 3 gives the details of the method and

of the resulting implementation. Chapter 4 describes a set of benchmarks that can be

used to quantify the convergence of error when modeling grain growth and to enable

comparative studies of different simulation methods. The benchmarks are used to compare

our discrete interface method with a state-of-the-art diffuse interface method. Chapter 5

proposes a novel invariant of motion for ideal grain growth processes that only changes

with topological transitions and ideally can be used to uniquely calculate the number of

topological entities. Chapter 6 describes possible extensions and future research directions.
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Chapter 2

Computational approach

The vision for a general purpose microstructure evolution framework pursued in this

dissertation is based on a finite element mesh with three key requirements:

1. scalability to reach representative volumes of material,

2. an adaptive meshing capability to preserve element quality as grain boundaries move,

and

3. a volumetric mesh to support arbitrary physics (i.e. crystal plasticity).

SCOREC is an open source massively parallel finite element management library [39] that

satisfies all three of these requirements, but does not natively allow any changes to the

grain boundary network. Section 2.1 describes the topological and the underlying mesh

representations. Section 2.2 describes the mesh generation approach, Sec. 2.3 describes

the mesh partitioning process, and Sec. 2.4 describes the mesh adaptation approach that

SCOREC uses. Section 2.5 describes the VDlib code structure that follows the flow of a

typical simulation.

2.1 Microstructure representation1

Our purpose is to simulate microstructure evolution at a scale that resolves the grain

structure. It will be useful in the following to introduce specific terminology to identify

the various microstructure components. A grain will be called a volume, a boundary

1The content of this section has been previously published in Ref. [1].
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(a) (b)

Figure 2.1. (a) An example grain structure composed of seven grains. A central
rectangular grain is surrounded by six grains, with examples of a volume, surface, and
line outlined in red. (b) A finite element representation of this grain structure where
tetrahedra, triangles, edges and vertices are used to discretize volumes, surfaces, lines
and points. Examples of a tetrahedron, triangle and edge are outlined in red.

a surface, a boundary junction line a line, and a boundary junction point a point. A

microstructure where each of these components is outlined in red is shown in Fig. 2.1a.

The volumes, surfaces, lines, and points composing the microstructure formally comprise

a stratified space, and for that reason the microstructure components will occasionally

be referred to as d-strata where d is the dimension of the stratum. The connectivity of

the topological components of the microstructure is defined by the adjacencies of d-strata

and (d− 1)-strata; that is, a volume is bounded by surfaces, surfaces by lines, and lines by

points.

A point is required to bound at least three lines (Fig. 2.2a), a line at least three

surfaces (Fig. 2.2b), and a surface exactly two volumes. One can show that any topological

component not satisfying these relationships is spurious and it can be removed by merging

the adjacent components of the next higher dimension. There are no constraints imposed

on the number of adjacent components of the next lower dimension; this allows, e.g., a

small spherical volume to be embedded in the middle of a surface (Fig. 2.2c), or a ball to

be embedded in the interior of a volume (Fig. 2.2d).
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(a) (b) (c) (d)

Figure 2.2. Examples indicating adjacency rules. (a) A point should bound at least
three lines. This point bounds three lines and four volumes, two on the left and right
and two in front of and behind the page. (b) A line should bound at least three surfaces.
(c) A surface separating a top and a bottom volume and ball embedded in the surface.
The line of intersection has no bounding points. (d) A sphere inside another volume,
with a surface that has no bounding lines.

2.2 Mesh generation

Any synthetic microstructure can be used to test the method proposed in Ch. 3. Since

SCOREC has no inherent capacity to generate microstructures or meshes, two methods

of microstructure generation are employed within this project. First, Neper [40] is an

open source microstructure generation toolbox that can generate regularized Voronoi

tessellations that resemble grain microstructures. Second, custom MATLAB scripts can

be used to generate test microstructures compliant with the Neper file format, with one

example being the microstructure shown in Fig. 2.1a. VDlib has the ability to generate a

mesh from a Neper microstructure file by using a simple routine that places a single vertex

on the interior of each boundary line, surface, and volume, and subsequently connects these

vertices to form edges, triangles and tetrahedra. SCOREC can subsequently refine this

mesh based on a general anisotropic metric. An open source software called DREAM.3D

[41] is also capable of generating synthetic microstructures based on empirical statistics or

experimental EBSD data, but it is not used as part of this project.

2.3 Mesh partitioning

For optimal parallelized performance it is important to maintain an equitable mesh

partitioning. The steps of microstructure meshing, refinement, and partitioning are shown

in Fig. 2.3 on a microstructure containing a rectangular prismatic grain surrounded

8



(a) (b)

(c) (d)

Figure 2.3. a) A sample rectangular prismatic microstructure. b) The mesh generated
by the custom script. c) The refined mesh obtained using MeshAdapt. d) One part of
the partitioned mesh.

by six other grains. Although partioning is necessary to reach representative material

volumes, there are certain limitations on the computational gains that can be obtained by

parallelization; Amdahl’s argument indicates that the theoretical performance improvement

is limited by the portion of the process that needs to be executed serially [42]. Moreover,

Amdahl’s argument doesn’t consider the cost of communication between parallel processes,

further limiting the useful degree of parallelization in a simulation. Parallelization also

complicates the implementations of mesh adaptation, physical processes, and topological

transitions.

SCOREC is fully parallelized [43] and represents the mesh as a set of partitions with

overlapping regions, with one partition shown in Fig. 2.3d. Although VDlib is built on

SCOREC, the topological transitions could not be fully parallelized within the time frame
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of this dissertation. Parallel implementations of physical processes or equations of motion

using SCOREC’s interface were achieved in some test programs, but the necessary changes

were not included in VDlib.

2.4 Mesh adaptation

An important concern of mesh management is the preservation of the mesh or element

quality. The movement of vertices in a deformable mesh changes the shape and size of

the elements over time, leading to two undesired effects. First, the change in element

shape can lower element quality, increasing the stiffness of the differential formulation

and reducing the stability and floating point accuracy of the calculations. Second, the

change in element size can affect the fidelity of the simulation as certain regions become

over-refined and others become coarsened.

Remeshing is the standard solution to these difficulties. One approach is to parameterize

the grain boundary representation and globally remesh the structure. Although this can

allow better control over the positions and alignment of mesh vertices, global remeshing is

costly and can perturb the grain boundary mesh if not done carefully. The other approach

is to identify regions that require remeshing and apply local changes which are less costly,

easier to scale, and minimally perturb the grain boundaries. SCOREC implements local

adaptive meshing through a MeshAdapt module. This is further broken up into three

main operations applied in sequence through an adaptation loop: coarsening, refinement,

and quality improvement [39].

SCOREC decides to locally coarsen or refine the mesh by means of a metric on edges.

Usually an edge is coarsened (refined) if its length is less than (greater than) a multiple

of a length threshold that can be anisotropic and vary over the space. The criterion for

coarsening is not restricted to use of a metric on edges though, and can be customized to

include topological information and fields defined over elements.

After the coarsening and refinement operations, MeshAdapt iterates over tetrahedra

and detects those below a quality threshold. To improve the quality of a tetrahedron, a

cavity or collection of immediate entities around the tetrahedron is formed. The mesh
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Figure 2.4. The hierarchy of modules within VDlib. The code developed within the
project is colored in blue, and the code that is interfaced with is colored in orange.

within the cavity is modified if the quality can be improved by any of the following

operations: edge removal, 2-to-3 face swapping, edge collapse, edge split, face slip, or

region split. However, MeshAdapt sometimes creates extremely low quality, pancake-like

elements near boundaries with small curvatures that can lock the simulation. Although

not described here, additional operations are implemented within VDlib to remedy such

low quality elements. These are mainly achieved by refining the interior of the low quality

elements and their neighbors such that MeshAdapt can find cavities to improve overall

element quality. When these don’t resolve the element quality, an operation is applied

to collapse the low quality tetrahedron to a boundary along its shortest edge, along

the altitude of the smallest area triangle, or along the altitude of the tetrahedron itself

depending on the geometry.

2.5 Code structure

The structure of the code used in a typical simulation is shown in Fig. 2.4. The simulation

starts by the generation of a microstructure using either MATLAB scripts or Neper. The

simulation interface accepts a microstructure representation (either a Neper microstructure
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file or saved SCOREC mesh instances) together with option files for mesh adaptation,

equations of motion, and information extraction. A corresponding mesh is generated

by VDlib (if necessary) and evolves under the user-specified equations of motion. Any

topological transitions are detected and handled at the topological and mesh levels. These

operations require auxiliary modules for geometric calculations and to communicate with

SCOREC.
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Chapter 3

Method1

This chapter describes the method developed to handle topological transitions involving

the grain boundaries on a simplicial finite element representation of a microstructure. The

resulting method and the corresponding implementation makes four practical contributions

to the literature. First, a method for finding all possible topological transitions that

can occur around junction points during grain growth is proposed. Second, operations

on the simplicial mesh have been developed to modify the mesh corresponding to these

topological transitions. Third, a criterion based on the energy dissipation rate is used to

compare different topological transitions, providing an unambiguous selection criterion.

Fourth, a discrete formulation to simulate grain boundary motion has been implemented

that allows for effectively arbitrary grain boundary properties [44]. The formulation is

explicit and solves for the motion of each vertex individually, reducing the computational

complexity compared to the weak formulation of the FEM at the cost of increased error.

An open-source C++ library called VDlib [45, 46] implements all these operations and

interfaces with SCOREC [39, 43], a massively parallel mesh management library with

local adaptive re-meshing.

The process of code development and the capabilities of VDlib described below directly

resulted in three scientific contributions. First, the process of finding all possible topological

transitions for a canonical configuration of five grains around a junction point revealed

two possibilities that are likely not mentioned anywhere in the literature, and that are

1The content of this chapter has been previously published in Ref. [1].
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(a) (b) (c) (d)

Figure 3.1. The cases of collapse shown on the rectangular prism example. (a) The
initial microstructure. (b) Line collapse. (c) Surface collapse. (d) Volume collapse.

named mixed removal and digon insertion type-II in Sec. 3.5. Second, the spurious stratum

insertion discussed in Sec. 3.2.3 is established as one of the essential topological transitions

for the progress of a grain growth simulation. Third, Sec. 3.4 generalizes the MacPherson–

Srolovitz relation [37] to allow for fixed boundary conditions. Since our purpose is to

provide the foundations for large-scale simulations of realistic microstructure evolution,

we expect that the capabilities of our open-source library will enable the community to

realize further related scientific advances in the future.

Sections 7.2.1 - 7.2.12 in the appendix provide detailed explanation of the topological

algorithms, mesh level operations, modifications to handle exterior insertions, insertions

on a six grain configuration, spurious insertions, and the scaling of the computational

resource usage with number of grains.

3.1 Operations on the microstructure

Over the course of grain growth, grain boundaries migrate to reduce the energy of the

microstructure. Occasionally a surface or volume will shrink to a point or will expand

from a point to participate in the subsequent evolution; such events are called topological

transitions. From the standpoint of the finite element mesh the corresponding operations

are either collapses, where disappearing boundary segments or volumes are removed, or

insertions, where new boundary segments are introduced to allow the microstructure

evolution to continue.
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(a) (b) (c) (d)

Figure 3.2. (a) Consider the point at the bottom left corner of the central volume. (b)
The neighborhood of the point shows the relationships with the surrounding surfaces
and volumes. (c) The volumes in an exploded view. (d) The adjacency graph showing
the volumes as squares and the surfaces as disks. In this figure, volumes and squares
are the same color.

3.1.1 Stratum collapses

The average grain size increases during grain growth, meaning that the general trend is for

components of the grain boundary network to vanish. The criterion for this topological

transition in practice is that the length of a line, area of a surface, or volume of a grain is

shrinking and passes below a threshold related to a characteristic microstructural length

scale, e.g., the average grain diameter. The collapse is effected by merging all of the

bounding points and adjusting the adjacency lists of the surrounding components as

appropriate. Examples of this operation are shown in Fig. 3.1, with several specifics of the

algorithm given in Sec. 7.2.2 of the appendix.

3.1.2 Stratum insertions

Often the configuration resulting from a stratum collapse is unstable and the energy

could be lowered by splitting the point to insert a line or a surface. There are usually

many such possible insertions, and selecting the most likely one necessarily involves first

identifying the various possibilities. This analysis can be performed using the adjacency

graph of surfaces and volumes. The adjacency graph is constructed by placing a node

for each volume and surface and an edge between adjacent volumes and surfaces. The

steps involved are shown in Fig. 3.2 for a particular point. Formally, for non-periodic

microstructures, there is a volume surrounding the simulation cell that is connected to

the surfaces bounding the simulation cell. For the purpose of identifying the possible

insertions, this is treated similarly to the volumes within the simulation cell, with the
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(a) (b) (c)

Figure 3.3. A line insertion corresponds to a circuit on the adjacency graph. (a) A five
grain configuration and a circuit going around the point. (b) Every surface punctured
by the circuit is extended by adding the inserted line to their adjacency lists. (c) The
adjacency graph around the point. Edges along the circuit are dashed.

specifics given in Sec. 7.2.8 of the appendix.

3.1.2.1 Line insertions

Every possible line insertion corresponds to a circuit on the associated adjacency graph,

with an example shown in Fig. 3.3. This configuration frequently occurs for isotropic grain

boundary energies, e.g., when a triple line collapses and two quadruple points are merged.

The circuit shown in Fig. 3.3a passes through the front, left and right volumes, and every

surface that is punctured by the circuit is adjacent to the inserted line. The circuit in Fig.

3.3a precisely corresponds to the circuit in Fig. 3.3c, and enumerating all possible line

insertions is equivalent to enumerating all circuits on the adjacency graph. Algorithms to

identify the circuits on a graph are available in the literature [47, 48]. Not all possible

circuits need to be considered though; if removing the nodes and edges of the circuit from

the adjacency graph leaves only a single connected component, then the line insertion

would create a spurious line and point that would subsequently be removed. The resulting

algorithm is described in detail in Sec. 7.2.3 of the appendix.

3.1.2.2 Surface insertions

Around a point a surface can only be inserted between two disconnected volumes. Given a

pair of such volumes, the inserted surface is connected to the surrounding surfaces by some

set of inserted lines. Each line corresponds to a path that starts on one of the disconnected
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(a) (b) (c)

Figure 3.4. A surface insertion corresponds to a set of paths on the adjacency graph.
(a) A five grain configuration, showing a set of three non-intersecting paths connecting
the disconnected (top and bottom) volumes. (b) A surface is inserted between the
disconnected volumes with one bounding line for each path. Each line is added to the
adjacency lists of the surfaces punctured by the corresponding path. (c) The adjacency
graph around the point. The color of punctured surfaces and edges on the graph match
on (a) and (c).

volumes and ends on the other, as in Fig. 3.4a. A set of such paths completely specifies

the topology around the inserted surface. Every surface punctured by a path is adjacent

to the corresponding inserted line, as in Fig. 3.4b. The set of all possible surface insertions

can be found by constructing all possible sets of non-intersecting paths between the nodes

of the adjacency graph corresponding to the disconnected volumes. These paths can be

found using a standard depth first search algorithm on the adjacency graph. Unlike line

insertions, paths along surfaces that share a common edge are still acceptable, as the

newly inserted line will bound the inserted surface and will be topologically different from

any preexisting line. The resulting algorithm is described in detail in Sec. 7.2.4 of the

appendix.

3.1.3 Other considerations

The algorithms described in this section are conjectured to result in sets of topological

transitions that include all those that occur during grain growth for a generic initial

condition, even with anisotropic grain boundary energies. A generic initial condition is

one for which the type of topological transition shown in Fig. 3.5 does not occur. That is,

the only allowed topological transitions are those for which the length of a line, the area
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(a) (b) (c)

Figure 3.5. Topological transitions not considered here. (a) Two lines bounding the
same surface meet to form a new point. (b) Two bounding surfaces of a volume meet
to form a new point. (c) The cross section of a cylindrical volume is reduced to a point.

