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Abstract

Advanced Control of Atmospheric Pressure Plasma Jets for Medical Applications

by

Dogan Gidon

Doctor of Philosophy in Chemical Engineering

University of California, Berkeley

Professor Ali Mesbah, Chair

Atmospheric Pressure Plasma Jets (APPJs) are versatile tools for materials processing
and medical applications. A key objective for APPJ treatment is the delivery of cumulative
and spatially distributed treatment effects, i.e., a plasma dose. However, variability in APPJ
operation and their sensitivity to exogenous disturbances can compromise reliable treatment.
Particularly, for medical applications, it is necessary to ensure that APPJ effects are delivered
safely and repeatably. Feedback control strategies can be crucial in ensuring the APPJ effects
are regulated and maintained below critical limits instantaneously and cumulatively.

The APPJ dynamics are nonlinear, multivariable and coupled across multiple timescales.
Moreover, the dose delivery problem is spatially distributed. This presents a significant chal-
lenge for regulation of APPJ characteristics with basic control strategies based on proportional-
integral type controllers. Optimization-based advanced control strategies, such as model
predictive control, can systematically account for the APPJ dynamics and the complexities
of the dose delivery problem. This work experimentally demonstrates the use of advanced
control strategies for regulation of APPJ effects and dose delivery in the presence of com-
mon disturbances, including variations in substrate characteristics and changes in jet tip-
to-substrate separation distance. In particular, the thermal effects of the APPJ on treated
substrate and thermal dose delivery is investigated. An experimental setup of a kHz-excited
APPJ in He is constructed to allow implementation of control algorithms. The key issues of
modeling, problem formulation, and control synthesis are undertaken for the development of
control strategies.

Development of control-oriented models of APPJs, which describe the dynamic response
of controlled outputs to manipulated variables, are required for model-based control strate-
gies. A lumped-parameter physics-based model is developed to describe dynamics of power
dissipation in the APPJ and the consequent thermal effects on treated substrates. A fluid
model of the transport phenomena in the APPJ in COMSOL informs the structure of the
lumped-parameter model, which take the form of a set of differential-algebraic equations.
The lumped-parameter model is found to adequately describe the experimentally observed
APPJ dynamics despite its simplicity. Moreover, a linear data-driven modeling strategy is
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shown to be a viable alternative in describing the aspects of APPJ operation that are difficult
to model based on physics, albeit for a limited range of operating conditions.

Experimental investigation reveals that basic proportional-integral (PI) strategies tuned
using internal model control rules allow rejection of a range of disturbances in a single-
input-single-output setting. However, basic control strategies are found to be ineffective
in simultaneous control of multiple APPJ effects and for dose delivery. In contrast, MPC
strategies are shown to be capable of systematically addressing the multi-variable APPJ dy-
namics as well as the cumulative nature of the dose delivery problem. With MPC strategies
simultaneous regulation of multiple APPJ effects as well as the delivery of a point-wise multi-
component dose is made possible in the presence of disturbances. For spatially uniform dose
delivery, a hierarchical control strategy is developed. Lower-level basic controllers are found
to allow disturbance rejection in fast timescales. On the other hand, the MPC framework
allows systematically addressing the different aspects of the dose delivery problem, includ-
ing the total treatment time, spatially distributed APPJ effects, the multivariable system
dynamics, and the translation trajectory of the APPJ over the treated substrate.

Results presented in this work indicate that advanced feedback control strategies are cru-
cial in enabling reliable and reproducible operation of APPJs, particularly in medical appli-
cations where safety considerations are stringent and high performance operation is required.
The effective regulation of APPJ characteristics can create opportunities for new APPJ appli-
cations and the study of APPJ effects by creating controlled environments. Emerging areas
for future work include the application of data analytics and machine learning methods for
real-time diagnostics, modeling, and control of the complex time-varying APPJ phenomena.
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Chapter 1

Introduction

Cold atmospheric pressure plasmas (CAPs) are uniquely capable of locally generating and
delivering a verity of active agents including reactive chemical species, ions, electric fields,
UV-visible photons, and thermal effects to heat and pressure sensitive targets. Atmospheric
pressure plasma jets (APPJs), a popular class of CAPs, have promising applications in ma-
terials processing and medicine [1]–[3]. The generation of the active agents in APPJs rely
on complex physical phenomena coupled across multiple timescales, maintained in thermal
non-equilibrium [3], [4]. Therefore, APPJs can suffer from considerable variability in their
operation: the inherent variability of plasma dynamics and the sensitivity of plasma char-
acteristics to exogenous disturbances can hamper reliable APPJ operation. As a result, the
key objective of safe, reproducible and effective delivery of a spatially varying cumulative
effect (i.e., dose) on treated substrates can be compromised.

APPJs are particularly sensitive to environmental conditions and exogenous disturbances.
Changes in ambient humidity [5], properties of the treated substrate [6], and variations in
the distance between the device and the treated substrate [7] can drastically effect plasma
properties. Moreover, treatment-relevant plasma characteristics such as gas and substrate
temperatures, and delivered reactive species concentrations exhibit sharp spatial and tem-
poral gradients [8] which can complicate regulation of the spatially distributed APPJ effects.
The intrinsic variability associated with the inherently non-equilibrium processes that govern
plasma generation compounds these issues. Significant variations and drifts in operation in
APPJ characteristics are observed even in the absence of significant external perturbations
[9]–[11]. Hence, it can be challenging to achieve consistency and reliability in the APPJ
operation.

A common objective in APPJ treatment is the delivery of a spatially varying dose. How-
ever, the complexity of plasma-substrate interactions and the multi-variable nature of the
plasma treatment makes it challenging to effectively quantify and measure a dose. Moreover,
the typically small dimensions of APPJs often require their translation across treated sub-
strates, introducing additional complexity to treatment. In the absence of effective dosimetry
and online diagnostics, the common practice is to devise treatment protocols offline, largely
based on user’s experience [12], [13]. As a result, key aspects of the dose delivery, such
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as choice of appropriate translation trajectories, ensuring repeatability of operation, and
effective mitigation of exogenous disturbances are not systematically addressed.

Plasma medicine is a growing field driven by increasing evidence for the effectiveness of
APPJ treatment in alternative and complementary therapies [3], [10], [12]. Promising results
are reported with in applications such as reduction of head and neck cancer and accelerated
healing of chronic wounds [13], [14]. Some APPJ devices such as KINPen (neoplas tools
GmbH, Greifswald, Germany) [15] and SteriPlas (Adtec Plasma Technology, Adtec Europe,
Hunslow, UK) [12], [16] have received approval for use in clinical trials. However, variabilities
in APPJ operation and the issues in reliable dose delivery present particularly significant
challenges in medical applications. The performance requirements are more stringent in
the medical context and ensuring safety is of paramount importance. Moreover, a certain
amount of variability in external conditions cannot be easily avoided in medical applications.
Clinically, treatments are often administered in an uncontrolled environment. Additional
sources of variability such as the complex responses of biological substrates and patient-to-
patient variability can compromise the safety and repeatably of APPJ treatment.

The question of dose definition is also particularly challenging in plasma medicine. Ideally,
a plasma dose would reflect some delivered cumulative effect relating to the end goal of
treatment, in this case, the biological response. Where the delivered effect is singular, for
example in radiotherapy [17], or hyperthermia [18], this task is relatively straightforward.
In contrast, the coupled, multi-variable and highly variable nature of plasma treatment does
not lend itself to such a clear definition [15]. Moreover, it is not clear to what extent, if at
all, the different active agents generated in the plasma can be decoupled and manipulated
independently. This has some direct practical consequences for the treatment. From a safety
standpoint, it is necessary that each of the delivered agents is maintained below critical
limits. For example, it is not acceptable to burn the patient in trying to deliver a higher
concentration of reactive species. The combined effect of therapeutic agents might also result
in synergy [19]. For example, the same concentration of delivered reactive species may result
in a different biological effect under different electric fields due to electroporation effects [20],
[21]. Compounded by the variability observed in operation, it is exceedingly challenging to
define and standardize a “plasma dose", particularly for medical applications.

Feedback control strategies can significantly alleviate the challenges outlined above by
reducing the variability in APPJ operation, enabling safe, reliable, and reproducible dose
delivery. The basic idea behind feedback control is to monitor process outputs in real-time
and to maintain them at desired levels by automatically adjusting the process inputs. Based
on the discussion above, it is clear that feedback control can provide a range of benefits for
plasma medicine applications including:

• safety,

• broadened and flexible operating range,

• reduced variability in treatment,
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• systematic adjustment and trade-off between different plasma effects,

• spatially uniform delivery of dose metrics,

• creating a controlled environment for the systematic study of biochemical treatment
mechanisms.