Figure 3.6. A point connected to two spherical grains, and two grains in front of and
behind the page. The neighborhood of the point is outlined by a dashed line. The
surface in the page is represented twice in the neighborhood of the point.

of a surface, or the volume of a grain passes through zero. This is not believed to be a

serious constraint though, since the topological transitions in Fig. 3.5 are not expected to

occur during grain growth in a generic physical system.

There are some situations where the adjacency graph of the strata does not accurately

reflect the topology around a point. For example, a single point could appear on the

boundary of a surface more than once, as in Fig. 3.6. This is the reason that the adjacency

graph is constructed using only the microstructure components in a small neighborhood of

the point. This can allow spurious insertions (in the sense of Sec. 2.1) that are nevertheless

required by the physical system, and any spurious strata can easily be removed after the

topological transition is complete. The detection algorithm for spurious strata is provided

in Sec. 7.2.10 of the appendix. The construction of a small neighborhood necessarily

involves the mesh, and will be considered further in Sec. 3.2.3.
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3.2 Operations on the mesh

The Scientific Computation Research Center (SCOREC) is based at the Rensselaer

Polytechnic Institute, and develops mesh-based codes for multiscale systems design and

engineering [39, 43]. Since the core SCOREC library does not natively support changes to

the topology of the finite element mesh, a set of fundamental and localized operations are

proposed and implemented. Given that the microstructure is represented by means of a

finite element mesh, the individual microstructure components are comprised of sets of

simplicial mesh elements. These mesh elements will be referred to as tetrahedra, triangles,

edges, and vertices, or occasionally as d-simplices when that is simpler. The distinction

between the topological and geometric components of the microstructure is reinforced in

Fig. 2.1.

Applying the stratum collapse and insertion operations described in Sec. 3.1 on a

simplicial finite element mesh requires some mesh modifications, both to prepare the mesh

for these changes and to execute them. The two basic operations are lens collapse and lens

expansion, associated with stratum collapse and insertion, respectively. The lens split is an

additional operation used to prepare the mesh around a stratum before stratum collapse

or in the neighborhood of a point before stratum insertion. While the actual collapse

and insertion operations are more complex than those described below, the underlying

approach is the same.

Recalling that the set of volumes, faces, lines and points and their connections com-

promise a topological structure called a stratified space, microstructural components will

be called strata in this section, i.e., a volume will be called a 3-stratum, a surface will be

called a 2-stratum, a line will be called a 1-stratum, and a point will be called a 0-stratum.

For brevity, Sd will denote a d-stratum and Sdi more specifically the ith d-stratum.

3.2.1 Stratum collapse

An Sd with d > 0 is represented by a collection of e-dimensional mesh entities with

e = 0, 1, . . . , d. Collapsing an Sd is equivalent to collapsing its constituent entities onto a

single vertex. This can be further simplified to collapsing all edges within the Sd and its

bounding strata, giving the central idea of stratum collapse. For simplicity, this section

19



Figure 3.7. Lens collapse operation. Left, the lens composed of tetrahedra and triangles
bounded by the collapsing dashed edge. Right, the disc obtained by collapsing the lens.

Figure 3.8. Edge split operation during preconditioning. The thicker edges in red and
blue belong to strata Sdi and Sej , respectively. If Sdi and Sej are not the same and one
doesn’t bound the other, collapse of the dashed vertical edge is not allowed. Splitting
the red edge and all entities that are bounded by that edge into two creates new entities
which by construction either belong to Sdi or strata bounded by Sdi .

describes the procedure for a single collapsing edge, with the extension to stratum collapses

involving multiple collapsing edges in Sec. 7.2.7 of the appendix.

On a simplicial mesh, an edge bounds a collection of tetrahedra and triangles forming

a lens around that edge. As shown in Fig. 3.7, the entities that are bounded by the

collapsing edge will also collapse and need to be removed. For each collapsing triangle,

the other two bounding edges form a merging couple. For each collapsing tetrahedron,

the two triangles that are not collapsing form a merging couple. After the collapse, a

new entity is generated for each merging couple. Such an entity belongs to the lower

dimensional stratum of the merging couple, assuming the merging entities belong to the

same or adjacent strata.

Three issues could arise that would invalidate the mesh during a stratum collapse.

First, the collapse could cause an additional topological transition if any of the merging

entities do not belong to the same or adjacent strata. Applying the edge split operation

shown in Fig. 3.8 to one of the edges of the problematic couple resolves this situation.
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(a) (b) (c)

Figure 3.9. The effect of preconditioning for an S1 collapse on a two-dimensional mesh.
(a) Collapsing the blue S1 and moving the vertices to the blue node would invert the
red triangle and merge it with the purple triangle. The resulting triangle is shown
in dashed lines. (b) The splitting procedure resolves this problem, but yields the red
triangle that could invert during collapse. (c) Relaxation allows the S1 to be collapsed
without inverting any elements.

Second, it is possible that two d-dimensional entities could unintentionally merge. This

could occur even if they do not belong to the the collapsing lens, but requires that they

share d− 1 vertices and that the remaining vertex of each be a distinct merging vertex

as in Fig. 3.9a. The edge split procedure can also resolve this by isolating the collapsing

entity, as shown in Fig. 3.9b. A third issue that would invalidate the mesh is inversion of

one of the surrounding entities during a collapse. This could occur if the initial and final

positions of a merging vertex lie on distinct sides of the plane containing the opposite

triangle of an adjacent tetrahedron.

The three-dimensional equivalent of the preconditioning operation in Fig. 3.9 is applied

to edges that are adjacent to a single merging vertex to avoid all three situations. First, the

midpoints of all edges emanating from the merging vertices are collected to compute their

convex hull, and the emanating edges are split where they intersect the convex hull. This

resolves the first two issues and yields a hull of triangles surrounding the collapsing stratum.

While it is still possible for a surrounding tetrahedron to invert during the collapse, a

relaxation procedure analogous to that in Fig. 3.9c and described in Sec. 7.2.6 of the

appendix is applied to vertices on the hull to avoid such an event. After preconditioning,

the stratum memberships of the new entities associated with the merging entities are
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found. A new entity belongs to the lowest dimensional stratum that owns one of the

merging entities; the preconditioning certifies that there is a single stratum of the lowest

dimension.

During the course of microstructure evolution, the criterion for collapsing a stratum is

decided at the mesh level with a two step algorithm. First, the diameter of a stratum is

approximated as that of an edge, square or cube with the same length, area or volume,

respectively. If the diameter of a Sd is smaller than a threshold, then the time rate of

change of the total length, area, or volume of the collapsing stratum is calculated using

the velocities associated with the bounding vertices. If this is negative, then the stratum

is collapsed.

3.2.2 Stratum insertion

As described in Sec. 3.1.2, the insertion of a S1 or S2 around a central S0 initially involves

finding circuits or paths in the adjacency graph of surfaces and volumes. For this to work

on the mesh level, there should be at least one internal edge in each of the surrounding

S2 and S3. This is ensured by two operations. First, a lens expansion is applied to each

connected set of tetrahedra belonging to the same S3. The S2 triangles bounding such

a set and adjacent to the S0 form a disc that can be expanded. The expansion forms a

new vertex, a new edge and a set of new triangles and tetrahedra corresponding to the

disc triangles, all belonging to the specified S3. Second, if there are any sets of connected

triangles belonging to a S2 that consist of a single triangle, the edge opposite the S0 is

split. Next, the split operation is applied to the edges bounded by the central vertex

belonging to the S0. The vertices created by these split operations are positioned on a

sphere centered at the S0 vertex location. The radius ρ of the sphere is smaller than the

distance to the closest triangle opposite the central vertex in any surrounding tetrahedron.

Preconditioning achieves three things. First, it ensures that corresponding sets of

triangles and edges can be found for each circuit associated with a S1 insertion and each

path associated with a S2 insertion. These sets of triangles and edges form disc- or fin-like

structures. Second, it forms a convex cavity of triangles, preventing element inversion

after the insertion. Third, it reduces the size disparity of the surrounding triangles and
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(a) (b) (c)

Figure 3.10. Steps of a spurious line insertion. (a) A point, connected to the red and
green volumes above and below and two volumes in front of and behind the page.
(b) Insertion of the spurious line, adjacent to two surfaces both separating the same
volumes. (c) The spurious line is removed and the two surfaces are merged.

the associated bias in the numerical scheme for vertex velocities.

Stratum insertion requires expansion of a disc/fin, creation of triangles and tetrahedra

with the same stratum memberships as the edges and triangles on the disc/fin, and creation

of edges and triangles belonging to the new strata. In the case of a S1 insertion, a new S0

vertex and a new S1 vertex to be positioned on the interior of the new line are created.

The disc associated with the circuit is used to create three discs, one for the old S0 vertex,

one for the new S1 vertex, and one for the new S0 vertex such that the disc entities belong

to the same strata as in the initial disc. Two new S1 edges are created to connect the

S1 vertex to the bounding S0 vertices. The volume between the discs and around the

new S1 edges is filled by triangles and tetrahedra corresponding to edges and triangles

on the discs. In the case of a S2 insertion, the entities bounded by the new S2 entities

need to be generated. A triangle belonging to the new S2 is generated for each new S1

edge, and a new tetrahedron belonging to the adjoining S3 is generated for each new S2.

When inserting strata on a S0 on the boundary of the simulation, the algorithm skips the

creation of entities for the exterior S3. The final step of the insertion is the relaxation

described in Sec. 3.3.

3.2.3 Spurious stratum detection and insertion

If an inserted stratum has fewer than the minimum number of higher-dimensional adja-

cencies, it is spurious and is removed by merging the higher-dimensional adjacencies. An

example is given in Fig. 3.10. This operation is sometimes necessary, e.g., when a S0 is

connected to multiple disjoint sets of triangles belonging to the same S2 or disjoint sets
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(a) (b) (c)

(d) (e) (f)

Figure 3.11. The choice of insertion can change the overall trajectory of the system. (a)
A two-dimensional degenerate configuration with four grains could transition to either
(b) or (c) since they are energetically equivalent. For (d), (e) and (f) both lower the
energy, but (e) more so.

of tetrahedra belonging to the same S3. In this situation, the global connectivity of the

stratification is not representative of the possible local insertions around the vertex. A

local stratification of disjoint sets of entities belonging to the same stratum is generated,

and the set of all possible insertions is found with the same circuit and path detection

methods as described above. A practical situation where spurious insertions are necessary

for the progress of a grain growth simulation is described in Sec. 7.2.10 of the appendix.

3.3 Boundary evolution and energy criteria

When inserting a new stratum, it is important that the geometry of the stratum maximizes

the energy dissipation rate as the stratum expands. This is especially important when

there is more than one possible stable insertion, as shown in Fig. 3.11. Even for a constant

grain boundary energy, inaccurate calculations of the geometry could change the selected

insertion and drastically alter the subsequent evolution of the system.

The calculation of the geometry of an inserted stratum begins by isolating the mesh

around the old S0 vertex and applying the relaxation algorithm, as shown in Fig. 3.12 for
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(a) (b) (c) (d)

Figure 3.12. The steps of mesh level insertion and reorientation for a digon insertion.
(a) Fins of triangles along paths, shown in bold black. (b) Insertion of the new digon,
where S1 edges are shown as green lines and S2 edges are shown as blue lines. (c) The
vertices are allowed to move until one of the ending criteria is reached. (d) The digon
is scaled to be within the projection sphere, and relaxation continues until the energies
converge.

a digon insertion. The bold black lines in Fig. 3.12a represent the fins of triangles on the

paths. A new digon is inserted by expanding the two selected fins, changing the topology

as shown in Fig. 3.12b. The projection sphere of radius r is represented by the black

dotted circle and the inner (one for each S1 and S2 vertex) and outer bounding spheres

are represented by red dashed circles. The vertices are then allowed to move according

to the equations of motion (Fig. 3.12c) until a minimum energy is reached or one of the

moving vertices intersects an inner or outer bounding sphere. If one of the inner spheres

is intersected, the insertion is discarded. If the outer sphere is intersected, the inserted

stratum is scaled to be contained within the projection sphere. The steps in Fig. 3.12c

and 3.12d are repeated until both the energy at the intersection and the energy after the

scaling converge to the final and initial energies Ef and Ei.

Since the thermodynamically-driven system follows a gradient flow of the energy, the

physical system will transition to the state with the the highest energy dissipation rate.

After the process converges, the energy dissipation rate is calculated for the expanding

insertions at the singular configuration where all the new vertices are positioned at the old

vertex position. Assuming the contributions of the newly generated strata to the forces

acting on the vertices are vanishingly small in this configuration, the dissipation rate of
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initial expansion is given by

W = −
∑
i

Fi · vi

where Fi and vi are the force acting on and the velocity of vertex i and the sum is over all

newly inserted bounding vertices.

Our energy dissipation rate criterion is similar to the depinning force which Shya

and Weygand use to repeatedly split a node by edge insertions [35]. The difference is

that our approach instead compares all possible single stratum insertions at once using

the energy dissipation rate criterion, presumably more closely following the evolution of

the physical system. Moreover, the relaxation algorithm discards insertions that do not

expand, allowing for stable high valency junctions that could form, e.g., at intersecting

deformation twins in TWIP steels.

3.4 Modified MacPherson–Srolovitz relation

All numerical approaches should be verified against experimental or analytical results.

One possibility for polycrystalline microstructures evolving under constant grain boundary

energy is the MacPherson–Srolovitz (MS) relation [37], the three-dimensional extension of

the von Neumann–Mullins relation [49, 50]. For a constant grain boundary energy, this

relation should be satisfied by each grain at every moment in time except for when a

topological transition occurs.

The MS relation [37] governing the rates of change of volumes is given by:

dV (D)

dt
= −2πµγ

[
L(D)− 1

6
M(D)

]
, (3.1)

where µ is the constant grain boundary mobility, γ is the constant grain boundary energy,

L(D) is the mean width which measures the the total mean curvature of grain D, and

M(D) is the total length of the triple lines of grain D. Lazar et al. describe a discretized

form of the MS relation that can be used to calculate the rate of volume change for grains
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composed of discretized linear elements [36]. For this case, L(D) and M(D) reduce to

L(D) =
1

2π

∑
i

eiαi,

M(D) =
∑
j

lj,

where ei is the length of the ith boundary edge, αi is the exterior angle around the ith

boundary edge with respect to grain D, and lj is the length of the jth triple line edge.

The coefficient ofM(D) in Eq. (3.1) is related to the equilibrium exterior angle of π/3.

For periodic boundary conditions and when all junctions are composed of triple junctions

and quadruple points, this is the expected exterior angle everywhere. As will be further

discussed in Sec. 3.5 though, when using an exterior boundary or allowing higher valency

junctions due to the discretized mesh, the MS relation needs to be modified to include

more general exterior angle conditions. Specifically,

dV (D)

dt
= −µγ [2πL(D)−N (D)] , (3.2)

N (D) =
∑
j

βjlj, (3.3)

where βj is the equilibrium exterior angle around the jth junction line edge. This is

determined by the equation

(π − βj)n = ξj

where n is the number of grains and ξj is the total interior angle available for all grains

around the jth junction line edge. For a stable interior S1, ξj = 2π, n = 3, βj = π/3 and

Eq. (3.2) reduces to Eq. (3.1). Assuming a cubic simulation cell, the stable configuration

of a S1 on a simulation cell edge has n = 1, ξj = π/2 and βj = π/2, and the stable

configuration of a S1 on a simulation cell face has n = 2, ξj = π and βj = π/2. It is

possible to have unstable junctions with n larger than that for the stable configurations.

3.5 Results and Discussion

This section describes several tests of our implementation of the preceding ideas in

situations where the expected result are known. All possible insertions are identified for
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Figure 3.13. All possible insertions for the canonical configuration, classified by sym-
metry groups. Observe that digon insertions can be obtained by decomposing circuits
containing disconnected 3-stratum couples into two paths connecting the couples and
using these to insert a 2-stratum. Digon insertion type-I is related to petal removal
type-I and digon insertion type-II is related to mixed removal.

the canonical configuration of five volumes around a single point, and include both the

insertion of a line and triangle that are considered in previous FEM-based methods and

a number of insertions that are not. The effect of the geometric configuration of the

surrounding surfaces on the type and geometry of the insertion that maximizes the energy

dissipation rate is explored. Finally, a simulation of a trial microstructure is performed as

a demonstration of the capabilities of our implementation.

Consider the five grain configuration previously described in Fig. 3.3a. All possible

insertions can be found by applying the circuit and path detection algorithms, and these

are shown in Fig. 3.13 (classified by their symmetries). There are four classes of S1

insertions and three classes of S2 insertions. The volume removal and trigon insertion

are generally handled by all grain growth codes, but the other insertions are usually not

since a S1 collapse is always followed by a trigon insertion when the boundary energy is a

constant. Digons can also be inserted, with the two types shown in Fig. 3.13.

To be specific, there is one volume removal, three petal removal type-Is, six petal

removal type-IIs, and six mixed removals possible, all of which are found by circuit analysis.

There are three type-I digon, six type-II digon, and one trigon insertions possible as

well. Note that digon insertion type-I and type-II use paths that can be constructed by

decomposing the circuits of petal removal type-I or mixed removal, respectively. When

discussing the energy dissipation rates, it will be shown that these additional operations
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(a) (b) (c)

Figure 3.14. (a) The variation in energy change of insertion with the surrounding
boundary configuration. Blue triangles show the energies for the configuration when the
S1 angles in (c) are tetrahedral angles. Red squares denote the energies for the stretched
case, and the green pentagons show the compressed case. (b) The dissipation rates for
the expanding insertions at the singular configuration, where the volume removal and
the trigon insertion are energetically favorable for the stretched and compressed cases,
respectively.

could be relevant depending on the grain boundary energy function.

Depending on the geometry of the surrounding boundaries, each insertion has a different

energy dissipation rate associated with the subsequent evolution. The energy dissipation

rate criterion states that the insertion with the highest positive dissipation rate is the one

that will be realized. As a test of this criterion, a mesh was generated for the configuration

in Fig. 3.13. If the geometry is such that the three S1s on top and three S1s on the bottom

are separated by the tetrahedral angle, a degenerate configuration is created where any

insertion results in an unstable configuration with increased energy. If the angles between

the S1s are instead larger than the tetrahedral angle, a trigon insertion should be favored.

Conversely, if the angles between the S1s are smaller than the tetrahedral angle, a volume

removal should be favored.

The results of this simple test are shown in Fig. 3.14. The energy changes in Fig. 3.14a

are calculated with the new vertices on the outer projection sphere. For the compressed

case where trigon insertion is favored, it is significant that the digon insertion is also energy

decreasing and the petal removal type-I is nearly energy neutral. The dissipation rates

associated with the expanding insertions are shown in Fig. 3.14b, and correctly identify
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(a) (b) (c)

Figure 3.15. The effect of orthogonal stretching on the trigon shape. (b) Starting
configuration, where dihedral angles between surfaces separating the surrounding S3 are
equal. (a)-(c) After stretching (compressing) the configuration in the lateral direction,
running the relaxation yields a laterally stretched (compressed) S2.

the most energetically favorable insertions.

The current scheme applies smaller forces on the inserted triangles than the surrounding

triangles due to the discretized equations of motion, and a small bias towards trigon

insertions in the degenerate configuration is visible in Fig. 3.14. The bias depends on the

selection of the ratio of the radii of the inner and outer spheres in Fig. 3.12. By increasing

the ratio, smaller radius insertions are discarded, effectively creating a range of grain

configurations around the degenerate case where no insertion is valid. However, that can

also make high aspect ratio S2 insertions hit the inner sphere and be discarded until their

aspect ratio lowers on the consecutive time steps.

Whereas the vertical stretch changes which insertion is energetically favored, lateral

stretches change the energy-minimizing shape of the inserted stratum as is reflected by

the relaxation scheme. Without this, insertions of equilateral S2 could increase the energy

artificially and cause a physically favorable insertion to be overlooked. Relaxation mitigates

the problem, and as shown in Fig. 3.15, the shape of the inserted S2 changes along with

the surrounding geometry.

Finally, we simulate the evolution of an artificial microstructure of 100 grains generated

as a Voronoi tesselation using Neper [40]. The simulation cell is a cube with unit edge

length but is not periodic, requiring that a local volume preservation constraint be imposed

on the exterior vertices. This relaxes the connectivity constraint on grain surfaces on the

exterior, and requires some additional operations described in Sec. 7.2.8 of the appendix.
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(a) (b)

Figure 3.16. Simulation of a microstructure composed of 100 grains under isotropic
grain boundary energy. (a) Initial configuration. (b) The number of grains is about
one half of the starting number.

The mesh is adaptively refined, with a target edge length set to a fraction of the median of

the cube-equivalent grain diameters. The S1 are additionaly required to contain at least

two edges to provide sufficient degrees of freedom. The microstructure is evolved using

equations of motion by Mason [44] with unit surface drag coefficient and grain boundary

energy. The time iteration is implemented by a second order Runge-Kutta scheme with the

time step at each iteration given by min(tinv/20, tfixed), where tinv is the shortest time step

to invert any element and tfixed is the maximum fixed time step of 5.0×10−5. One iteration

loop involves nine sub-iterations of the equations of motion, checking for and implementing

collapses, followed by checking for and implementing insertions. Some snapshots from the

resulting system evolution are shown in Fig. 3.16, with the discretization of several grains

visible in Fig. 7.8 of the appendix. For reference, this simulation required about a week on

a PC with 16 GB of 2400 MHz DDR4 RAM and an Intel(R) Core(TM) i7-7700HQ CPU

at 2.80GHz. More details of the computational resource use and scaling are provided in

Sec. 7.2.12 of the appendix.

The modified MS relation in Sec. 3.4 is used to calculate the rate of volume change

of grains composed of discretized linear elements. The resulting actual rates of volume

change for a select number of grains and the predictions of the modified MS relation

are given in Fig. 3.17. The initial discrepancy is mainly due to the deviation from the
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Figure 3.17. The rates of volume change for example grains as calculated by the
modified MacPherson–Srolovitz (MS) relation, and first-order approximation using the
equations of motion (EoM).

equilibrium angle conditions in the initial condition. The discrepancy decreases as the

initial microstructure evolves and the angles around the junction lines approach the

equilibrium values. Topological transitions can also cause temporary deviations (e.g., grain

5 around t = 0.003 in Fig. 3.17) which decrease with time. Despite using linear elements

and an explicit time integration scheme, there is overall good agreement with the MS

relation.

3.6 Conclusion

A computational framework with an explicit grain boundary representation is proposed

to predict grain growth for anisotropic grain boundary energies and mobilities. This

establishes the foundations of a massively parallelizable general-purpose framework to

model microstructure evolution during, e.g., high-temperature and finite-strain processes.

There does not appear to be any other software with these capabilities, that uses an

explicit boundary representation, and that supports general changes to the grain boundary

network.

Predictive simulations of microstructure evolution during thermomechanical processing
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require the ability to represent features such as stable quadruple junction lines in low

stacking-fault energy metals. This in turn requires the ability to handle anisotropic

properties and more general topologies than usually assumed in the literature. Moreover,

the mesh should be partitioned across multiple processing units to reach physically relevant

scales, and the equations of motion should be local to keep the computational cost linearly

proportional to the number of grains. The discrete equations of motion proposed by Mason

[44] can accommodate anisotropic grain boundary energies and drag coefficients. They are

local and scalable, and have been implemented to describe the boundary motion.

A generic method to identify the possible singular transitions is proposed and imple-

mented. An insertion selection criterion based on the energy dissipation rate is proposed

and implemented. The method can utilize models for anisotropic energies, and once

experimental grain boundary energy functions are available, the framework will be used to

simulate grain growth under these conditions. Finally, the work is done in the context of a

massively parallelizable finite element based library that can support volumetric physics.
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Chapter 4

Benchmarks1

Quantifying accuracy is essential to any simulation efforts. This chapter introduces a set of

three test cases to evaluate the relative accuracy and numerical cost of simulations of grain

boundary motion, and uses this set to compare the discrete interface and multiphase field

methods. The three cases correspond to several of the simplest configurations involving the

motion of a grain boundary surface, a triple junction (TJ), and a quadruple point (QP).

The grain boundary properties are assumed to be isotropic; a coarsening grain structure

with isotropic grain boundary properties is said to be the ideal grain growth system, and

provides a basis for comparison of all other evolving grain structures. Analytical forms

for the evolving geometries are known for the spherical surfaces and TJ cases [50, 52],

and the TJ and QP configurations have well-defined steady-state geometries. It is also

of interest whether the two methods converge to the same geometries in situations for

which analytical solutions are not known, since there is likely no other way to verify the

simulations in such cases. While several of these configurations have been studied before,

they are not usually considered in conjunction despite the benefits of doing so. Namely,

the increasing complexity of the grain boundary configurations among the three test cases

introduces different sources of systematic error to the grain boundary motion, and these

errors can be more easily identified by comparing the test cases to one another.

It is desirable to establish the natures of any systematic errors and the accuracy of

the simulation methods for a system with isotropic grain boundary properties before

1The content of this chapter is under review and is available in Ref. [51].
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attempting to do so with more general grain boundary energy and mobility functions. The

two methods considered in the present work will be capable of simulating the motion of

grain boundaries with anisotropic properties when such functions become available. The

discrete boundary method uses equations of motion that allow for general grain boundary

properties and grain boundary lines that join an arbitrary number of grains [44]. The

multiphase field model was developed to simulate the faceting of grain boundaries with

energies that depend on boundary plane orientation, though this requires calculating a

fourth-order derivative of the order parameters [26].

This chapter is structured as follows. We begin with a discussion of the discrete

interface method and its implementation, followed by an analogous discussion for the

multiphase field/diffuse interface counterpart. We then apply both methods to a set

of three test cases: a two grain system (shrinking sphere), a three grain system (triple

junction), and a four grain system (quadruple point). The behavior of the discrete and

diffuse models is compared for each of the examples vis-à-vis analytic predictions and the

models’ internal length scales. The performance of the discrete interface case is briefly

discussed, and then we conclude with a general discussion of the behaviors of the two

models and a summary of recommendations for best practice in discrete interface modeling.

4.1 Methods

Assuming that grain boundary properties are independent of grain boundary crystallogra-

phy implies that the grain boundary network evolves along the negative gradient of the

total boundary area. This is usually expressed as the Turnbull equation [53]

v = µγKn̂, (4.1)

governing the motion of each boundary patch where v is the velocity, µ and γ are the

mobility and energy per unit area, K is the mean curvature (the sum of the principle

curvatures), and n̂ is the unit normal vector.

While this is sufficient to determine the time evolution of a closed surface, the Turnbull

equation does not specify what happens at the TJs or QPs of the grain boundary network.

One of the essential differences between discrete and diffuse interface models is the governing
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equations for precisely these locations. Discrete interface models generally represent the

TJs and QPs as distinct entities with explicit geometries, and sometimes provide additional

governing equations specific to these locations [36]. This is in contrast to the implicit

approach of most diffuse interface methods which do not track TJs or QPs explicitly

(while some diffuse interface methods do include higher order terms to account for the

distinct behavior of line or point defects, these can come at extreme computational cost).

In diffuse interface methods, each surface evolves according to the Turnbull equation with

the geometric singularities at the TJs and QPs regularized by the diffuse interfaces. This

difference in the handling of TJs is significant since the TJs define the geometric conditions

at a grain boundary’s edges and thereby constrain the evolution of the grain boundary

surface. Therefore, the microstructure trajectory is likely sensitive to the geometry around

and motion of the TJs. It is for this reason that the angles between adjoining grain

boundary surfaces are often used as simple scalar measures of the simulation accuracy in

Section 4.2 below.

4.1.1 Discrete interface model

As implied by the name, every discrete interface model uses a discrete representation of

the grain boundary network. A discrete representation entails that the grain boundary

network geometry is represented by a collection of simple geometric objects, or elements,

along with a description of how to join those elements together. The result is known as a

surface mesh in three dimensions, and can be advantageously extended to a volumetric

mesh to provide a discrete representation of the grain interiors as well. VDlib [1, 45] is

a C++ library based on SCOREC [54] that represents a grain structure by means of a

volumetric mesh containing tetrahedra, triangles, edges, and vertices.

There are two operations involved in updating the mesh to evolve the microstructure.

The first moves the vertices of the mesh according to established equations of motion [44]

that allow for anisotropic surface energies and arbitrary drag coefficients (the counterpart

to the usual grain boundary mobility). The idea is that the velocity v of any given vertex

should be such that the driving force F on the vertex is precisely balanced by the sum of

drag forces Dv resulting from the motion of the adjoining grain boundary elements, where
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Figure 4.1. Vectors describing the geometry around a vertex of the surface mesh. The
central vertex is connected to five edges ti and five triangles with unit normal vectors
n̂ij . The TJ along the edges t1 and t4 is shown in bold.

D is the drag tensor and v is the grain boundary velocity. The capillary force acting on

the vertex is given by

F =
∑
i

t̂iτl(t̂i) +
1

2
||ti||

∑
j:{i,j}∈∆

(n̂ij × t̂i)γ(n̂ij) + n̂ij
∂γ

∂φi

∣∣∣∣
n̂ij

, (4.2)

where τl and γ are the line and surface energy functions, ti the vector along edge i starting

at the vertex and t̂i is the corresponding unit vector, n̂ij is the normal of the triangle

formed by edges i and j, j : {i, j} ∈ ∆ indicates an edge j starting at the vertex such

that edges i and j span a triangle ∆, and φ defines the surface orientation around edge i;

Fig. 4.1 shows several of these quantities for a generic vertex of a surface mesh. At force

equilibrium the capillary forces are balanced by the drag forces Dv applied by the moving

boundaries with

D = δ0I +
1

2

∑
i

δ1(t̂i)||ti||(I − t̂i ⊗ t̂i) +
1

6

∑
i,j∈∆

δ2(n̂ij)||ti × tj||(n̂ij ⊗ n̂ij) (4.3)

and where δk is the drag term associated with the k-dimensional simplicial boundary

element. The resulting boundary vertex velocity v is given by

v = D−1F . (4.4)

One advantage of this formulation is that the motion of every boundary vertex is governed

by the same equation, including those on the interiors of surfaces, along TJs, and at QPs.

If the point and line drag terms are zero, Dv reduces to the sum of the drag forces exerted
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by the neighboring triangles along the triangle normal directions for a given velocity v.

Moreover, if the grain boundary properties are constant, then δ2 = 3/µ and this further

reduces to a discrete version of Eq. (4.1) with an accuracy that depends on the product of

the edge length and the mean curvature of the surface. The explicit nondimensionalized

forms are given in 7.3.1.

Apart from the motion of the mesh vertices, the accuracy of the discrete interface model

is highly dependent on the element quality, where low-quality elements do not resemble

equilateral triangles or tetrahedra [55, 56]. Without regular intervention and adaptation of

the mesh, the quality of mesh elements generically degrades with grain boundary motion,

even to the point of elements inverting. The discrete interface method handles this by

using MeshAdapt [57] to locally remesh where the element quality falls below a threshold

value, and coarsening or refining edges with lengths below or above a threshold value. The

target edge length `e is constant in time and space for any given simulation, and an edge

is coarsened or refined if the edge length l is outside the interval 0.7`e ≤ l ≤ 1.5`e. These

operations are used sparingly though, since apart from the computational expense local

remeshing can perturb the grain boundary geometry. Specifically, these operations are

the source of the discontinuous jumps observed in the discrete interface model results in

Section 4.2.