1.1 Objective
There are well-established process control practices in plasma fusion [22] and low-pressure
plasma etch [23] applications. However, process control has not been implemented in APPJs
for plasma medicine or for other applications. To allow implementation of effective real-
time control schemes, first, some practical issues need to be resolved. Construction of an
appropriate experimental setup, choice, and placement of sensors and actuators, and the
development of hardware and software platforms for interfacing and running the control
algorithms area some key practical considerations. Particularly, electrical interference from
the plasma and the fast timescales of plasma processes impede the real-time diagnostics of
APPJ. A goal of this work is to resolve these issues, where possible, using open source tools
to increase accessibility of the developed solutions.

The main objective of this dissertation is to develop and apply advanced control strate-
gies for high performance, safe, reliable, and reproducible operation of APPJs with medical
applications in mind. That is, reducing the variability of APPJ operation in the face of
disturbances and enabling regulation of a multi-component and spatially varying dose. The
thermal effects of APPJs on treated substrates have a key significance from a safety stand-
point, and spatially-resolved diagnostics of substrate temperature is straightforward. Hence,
the regulation of substrate temperature and cumulative thermal effects of the APPJ on the
substrate are considered as the main controlled variables. To a lesser extent, the regula-
tion of electrical and optical characteristics of the APPJ are also considered. To achieve the
broader objective of developing effective advanced control strategies for APPJs, the following
key issues are addressed:

• Control-oriented modeling: This work focuses on model-based control approaches which
enable using knowledge of system dynamics to inform the design of the control strate-
gies. One key issue the present work investigates is physics-based and data-driven
methods of modeling of APPJ devices with the express purpose of designing control
strategies.

• Control problem formulation: Choice of controlled and actuated variables as well as
determining control objectives relating to the medical applications are key aspects of
control problem formulation. Some of the key questions addressed in the problem
formulation include: What aspects of the process need to be controlled? To what
extent can the available actuation influence the process dynamics? What are the
typical disturbances and how well can they be rejected?
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• Choice and Evaluation of Model-Based Control Strategies: Developing and evaluating
the performance of control strategies, as well as determining the appropriate strategies
for the relevant control problems is the main experimental focus of this work. Basic
control strategies relying on proportional-integral (PI) controllers and advanced control
strategies relying on model predictive control (MPC) are investigated in this work to
address the control challenges of APPJs.

Next sections further elaborate on each of these issues.

1.1.1 Control-oriented Modeling

This work focuses on model-based control strategies so as to leverage the knowledge of the
system dynamics for process controls. So-called control-oriented models, which are capable
of predicting how measurable application-relevant quantities change over time in response to
changing inputs, are developed for this purpose. For APPJs, the key modeling requirements
include capturing the coupled multiple-input-multiple-output nature of the dynamics and
quantification of the medically-relevant cumulative APPJ effects on treated substrates. Two
main approaches, physics-based and data-driven modeling are investigated for obtaining
control-oriented models.

Physics-based models can make explicit use of the knowledge of underlying physical phe-
nomena and well-established physical laws to describe process dynamics. However, stemming
from the complexity and disparity of timescales of plasma processes, development of physics-
based modeling of APPJs can be exceedingly complex. Most typical models of APPJs in
literature rely on the solution of coupled partial differential equations describing electrostatic,
kinetic and transport phenomena [24], [25]. These high-dimensional models are computa-
tionally complex, making their use prohibitive for process control applications. Particularly
for advanced control strategies, it is often necessary to solve the model several times over the
timescale on which controller is implemented. Thus, it is necessary to focus on simpler model
structures for control-oriented modeling. Reduced-order and lumped-parameter models can
be instrumental in meeting this challenge. Such models are developed based on assump-
tions (e.g., spatial and temporal averaging of phenomena), allowing for some knowledge of
physics to dictate qualitative model behavior, while relying on some lumped-parameters for
quantitative accuracy. Particularly, the separation of timescales in discharge phenomena
can guide lumped-parameter modeling strategies. The key challenges in developing physics-
based lumped-parameter models are the selection of appropriate assumptions and, where
necessary, empirical parametrizations to balance complexity and descriptive capability of
the model. Moreover, the stiffness of model equations can present numerical challenges.

Data-driven models present an alternative for control-oriented modeling, based only on
input-output data collected from the experimental setup. The key advantage to data-driven
models is that they can describe the dynamics of variables which are difficult to describe
based on simplified physics-based models. For example, total optical emissions from APPJs
have contributions from several transition states related to the dissociated molecules. Devel-
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oping a physics-based description of how all the photon-emitting transition processes relate
to the manipulated inputs can be a daunting task. In contrast, a data-driven model can
be obtained based only on the measurements of optical intensity and the manipulated vari-
ables. A key consideration in developing data-driven control-oriented models is the choice of
model structure. While it is comparatively easy to fit and validate linear dynamic models,
for example, based on subspace identification methods [26], it can be challenging to capture
the nonlinear behavior with numerous potential model structures available. However, non-
linear behavior is prevalent in APPJs. Therefore, linear models can be effectively used over
only a narrow operating region over which they are identified. This, in turn, can limit the
performance of the control strategies developed relying on such models.

Another significant modeling consideration for effective control of APPJs is the quantifi-
cation of the plasma dose. Dose modeling is intricately related to the end-goal of the APPJ
treatment and therefore the problem formulation. The control-oriented model should incor-
porate a dose definition based on controllable and preferably measurable quantities relating
to the interactions of the APPJ and the treated substrate. Although as of yet there are
no agreed-upon definitions of plasma dose, dose metrics are likely described by integrating
and possibly nonlinear functions of some plasma effects. For the purposes of this work, a
tentative dose metric from hypothermia literature [27] is adopted.

1.1.2 Control Problem Formulation

Problem formulation involves translating the goals and practical considerations for the spe-
cific APPJ application to a well-defined problem for which a control strategy is designed
to solve. Choice of controlled and actuated variables, determining control objectives, and
identifying constraints relating to safety and implementation (e.g., available ranges for ma-
nipulated variables) are some of the key considerations in problem formulation. The two
main objectives of operation are regulating the instantaneous effects of the APPJ on the
substrate in the presence of variability (e.g., external disturbances), and the delivery of a
desired spatially varying dose.

The regulation problem involves maintaining instantaneous discharge characteristics in
the presence of setpoint changes and disturbances. Effective regulation is a key necessity to
ensure repeatable and safe operation in the face of the sensitivity of APPJs to disturbances.
The multi-variable nature of the APPJ dynamics lends itself to regulation problems where
more than one APPJ effects need to be regulated simultaneously. In this case, the coupling
between APPJ dynamics can become a significant challenge in determining what combination
of setpoints are achievable. The problem formulation should then account for the trade-
off between potentially competing objectives, emphasizing which aspects of operation has
priority.

Unlike regulation problems which are based on instantaneous effects, dose delivery presents
an “end-point" problem. In other words, the objective for dose delivery is defined in terms of
the desired final value, or spatial distribution, of dose. Since the APPJs typically have small
dimensions (few mm in diameter) and exhibit sharp spatial gradients in temperature and
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species concentrations [8], it is often necessary to translate them across treated substrates
for treatment of practical areas (few cm2). With this in mind, the components of the dose
delivery problem can be summarized as

• total treatment time,

• spatial distribution of dose,

• dynamics of the underlying variables,

• the treatment area,

• translation of the APPJ, and

• equipment and treatment constraints.

Note that these components are interdependent. For example, achievable combinations of
reference dose distribution and the total treatment time rely on the underlying dynamics
(e.g., temperature dynamics for thermal dose delivery), constraints, and the translation rate.
Thus, it is necessary to holistically address the dose delivery problem where possible, taking
into account all the components simultaneously. MPC strategies are particularly amenable
to addressing this type of problems.

Note that although the regulation and dose delivery problems are distinct, they are inter-
related as the delivered dose is defined in terms of the integrating functions of an underlying
variable, i.e., an instantaneous effect. Indeed, when the spatial component of the dose deliv-
ery is neglected and a known rate of dose delivery is assumed, it is possible to convert the
dose delivery problem into a regulation problem [28]. However, these assumptions represent
only a very limited subset of practical dose delivery problems.