4.1.2 Diffuse interface model

Comparison to a standardized diffuse interface model provides verification of the discrete

interface model, as well as a benchmark for performance and code efficiency. In this

work we apply the multiphase field model implemented following the presentation in Refs.

[58, 59], which are general references for this section. A brief overview is provided here.

For a system in region Ω ⊂ R3 with N grains, N order parameters (denoted as the vector

of functions η = {η1, . . . , ηN} ⊂ C2(Ω)) are defined such that the region occupied by grain

i is precisely the support of ηi. The free energy of the system is then defined to be

W [η] =

∫
Ω

(
w(η) +

1

2

∑
n

k |∇ηn|2
)
dx, (4.5)
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where w is the chemical potential and k is a model parameter to be discussed subsequently

(the use of functional brackets should be understood to indicate dependence on the

argument and any temporal or spatial derivatives). The following polynomial form is used

for the chemical potential:

w(η) = m
∑
n

(1

4
η4
n −

1

2
η2
n +

3

4

∑
m>n

η2
mη

2
n

)
, m = 3.26. (4.6)

The coefficient for the boundary term is related to the grain boundary energy σ by

k =
3`GB

4
σ, (4.7)

where `GB is the diffuse boundary width. The evolution of η, which determines the overall

evolution of the microstructure, follows an L2 gradient descent to minimize Eq. (4.5). The

resulting kinetic evolution equation, expressed in terms of the variational derivative, is

∂ηn
∂t

= −LδW
δηn

, (4.8)

where the rate coefficient L is related to the traditional boundary mobility µ by

L =
4

3

m

`GB
. (4.9)

All diffuse boundary calculations are performed using Alamo, a high performance

multiphysics code that uses block-structured adaptive mesh refinement (BSAMR) with a

strong-form elasticity solver to perform diffuse interface calculations [60]. Alamo is built

on the AMReX package, developed by Lawrence Berkeley National Laboratory [61]. All

of the results presented here were run on a desktop computer and generally completed

in less than an hour (depending on the chosen parameters). Of particular interest is the

convergence of the solution with respect to the boundary width, `GB, which determines

the diffuse boundary length scale. The exact solution is recovered as `GB → 0, but this

comes at the expense of increased computational cost. In this work we are particularly

interested in the relationship between `GB and the discrete interface model counterpart.

4.2 Results and discussion

Three cases are considered in this section to quantify the systematic error of the discrete

interface and multiphase field methods of simulating grain boundary motion. The first
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is a spherical grain which evolves in a self-similar way. This is a standard configuration

that is often used in the literature to verify that the Turnbull equation is obeyed in the

absence of complicating factors [33, 62–64]. The second is a TJ that migrates along a

semi-infinite grain boundary [25, 63, 65], eventually reaching a steady state configuration

with a known profile and velocity [50]. The quantity considered below is the angle of the

grain boundaries at the TJ, though in principle a stricter validation scheme could involve

evaluating the simulation’s ability to precisely reproduce the expected geometric evolution.

The third is a columnar hexagonal grain configuration that migrates along semi-infinite

grain boundaries to allow a study of the steady state evolution of a QP [63, 66]. Perhaps

the reason this case appears less often in the literature is that an analytical solution for

the boundary profile is not known; instead, the angles between grain boundary traces on

two cross-sections are evaluated for convergence and used to compare the two simulation

methods. The grain boundary geometries for the three test cases are described in their

respective sections, have Neumann boundary conditions, and are constructed to make the

grain boundary curvatures comparable.

It is expected that the accuracy of both the discrete and diffuse interface models will

increase with decreasing internal length scale `, denoted as ` = `e for the discrete model

and ` = `GB for the diffuse. However, the accuracy should not depend on any absolute

length scale, since then the accuracy could be improved simply by uniformly scaling the

grain structure. The accuracy therefore depends on ` relative to a second length scale

that is characteristic of the evolving interface. Since the accuracy should be invariant

to the isometries of Euclidean space, the inverse of the interface’s mean curvature is

the natural candidate for the second length scale, and the accuracy of both models is

expected to depend on the dimensionless product of ` and interface’s mean curvature.

More precisely, all of the errors reported in this section are expected to be power laws in `,

with the prefactor depending on the mean curvature and implementation details in a way

that is difficult to parameterize (only the spherical grain has the same mean curvature

everywhere). For this reason, only the exponent of ` is generally reported in the following.

Many of the quantities reported below are nondimensionalized following the procedure
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(a) (b)

Figure 4.2. Initial geometries of the shrinking spherical grain within another grain for
the (a) discrete and (b) diffuse interface methods.

in 7.3.1 to facilitate the comparison of the discrete interface and multiphase field methods.

A tilde indicates a nondimensionalized variable (with the exception of `e and `GB which

are always nondimensionalized) and an analytical prediction is denoted by the subscript t,

e.g., r̃t(t̃) is the analytical prediction for the nondimensionalized radius of the sphere as a

function of nondimensionalized time. The equations of motion of the discrete interface

method were integrated using a second order Runge–Kutta scheme with a maximum time

step of 1.25× 10−5.

4.2.1 Spherical grain

The spherical grain case is intended to reveal the error when modeling surface motion in

the absence of confounding effects from other grain boundary network components. One

advantage of this particular choice is that, provided the grain boundary properties are

constant and isotropic, the evolution of a spherical grain is known analytically. As derived

in 7.3.2, the sphere shrinks uniformly with radius

rt(t) =
√
r2

0 − 4µγt (4.10)

as a function of time. Nondimensionalizing this equation reveals that a sphere starting

with a radius of r̃t(t̃) = 1 vanishes at t̃ = 0.25.

The actual simulations deviate from Eq. (4.10) both because the initial geometries

shown in Fig. 4.2 are not precisely spheres and because the Turnbull equation in Eq. (4.1) is

not precisely followed, though these sources of error are reduced as the ` are made smaller.
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Figure 4.3. Comparison of shrinking spherical grain results for the discrete model
(left) and the diffuse model (right); all quantities are nondimensionalized. (Top row)
Plot of radius vs time, with color indicating the length scale and the exact solution in
black. (Middle row) Plot of relative error in the radius vs time, with color indicating
the length scale. (Bottom row) Plot of half-life error magnitude as a function of length
scale.

Since the diffuse interface model does not perform well when the radius of the sphere

approaches the grain boundary width, the magnitude of the error for the shrinking grain

is quantified by the deviation of the sphere half-life thalf from the analytical prediction

thalf,t =
3r2

0

16µγ
. (4.11)

When nondimensionalized, the right hand side reduces to t̃half,t = 3/16.

Figure 4.3 shows the performance of the two models, with the discrete interface model

on the left and the diffuse interface model on the right. The top row shows the radius

of the sphere as a function of time, where the color indicates the internal length scale

and the exact solution is in black. The roughness of the curves for the discrete interface
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model is due to remeshing to preserve the element quality, and the velocity in the diffuse

interface model falls as the radius approaches the grain boundary width. The magnitude

of the relative error in the radius as a function of time is shown in the middle row. The

error for the discrete interface model is caused by the magnitudes of the surface vertex

velocities being larger than predicted by the analytical solution, perhaps as a consequence

of the equations of motion being explicit and uncoupled. That the accumulation of error

accelerates with decreasing radius supports the hypothesis that the error generally depends

on the product of `e and the mean curvature. Meanwhile, there are likely two sources

of error that contribute to the results for the diffuse interface model. The error at early

times is a postprocessing artifact that occurs when constructing isocontours to identify the

location of the grain boundary, effectively resulting in an offset to the sphere radius. The

other source of error relates to the order parameter gradient at a grain boundary patch

being affected by the presence of nearby patches. This is most visible when the grain

is about to collapse and grain boundary patches on opposite sides of the grain interact,

reducing the gradient magnitude and the grain boundary velocity. Conversely, the mean

curvature of the surface causes neighboring grain boundary patches to interact, increasing

the gradient magnitude and the grain boundary velocity at earlier times. As with the

discrete interface model, the magnitude of this effect at earlier times is proportional to the

product of `GB and the mean curvature.

The bottom row of Fig. 4.3 shows the half-life error |t̃half − t̃half,t| as a function of the

internal length scale. A conjugate gradient minimization algorithm and bootstrapping

were used to fit |t̃half − t̃half,t| to a power law in the internal length scale `. This gives

an exponent of 1.37 ± 0.21 for the discrete interface model and 0.678 ± 0.085 for the

diffuse interface model, where the values are the medians and the uncertainties are half

the interquartile range. While the exponents could suggest that the error of the diffuse

interface model decays slower than that of the discrete interface model with decreasing

internal length scale, the errors in the apparent grain radius due to isocontour construction

during postprocessing do not actually affect the microstructure trajectory. This could

motivate using the two-grain configuration with self-similar evolution analyzed by Mullins
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(a) (b)

Figure 4.4. Initial geometries of the TJs for the (a) discrete and (b) diffuse interface
methods. The structures have mirror boundary conditions in the lateral directions.

[50] in the future since such postprocessing errors would likely not affect the long-time

behavior.

4.2.2 Triple junction

The purpose of the TJ case is to include a TJ in the moving boundary while keeping the

grain configuration as simple as possible, ideally allowing the error of the equations of

motion for the TJ to be identified by comparing the results to those for the spherical grain.

The initial geometries of the grain configuration are shown in Fig. 4.4, are constant in the

out-of-plane direction, and have mirror boundary conditions in the lateral directions. The

rate of volume change of the top grain can be derived by applying the von Neumann-Mullins

equation [49, 50] to the two-dimensional grain configuration in a plane perpendicular to the

TJ. Since there is one triple point per simulation cell in this plane, the rate of cross-sectional

area change of the top grain per simulation cell width L is πmγ/3, and the rate of volume

change of the top grain can be found by multiplying by the TJ length. Mullins actually

went further and solved for the steady-state profile of the moving boundary assuming

constant and isotropic grain boundary properties [50]. If x is distance from the left edge

of the simulation cell and y is height from the top of the red grain, then the steady-state

profile of the grain boundary between the red and blue grains is

y(x) = − ln[cos(πx)]/π. (4.12)

The width of the simulation cell is defined by the above equation as L = 1/3 which can be

scaled to match the dimensions of the simulation cell.
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The dihedral angle θTJ between the two boundaries of the blue grain is perhaps the

simplest way to evaluate the accuracy of the geometry of the moving boundary in the

vicinity of the TJ. A force balance argument for constant and isotropic grain boundary

properties (and the absence of any TJ drag) leads to the condition θTJ,t = 2π/3. This is

roughly enforced in the initial conditions by defining the two parts of the moving boundary

to be the appropriate sections of of cylinders; while this is not the steady-state profile

given by Mullins, it is sufficiently close for a short initial transient and rapid convergence

to the steady-state condition as is visible in Fig. 4.5.

As before, results for the discrete interface model are on the left and those for the

diffuse interface model are on the right. The top row shows θTJ as a function of time, where

the color indicates the internal length scale and the exact solution 2π/3 is in black. The

roughness of the curves for the discrete interface model is due to the remeshing required

to maintain element quality, and the periodic spikes that appear for the diffuse interface

model are due to the interaction of the adaptive mesh refinement and the construction

of the isocontours. The error in θTJ (measured as the median of the second half of the

time series) is shown in the bottom row, with the dependence of the steady-state angle

on `e for the discrete interface model being a consequence of the linear elements forcing

the grain boundary curvature to be concentrated at the vertices and edges of the mesh.

Specifically, the grain boundary curvature that is distributed to the TJ edges causes the

deviation of θTJ from the expected value, with the magnitude of the deviation depending

on the product of `e and the mean curvature of the adjoining grain boundary. Identifying

the precise location of the TJ and the value of θTJ is more difficult for the diffuse interface

model since the grain boundary geometry is implicit. The procedure followed here involves

fitting third- and fourth-order polynomial approximations to each side of the isocontour

where the order parameter for the top grain is 0.5. The triple point location in the plane

is then defined to be the point of intersection of the polynomials, and θTJ is the angle

between the tangent vectors at the point of intersection. This process works well in the

sharp interface limit, but is very sensitive to perturbations in the solution for larger `GB

since there is substantially more error in the predicted location of the TJ with respect
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Figure 4.5. Comparison of θTJ for discrete model (left) and diffuse model (right); all
quantities are nondimensionalized. (Top row) Plot of θTJ vs time, with color indicating
the length scale and the exact solution in black. (Bottom row) Plot of the relative error
vs length scale.

to the simulation size. The occasional deviations that are observed in the steady-state

correspond to BSAMR re-gridding events.

Fitting a power law in the internal length scale ` to |θTJ − θTJ,t|/π gives an exponent of

0.91± 0.20 for the discrete interface model and 1.45± 0.13 for the diffuse interface model,

where the values are the medians and the uncertainties are half the interquartile range.

The additive offset of −0.005± 0.011 for the discrete interface model is entirely consistent

with θTJ converging to the equilibrium angle in the `e → 0 limit, though at a lower rate

than the half-life error magnitude in Fig. 4.3. This is not unexpected though, since the TJ

can be thought of as a jump condition in the tangent plane to the grain boundary that is

both difficult to accurately reproduce with a finite element mesh and is not present in the

spherical grain case. While the exponent for the diffuse case is nominally higher, this is

not reflective of the trend observed for small `GB where the saturation in the error is likely

the result of inaccuracy in the postprocess calculation of the angle. The higher exponent

therefore does not necessarily indicate better convergence.
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4.2.3 Quadruple point

As with the TJ case, the grain structure for the QP case consists of a top grain above

several columnar grains. The grain boundaries of the top grain migrate down the simulation

cell, consuming the columnar grains and eventually reaching a steady-state profile, though

an analytical solution for this profile is not known. The configurations of columnar grains

for the discrete and diffuse interface models are shown in Figs. 4.6a and 4.6b respectively,

with the hexagonal cross-sections of the columnar grains clearest for the discrete interface

model; the BSAMR mesh makes simulations of rectilinear domains like the one in the

figure strongly preferable for the diffuse interface model.

Following the initial transient, the steady-state profile is examined on the two planes

indicated in Fig. 4.6c, one along a minor diameter of the central grain and bisecting a TJ,

the other along a major diameter of the central hexagonal grain and containing a QP. The

angles along these profiles at the intersections with the TJ and the QP are reported in

Fig. 4.7 and Fig. 4.8. While the equilibrium angle at the TJ should be 2π/3 (the same

as for the TJ in Section 4.2.2), the curvature of the grain boundaries in both principal

directions could change the rate of convergence to 2π/3 with decreasing ` compared to

the TJ case. As for the equilibrium angle at the QP, an infinitesimal neighborhood of the

QP will contain triple junction lines in a tetrahedral configuration connected by flat grain

boundary surfaces provided the principal curvatures of the grain boundaries are finite.

This allows the equilibrium angle of cos−1(−1/
√

3) ≈ 0.696π at the QP along the major

diameter to found by geometrical considerations.

Starting with the TJ angle, observe that the data points for the TJ angle error along

the minor axis in the bottom row of Fig. 4.7 closely resemble those for the TJ angle error

in the bottom row of Fig. 4.5. This indicates that the nonzero second principal curvature

of the grain boundaries along the TJ lines in the QP case does not have a significant

effect on the error in the equations of motion, and is consistent with the expectation that

the error should scale with the mean curvature (the sum of the principal curvatures).

Fitting a power law in the internal length scale ` to |θTJ − θTJ,t|/π gives an exponent

of 0.927± 0.223 for the discrete interface model and 0.85± 0.50 for the diffuse interface
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Figure 4.6. QP mesh configurations and schematic. (a) Hexagonal columnar grain
mesh for the discrete interface model. (b) Hexagonal columnar grain BSAMR mesh in
a rectilinear domain for the diffuse interface model. (c) Locations of QP and TJ along
major and minor lines.
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Figure 4.7. Comparison of minor axis results for the QP case for the discrete model
(left) and diffuse model (right); all quantities are nondimensionalized. (Top row) Plot
of the measured TJ (minor diameter) angle, with color indicating the length scale and
the exact solution in black. (Bottom row) Plot of the relative error in the TJ angle
with respect to length scale.

model, with both models converging to the expected value. While the exponent for the

discrete interface model is nearly identical to that for the TJ case, the lower exponent for

the diffuse interface model is likely a consequence of a power law fitting the data relatively

poorly; observe that the TJ angle error for the diffuse interface model does not fall on a

line on a log-log plot, and instead seems to saturate at a lower bound set by the angle

estimation procedure in postprocessing.
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Figure 4.8. Comparison of major axis results for the QP case for the discrete model
(left) and diffuse model (right); all quantities are nondimensionalized. (Top row) Plot
of the measured QP (major diameter) angle, with color indicating the length scale and
the exact solution in black. (Bottom row) Plot of the relative error in the QP angle
with respect to length scale.

For the QP angle, the final values for the discrete interface model follow a power law

in ` that converges to an angle of (0.694 ± 0.001)π with an exponent of 0.958 ± 0.026,

whereas the respective values for the diffuse interface model are (0.707 ± 0.011)π and

0.85± 0.45; the limiting values for both the discrete and diffuse interface models effectively

coincide with the exact value. It is significant that the errors for all of the discrete interface

results in Secs. 4.2.2 and 4.2.3 decay with exponents that are close to one. The discrete

interface method uses linear elements that approximate the grain boundary geometry with

first-order accuracy, meaning that an exponent of one is the best possible result. It is

likely that higher-order elements would need to be used to substantially increase the rate

of error decay with `e. The irregularity in the exponents for the diffuse interface model in

Secs. 4.2.2 and 4.2.3 is attributed to the error in the polynomial algorithm used to extract

the grain boundary profile. Examination of Figs. 4.5 and 4.7 indicates that this functions

as a source of random error that is larger for highly diffuse boundaries but vanishes in the

sharp boundary limit.
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Figure 4.9. The scaling of the normalized runtime and the normalized number of grain
boundary vertex calculations for the spherical grain case as a function of `e.

4.3 Performance

When selecting a numerical method in practice, computational cost is often nearly as

much a concern as the accuracy of the simulated behavior. This section specifically

considers the dependence of the discrete interface method’s computational cost on the

internal length scale `e. Suppose that the main contribution to the computational cost is

evaluating the equations of motion for the grain boundary vertices. The number of such

vertices is expected to depend on the internal length scale as `−2
e . If the velocity of the

vertices is independent of `e, then the time step length should decrease as `e to keep the

vertex displacement shorter than the characteristic edge length and prevent mesh element

inversion. This would imply that the overall computational cost should scale with `−3
e , or

as the product of the number of grain boundary mesh vertices and the number of time

steps for a given overall simulation time.

Figure 4.9 shows the scaling of the normalized runtime cost and normalized number

of grain boundary vertex calculations ncalc =
∑

j nvb,j, where nvb,j is the number of grain

boundary vertices at time step j, for the discrete interface method. These scale as `−4.088
e

and `−4.081
e , respectively, for small `e where the computational cost of the vertex calculations

is expected to dominate. This confirms that the overhead of the discrete interface method
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(mesh management, enumeration of topological transitions, etc.) is relatively small

compared to the evaluation of the equations of motion, but is not consistent with the `−3
e

scaling expected in the previous paragraph. This discrepancy is a result of the length of

the median time step scaling as `1.916
e instead of linearly; the underlying cause for this time

step scaling is investigated further in 7.3.

4.4 Conclusion

The purpose of this work has been to establish the validity and performance of a recently-

developed discrete interface method by comparison to analytic solutions and a well-

established multiphase field method used to model grain boundary motion. More specif-

ically, the evolution of the simplest configurations involving surfaces, triple lines, and

quadruple points with self-similar behavior given constant and isotropic grain boundary

properties are used to quantify the error in position and junction angles as a function

of the degree of refinement. The boundary types are simple enough to be amenable to

analysis, yet complex enough to introduce different systematic errors over the course of

their evolution. Despite the approaches for simulating boundary motion being distinctly

different, our results indicate that both of the discrete and diffuse interface methods

converge to the same junction angles with similar rates. The most significant difference

is that when predicting the half life of the shrinking sphere, the convergence rate of the

diffuse interface method appears to be about half of that of the discrete interface method.

Although this work assumes constant and isotropic grain boundary properties, both

methods were developed with the intention of performing simulations for anisotropic

grain boundary properties. There are reasons to believe that the necessary data could be

available in the future. Morawiec [6] suggested that the grain boundary energy could be

experimentally obtained as a function of the grain boundary crystallography by applying

the Herring condition [67, 68] to triple junctions imaged by three-dimensional microscopy

techniques [3, 4]. Alternatively, molecular dynamics simulations allow direct evaluation of

grain boundary properties in bicrystals [69]. While the excessive number of points required

to adequately sample the five-dimensional grain boundary space of has precluded the
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availability of general grain boundary energy and mobility functions in the literature, there

has been progress for particular subsets of grain boundaries [9, 10]. The absence of general

grain boundary energy and mobility functions has practically limited existing simulations

of grain boundary motion to the canonical system for which the grain boundary properties

are assumed to be independent of grain boundary crystallography.

The performance of the discrete interface model lends confidence in its ability to yield

accurate results for more general and complex microstructures for which there is no known

analytic solution. Moreover, the performance with unoptimized code indicates reasonable

scaling behavior that is close to the ideal scaling and comparable to that of alternative

methods.
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Chapter 5

Constant of motion1

The grain structure of polycrystalline materials is deceptively simple, and for that reason

has been the subject of intense and ongoing study. For specificity, consider a model

system where the grain boundary energy and mobility are constants, i.e., do not depend

on grain misorientation or the boundary plane normal. The phenomenological Turnbull

equation [71] relates the normal velocity of a grain boundary in such a system to the driving

pressure, and along with the Young–Laplace equation [72] suggests that the normal velocity

is directly proportional to the mean curvature of the grain boundary. The migration of

individual boundaries induces the evolution of the grain structure, a process known as

grain growth, where the total area of grain boundaries and the number of grains decrease

with time.

There are surprisingly few rigorous results known about grain structures, even for the

two-dimensional version of this system. Energy considerations require that grain boundaries

only meet at triple junctions with internal angles of 2π/3 [73, 74]. A consequence of this

and curvature-driven grain growth is that a grain’s area changes at a rate that depends

only on the number of bounding vertices [49, 50]. Globally, topological arguments require

that the average number of such bounding vertices be precisely six [75]. There are natural

analogues to several, but not all, of these results in three dimensions. Grain boundaries

only meet at triple junction lines with dihedral angles of 2π/3, and triple junction lines

only meet at quadruple junction points with angles of cos−1(−1/3) [73, 74]. The rate of

1The content of this chapter has been previously published in Ref. [70].
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volume change of a grain depends not only on the total length of the bounding triple

lines, but on a measure of the linear dimension known as the mean width [37, 76]. For

both the two- and three-dimensional systems, the hypothesis that the structure reaches a

statistically self-similar state implies that that the average grain diameter increases as the

square-root of time [77, 78]. This is the effective extent of current knowledge.

There have been a variety of inexact relationships proposed as well, usually for grain

structures in the conjectured self-similar state [79]. Ones that relate to the global properties

of the three-dimensional system include proposed distributions for the effective radius of a

grain [80–82] and the number of faces bounding a grain [82]. Recent advances in several

microscopy techniques promise to make three-dimensional grain structure data more readily

available, possibly allowing such relationships to be further refined. Three-dimensional

electron backscatter diffraction [83, 84] destructively images the grain structure by a

serial sectioning process, whereas three-dimensional X-ray diffraction microscopy [4, 85]

is non-destructive but generally offers poorer spatial resolution. Given this situation,

additional rigorous results for the global properties of the grain structure of the model

three-dimensional system would be valuable, both to measure deviations of the experimental

systems from the model one, and to verify the accuracy of grain structures generated by

computational means. This article proves one such result, relating the integral of the

Gaussian curvature over the grain boundaries to the numbers of grains and quadruple

junction points, and thereby to the numbers of grain boundaries and triple junction lines.

Let Ω be a space-filling grain structure composed of grains that meet in twos on grain

boundaries, grain boundaries that meet in threes at triple junction lines, and triple junction

lines that meet in fours at quadruple junction points, as in Fig. 5.1. Further suppose that

Ω satisfies Plateau’s laws (i.e., grain boundaries meet at dihedral angles of 2π/3 and triple

junction lines meet at angles of cos−1(−1/3)), and that Ω is defined in a three-dimensional

region with periodic boundary conditions. If G is a grain in Ω, then our main result is

that the expectation value of the Gaussian curvature K integrated over the interiors of

the grain boundaries of G and the expectation value of the number of quadruple junction
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points f0(G) of G are related by:〈∫
∂G

K dA

〉
= 4π − α〈f0(G)〉. (5.1)

The angle brackets indicate an average performed over all grains in Ω, ∂G indicates the

interiors of the grain boundaries of G, and α = 2π − 3 cos−1(−1/3) is the angular defect

at a quadruple junction point. This result is exact (given a few technical assumptions that

are usually satisfied and are discussed in Sec. 7.4 of the appendix, and to our knowledge

does not appear in the literature; a related result by Kusner [86] requires that all the grain

boundaries be minimal surfaces, and one by Glicksman [87] applies only to unconstructable

grain structures of average n-polyhedra.

The Gaussian curvature of a surface is defined as the product of the principal curvatures

at any point. The appearance of this quantity in Eq. 5.1 could be surprising, since the

mean curvature (the sum of the principal curvatures) is the one that controls the dynamics

of the grain boundary network [53, 72]. That said, the Gaussian curvature is in some ways

the more fundamental of the two quantities, being an intrinsic property of the surface that

does not depend on the way the surface is embedded in Euclidean space. For example, the

Figure 5.1. A grain structure in a cubic volume, with several grains removed to reveal
the interior. Color indicates the individual grains, internal curved surfaces are grain
boundaries, internal black lines are triple junction lines, and four triple junction lines
intersect at quadruple junction points.
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Figure 5.2. Grain boundaries Fi and Fj meet at the triple junction line in bold, and v
bisects the dihedral angle between Fi and Fj . Arrows indicate the tangent direction,
and the second Frenet vector e2 points along the triple junction line’s normal direction.

Gaussian curvature of a sheet of paper is zero at every point whether the sheet is laid flat

or rolled up, though the same is not true for the mean curvature. This invariance to the

embedding is reflected in the celebrated Gauss–Bonnet theorem:∫
∂G

K dA+

f2(G)∑
i=1

∫
∂Fi

κg ds+

f0(G)∑
i=1

αi = 2πχ(∂G).

While this version specifically applies to the surface of a grain, all versions relate the

integrated Gaussian curvature of a surface to its Euler characteristic χ(∂G) (equal to

two when the surface can be smoothly deformed into a sphere without cutting or gluing).

The terms on the left include the integrated Gaussian curvature over the grain boundary

interiors, the sum of the integrated geodesic curvature κg over the interiors of the bounding

triple junction lines ∂Fi of all grain boundaries Fi, and the sum of the angular defects αi

of the quadruple junction points of G.

If G can be smoothly deformed into a sphere and belongs to a grain structure Ω that

obeys Plateau’s rules, then this can be simplified to:∫
∂G

K dA+

f1(G)∑
i=1

∫
Ei

κe2 · v ds+ αf0(G) = 4π

where the most significant change is to the middle term on the left; this is now the sum

of the integrated curvature of the triple junction lines of G, weighted by the dot product

of the second Frenet vector e2 of the curve and a unit vector v that bisects the dihedral

56



angle between the adjoining grain boundaries; see Fig. 5.2. Summing this equation over all

grains in Ω results in a remarkable cancellation (previously noted by DeHoff [88]) where the

contribution of the second term on the left vanishes. Specifically, every triple junction line

is integrated over three times, once for each adjoining grain. κe2 is an inherent quantity of

the triple junction line that is the same for all three integrals, but the three v are all unit

vectors in a plane with mutual angles of 2π/3. That is, the sum of the three v vanishes

identically for each triple junction line, leaving an alternative version of the main result:

f2(Ω)∑
i=1

∫
Fi

K dA = 2πf3(Ω)− 2αf0(Ω) (5.2)

where Fi is the ith grain boundary of Ω and f0(Ω), f2(Ω) and f3(Ω) are the numbers of

quadruple junction points, grain boundaries, and grains of Ω. Dividing through by f3(Ω)

and multiplying by a constant gives Eq. 5.1. More detailed derivations of both Eqs. 5.1

and 5.2 are provided in Sec. 7.4 of the appendix.

Although Eq. 5.1 appears to be simpler, there are at least two observations that are

more clearly made by means of Eq. 5.2. The first is that the integral of K over the grain

boundaries of Ω depends only on the numbers of grains and quadruple junction points of

Ω, and not on the geometry of the grain structure. That is, the left-hand side of Eq. 5.2

is invariant to any deformation of Ω that preserves the numbers of grains and quadruple

junction points. The second is that a sufficiently accurate measurement of the integral of

K over the grain boundaries of Ω in principle specifies the numbers of all components of

Ω. Observe that since there is no rational number that relates the coefficients of f3(Ω)

and f0(Ω) in Eq. 5.2, the numbers of grains and quadruple junctions can be inferred if

the left-hand side is known sufficiently accurately. The number of triple junction lines

can then be found from 2f1(Ω) = 4f0(Ω) by a counting argument, and the number of

grains from 0 = f0(Ω)− f1(Ω) + f2(Ω)− f3(Ω) which follows from the domain of Ω being

a three-torus with χ(Ω) = 0. The necessary modifications to Eqs. 5.1 and 5.2 for grain

structures in other domains (e.g., ones with free boundaries) are discussed in Sec. 7.4 of

the appendix.

As numerical confirmation of Eq. 5.1, consider a grain structure consisting of periodic
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Figure 5.3. An infinite periodic grain structure that satisfies Plateau’s laws can be
constructed by repeating a relaxed truncated octahedron (left). This grain was found
by starting with a periodic unit of a grain structure consisting of unrelaxed truncated
octahedra, fixing the location of the interior quadruple junction points, and minimizing
the grain boundary area (right).

truncated octahedra, relaxed under the action of surface tension to satisfy Plateau’s laws;

one such grain is shown on the left of Fig. 5.3. The shape of this grain was found by starting

with a grain structure consisting of unrelaxed truncated octahedra and constructing the

periodic unit shown on the right of Fig. 5.3, with a single grain at the center and corners at

the centers of the neighboring grains. The periodic unit was computationally represented

by a volumetric finite element mesh with linear elements, with the average number of

triangles per hexagonal face nt depending on a characteristic length and the details of the

mesh adaptation algorithm. The locations of the interior quadruple junction points were

fixed, and the structure was relaxed by allowing the vertices on grain surfaces to move

according to equations of motion known to reproduce curvature-driven grain growth [44]

until the magnitude of the vertex forces fell below a threshold. The grain structure did not

reach a steady-state configuration when the locations of the interior quadruple junction

points were not fixed, owing to a known instability of this grain structure to volumetric

perturbations [89]. While quadratic elements would allow the steady-state geometry to be

more accurately represented, a convergence analysis with an increasing number of linear

elements is sufficient for the present purpose.