1.1.3 Model-based Control

The choice of the control strategies and architectures rely on the requirements described in
the problem formulation. Basic PI and advanced MPC strategies are investigated in this
work to address the challenges of controlling APPJs. Basic control strategies are widely
used in countless industrial applications and have well-established properties [29], [30]. PI
controllers are easy to design and implement, however, they cannot easily handle integrating
processes such as dose delivery or multiple-input-multiple-output system dynamics. Thus,
basic controllers are better suited to address single-input-single-output regulation problems.

Model predictive control strategies have shown exceptional success for advanced control
of complex systems in a wide range of applications including robotics and path planning,
aerospace, and automotive applications, energy systems, and chemical processes (e.g., [31]–
[33]). In contrast to basic control strategies, MPC relies on solving a constrained optimization
problem based on a system model in real-time, in order to compute the manipulated inputs
[34], [35]. Thus, MPC can address some of the key challenges in the control of APPJs.
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MPC is capable of systematically accounting for the nonlinear and multiple-inputs-multiple-
output APPJ dynamics, integrating and spatially distributed nature of the dose delivery
problems, and state and input constraints necessitated by the implementation and safety
considerations. Thus MPC is investigated to address multi-variable regulation and spatially-
varying dose delivery problems.

The main drawback of MPC strategies is their heavy reliance on dynamic models. The
descriptiveness and computational complexity of the dynamic model used with MPC can
have a significant impact on the control performance. Moreover, in order to ensure process
stability, MPC strategies are often used together with basic control strategies [36]. MPC
can act in a supervisory capacity, manipulating the setpoints of multiple lower-level basic
controllers which can act on faster timescales. This allows leveraging the strength of the MPC
strategies to coordinate more complex tasks, such as spatial dose delivery while retaining
the advantage of the fast response time of basic control strategies for disturbance rejection.

1.2 Organization of the Thesis
The following chapters take upon the key issues discussed above, in order to demonstrate
that advanced feedback control strategies can enable (i) effective regulation of multiple APPJ
effects and (ii) point-wise and spatially uniform delivery of a nonlinear dose, in presence of
disturbances (e.g., changes in substrate properties, variations in jet position, and changes jet-
tip-to-substrate separation distance). Moreover, the automated and controlled experimental
setups used for control allow the collection of large data sets across a broad range of operating
conditions. This, in turn, enables the use of data analytics methods for the development of
more complicated data-driven system models and diagnostic tools based on information-rich
spectral signals.

The rest of this work is organized as follows. Chapter 2 describes the key character-
istics of CAP and APPJs, with a particular focus on the various sources of variability in
their operation. Chapter 3 describes the kHz-excited APPJ setup in helium used in control
experiments including the issues in sensing and actuation. Chapter 4 discusses the develop-
ment of control-oriented models of APPJs using physics-based and data-driven approaches.
These models are then used to design control strategies in the following chapters. Chap-
ter 5 demonstrates the use of basic control strategies for rejecting a range of disturbances
common to APPJ operation in a single-input-single-output context. Chapter 6 contrasts
the PI control strategy to a simple linear MPC based on a data-driven model in regulating
multiple APPJ effects in the presence of disturbances. Chapter 7 demonstrates the use of
a physics-based lumped-parameter model to develop a nonlinear MPC (NMPC) including
point-wise dose metrics. Simulation and experimental studies show the effectiveness of the
NMPC strategy for delivery of a multi-component plasma dose in the presence of distur-
bances. Chapter 8 investigates the spatial dose delivery in 1D with APPJ translation with
a multi-level control structure.Chapter 9 extends these results to 2D, and demonstrates
uniform dose delivery in presence of disturbances.Chapter 10 shows few examples of the
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data analytics methods enabled by the large data sets collected from automated experimen-
tal setups for diagnostics of CAPs. Finally, Chapter 11 summarizes the conclusions of this
work and outlines some open questions for possible future directions for research in control
of CAP devices.
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Chapter 2

Atmospheric Pressure Plasma Jets for
Plasma Medicine

Plasma medicine promises a variety of novel applications which rely on cold atmospheric
pressure plasma (CAP) sources to operating in local thermal non-equilibrium. CAPs
induce therapeutic effects by locally generating and delivering reactive species, electric
fields, UV-visible range photons, and thermal effects. Atmospheric pressure plasma
jets (APPJs), a popular subclass of CAPs are preferred for their operational flexibil-
ity. However, CAPs and APPJs, in particular, suffer from variabilities in operation
which can hamper safety and effectiveness of treatment. This chapter overviews the
basics of plasma medicine, generation of CAPs, properties of APPJs and the sources of
variabilities which motivate the need for feedback control.

2.1 Introduction
Plasma, the fourth state of matter, can be defined as a quasi-ionized (including fully ionized)
gas which exhibits collective behavior [37]. Most of the visible matter in the universe is
in the plasma state. Some neutrally-occurring and artificial plasmas are shown in Figure
2.1. Evidently, the plasma state can occur under a variety of conditions which can result in
different properties and appearance. For example, high energy collisions in the nuclei of stars
create a fully ionized plasma. The temperature in the solar core can be so high that nuclear
fusion reactions occur, creating heavier elements from fusing atomic nuclei. Under these
conditions, the light emitted from the plasma is a result of black body radiation. Charged
particles at the edge of stars, in the so-called corona region, are hurled into the vacuum of
space with the rotating motion of stars (e.g., solar wind). The low-pressure environment in
space prevents the charged electrons and ions from recombining. Thus, low-density plasmas
pervade the vacuum of space. As they are composed of charged particles, plasmas respond
to electric and magnetic fields. One example of this phenomena is observed from Earth.
The aurora (aurora borealis and aurora australis) are a result of space plasma responding
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Figure 2.1: Natural and artificial plasmas under different temperature and pressure condi-
tions.

to Earth’s magnetic field concentrated at the poles. The charged particles interact with
the neutral gas in Earth’s atmosphere creating excited states, which then emit visible-range
photons. Under the competitively high atmospheric pressure conditions, plasma can be
generated as the electrical potential accumulated in clouds is discharged. This, of course, is
the familiar phenomenon of the lightning strike.

The active medium of charged and excited particles obtained in the plasma state also
make them useful for industrial applications. Artificial plasmas are generated typically by
application of electric and/or magnetic fields through a gas. For example, magnetically
confined plasmas in fusion reactors are considered for energy generation applications. One
common method for generating artificial plasmas is by discharging a capacitor into an electri-
cal circuit with a gap between the electrodes. At sufficiently high voltages, gas in the gap is
said to “break down”, generating a plasma. These types of plasma are called “gas discharges”
[38]. This way electrical energy is efficiently coupled to the charged particles through accel-
erating them along the electric fields. Gas discharges are widely used industrial applications,
most notably for semiconductor manufacturing under low-pressure conditions [39]. Under
low pressure, the discharges are well-behaved and take upon the structure of a uniform
glow. However, under atmospheric pressure conditions, discharges tend to obtain an arc-
and spark-like structures, similar to the lightning bolt. Under this condition, the high col-
lision rates allow energy transfer between the charged particles and the neutral gas. Thus,
these types of discharges are used for high-temperature materials processing applications
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such as arc welding [40]. It is, however, also possible to generate low-temperature glow-like
discharges under atmospheric pressure conditions. These so-called cold atmospheric pressure
plasma (CAP) sources allow plasma treatment of heat and pressure sensitive materials in-
cluding biological targets. An emerging application for plasmas is “plasma medicine” which
focuses on the therapeutic effects induced by CAPs. The next sections discuss the details of
plasma medicine and the details of the generation of CAP sources with a special focus on the
widely-used atmospheric pressure plasma jets (APPJs). A key theme in this chapter is the
complexity of the discharge phenomena and the resulting difficulty in their regulation. The
consequent variability observed in operation motivates the application of advanced feedback
control strategies as demonstrated in the later chapters.

2.2 Plasma Medicine
Medicinal effects of high-frequency currents and associated electrical discharges were first
noted in early 20th century [41]. The increased knowledge and interest in electrical circuits
in 19th century led to the investigation of various effects of alternating and direct currents.
Nikola Tesla’s designs for high-frequency, high-voltage circuits and his public demonstrations
showing that high-frequency currents could interact with living bodies without “apparent
harm” pioneered the field [42]. Early adopters such as Arsene d’Arsonval and Paul Oudin
innovated on Tesla’s design and conducted small-scale trials on patients. d’Arsonval’s device
reported having medicinal effects including oxidation of blood and increased metabolism
[43]. Oudin reported successfully treating a range of ailments with high-frequency current
discharges, including focusing on pain relief.[44]

Despite the work of these early investigators, the biological effects of high-frequency
currents, at the time, were not well understood. Biological systems and electrical discharges,
both complex systems in their own right, give rise to exceedingly complex interactions. In the
absence of a good understanding of biology or gas discharge dynamics, the development of
electro-therapy applications was outpaced by other contemporary technologies such as X-Ray
and radiation [41]. The lack of understanding of the physical principles of electro-therapy
also resulted in its association with the metaphysical. Thus, the scientific investigation in
this field significantly diminished. This did not stop, however, large scale marketing of gas-
discharge based devices to consumers. Known as “Violet Rays”, these devices were advertised
to have a variety of -unproven- benefits and sold until after World War II. In the late 1940s
and early 1950s, a series of cases instigated by the US Food and Drug Administration against
various manufacturers resulted in misbranding charges, concluding that the devices did not
produce the promised effects [45].