The simulations were performed with a modified version of a recently-developed

microstructure evolution code [1] that usually uses SCOREC [54] for mesh management

and maintenance, but the mesh adaptation operations were found to interfere with the

58



Table 5.1. The percent grain boundary area change of the relaxed truncated octahedron
relative to the unrelaxed one and the integrated Gaussian curvature of the relaxed
truncated octahedron as functions of nt.

nt 61 129 477 665 1885 2610

∆A(%) 0.0863 0.129 0.135 0.136 0.136 0.137∫
K dA -0.219 -0.349 -0.461 -0.477 -0.544 -0.554

nt 3250 4314 5322 6532 7649 8906

∆A(%) 0.136 0.136 0.136 0.136 0.136 0.136∫
K dA -0.563 -0.568 -0.578 -0.588 -0.593 -0.597

convergence of the grain geometry. Instead, artificial vertex forces defined by Kuprat [33]

were used to maintain the mesh element quality during the structure relaxation. Since

the artificial forces only acted on vertices on the grain interiors, it is expected that they

did not substantially affect the grain geometry. The boundary conditions were defined

to make the simulation cell behave as a periodic unit in a grain structure consisting of

periodic truncated octahedra. Whereas the grain boundaries on the simulation cell interior

had a constant nonzero energy per unit area, the external surfaces of the simulation

cell were assigned zero energy per unit area; this is consistent with viewing them as the

result of intersecting grains in the underlying grain structure with the boundary of the

periodic unit. Vertices on the external surfaces were constrained to remain on the external

surfaces during relaxation by projecting away any displacement in the normal direction,

effectively imposing a Neumann boundary condition. The integrated Gaussian curvature

was calculated as the sum of the angular defects at the vertices on the grain boundary

interiors, where the angular defect is defined as 2π minus the sum of the interior angles of

the grain boundary triangles meeting at the vertex.

Table 5.1 shows the results of this analysis for increasing refinement of the mesh, i.e., as

a function of nt. The geometric accuracy of the representation can be evaluated by means

of the percent reduction in grain boundary area ∆A of the relaxed truncated octahedron
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Figure 5.4. The lines defined by Eq. 5.2 for the data in Table 5.1 in the feasible region
3 ≤ f3(Ω) ≤ 5 and 20 ≤ f0(Ω) ≤ 28. The lines are colored from red to blue with
decreasing error and the black line passing through (24, 4) corresponds to the exact
solution. The closest integer lattice point to the line is (24, 4) for nt ≥ 477.

relative to the unrelaxed one. A detailed analysis [90] suggests a value of 0.159% for the

continuous system; that ∆A does not converge to this value is likely due to the irregularity

of the mesh. As for the integrated Gaussian curvature, the average quantities in Eq. 5.1

are equivalent to those for a single grain by periodicity. This implies that the integral of

the Gaussian curvature over the interiors of the grain boundaries should be:∫
∂G

K dA = 4π − 24α ≈ −0.664484.

A conjugate gradient minimization algorithm and bootstrapping were used to fit the model∫
KdA = a+ bnct to the data in Table 5.1, giving a = −0.661± 0.022, b = 2.08± 0.51, and

c = −0.378±0.060 (reported as the medians and half the interquartile range). This implies

that the integrated Gaussian curvature would be −0.661± 0.022 in the nt →∞ limit, and

is interpreted as numerically confirming Eq. 5.1 given the degree of approximation of the

grain geometry. That the integrated Gaussian curvature converges to the expected value

even though the percent area reduction does not confirms the assertion that Eqs. 5.1 and

5.2 are invariant to geometric perturbations of the structure, provided the numbers of

grains and quadruple junction points remain the same and Plateau’s laws are satisfied.

Alternatively, one could consider the feasibility of inferring f3(Ω) and f0(Ω) by means

of a sufficiently accurate measurement of the integral of K over the grain boundaries of

Ω in Eq. 5.2. This can be done by a graphical construction in the plane with f3(Ω) and

f0(Ω) on the vertical and horizontal axes. Given the integral of the Gaussian curvature

over the grain boundaries of Ω, Eq. 5.2 defines a line in this plane with an irrational slope.
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Since the actual values of f3(Ω) and f0(Ω) are necessarily positive integers, this line passes

through exactly one point on the integer lattice in the positive quadrant. In practice, any

error in the measurement of the integrated Gaussian curvature would change the intercept

with the vertical axis and shift the line off of the lattice point; whether this is an issue or

not depends on the magnitude of the error and any a priori bounds that can be placed on

f3(Ω) and f0(Ω). For example, Fig. 5.4 shows this construction for the data in Table 5.1

with the constraints 3 ≤ f3(Ω) ≤ 5 and 20 ≤ f0(Ω) ≤ 28. Since the magnitude of the error

is assumed to be unknown, it is reasonable to suppose that the correct values of f3(Ω) and

f0(Ω) correspond to the integer lattice point closest to the line within the feasible region.

This procedure correctly identifies the relevant integer lattice point as (24, 4) for nt ≥ 477;

in general, the effect of integrated Gaussian curvature error is reduced as the area of the

feasible region decreases.

Apart from advancing our fundamental understanding of grain structures, there remains

the question of the practical utility of Eqs. 5.1 and 5.2 (and the analogues in Sec. 7.4 of

the appendix). This question is made more pressing by there being few materials that

actually evolve by the relevant ideal grain growth process; the grain boundary energy and

mobility do generally depend on the grain misorientation and boundary plane normal,

but in a way that is not precisely known even for simple model systems. The only way

to conceivably measure grain boundary mobility is by a time series of three-dimensional

microstructures, visualized using a non-destructive technique. While such techniques exist

[4, 85], fitting to such data has not yet yielded single-valued mobilities [91], perhaps due

to insufficient experimental resolution or confounding variables. As for grain boundary

energies, despite the seminal work of Morawiec [6] indicating how the grain boundary

energies could in principle be extracted from a three-dimensional microstructure, the grain

boundary energies for, e.g., simple metals are not yet widely available in the literature.

Finally, simulations of grain boundary properties [69, 92–94] out of necessity only consider

a small subset of possible grain boundary characters, and cannot be validated in the

absence of reliable experimental data.

Given this situation, the authors propose two possible applications of this chapter’s
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results based on the differences of the left and right sides of Eqs. 5.1 and 5.2:

e1 =

〈∫
∂G

K dA

〉
− 4π + α〈f0(G)〉

e2 =

f2(Ω)∑
i=1

∫
Fi

K dA− 2πf3(Ω) + 2αf0(Ω)

First, e1 and e2 could be used as rough measures of the deviation of a physical system

from an ideal one (along with other quantities like the grain growth exponent and the

grain size distribution), thereby contributing to the ongoing investigation of how severe is

the assumption of ideal grain growth in practice. Second, there is widespread interest in

generating microstructures (for use in, e.g., integrated computational materials engineering)

by means of physics-based simulations of microstructure evolution. Faced with the absence

of reliable grain boundary data, such simulations generally assume that grain boundary

properties are constants, making this chapter’s results relevant to the vast majority of

contemporary microstructure evolution codes. In this context, e1 and e2 could be used to

evaluate the accuracy of the geometric representation of a grain structure; the derivation

above suggests that these quantities should be particularly sensitive to the geometry

around triple junction lines and quadruple junction points. Since the angle conditions

around triple junction lines are directly implicated in the rates of area and volume change

of two-dimensional [49, 50] and three-dimensional [37, 76] grains, any deviations from Eqs.

5.1 and 5.2 could function as bounds on the maximum achievable accuracy of simulations

of mean-curvature driven grain growth.
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Chapter 6

Future work

As stated in Ch. 1, predictive modeling of thermomechanical deformation is an important

part of the intetgrated computational materials engineering (ICME) vision. A natural

extension of this dissertation project would be to include deformation physics (i.e., crystal

plasticity) to investigate thermomechanical processes at the microstructural level and

explore fabrication routes for advanced materials. Alternatively, interfacing with existing

open source crystal plasticity libraries could enable such simulations without extensive

library development.

ExaConstit developed by Lawrence Livermore National Laboratory is an open source

crystal plasticity finite element (CPFE) library written in C++ which makes it an ideal

candidate for integration [95], only requiring interfacing with the data representations

at virtually no computational overhead. More importantly, the deformation and grain

growth mechanisms will interact with each other in a single framework, making it easier to

seamlessly integrate the numerical models. DAMASK developed by Max Planck Institute

fr Eisenforschung is another candidate for integration [96]. However, since it is written

in Fortran, it would most likely require the transfer of information between the two

programs. Finally, FEpX is an open source finite element library for modeling elastoplastic

deformation of polycrystalline solids written in Fortran [97]. If integration with any of

these options proves problematic, a package could alternatively be implemented within

VDlib. In terms of capabilities, ExaConstit currently only supports Dirichlet boundary

conditions, so only function values (e.g., position) can be specified at the boundaries.
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DAMASK supports grid-based FEM with mixed boundary conditions, but this would

require mesh conversion and would likely employ a file-based interface which is expected to

be less efficient; support for unstructured meshes is currently a development goal. FEpX

supports unstructured meshes and both strain and load boundary conditions, but the

possibility of integration has not been as extensively explored as the other options.

Adding crystal plasticity would enable simulations of microstructure evolution during

thermomechanical processing. To our knowledge, a three dimensional, purely FEM code

with support for deformation and anisotropic grain boundary properties (GBP) does not

exist in the literature. Adding grain nucleation mechanisms would allow simulations of

both static and dynamic recrystallization within a purely finite element framework. The

platform could then be further extended to study additional physics and processing routes.

For example, understanding mechanical twinning during high-strain rate deformation,

developing models of damage accumulation and fracture initiation to be used in continuum

codes, and searching the space of additive manufacturing processing parameters to reduce

residual porosity are all high impact research directions for advanced materials All of these

require microstructural information and are naturally studied at the microscale, i.e., at

the length scales considered here.

Specific proposed studies include, listed roughly in order of difficulty, the following:

1. Implementing a strain gradient crystal plasticity model would allow better prediction

of the local deformation response and more accurate investigation of thermomecham-

ical processing and high temperature failure mechanisms.

2. An explicit model for deformation twinning [98] would allow comparison of simulations

of microstructural twinning with in situ DIC measurements [99].

3. Twin boundaries are low energy boundaries and can thereby help to stabilize the

microstructure to grain growth [100]. Realistic anisotropic grain boundary energy

(GBE) functions obtained by three dimensional microscopy could be used to test the

feasibility of a grain boundary engineering application on digital or experimentally

obtained microstructures.

4. Hot isostatic pressure (HIP) is a post process that aims to reduce porosity of additively
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manufactured materials by applying high pressures and elevated temperatures for

long time periods. The relevant processes take place at the microstructure level, and

accurate simulation of HIP to predict the ideal processing conditions essentially would

require models working at the microstructure level [101] that include anisotropic

GBE, are capable of representing multiple phases and phase separation, and could

handle finite deformations.
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Chapter 7

Appendix

7.1 Summary

Section 7.2 is the appendix to Ch. 3 and describes the fundamental operations on the

topology and mesh that are involved in our approach. Sections 7.2.2 - 7.2.5 describe

the algorithms related specifically to the topological transitions. Section 7.2.6 describes

the relaxation procedure to prepare the mesh for a collapse and Sec. 7.2.7 describes the

generalization of the collapse algorithm described in Sec. 3.2.1. Section 7.2.8 describes

the local volume preservation procedure for simulating microstructures without periodic

boundary conditions. An six grain configuration is used to test the insertion detection

algorithms and the detected insertions are shown in Sec. 7.2.9. Section 7.2.10 gives an

example configuration that shows that spurious insertions can be physically necessary even

when grain boundary properties are constant and isotropic. Section 7.2.11 shows isolated

grains to highlight the differences between the initial Voronoi tesselation and grains from

an evolved microstructure. Finally, Sec. 7.2.12 discusses the scaling of the computational

resource usage as a function of number of grains.

Section 7.3 is the appendix to Ch. 4 which is about the benchmarking of grain growth

models. Section 7.3.1 describes the non-dimensionalization of the equations of motion and

Sec. 7.3.2 shows the derivation for the analytical solution for the shrinking sphere case.

Section 7.3.3 investigates the higher than expected scaling of the computational cost for

the discrete equations of motion, identifies the cause as the stability of the equations of
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motion, and describes the remedies explored as part of this study.

Section 7.4 is the appendix to Ch. 5 which describes the constant of motion. Section

7.4.1 shows the steps of the derivation for the constant of motion, while Sec. 7.4.2 extends

the derivation to the situation where the boundary conditions are not periodic.

7.2 Method

7.2.1 Notation

For brevity, let Sd be the set of d-dimensional strata and Sdi the ith d-stratum. |A| is

the number of elements in the set A, Ae(Sdi ) is the collection of Se adjacent to Sdi , and

Aej(S
d
i ) the jth Se adjacent to Sdi . Af,e(Sdi ) are the f -dimensional strata adjacent to the

e-dimensional adjacencies of Sdi . S̃di is a newly inserted stratum.

The adjacency graph of S2 and S3 in the neighborhood of a 0-stratum S0
i will be

used to enumerate the possible changes to the local microstructure. Let the adjacency

graph around S0
i be Gi, and have nodes corresponding to the set A2(S0

i ) ∪ A3(S0
i ) and

edges for each incidence of an S2 and S3. Similarly, G′i is the adjacency graph with nodes

corresponding to the set A1(S0
i ) ∪ A2(S0

i ) and edges for each incidence of an S1 and S2.

Paths and circuits on Gi will be used to find possible S2 and S1 insertions around S0
i ,

where a path is a sequence of non-repeating nodes connected by edges and a circuit is a

path that begins and ends at the same node.

Let Qi be the set of circuits on Gi and Qi
j be the jth such circuit. Removing the circuit

Qi
j from the graph leaves two disjoint graphs of nodes which will be denoted as H i;j

1 and

H i;j
2 . The H i;j

k could be disconnected over Gi, but the corresponding strata around S0
i can

always be connected through shared S1, as shown in Fig. 7.1. If one of the H i;j
k is empty,

that implies that the circuit Qi
j is associated with an existing S1 and should be discarded.

Let P i;j,k be the set of paths between S3
j and S3

k in the vicinity of S0
i , and P i;j,k

l be the

lth such path. Let ℘(P i;j,k) be the set of sets of paths between S3
j and S3

k , where every

set contains at least two paths and none of the paths in the same set intersect. If l is the

index for this set, then subgraph H i;j,k;l
m is the mth connected component remaining when

the lth set of paths with the end points S3
j and S3

k is subtracted from Gi.
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(a) (b) (c)

(d) (e)

Figure 7.1. A representation of how the circuit Qij divides nodes into disjoint graphs

H i;j
1 and H i;j

2 , which are connected over S1. (a) The initial microstructure consisting
of six grains. (b) Removal of the red dashed circuit Qij going through (T)op, (B)ack,

(L)eft, (F)ront and (R)ight grains leaves two disjoint graphs. H i;j
1 consists of the

S2 connecting the grains T-F and T-L. H i;j
2 consists of the b(O)ttom grain, the S2

bounding grain O in the neighborhood of S0
i , and the S2 connecting the grains R-B. (c)

At the microstructure level, it is easy to see how the components of H i;j
1 are connected

by S1s. (d) The final configuration after the insertion with the associated S1 colored
red. (e) G′i, where Qij is shown superposed and the dotted blue edges correspond to

S3 − S2 − S3 components of Qij . The nodes of the two subgraphs of G′i can be seen to
be connected by solid edges.

The mesh is composed of simplicial finite elements, including the 0-dimensional ver-

tices, 1-dimensional edges, 2-dimensional triangles and 3-dimensional tetrahedra. An

n-dimensional simplicial element belongs to the stratum of lowest dimension in which it is

contained, i.e., a vertex may belong to an S0, S1, S2, or S3, an edge may belong to an

S1, S2, or S3, etc. Similar to the notation for strata, we denote the ith member of the

set of d-dimensional simplicial entities as ∆d
i and use the adjacency operator Ae(·) in the

same way to obtain the set of adjacent mesh entities of dimension e. Additionally, the

stratum membership of a simplicial entity is indicated as ∆d
i ∈ Sej , or ∆d

i belongs to Sej .

The set of e-dimensional simplicial entities belonging to Sdi is obtained by the membership
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operator M e(Sdi ). S(∆d
i ) is the stratum that owns the simplicial entity ∆d

i . A sample

microstructure showing the simplicial entities outlined in red is provided in Fig. 2.1b.