For much of the second half of the 20th century, the research interest in gas discharges
primarily focused on comparatively extreme conditions. High temperature and high pressure
plasmas for nuclear fusion and low-pressure surface modification applications dominated the
field. Notably, with the computer revolution in the 1980s, the demand for semiconductor
circuits increased drastically. As one of the primary technologies for manufacturing, use
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of gas discharges for “plasma etching” came into prominence both in academia and in in-
dustry. This drive resulted in rapid development in the understanding of plasma physics,
chemistry, and expertise in diagnostics and device construction [3]. Research efforts in the
1980s focused on atmospheric pressure plasma processes to remove the need for cumbersome
and expensive vacuum equipment used in low-pressure processing. By the end of the 1990s,
new concepts were developed for atmospheric pressure plasma generation including the use
of pointed electrodes, current-limiting dielectric barriers and using pulsed and alternating
voltage signals [1], [2], [46].

In parallel to the developments in plasma science, the understanding of biological pro-
cesses and principles have also rapidly transformed since the 1900s. Notably, the discovery
and sequencing of DNA and the development of various assays for metabolites, and gene
and protein expression enabled direct and systematic probing of biological systems. In light
of these developments, the 2000s saw a re-visiting and re-discovery of the use of electri-
cal discharges for medicinal purposes [47]–[49]. The continued efforts in understanding the
medicinal effects of gas discharges and their mechanisms of interactions with biological mat-
ter gave rise to the field of “Plasma Medicine” [50], [51].

In the past two decades, the field of Plasma Medicine saw rapid development with in-
creasing number of publications, conference participation and dedicated academic journals.
Various medicinal effects are reported with plasma treatment, most prominent of which is
the selective deactivation of bacteria [48], [52]–[56]. Other notable applications include:

• Deactivation of biofilms [57]–[59] viruses [60] and fungi [61], [62],

• Dental hygiene [63], [64],

• Surgical ablation [65], [66],

• Treatment of cancers [67]–[71],

• Accelerated wounds healing [72]–[74].

• Assisting drug delivery [75], [76]

• Stem cell differentiation [77], [78]

The majority of plasma medicine research is done in-vitro or on animal subjects. At
the time of writing, only three plasma devices have obtained clinical certification in Eu-
rope; KINPen MED (neoplas tools GmbH), PlasmaDerm (CINOGY GmbH), and SteriPlas
(Adtec). The growing clinical experience [13], [79] is poised to provide insight on safety and
effectiveness as well as the challenges in in-vivo plasma treatment.

In face of the growing interest and research efforts, clarification of the biological mecha-
nisms of plasma therapies, as well as determining the appropriate use cases of plasma devices,
are still areas of active research. Efforts of the last decade have provided some significant
insight into how plasma devices induce medical effects. Discharges produce a variety of
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agents such as reactive oxygen and nitrogen species (ROS), UV and visible range photons,
electric fields and thermal effects [80]. Each of these agents is used on their own in medical
applications. However, a key advantage of plasma sources is their ability to locally gener-
ate and deliver these agents. Particularly ROS are thought to play a key role in inducing
biological effects on substrates [10], [80], [81]. These reactive species interact with the cell
metabolism inducing proliferation or when the cell is overwhelmed with oxidative and ni-
trosative stress, cell death [82]. Moreover, short-lived species such as atomic oxygen can
induce chain reactions by participating in cell signaling mechanisms, prompting further in-
tracellular production RONs over distances beyond the plasma effects can directly penetrate
[12]. The electric fields can result in electroporation, which allows significantly increased
transport of the reactive species across cell membranes [20], [83]. UV radiation can have a
disinfecting effect on bacteria through inducing dimerization of thymine bases in the DNA
strands thereby and interfering with the cell replication processes. Thermal effects of the
discharges can also be significant for thermal coagulation applications [84] or for inducing
hyperthermia and thermal stress on cell metabolism. The different effects produced by dis-
charges can also act synergistically [19] and induce systemic effects such as oxygenation of
the blood [85] and immune response [86]. The complexity of interacting effects produced by
discharges is one of the key challenges in understanding the therapeutic effects of plasma
devices. This challenge is compounded by the variability observed in operation medically-
relevant plasma devices. As a result, the best practices and field standards such as dosimetry,
are not yet well-established.

The rest of the chapter overviews the basics of cold atmospheric pressure plasmas, in
particular, atmospheric pressure plasma jet configurations and discusses the key sources of
variabilities, motivating the need for feedback control.

2.3 Cold Atmospheric Pressure Plasmas
Plasma sources suitable for use in medical applications are necessarily generated under am-
bient conditions so as to be able to interact with living targets. Moreover, these discharges
should be non-thermal, or “cold” exhibiting gas temperatures significantly lower than that of
the energetic electrons (Tg � Te). CAPs satisfy this requirement by operating outside local
thermal equilibrium (LTE). This requirement contrasts with the high temperatures natu-
rally observed in atmospheric pressure discharges such as thermal arcs [87]. Note, however,
although termed “cold”, the gas temperature in CAPs can still be much higher than room
temperature (≥ 100 oC) depending on the operating conditions [88], [89].

This section reviews the basic processes occurring in plasma ignition and steady oper-
ation, and thermal equilibrium and presents some common device structures which allow
generation of CAPs.
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2.3.1 Breakdown and Steady Operation

Electrical breakdown of gases occurs through a process known as Townsend avalanche. This
process relies on the presence of a free electron in the discharge gap, accelerated along the
applied electric field. Low concentrations of electrons created by cosmic rays are instrumental
in initiating this process. As the electron traverses the discharge gap, it collides with neutral
atoms, causing them to ionize and to emit electrons. The emitted electrons from these impact
reactions are also accelerated in the electric field, further colliding with neutral atoms and
causing emission of even more electrons. This chain reaction causes an exponential increase
of charged particle in the gap, thereby achieving gas breakdown. [39] The corresponding
current during the Townsend process is expressed as

I = I0e
αd, (2.1)

where α is the Townsend ionization coefficient, describing the number of ionizing collisions
per unit length. This process is also known as the α process. In (2.1) d is the length of
the discharge gap and I0 is the current from the cathode. A key requirement for breakdown
is that the mean free path of the electrons is large enough that they can accumulate the
necessary energy to ionize the background gas upon impact. With a low mean free path,
the electrons lose energy with non-ionizing collisions, preventing ionization. The condition
for electrical breakdown is formalized through Paschen’s Law which relates the breakdown
voltage to the product of gas pressure p and separation distance d for a parallel-plate electrode
configuration [90].

In principle, the Townsend avalanche would conclude as the electrons all reach the anode
and the ions reach the cathode. The steady-operation of the discharge relies on the so-
called secondary or γ process. The γ process involves electron emission from the electrode
surface upon bombardment with high energy particles. The Townsend criterion for the
self-sustainment of discharge is expressed in terms of both the ionization coefficient α and
secondary electron emission coefficient γ as [39]

γ(eαd − 1) = 1. (2.2)

Where the discharge is generated in rare gases (such as He or Ar), a secondary process is
known as Penning ionization can also play a significant role in discharge steady operation
[91]. This process relies on the emission of secondary electrons from ionization of metastable
species instead of emission from the electrode. Note, however, that secondary electron emis-
sion processes are not necessary to maintain in all discharges (e.g., radio frequency excited
discharges).

2.3.2 Plasma Temperatures and Thermal Equilibrium

The description of a singular “temperature” for plasmas is not straightforward. In fact,
plasmas can exhibit several different temperatures at the same time; for example, electrons,
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being considerably lighter than ions and neutral particles, can obtain higher velocities in
electric fields and therefore can have a higher temperature than the heavier ions. Whether
or not the plasma reaches a thermal equilibrium, where all particles have the same velocity,
depends on the frequency of collision events which is a function of the pressure and applied
electric fields.[37] The deviation of a steady state discharge from thermal equilibrium can be
described with the following expression for a group of electrons accelerating in an electric
field, moving in a gas [92]

Te − Tg
Te

=
mg(λeeE)2

4me(
3
2
kbTe)2

. (2.3)

Here, Te is the electron temperature and Tg is the temperature of the surrounding (neu-
tral) gas and the heavy particles. λe is the mean free path of electrons, mg and me are the
molecular mass of the gas and electron, respectively, E is the electric field, e is the elemen-
tary charge and kb is the Boltzmann constant. The term λeeE corresponds to the energy
accumulated by an electron accelerated in the electric field along its free path, and 3

2
kbTe is

the average thermal energy assuming a Boltzmann distribution. Expression (2.3) indicates
that large mean-free paths (low pressure or density), large electric fields and low electron
energies result in deviations from LTE. Moreover, differences in the mass of an electron and
the background gas contribute to this deviation. The lighter electrons can move significantly
faster allowing them to respond to changes in electric fields faster than the heavier ions.

Since the mean free path scales with pressure, discharges tend to thermal equilibrium as
pressure increases. At low pressures, the mean free path is large; electron-neutral collisions
are rare and the energy in electrons is not effectively transferred to the gas. As a result,
Te and Tg diverges, generating a “cold” plasma. This type of discharges is well studied in
the field of astrophysics [37] and widely used in materials processing applications for heat
sensitive materials [39]. Under atmospheric pressure, however, it is comparatively difficult
to generate a non-thermal plasma. The rapid heating of gas when an electrical discharge is
ignited can cause the plasma to exhibit “arc” or “spark” behaviors [93]–[95]. In this case, the
discharge shrinks into a thin conductive filament with high current density, as the energy
in the electrons is transferred to the gas through rapid collisions. A naturally occurring
example of this phenomena is the formation of the lightning bolt. While arc and spark
type discharges have some industrial uses (e.g., welding, spray casting [40], [96]), the high
temperatures they exhibit (on the order of 10,000K) limit their use for interacting with heat
sensitive, and living substrates.

Generation of cold plasmas under atmospheric pressure condition can be achieved through
the application of transient electric fields, the use of current limiting circuitry and gas flow.
The discharge, then can be maintained at a sustained state of non-LTE, maintaining the
discrepancy between Te and gas Tg and preventing the transition to an arc. The next section
described the generation of such discharges in further detail.
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(a) Streamer Discharge (b) Dielectric Barrier Discharge

Figure 2.2: Typical configuration of an atmospheric pressure (a) streamer discharge and, (b)
a dielectric barrier discharge in air.

2.3.3 Cold Atmospheric Pressure Plasma Devices

The key means of generating non-LTE CAPs is exploiting the distributed timescales of the
physical phenomena in discharges [4]. CAP devices are typically ignited by transient electric
fields [87]. Figure 2.2 depicts two common types of cold atmospheric pressure plasma sources,
a streamer discharge (Figure 2.2(a)) and a dielectric barrier discharge (Figure 2.2(b)). The
corona discharge is operated using DC voltage, applied to a needle electrode. The sharp
needle tip creates a region of concentrated electric field allowing for an easier breakdown.
The steamer discharge exhibits self-pulsing behavior; a large ballast resistor placed between
the power supply and the electrode limits the discharge current and causes the discharge
to extinguish before it becomes too conductive and transitions to a spark [93]. As a result,
corona discharges typically obtain a discrete streamer structure [97]. The self-pulsing be-
havior allows the corona discharge to remain cold since the discharge is not present for long
enough for the background gas to warm up.

The dielectric barrier discharge, as the name implies, relies on a dielectric barrier placed
between the electrode to limit the current. The presence of dielectric barrier necessitates
the use of AC voltage (few-several kHz) to sustain the plasma. The key advantage of the
DBD configuration is the ease of construction of devices with relatively large surface area for
comparatively homogeneous treatment. DBDs also have the benefit of being generally arc-
free. However, the discharge structure may become filamentary with increasing discharge
voltage [98]. The kHz-range excitation also results in discrete breakdown events. These
discharges further exhibit a so-called “memory effect” where the effects from one breakdown
event are carried over and influence the subsequent breakdowns [99], [100]. This behavior is
attributed to charge accumulation in the dielectric and longer-lived metastable species whose
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lifetimes can exceed timescales of the electrical excitation, contributing to the repeatability
between the individual breakdown events [101].

Corona and DBD discharges represent examples of typical configurations for CAP sources
ignited in air. A particularly significant enhancement for CAP sources is the incorporation
of gas flow, which can significantly alter discharge phenomena while offering additional flexi-
bility in operation. The CAP sources incorporating gas flow have distinct characteristic and
are often classified separately. The next section focuses on this class of CAP devices termed
atmospheric pressure plasma jets (APPJs).

2.4 Atmospheric Pressure Plasma Jets

(a) (b) (c) (d)

Figure 2.3: Diagrams for atmospheric pressure plasma jets in (a)-(b) DBD-jet and (c)-(d)
DBD-like jet configurations.

APPJs have gained increasing attention in medical [3], [12], [79] and materials process-
ing applications [2], [87], [102] due to their operational flexibility and versatile discharge
chemistry. APPJS are classified based on their electrode geometry and arrangement, the
excitation frequency of the applied voltage, as well as the flow field configuration and com-
position of the working gas [103].

APPJs exhibit similarities to corona and/or DBD discharges based on the shape and
configuration of electrodes. In APPJs, ring and rod (or needle) electrodes are configured
in and around a dielectric tube, which directs the flow of a carrier or operating gas and
usually doubles as a dielectric barrier. To allow breakdown at practical applied voltages, the
dimensions of the dielectric tube is typically kept small (few mms in diameter). Figure 2.3
shows some common electrode geometries for APPJs. When the powered APPJ electrode is
covered by a dielectric the APPJ is referred to as a DBD-jet (Figure 2.3(a)-2.3(b) whereas
if the powered electrode, typically a needle, is exposed the APPJ is termed a DBD-like jet
(Figure 2.3(c)-2.3(d)). The key difference is that in DBD-like APPJs the discharge directly
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runs between the electrode and conductive substrates, with no dielectric barrier to limit
current. This can drastically influence the discharge characteristics and may result in arcing
behavior under certain conditions. The DBD-jet ([25], [104], [105]) and DBD-like jet ([47],
[79], [106]) are the most common APPJ configurations used in medical applications.

Often a distinction is made between direct and indirect treatment with APPJs. Direct
treatment refers to a condition where the plasma is electrically coupled to the substrate,
while in indirect treatment the treated substrate is only in contact with the discharge af-
terglow. Direct plasma treatment allows generation of chemically active species close to the
target substrate and, therefore, can enhance the plasma effects [107]. However, the coupling
between the discharge and substrate under direct treatment also implies that the discharge
properties can change, sometimes drastically, with changing substrate properties [25], [106].
Although some discharge geometries, such as those shown in Figure 2.3(a) and 2.3(d), are
more amenable to direct treatment, electrical coupling to the substrate may occur even
when a grounded electrode is present. The distinction between direct and indirect treat-
ment, therefore, can be non-trivial as it depends on the specifics of the device and operating
conditions.

APPJs can be excited with oscillating electric fields in kHz, RF (MHz) or microwave
(GHz) frequencies. The characteristic frequencies of electrons and heavier ions influence
how the discharge behaves under different frequencies of excitation. Typical characteristic
frequency of ions is on the order of an MHz, while the characteristic frequency of electrons
is on the order of a GHz. As as a result, three distinct behaviors are observed in the
discharge; in kHz range, both electrons and ions respond to the electric field, in RF range
electrons respond to the electric field but the heavier ions cannot, and in microwave-range
neither electrons nor ions can respond to the rapidly changing electric field [87]. kHz range
excitation, be it pulsed or sinusoidal, can result in inherently discrete discharge behavior.
For example in AC kHz-excited APPJs a distinct breakdown events are observed during the
positive and negative half cycle of the applied voltage signal [104]. So-called “plasma bullets”
or guided ionization waves occur under this condition, propagating at speeds of several km/s
[103], [108], [109]. In DBD-jets long-lived metastable species can remain in the discharge
gap between breakdown events, influencing the overall discharge behavior [99], [110]. This
can lead to some distinct mode behavior in kHz-excited APPJs including “continuous” mode
where the discharge appears present throughout the entire period of the applied voltage, and
“filamentar” behavior where multiple secondary breakdown events are observed associated
with an appearance of multiple distinct filaments [110], [111]. In contrast, RF-APPJs are
inherently continuous; the electrons rapidly oscillate in response to the electric field within
a cloud of stationary ions in the bulk discharge. RF discharges are commonly used with
the DBD-like jet configurations [47], [79], [106] and can exhibit the so-called α − γ mode
transition where the secondary electron emission processes become dominant over Townsend
ionization [112]. This behavior can lead to arcing, particularly when an APPJ configuration
with an exposed electrode is used. Both RF and kHz-excited APPJs can be further equipped
with a duty cycle or pulse modulation, which involves modulating the applied voltage at a
lower frequency than that of excitation. Duty cycle modulation is sometimes used as a means
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for regulating the discharge temperature in RF discharges [106], [113].
The flow rate and composition of the working gas are some of the key parameters which