7.2.2 Stratum collapse

Given a stratum Sdi to collapse and a final point Ŝ0, recursively collapse the bounding

lower dimensional strata and then remove Sdi . If Ŝ0 is not specified, it is always possible

to pick the first bounding S0 (otherwise there are no S0 remaining after collapse). Update

the adjacency lists of the surrounding strata.

Algorithm 1 Collapse (Sdi , Ŝ
0 := ∅)

Implement changes in the stratification when collapsing Sdi .

if d = 0 then

return

if Ŝ0 = ∅ then . Assign Ŝ0 if not specified.

if A0(Sdi ) 6= ∅ then

Ŝ0 := A0
1(Sdi )

if d = 1 then . Replace the merging S0 with Ŝ0.

for S1
j ∈ A1,0(S1

i ) do

for S0
k ∈ A0(S1

j ) do

if S0
k ∈ A0(S1

i ) then

A0
k(A

1,0
j (Sdi )) := Ŝ0

if |A0(S1
j )| = 2 and A0

1(S1
j ) = A0

2(S1
j ) = Ŝ0 then . If Ŝ0 is repeated remove one.

A0(S1
j ) := {Ŝ0}

else . Collapse the bounding strata.

for Sdj ∈ Ad−1(Sdi ) do

Collapse (Sdj , Ŝ
0)

if d < 3 then . Remove the collapsing strata.

for Sd+1
j ∈ Ad+1(Sdi ) do

Ad(Sd+1
j ) := Ad(Sd+1

j ) \ {Sdi }
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7.2.3 1-stratum insertion

Given a candidate S0
i and a circuit Qi

j on Gi insert the new stratum S̃1 corresponding to

Qi
j. Add the new strata S̃0 and S̃1 to the stratification and set the S0 adjacencies of S̃1

as {S0
i , S̃

0}. Update the adjacency lists of the surrounding strata.

Algorithm 2 S1 insertion (S0
i , Q

i
j).

Implement changes in the stratification when inserting S̃1 using Qi
j.

Create new strata S̃1, S̃0.

A0(S̃1) := {S0
i , S̃

0} . Adjacency of S̃1.

for S2
k ∈ Qi

j do . Add S̃1 to A1(S2
k), for S2 on Qi

j.

A1(S2
k) := A1(S2

k) ∪ {S̃1}

for S2
k ∈ H

i;j
2 do . Replace S0

i with S̃0.

for S1
l ∈ A1(S2

k) do

if S0
i ∈ A0(S1

l ) then

A0(S1
l ) := A0(S1

l ) ∪ {S̃0} \ {S0
i }

7.2.4 2-stratum insertion

Given a candidate S0
i and a set of paths ℘l(P

i;j,k) on Gi, insert the corresponding

new stratum S̃2. Add the new strata S̃2, S̃0
m for m = 1 : |℘l(P

i;j,k)| − 1, and S̃1
m for

m = 1 : |℘l(P
i;j,k)| to the stratification. Set the (d − 1)-dimensional adjacency lists of

the new strata S̃2 and S̃1
m for m = 1 : |℘l(P

i;j,k)|. Update the adjacency lists of the

surrounding strata.
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Algorithm 3 S2 insertion (℘l(P
i;j,k)).

Implement changes in the stratification when inserting a S̃2 using ℘l(P
i;j,k).

Create new stratum S̃2.

Create new strata S̃0
m for m := 1 : |℘l(P

i;j,k)| − 1. . In addition to S0
i .

Create new strata S̃1
m for m := 1 : |℘l(P

i;j,k)|.

A2(S3
j ) := A2(S3

j ) ∪ {S̃2} . Add S̃2 to A2(S3
j ).

A2(S3
k) := A2(S3

k) ∪ {S̃2} . Add S̃2 to A2(S3
k).

A1(S̃2) := {S̃1
1 , S̃

1
2 , . . . , S̃

1
m} with m := |℘l(P

i;j,k)| . Set the adjacency of S̃2.

A0(S̃1
1) := {S0

i , S̃
0
1} . Set the adjacencies of S̃1.

for m := 2 : |℘l(P
i;j,k)| − 1 do

A0(S̃1
m) := {S̃0

m−1, S̃
1
m}

A0(S̃1
m) := {S̃0

m−1, S
0
i } with m := |℘l(P

i;j,k)|

for P i;j,k
m ∈ ℘l(P

i;j,k) do . Add S̃1 to the adjacency lists of the S2 on path P i;j,k
m .

for S2
o ∈ P i;j,k

m do

A1(S2
o) := A1(S2

o) ∪ {S̃1
m}

for m := 2 : |℘l(P
i;j,k)| do . For S1 adjacent to S2 ∈ H i;j,k;l

m , replace the S0
i with S̃0

m.

for S2
o ∈ H i;j,k;l

m do

for S1
p ∈ A1(S2

o) do

if S0
i ∈ A0(S1

p) then

A0(S1
p) := A0(S1

p) ∪ {S̃0
m−1}\{S0

i }

7.2.5 Check spurious strata

Spurious stratum insertions can occur for a S1 insertion if there are two S2 on the circuit

that bound the same S3, or for a S2 insertion between two components of the same S3.

An example configuration leading to such an event is shown in Fig. 3.6 of the main text.
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Algorithm 4 Check spurious (Sdi ).

Compare the upper adjacencies of (Sdi ) to check if it is spurious.

if d = 0 or d = 1 then . Higher adjacency rule for valid S0 and S1.

return |Ad+1(Sdi )| < 3

else

if d = 2 and |Ad+1(Sdi )| = 2 then . If S2 bounds the same S3, it is spurious.

return Ad+1
1 (Sdi ) = Ad+1

2 (Sdi )

return FALSE

7.2.6 Relaxation during collapse

The preconditioning operation relaxes the positions of the surrounding vertices to prevent

inversions of the surrounding tetrahedra during a collapse. More specifically, the vertices

connected to the collapsing strata by an edge form a hull. Positions of the vertices on the

hull are found such that the surrounding tetrahedra do not invert during collapse of the

stratum by a conjugate gradient search to minimize the positive definite potential φ. This

is defined as

φ =
∑
i∈∆0

φi,

φi =
1

w
ln

 ∑
∆3

j∈A3(∆0
i )

exp [−wVj(v̄)/Vt] + 1

 ,

where ∆0 is the set of vertices on the hull, v̄ is the position vector of all vertices, Vj is

the volume of jth tetrahedron, and w is a weight for scaling the exponent. w is defined

as 80 Vt
abs(Vn)+ε

, where Vt is the total starting volume of all tetrahedra surrounding the

hull vertices, and Vn = min(Vj). In practice ε is 2.22507× 10−298, 1010 times the smallest

representable double. Using the algorithm shown in Fig. 7.2, the volumes are updated

until Vn > vth, where vth is the desired volume ratio of the surrounding tetrahedra at the

collapsed configuration defined as vth = (Vm + ε)× 10−5 where Vm = min(abs(Vj)). After

each time the positions of the hull vertices are updated, Vn and Vm (but not w or vth) are

updated. If the smallest volume Vn is smaller than twice the starting most negative volume
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Figure 7.2. The flow chart for the calculation of the volumes and the update of the
parameters w, vth required for the conjugate gradient descent calculations.

Vn,0, or Vn < 0 and abs(Vn) < abs(Vn,0/10), w is updated and the conjugate gradient is

reinitialized to increase the convergence rate.

The negative of the gradient of the potential is given by

−∇iφ = −∇iφi −
∑

∆0
j∈A0,1(∆0

i )

∇iφj,

−∇iφi =
∑
k

[
exp(−wAk)∑
l exp(−wAl) + 1

∇iVk

]
,

where k, l ∈ A3(∆0
i ) and Ak = Vk(v̄)/Vt. The form of −∇iφj is the same but k, l ∈ A3(∆0

i )∩
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(a) (b) (c) (d)

Figure 7.3. The generalized lens collapse corresponding to the triangle (0, 1, 2). Merging
entities form sets rather than couples and an entity might be merging in one lens
and collapsing in another, and will collapse during the stratum collapse. The lens
corresponding to edge (a) (0, 1), (b) (1, 2), (c) (0, 2). In the lenses corresponding to
edges (0, 2) and (1, 2) the triangle (0, 1, a) is merging, but since the triangle is collapsing
in the lens of edge (0, 1), it is collapsing. Edges (0, a), (1, a), and (2, a) form a merging
set. (d) The final configuration after the collapse.

A3(∆0
j). It is possible that due to the starting geometry a non-inverting configuration

with a minimum volume of vth cannot be found. The relaxation continues until either a

non-inverting configuration is found or the limit for number of iterations is reached.

7.2.7 Generalized collapse of multiple lenses

The generalized stratum collapse follows the same procedure described in Sec. 3.2.1 for lens

collapse, i.e., the main steps are preconditioning the mesh, finding the stratum memberships

of the remaining entities, destroying old entities, and regenerating the entities using the

last remaining vertex. When there is more than one edge in the collapsing stratum, it is

possible that some merging entities form sets rather than couples to form a new entity.

Furthermore, an entity can be a merging or a collapsing entity in different lenses, in which

case all merging entities in the associated set will collapse as shown in Fig. 7.3. Similar to

lens collapse, for each set of merging entities a new entity will be regenerated by replacing

the merging vertex with the final vertex and using the new stratum membership.

7.2.8 Using an exterior shell for volume preservation

Evolving down the gradient of surface energy, a non-periodic mesh will not preserve volume

without additional constraints. Volume preservation is achieved by creating a stratification

composed of the simulation cell corners, edges and surfaces. These strata are called 0-,

1-, and 2-shells, respectively. The shells are determined at the start of the simulation. In
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(a) (b) (c) (d) (e)

Figure 7.4. Exterior S0 insertions require additional exterior S2 and S3 in the adjacency
graph. (a) The red, blue and green S3 at the corner of the simulation cell, having two,
two, and one surface S2, respectively. (b) The adjacency graph obtained by including a
node for the exterior S3 which doesn’t allow any new surface S2 insertion. (c) Instead of
a single exterior S3, S2 and S3 are included in the adjacency graph for each surface S1

and S2, respectively. (d) The augmented adjacency graph in (c) can be used to detect
surface S2 insertions, e.g., a trigon insertion using the dashed, dotted and dash-dotted
paths between the exterior and the red grain. (e) The corresponding change in the
microstructure.

this section, surface strata will indicate strata on the simulation cell boundary. Each S0 is

first tested to identify those on the simulation cell corners, edges or surfaces, and ones

on the corners are attached to 0-shells. Next, the S1 on the simulation cell boundaries

are tested to identify those on the simulation cell edges by a depth first search, and ones

on the edges are attached to 1-shells. The 2-shells are constructed similarly. During the

simulation the motions of the vertices on these shells are projected onto the corresponding

shell to preserve the total volume.

Any newly inserted strata during stratum insertions around exterior S0 are associated

with the appropriate shells. Since the exterior can be multiply connected to the volumes

touching the exterior surface, one artificial exterior S3 is created for each disconnected

mesh component of the surface S2, as shown in Fig. 7.4. The paths and circuits detected

on this augmented adjacency graph contain multiplicities as there is actually a single

exterior S3. These are removed by replacing all artificial strata on the paths and circuits

with the only exterior S3 and only allowing uninterrupted segments of the artificial strata

on a single circuit or path.

Finally, computing the convex hull for collapses of strata touching the exterior shell

requires that the positions of vertices belonging to the collapsing stratum be added to the
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Figure 7.5. To demonstrate the capabilities of the method, a configuration formed
by six grains meeting at the center of a cube is generated. The possible classes of
insertions are more numerous than in Fig. 3.13. Some examples are shown denoted by
the number of 2-strata on the H i;j

1 /Qij/H
i;j
2 , though this is not a complete descriptor

(e.g., there are three 3/6/3 type insertions). In addition to these, digon, trigon and
tetragon insertions between each three disconnected S3 couples are possible.

Figure 7.6. The variation of energy with changing dihedral angle configuration. The
degenerate configuration is when the outer dimensions correspond to a cube. Red
squares denote the case of the cube stretched in one direction and green pentagons
denote the compressed case.

set of points.

7.2.9 Six grain configuration

As a further demonstration of the insertion detection, a more complicated configuration

with six grains is generated and some of the possible S1 insertions are shown in Fig. 7.5.

This list is not exhaustive, but demonstrates the capability of the detection algorithm. In

addition to these, digon, trigon, and tetragon S2 insertions are possible. Similar to Fig.

3.14, the dependence of the energy change for different insertions on the dihedral angle is

shown in Fig. 7.6.
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(a) (b) (c)

(d) (e) (f)

Figure 7.7. (a) A symmetric seven grain configuration composed of a rectangular
prismatic grain surrounded by six grains, one on each face. The top, front and right
grains have been removed. (b) The vertical lines are about to collapse, and will be
followed by (c) insertion of four trigons connecting the top and bottom grains. (d) The
first two spurious insertions: the digons connecting the right and left grains to the
center grain collapse and two spurious lines are inserted. Two surfaces connect the top
and bottom grains. (e) After the collapse of the digons connecting the front and back
grains to the center grain. (e) Last two spurious insertions: there is a single surface
connecting the top and bottom grains and the center grain is embedded in this surface.

7.2.10 Mesh level examples of spurious insertions

Figure 7.7 shows that spurious insertions can be necessary for normal grain growth, though

they are not frequently handled by grain growth codes. Specifically, two spurious insertions

happen between Figs. 7.7c and 7.7d, and two more between Figs. 7.7e and 7.7f. Moreover,

Fig. 7.7f shows a configuration containing a S2 that cannot be deformed into a disc (the

surface in which the blue volume is embedded), and a S1 with no bounding S0s (around

the equator of the blue volume).

7.2.11 Evolution of isolated grains

Figure 7.8 more clearly shows the discretization of three isolated grains at the start of the

simulation and at t = 0.029. The target refinement is two edges per median S1 length,

and each S1 is required to contain at least two edges.
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(a) (b)

Figure 7.8. Three selected grains at (a) t = 0 and (b) t = 0.029. Observe the expansion
of the exterior surface of the large orange grain on the top.

7.2.12 Scaling of computational resource usage

Figure 7.9a shows the scaling of the computational resource usage with the number of

grains on a PC with 16 GB of 2400MHz DDR4 RAM, and Intel(R) Core(TM) i7-7700HQ

CPU during simulations until 5% total boundary area reduction was achieved. The

wall clock time for each subprocess unexpectedly scaled roughly quadratically with the

the number of grains. The equations of motion calculations and mesh adaptation (the

minimum required for the simulation to progress) used 68− 71% of the total time, and

Fig. 7.9b shows that the equations of motion scale linearly with the number of grains for a

fixed number of iterations. Hence the source of the overall quadratic scaling is not clear,

but likely signifies the potential for further optimization. In addition, the time step was

found to reduce by several orders of magnitude around a topological transition; since the

number of such events increases with the number of grains, the number of iterations in a

fixed interval of time increases as well and likely contributes to the scaling.

The cost of calculating the topological transitions scaled with the cube of the number

of grains, but only required between 1− 6.5% of the total time. The calculations of the

rate of volume change using the discretized MacPherson–Srolovitz relation used 25− 28%

of the total time, but would be skipped in a production run. The target edge length is half
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of the median S1 length, and every S1 is represented by at least two edges. The memory

usage was tested during a single iteration for numbers of grains ranging from 10 to 1000

and for two target refinement edge lengths, with the results in Fig. 7.9c. The memory

usage scaled linearly with the number of grains, with the 1000 grain simulation having a

peak simulation memory demand of 983 MB. Halving the target edge length (increasing

the resolution of the mesh) increased the memory requirements to 6874 MB.

The simulations in Sec. 3.5 of the main manuscript required about a week to reduce

the number of grains from 100 to 50 and the total grain boundary area by 35%. The

benchmark cases reported in this section used a topological transition threshold of 1/50th

of the median S1 length as compared to 1/10th used in Sec. 3.5 for robustness against

perturbations by mesh adaptation. Based on the observed scaling, the duration of an

equivalent simulation with a topological transition threshold of 1/50th of the median S1

length is estimated to be around 27 days on the same workstation.