influence APPJ characteristics. Typically APPJs are operated with a noble gas, which allows
a lower breakdown voltage. Although it is possible to obtain air or N2 jets, they are not
commonly used in medical applications due to their comparatively high temperature [103].
Common choices of operating gases are He and Ar. The choice of the operating gas can
influence the stability region, as defined by the operating region beyond which the discharge
becomes unstable and possibly transitions to arc as well as the dissipated power and gas
temperatures [88], [114], [115]. Notably, Ar results in higher gas temperatures but higher
discharge currents and electron densities and is the working gas of choice for the clinically
approved kINPen device [79] as well as for thermal coagulation [84]. In contrast, He jets
are associated with larger electron temperatures [115]. Typical flow rates of 1-10 slm are
used in APPJ devices. APPJs are constructed in either linear field configuration where the
electric and flow fields are parallel, or in cross-flow configuration where the two fields are
perpendicular. The geometries depicted in 2.3 are all in linear field configuration. This is
desirable as the linear field configuration allows the APPJ to extend beyond the electrode
up to several cms outside the tube [116], increasing the flexibility of treatment.

The flow structure in APPJ is coupled to the discharge dynamics, and can significantly
influence the discharge characteristics. The flow rate, as well as the laminar and turbulent
flow regimes, influence how far the plasma plume extends beyond the electrode as well as the
discharge propagation dynamics such as the propagation speed of plasma bullets [103], [117],
[118]. The flow rate also influences the extent to which the ambient gas is in-mixed to the jet
plume, impacting the spatial profiles of the reactive species delivered to treated substrates
[119]–[121]. Small admixtures (few %) of molecular gases such as O2 [91], [121]–[123], N2

[47], [124] and H2O [5], [125] are often used to influence discharge chemistry in generating
medically-relevant RONs. The use of so-called shielding gases to change the composition of
the ambient gas in contact with the plasma plume can be yet another means of influencing
discharge chemistry [126].

2.4.1 Variability in APPJs

The complex physical processes that occur in APPJs are distributed across multiple timescales
and result in a broad range of operating conditions for the APPJ. The flexibility in the oper-
ating conditions is a key strength in making APPJs attractive tools for medical and materials
processing applications. However, the same physical phenomena also result in considerable
sensitivity of APPJs to operating and ambient conditions. As a result, APPJs can suffer from
considerable variability in operation which can be detrimental to their reliable application,
particularly in a medical context.

APPJs typically exhibit steep spatial gradients both in axial (direction of flow) and
radial (perpendicular to flow) directions. Concentration gradients of reactive species and
gas temperature can be, respectively, on the order of 1015 cm−3/cm and 10 K/cm along
the plasma plume [8]. This implies that APPJ operation requires considerable precision
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for effective treatment. The jet-tip-to-substrate separation distance and the x-y position of
the jet over the surface should be manipulated with care. However, the comparatively small
dimensions of APPJs (few mm in diameter) often require translation over treated substrates.
The small variations in the position of the APPJ which inevitably occur during hand-held
translation of APPJs over substrates can cause changes in discharge characteristics resulting
in non-uniformity of treatment, with over- and undertreated areas.

Variations in jet-tip-to-substrate separation distance can impact several physical phenom-
ena occurring in APPJs. For example, increased separation distance increases the discharge
area exposed to ambient air, increasing the amount of air admixed into the jet plume. This,
in turn, influences the temperature dynamics as well as the concentration and spatial dis-
tribution of reactive species in the discharge. Moreover, in the case of direct treatment,
where the substrate is coupled to the discharge, changing separation distance changes the
electric field across the discharge gap and the location of the ground. Therefore changes
in separation distance can significantly impact the properties and treatment effects of the
APPJs [121], [127].

In case of direct treatment APPJs exhibit sensitivity to properties of the treated sub-
strate. Varying conductivity, electron emissivity and thermal properties of the substrates
can dramatically change the APPJ characteristics including electric fields, concentrations
of electrons and reactive species concentrations [6], [25]. For example, APPJs are observed
to spread out over dielectric substrates while a distinct secondary “re-strik” phenomena are
observed over conductive substrates associated with increased power deposition. In a med-
ical context, treated substrates such as healthy skin, wounds or tumors may have varying
properties resulting in a different treatment effect. Moreover, APPJs exhibit some inherent
variability. Particularly during the start of the operation, the optical and electrical charac-
teristics of APPJ are observed to drift significantly [9], [11].

These sources of variability can significantly impact the safety, effectiveness, and re-
producibility of APPJ treatment. Particularly in a medical context, the safety and repro-
ducibility requirements are stringent and sources of variability are compounded by patient-
to-patient variability. As a result, the APPJ operating range cannot be fully exploited for
safe and effective treatment. Moreover, it can be difficult to isolate and discern the specific
effects and underlying physical mechanisms of APPJs in presence of the variabilities making
it difficult to compare different discharges and experiments, hampering the research efforts
in plasma medicine.

2.4.2 Conclusions

This chapter overviewed the history, basic premise, and devices used in plasma medicine,
with a particular focus on APPJs. The potential for plasma devices for a variety of medi-
cal application is evident. However, generation and maintenance of discharges suitable for
medical treatment can be extremely complex and difficult to regulate. In particular, APPJ
devices suffer from various sources of variability in their operation stemming from their
sensitivity to the operating condition and their environment.
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The main conclusion of this chapter is the pressing need for effective regulation for APPJ
characteristics in real time, particularly in the context of plasma medicine. Feedback control
strategies can be instrumental in improving the safety of APPJ treatment, broadening the
operating region of APPJs and allowing increased flexibility and repeatability of treatments.
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Chapter 3

Experimental Setup of a kHz for
Real-time Control

Automation of data collection and actuation is necessary for the implementation of
process control strategies. However, there is no current practice for automated exper-
imental atmospheric pressure plasma jet (APPJ) setups. As a result, the design and
choice of actuators and sensors for automated operation are open questions. This chap-
ter investigates considerations regarding design actuators for voltage and gas flow, as
well as the choice and integration of instrumentation for sensing thermal, electrical, and
optical characteristics of a kHz-excited APPJ in helium. The details of the hardware
and software components of the experimental control setup are presented.

3.1 Introduction
The features of the experimental setup, particularly the instrumentation, can have a signifi-
cant impact on design and implementation of control strategies. For example, the available
measurements and the multiple timescales over which the measurements are acquired may
limit what aspects of the system can be controlled. The constitution of the experimental
setup (i.e., geometry, excitation frequency, etc.) and the intended use (e.g., stationary vs
hand-held setups) can impact the choice of sensors and their placement. Therefore, the de-
sign of the experimental setup and the control strategies are coupled undertakings. Some
crucial issues pertaining to the design of an APPJ setup for real-time control include:

• construction of the APPJ device,

• design of circuitry for actuation and measurement of electrical signals,

• choice of non-contact measurement methods for discharge characteristics,

• design and implementation of automatic actuation mechanisms for the APPJ position,
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• reliable operation of the electrical equipment in presence of interference from the dis-
charge, and

• synchronizing measurements and coordinating actuation signals from different sources.

A single-electrode kHz-excited dielectric-barrier APPJ setup, similar to the configura-
tions investigated in [104], [110], [111], [128]–[131], is chosen for experiments. This APPJ
configuration is preferable due to the stable, arc-free operation and simple construction. The
APPJ consists of a quartz tube (ID=3 mm, OD=4 mm) which doubles as a flow channel
and dielectric barrier. A 1 cm long copper plate, wrapped outside the tube 1 cm away from
the nozzle, is used as the powered electrode. An aluminum plate fixed on a gantry acts as
the ground. Nominally, a borosilicate microscope cover slip is situated under the APPJ as
a dielectric substrate. The APPJ is operated in direct mode, where the discharge remains
electrically coupled to the treated substrate throughout the operation.

The instrumentation of the setup consists of two distinct parts: (i) an embedded layer
managed by microcontrollers (Arduino UNO R3), and (ii) peripheral instruments which
collect memory-intensive measurements (images, spectra, etc.). The signals from embed-
ded instruments and peripherals are processed and synchronized in Python, using a single
board computer (Raspberry PI 3). The single board computer also governs the actuation
by communicating with the embedded layer via USB. The single-board computer is capable
of Wi-Fi allowing further communication with the experimental setup using the TCP/IP
protocol. The rest of the chapter presents the components of embedded and the peripheral
layers and details of the software which allows their coordination.

3.2 Embedded Actuation and Sensing
The embedded layer represents the lowest layer allowing automated interaction with the en-
vironment, generation and recording analog and digital signals. The embedded layer consists
of actuation circuitry, sensors, and programmable micro-controllers. The micro-controllers
are capable of executing code in fast ( millisecond) timescales, however, have limited memory
and capabilities. For example, they can generate only digital signals (high, low and pulse-
modulated) and can access information via limited communication protocols (e.g., analog
voltage and i2c communication) and execute relatively simple programs. Therefore the em-
bedded layer is suitable for generating the actuation signals and record comparatively simple,
fast-timescale measurements.

A diagram of the embedded measurement and actuation layer for the experimental setup
is presented in Figure 3.1. Two Arduino UNO micro-controllers manage actuation and em-
bedded measurements. The “Master Arduino" manages the actuation of the applied voltage
signal (applied voltage amplitude, frequency and duty cycle), the flow rates as well as the
embedded measurements. The “Complementary Arduino" is solely responsible for manag-
ing the x-y-z position of the APPJ. To ensure reliable operation of the micro-controllers in
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Figure 3.1: Diagram of the embedded sensing and actuation instruments in the experimental
APPJ setup. Measurement signals are denoted by red arrows while actuation signals are
denoted in blue.

presence of electrical interference, a “watch-dog" algorithm is employed to re-start operation
after 500ms of inactivity.

3.2.1 Applied Voltage Signal

The applied voltage is a key input parameter for the APPJ as it is the main means to
influence the power deposition in the discharge. In order to ignite the dielectric-barrier type
APPJ, a high-voltage AC voltage signal is necessary. As the micro-controller is only capable
of generating digital signals, additional circuitry is needed to be able to generate and modify
the input voltage signal.

An analog signal generator is designed to generate the sinusoidal voltage signal igniting
the discharge. The circuity allows manipulation of three inputs; applied voltage amplitude,
frequency, and duty cycle. The circuit diagrams of the different components of the signal
generator circuit, as well as the values for the associated circuit elements, are given in
Appendix A. The signal generator is based on the monolithic function generator (XR-
2206CP) (Figure A.3), configured to generate a sinusoidal signal at a frequency of 8-20 kHz
and at an amplitude of 5-10 V peak-to-peak. A 12-bit digital-to-analog converter (MCP4922)
(Figure A.1) generates the analog signals necessary to modulate the voltage and frequency.
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As the Arduino is capable of generating only a 5 V signal, an operational amplifier (Figure
A.2) is used to achieve the range of 5-10 kV peak-to-peak applied voltage. The generated
sinusoidal signal is amplified 1000× via a high-voltage amplifier (Trek 10/40A), in order
to achieve gas breakdown. A switching circuit is situated between the function generator
output and the amplifier (Figure A.4) to allow modulation of the duty cycle of the applied
voltage. The switching circuit is controlled by the pulse-width-modulated signal produced
by the Arduino UNO at a frequency of 1 kHz.

This circuit design described above is selected for actuation since it provides a robust
and reliable means of generating the applied voltage signal. However, using the monolithic
function generator allows only a limited range of available waveform shapes (sine, triangular
and square wave) and a limited range of excitation frequencies (8-20 kHz). As an alternative,
commercial function generators can be adapted for automatic control via digital communi-
cation protocols. Waveform generators based on direct digital synthesis (DDS) are often
capable of generating various shapes of voltage signals across a large range of frequencies
[132]. However, common high voltage amplifiers are often rated for limited ranges of fre-
quencies. Moreover, erratic transient behavior can be observed in fast-timescales with some
function generators when voltage changes are applied. Such transients may lead to arcing be-
havior and are generally undesirable during operation. Nevertheless, utilizing DDS to actuate
the voltage signal can open up opportunities for control. For example, discharge properties
may be influenced over fast (nanosecond-microsecond) timescales by using custom-generated
waveforms.

3.2.2 Flow Rates

Along with the applied voltage, the flow rate of the working gas, helium, and its composition
can significantly influence the APPJ behavior [126], [129], [133]. Therefore the ability to
manipulate the flow rate helps broaden the operating range of the device. Commercial
mass flow controllers (MFC) (UNIT UFC-1200A) are chosen to maintain the flow rate of
the working gas, helium, and an admixing gas (O2 or N2). Any number of MFCs can be
incorporated into the setup via a manifold in order to allow for complicated, multi-component
gas mixtures. However, in order to limit the complexity of the setup only two MFCs are
incorporated to the setup. The 20-pin connectors between the MFC valves and control
boxes are spliced to allow automatic manipulation of the flow setpoints. An analog signal
at the range of 0-5 V generated using the digital-to-analog converter (MCP4922), (see A.1))
is utilized to vary the flow rates via the Arduino within the range rated by the individual
MFCs (0-10slm for the working gas and 0-20sscm for the admixed gas).

3.2.3 Position

The small diameter of the APPJ requires that the device is translated across substrates for
treatment of practical areas (∼ cm2). The problem of building devices for the automatic
positioning of the APPJ position falls in the realm of mechatronics. On its own right, building
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(a) z-axis holder side view (b) z-axis holder in perspective

Figure 3.2: Rendering of the holder assembly designed to allow the attachment of the APP
tube to the z-axis gantry.

and controlling robotic manipulators for positioning is a complex task [134]–[136]. Various
geometries and designs are available each with associated advantages and drawbacks [136].
Two popular choices for robotic manipulators are gantry robots which rely on manipulation
in Cartesian geometry, and the so-called articulated or “anthropomorphic" robot arms which
mimic the structure of the human arm.

Gantry robots are commonly used in applications such as additive manufacturing and
automated liquid handling [137], [138]. A common configuration, also adopted for the ex-
perimental setup described in this section, consists of three axes. A gantry (see Figure 3.1
) is allowed to slide in the x-y plane. The position is controlled by means of lead screws
attached to stepper motors. Another gantry attached a lead screw situated perpendicular to
the x-y plane to allow manipulation of the z position. Custom parts are needed to connect
the moving parts of the setup (the grounded metal plate and the APPJ tube) to the gantries.
The grounded aluminum tube is fixed to the gantry by means two custom designed substrate
supports (see Figure A.6). The APPJ tube is attached to the z-axis gantry by means of two
copies of a two-part holder assembly (see Figure A.7 and A.8). A rendering of the z-axis
assembly is shown in Figure 3.2. The parts are 3D-printed in poly-lactic acid and fixed
via 3M screws to the z-axis gantry. The APPJ tube is secured to the holder assembly via
zip-ties. The position for each axis is manipulated by stepper motors (NEMA 17) attached
to the corresponding lead-screw. The stepper motors are controlled by the complementary
Arduino UNO (see Figure 3.1) and two Adafruit Stepper Motor Shields [139]. A photo of
the gantry robot setup for manipulating the APPJ position is shown in Figure 3.3(a). As
the configuration is set-up in Cartesian coordinates, direct and precise manipulation of the
x, y, and z positions is straightforward. Calibration of the number of steps taken by the
stepper motors per mm is sufficient to allow for reproducible manipulation of the x,y and
z positions. A key drawback of the Cartesian manipulator, however, is the limited working
envelope of the device. Since the position of gantries are limited by the lengths of lead screws
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(a) Gantry robot (b) Robotic arm

Figure 3.3: Example robotic manipulators for the APPJ setup.

and metal rods over which the gantries slide, this configuration results in a comparatively
small working envelope and a bulky set-up.

The articulated robotic arm is an alternative configuration which allows for more flexible
operation. This type of robotic actuators is attractive as they can be, in some sense, “general
purpose", capable of performing a range of tasks. Alongside industrial robotic actuators
[140]–[142], various designs of articulated arms ranging from 3- to 8-degrees-of-freedom are
made freely available in online communities [143]. A 3D-printed robotic arm configuration,
based on one of these designs, holding the APPJ is shown in Figure 3.3(b).