7.3 Benchmarks

7.3.1 Nondimensionalization

Define the variable L to be the characteristic length scale of the grain structure defined

in Section 4.2. For a sphere it is the sphere radius, for the TJ it is the length of the

simulation cell in the direction normal to the consumed grain boundary, and for the QP it

is the hexagonal grains’s minor diameter. The Turnbull equation in Eq. (4.1) suggests

that there is a characteristic time scale τ = L2/(mγ). The simulations are performed with

nondimensionalized time t̃ = t/τ , nondimensionalized space x̃ = x/L, nondimensionalized

rate of volume change dṼ /dt̃ = (τ/L3)dV/dt, etc.

With respect to the quantities defined in Section 4.1.1, suppose that τl(t̂i) = 0, δ0 = 0,

δ1(t̂i) = 0, and that γ(n̂ij) and δ2(n̂ij) are constants. The governing equations of the
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(a) (b)

(c)

Figure 7.9. (a) The scaling of the wall clock time usage for each subprocess: equations
of motion calculations (EoM), auxiliary operations (Aux) which here are MacPherson–
Srolovitz calculations, topological transitions, and mesh adaptation (MA). (b) The
scaling of the wall clock time usage for EoM calculations as a function of the number of
grains and a fixed numbers of iterations. (c) The scaling of the memory usage for two
different levels of refinement where ne is the number of edges per median S1 length.

discrete interface model then reduce to:

F =
γ

2

∑
i

||ti||
∑

j:{i,j}∈∆

n̂ij × t̂i, (7.1)

D =
δ2

6

∑
i,j∈∆

||ti × tj||(n̂ij ⊗ n̂ij), (7.2)

v = D−1F . (7.3)
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The nondimensionalized versions of these equations are

F̃ =
F

Lγ
=

1

2

∑
i

||t̃i||
∑

j:{i,j}∈∆

n̂ij × t̂i, (7.4)

D̃ =
D

L2δ2

=
1

6

∑
i,j∈∆

||t̃i × t̃j||(n̂ij ⊗ n̂ij), (7.5)

ṽ =
τ

L
v =

τγ

L2δ2

D̃−1F̃ , (7.6)

where δ2 = 3/µ when the triple line and quadruple point drags vanish; this can be

derived by requiring that the limiting behavior of a small spherical cap coincides with the

predictions of Eq. (4.1).

The corresponding nondimensionalization of the multiphase field governing equations

in Sec. 4.1.2 yields

∂η

∂t̃
= −τLδW

δηn
=
∂w̃

∂ηn
+ k∆̃ηn, w̃ = w τ L, ∆̃ = τLk∆. (7.7)

In this work, all multiphase field calculations are performed with dimensional values and

then nondimensionalized for comparison to discrete interface simulations.

7.3.2 Spherical grain

If grain boundary properties are constant and isotropic, then the evolution of a spherical

grain is self-similar and can be completely described by the radius rt(t) as a function of

time. Since the mean curvature is K = 2/rt, Eq. (4.1) implies that

drt/dt = −2µγ/rt. (7.8)

Setting t0 = 0 and rt(0) = r0 and integrating gives

rt(t) =
√
r2

0 − 4µγt (7.9)

as the solution to this differential equation. Since the characteristic length scale for a

sphere is r0, nondimensionalizing reduces this to

r̃t(t̃) =
√

1− 4t̃ (7.10)

for the black curve in Fig. 4.3.
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7.3.3 Scaling analysis

As described in Sec. 4.3, while the computational cost of the discrete interface method is

expected to scale as `−3
e , the actual scaling is instead `−4.089

e . Closer investigation revealed

that the time step could decrease or increase by multiple orders of magnitude depending on

the presence of various local mesh configurations. The boundary triangles exert capillary

forces only in the boundary plane, yet exert drag forces only in the out-of-plane direction.

This allows vertices on nearly-flat grain boundary sections to experience arbitrarily large

lateral velocities, slowing the simulation down as the time step is reduced to prevent

element inversion. The discrete method simulations in Sec. 4.2.1 include an isotropic

contribution DI,d = A2
m/(md)I to the drag tensor such that v = (D +DI,d)

−1F , where

A2
m is the mean triangle area over the whole simulation, m is the mobility, and d = 1000 is

a drag ratio. Decreasing the drag ratio reduces the lateral velocities, but also slows down

the actual motion of the boundary and introduces a systematic error.

As an alternative, a contribution to the drag tensor that only acts in the in-plane

directions could be constructed as follows. For simplicity, consider a closed disk of coplanar

triangles around a vertex. Iterating over each grain boundary triangle ∆ij adjacent

to the central vertex, find the relative positions of the other vertices from the central

vertex pi and pj and construct the outer product of the difference pi − pj with itself.

Let Λmax be the largest eigenvalue of the sum of the outer products, and define the

matrix C =
∑

i,j∈∆(pi − pj)⊗ (pi − pj)/Λmax. The anisotropic drag tensor contribution

Da,d = A2
m/(md)C by construction has no effect on the grain boundary motion in the

plane normal direction. This should allow the lateral velocities of boundary vertices to be

reduced while introducing less systematic error in the motion of non-planar boundaries

than for an isotropic drag. An example triple junction mesh configuration is shown in

Fig. 7.10 to qualitatively demonstrate the effect of different drag tensor correction terms.

Although the velocity associated with DI,d aligns with the force direction faster with

increasing d, the velocity term in the vertical direction is also attenuated more compared

to Da,d.

The difference in the expected and the actual scaling of the cost can largely be attributed
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Figure 7.10. The effect of different drag tensor correction terms on the resulting
velocity. The capillary force is colored black and the velocities corresponding to
different correction terms are differentiated by color. Each vector is scaled relative to
the maximum magnitude among the velocities.

10−1

`e

10−5

10−4

10−3

d
t m

e
d

DI,1000

DI,10

Da,10

Figure 7.11. The scaling of the median time step with `e for the three drag tensor
correction terms.

to the non-linear scaling of the median time step shown in Fig. 7.11. dtmed scales as `2.010
e

for Da,10 and `1.916
e for DI,1000 and DI,10. Overall, Da,10 allows larger time steps and has

a better accuracy, though the improvement is not significant.

7.4 Constant of motion

7.4.1 Derivation of Eqs. 1 and 2

Suppose that Ω is a grain structure in a domain with periodic boundary conditions, that

Ω satisfies Plateau’s laws (i.e., grain boundaries meet at dihedral angles of 2π/3 and triple
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junction lines meet at angles of cos−1(−1/3)), and that in Ω every triple junction line is

bounded by two distinct quadruple junction points, every grain boundary is homeomorphic

to a disk and bounded by two or more distinct triple junction lines, and every grain is

homeomorphic to a ball and bounded by three or more distinct grain boundaries.

The initial objective is to establish the following version of the Gauss–Bonnet theorem

for a grain G belonging to Ω:∫
∂G

K dA+

f2(G)∑
i=1

∫
∂Fi

κg ds+

f0(G)∑
i=1

αi = 2πχ(∂G) (7.11)

where K is the Gaussian curvature of a grain boundary, ∂G indicates the grain boundary

interiors, κg is the geodesic curvature of a triple junction line, ∂Fi indicates the interiors

of the triple junction lines bounding the ith grain boundary, f2(G) is the number of grain

boundaries of G, αi is the angular defect at the ith quadruple junction point, f0(G) is the

number of quadruple junction points of G, and χ(∂G) is the Euler characteristic of the

boundary of G. The standard version of the Gauss–Bonnet theorem applies to an oriented

surface Fi [102]: ∫
Fi

K dA+

∫
∂Fi

κg ds+

f0(Fi)∑
j=1

(π − γj) = 2πχ(Fi) (7.12)

where γj is the interior angle at the jth corner along ∂Fi. As suggested by the notation,

let Fi be the ith grain boundary of G. Since every grain boundary is homeomorphic to a

disk, χ(Fi) = 1 and summing Eq. 7.12 over the grain boundaries of G gives:∫
∂G

K dA+

f2(G)∑
i=1

∫
∂Fi

κg ds−
f2(G)∑
i=1

f0(Fi)∑
j=1

γj = 2πf2(G)− πf0,2(G)

where f0,2(G) is the number of distinct pairs of adjacent quadruple junction points and

grain boundaries. Adding 2πf0(G) to each side of the above equation, using the identity

f0,2(G) = f1,2(G) = 2f1(G), and applying the definition χ(∂G) = f0(G)− f1(G) + f2(G)

for the Euler characteristic of a surface gives∫
∂G

K dA+

f2(G)∑
i=1

∫
∂Fi

κg ds+

(
2πf0(G)−

f2(G)∑
i=1

f0(Fi)∑
j=1

γj

)
= 2πχ(∂G).
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Figure 7.12. The respective arrangement of the curve ck(s), the unit vectors ui, uj ,
and v, and the angle β at a point along Ek.

Since 2π minus the internal angles around the ith quadruple junction point of G is the

angular defect αi at that point, this reduces to Eq. 7.11 above.

The next objective is to simplify Eq. 7.11 by means of the initial assumptions. Initially

observe that χ(∂G) = 2 since G is homeomorphic to a ball, and that the angular defect

at every quadruple junction point is α = 2π − 3 cos−1(−1/3); this allows Eq. 7.11 to be

reduced to: ∫
∂G

K dA+

f2(G)∑
i=1

f1(Fi)∑
j=1

∫
Ej

κg ds+ αf0(G) = 4π

where Ej is the jth triple junction line and f1(Fi) is the number of triple junction lines of

Fi. Now consider the summation of the integrals of the geodesic curvature over the triple

junction lines of G. Every triple junction line is integrated over twice, once for each of the

adjoining grain boundaries. Suppose that all of the grain boundaries have outward-pointing

unit normal vector fields, that the grain boundaries Fi and Fj intersect on the kth triple

junction line Ek of G, and that ck(s) is the curve parameterized by arc length that travels

along Ek in the positive orientation on Fi and the negative orientation on Fj. Let νi(s)

and νj(s) be the restrictions of the unit normal vector fields of Fi and Fj to points on

ck(s), and ui(s) = νi(s) × c′k(s) and uj(s) = νj(s) × c′k(s) be the tangent normals of

ck(s) on Fi and Fj as indicated in Fig. 7.12, where the prime indicates differentiation

with respect to arclength. Finally, write the geodesic curvatures κg of ck(s) on Fi and Fj

as c′′k(s) · ui(s) and c′′k(s) · uj(s). This allows the middle term on the left of the above

equation to be written as:

f2(G)∑
i=1

f1(Fi)∑
j=1

∫
Ej

κg ds =

f1(G)∑
k=1

[ ∫ sk

0

c′′k(s) · ui(s) ds−
∫ sk

0

c′′k(s) · uj(s) ds

]

=

f1(G)∑
k=1

∫ sk

0

κe2 · (ui(s)− uj(s)) ds
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where s ∈ [0, sk] and c′′k(s) = κe2, or the product of the curvature κ and the second Frenet

vector e2 of ck(s). Since ui(s) and uj(s) are unit vectors, ui(s)− uj(s) can be written

as 2 sin(β/2)v(s) where ui(s) · uj(s) = cos β and v(s) is the unit vector pointing along

ui(s)−uj(s) as in Fig. 7.12. Since β = π/3, this simplifies further to ui(s)−uj(s) = v(s)

and Eq. 7.11 reduces to:∫
∂G

K dA+

f1(G)∑
i=1

∫
Ei

κe2 · v ds+ αf0(G) = 4π. (7.13)

This is perhaps the extent of simplification that is possible for a single grain.

Equations 1 and 2 in the main text are found by summing Eq. 7.13 over all the grains in

Ω. As described in the main text, the contribution of the second term on the left vanishes

since every triple junction line is integrated over three times, once for each adjoining grain.

κe2 is an inherent quantity of the triple junction line that is the same for all three integrals,

but the three v are all unit vectors in a plane with mutual angles of 2π/3. This causes the

sum of the three v to vanish identically for each triple junction line, leaving:

f3(Ω)∑
i=1

∫
∂Gi

K dA+

f3(Ω)∑
i=1

αf0(Gi) = 4πf3(Ω)

where f3(Ω) is the number of grains of Ω. Dividing through by f3(Ω) gives Eq. 1 of the

main text. Alternatively, observing that every grain boundary is included two times in the

first sum, that every quadruple junction point is included four times in the second sum,

and dividing through by two gives Eq. 2 of the main text.

7.4.2 Other boundary conditions

If the grain structure Ω exists in a domain without periodic boundary conditions, then

the elements of Ω intersecting the external surfaces need to be handled differently. The

derivation of the counterparts of Eqs. 1 and 2 of the main text proceeds as above, starting

with Eq. 7.11 for a grain G:

f2(G)∑
i=1

∫
F i

K dA+

f2(G)∑
i=1

f1(F i)∑
j=1

∫
Ej

κg ds+

f2(G)∑
i=1

f1(Fi)∑
j=1

∫
Ej

κg ds+

f0(G)∑
i=1

αi

+

f2(G)∑
i=1

∫
Fi

K dA+

f2(G)∑
i=1

f1(Fi)∑
j=1

∫
Ej

κg ds+

f0(G)∑
i=1

αi = 2πχ(∂G)
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where quantities relating to grain structure elements on external surfaces are indicated by

overlines (e.g., the second term on the left concerns triple junction lines on the external

surface that bound grain boundaries on the external surface, whereas the third term on

the left concerns triple junction lines on the external surface that bound internal grain

boundaries). Using that χ(∂G) = 2 and that the angular defect at every internal quadruple

junction point is α, repeating the steps involving integrals over triple junction lines, and

summing over all the grains of Ω gives:

f3(Ω)∑
i=1

f2(Gi)∑
j=1

∫
F j

K dA+

f3(Ω)∑
i=1

f1(Gi)∑
j=1

∫
Ej

κe2 · [2 cos(λ/2)v] ds+

f3(Ω)∑
i=1

f0(Gi)∑
j=1

αj

+

f3(Ω)∑
i=1

f2(Gi)∑
j=1

∫
Fj

K dA+ α

f3(Ω)∑
i=1

f0(Gi) = 4πf3(Ω)

(7.14)

where cos(λ/2) = sin(β/2) and λ is the interior angle along the triple junction line.

Dividing through by f3(Ω) gives:〈 f2(G)∑
i=1

∫
F i

K dA+

f1(G)∑
i=1

∫
Ei

κe2 · [2 cos(λ/2)v] ds+

f0(G)∑
i=1

αi

〉
+

〈∫
∂G

K dA

〉
+ α〈f0(G)〉 = 4π

which is the counterpart to Eq. 1 of the main text and emphasizes the properties of

individual grains. This version groups the contributions of grain structure elements on

external surfaces in the first average over all grains of Ω. Since f3(Ω) should increase as

the volume whereas the number of terms in the average should increase as the surface

area, the influence of the first average should decrease with decreasing surface area to

volume ratio of Ω. Alternatively, starting with Eq. 7.14 and observing that every internal

grain boundary is included two times in the fourth term, that every quadruple junction

point is included four times in the fifth term, and dividing through by two gives:

1

2

{ f2(Ω)∑
i=1

∫
F i

K dA+

f1(Ω)∑
i=1

∫
Ei

κe2 ·
[
2

f1,3(Ei)∑
j=1

cos(λj/2)vj

]
ds+

f0(Ω)∑
i=1

f0,3(V i)∑
j=1

αj

}

+

f2(Ω)∑
i=1

∫
Fi

K dA+ 2αf0(Ω) = 2πf3(Ω)
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where f 1,3(Ei) is the number of grains adjacent to the ith triple junction line Ei on the

external surface and f 0,3(V i) is the number of grains adjacent to the ith quadruple junction

point V i on the external surface. This is the counterpart to Eq. 2 of the main text. This

is as far as the equations can be developed without specifying the shape of the domain of

Ω and the nature of the boundary conditions.
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