A crucial drawback of the robotic arm configuration is the precise and reproducible ma-
nipulation of the position. Derivation of comparatively complex trigonometric relationships
is required to relate the movement of the motors to the position of the tip of the arm [136]. A
mismatch between the modeled and the realized position can occur due to various sources of
error such as mechanical relaxation, small errors in model parameters, or sagging of various
parts due to increased torque as the robotic arm extends. As a result, the position of the
manipulator may not be reproducible. Although feedback control can aid this issue, their
implementation can be a challenging task. Absolute or differential encoders can measure
the position of the motors, however, detecting the location of the tip of the arm is a more
complicated task. State-of-the-art methods for positioning rely on image processing methods
based on artificial neural networks [135]. Due to these complications, a gantry-type robotic
actuator is chosen over a robotic arm for experiments. However, the methods developed
and demonstrated in the rest of this work can be easily integrated into a robotic arm setup,
provided reproducible actuation of position is possible.
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3.2.4 Embedded Sensing

Alongside the actuation, the embedded layer is capable of sensing for signals with low mem-
ory requirements. The key variables measured in the embedded layer are the total optical
emission intensity, root-mean-squared (RMS) voltage and current (see Figure 3.1). The total
optical emission intensity is obtained via a photodarlington diode attached to a fiber optic
cable pointed towards the APPJ. A signal proportional to the emission intensity is obtained
in arbitrary units.

In order to be able to regulate the fast-occurring electrical dynamics of the APPJ, it is
necessary to obtain embedded measurements of the voltage and current signals. However,
direct-measurement of kHz signals is not possible with the Arduino UNO. Therefore, AC-to-
RMS converters (AD536A) (see Figure A.5) are employed to obtain analog measurements of
the RMS value of the voltage and current signals. The two signals are multiplied to obtain
a measure of the RMS power dissipated in the discharge.

Other sensors based on the digital i2cp communication protocol (e.g., temperature, hu-
midity, time-of-flight distance) can, in principle, be added to the embedded layer. However,
it should be noted that the electrical noise created by the discharge poses a significant chal-
lenge. Noise in the digital signal can, in effect, block the Arduino UNO, completely halting
the operation. Therefore, special care must be taken for sensor positioning and shielding for
the incorporation of digital sensors. Similarly, measurements based on optical methods such
as IR-based distance sensors can be significantly influenced by the discharge, to the point
where their normal function is impaired. As a result, only a limited set of sensors can be
readily incorporated to the kHz-excited APPJ setup.

3.3 Peripherals
Specialized instruments are interfaced with the single-board computer in order to obtain
more detailed and memory intensive diagnostics. These more detailed measurements involve
spatially, temporally and spectrally resolved diagnostics of the APPJ which can be used
on their own or to complement and validate the embedded measurements. A diagram of
these peripheral instruments are shown in Figure 3.4. Specialized software is required to
communicate with these peripheral instruments. As a result, the measurements obtained
from these devices are at a significantly slower timescale.

3.3.1 IR Thermal Imaging

Sharp gradients in APPJ dynamics result in spatially distributed temperature profiles on
treated substrates. To obtain a measure of the thermal effects of the APPJ, then, a spatially
resolved measurement method is necessary. Calibrated thermal images of the substrate are
obtained via a radiometric thermal camera (FLIR Lepton 3 [144]) pointed at an angle towards
the APPJ (see Figure 3.4). An example of an IR thermal image of the APPJ impinging on
the substrate is shown in Figure 3.5.
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Figure 3.4: Peripheral instruments in the experimental APPJ setup. Measurement signals
are shown in red and electrical signals are shown in gray.

Crucial information such as the maximum temperature on the substrate can be easily
extracted for thermal images. As the maximum temperature is typically observed to coincide
with the jet centerline, with calibration, the thermal images can also provide information
regarding the position of the jet. A key advantage of using a non-contact method for measur-
ing substrate temperature is that the sensor can be placed sufficiently far from the discharge
to prevent measurements from being affected by electrical noise. Nevertheless, for reliable
operation, it is necessary to implement software and hardware level fail-safe mechanisms.
Namely, unreasonably high temperature measurements (≥500 K) are discarded, and the
thermal camera is forced to re-start if a hang-up is detected (i.e., it is not possible to acquire
new measurements).

3.3.2 Oscilloscope

Voltage and current waveforms can provide information about the fast-timescale phenomena
of the discharge. Previous work by Walsh et al., [110] and Liu et al., [111] indicate the
current signal in APPJs carry important information about the discharge modes. Moreover,
the current signal is closely related to the substrate type, since the substrate acts as one of
the electrodes for the examined APPJ configuration. An oscilloscope (Rigol DS1054) is used
to measure the waveforms of the voltage signal on the powered electrode and the current
signal leaving the aluminum ground plate (see Figure 3.4). A typical measurement of a
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Figure 3.5: Example thermal image of the APPJ at an applied voltage of 6 kV peak-to-peak,
15 kHz, and a flow rate of 1.5 slm.

(a) Example current waveform (b) Power measurements

Figure 3.6: Electrical measurements from the APPJ: (a) an example current waveform for
applied voltage of 7kV peak-to-peak, frequency of 20 kHz and flow rate of 1.5 slm, and (b)
power measurements obtained from the oscilloscope and embedded measurements across the
APPJ operating range.

current waveform from the APPJ is shown in Figure 3.6(a). Note that since the current
waveform deviates from sinusoidal, the embedded and peripheral measurements of power are
not guaranteed to be consistent. Therefore, the measured waveforms are used to obtain a
more accurate estimate of the electrical characteristics of the APPJ. For the experimental
setup at hand and the investigated operating conditions, the computed RMS discharge power
is validated with respect to numerical integration of the product of current and voltage signals
obtained from the oscilloscope (see Figure 3.6(b)).
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Figure 3.7: Example optical emission spectrum of the APPJ obtained under an applied
voltage of 7 kV peak-to-peak, frequency of 20 kHz and a flow rate of 1.5 slm.

(a) OES adaptor side view (b) OES adaptor in perspective

Figure 3.8: Rendering of the designed OES adaptor allowing reliable positioning of the
fiber-optic probe.

3.3.3 Optical Emission Spectroscopy (OES)

The optical emission signal can provide important information about the chemical processes
occurring the discharge. Relevant thermal characteristics such as rotational and vibrational
temperatures of the discharge can be obtained from OES by means of generating and fit-
ting synthetic spectra [145]. Line-ratio methods can help correlate OES measurements to
other important discharge variables such as electron temperature [146]. Moreover, OES
measurements can be obtained relatively simply and in a non-contact manner, by focusing
a fiber-optic towards the discharge area. Therefore, OES is one of the principal sources of
information about the discharge characteristics.
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Optical emission spectra are obtained via optical emission spectrometer (Ocean Optics
USB 2000+). An example spectrum is shown in Figure 3.7. An important consideration here
is the positioning of the OES fiber-optic probe. The OES measurement is sensitive to the
positioning of the probe, particularly since the discharge area is comparatively small (few
mm in diameter). A custom part is designed to ensure the angle of the probe is maintained
at a constant angle relative to the substrate (at about 45 degrees). This way, it is possible
to ensure the signal is collected from the same position at the substrate-discharge interface.
A rendering of this OES adaptor is shown in Figure 3.8 and the dimensions of the part are
presented in Figure A.9.

3.4 Software
The development of software is an essential component for enabling automatic experiments
and real-time control. There are few major considerations in the development of software;
an effective software solution for automation and control should be compatible with all the
instrumentation, flexible to allow for modular addition and subtraction of instruments and
easy to understand and modify. For this reason, the majority of the software is scripted in
Python, which is an open-source coding language with a variety of freely available resources
and packages. The software developed for the setup is based on previous work [147] and is
presented in Appendix B. The script for automated experimentation and control consists of
three parts: (i) the firmware (see B.1) which is compiled in C++ and runs on the micro-
controllers, (ii) the coordination software which is coded in Python and runs on the single
board computer (see B.2), and (iii) monitoring and supervisory software, also coded in
Python, which runs on a standard consumer laptop.

The firmware is responsible for coordinating actuation and displaying the measurements
from embedded sensing. The actuation commands are supplied by the user to the serial
connection in the format of comma-separated letter-value pairs. The letter specifies the
actuated variable to which the value is assigned. For example the command "v,10" sets the
applied voltage to 10 kV peak-to-peak. The embedded measurements and the current values
of the actuated variables are written to the serial USB port at a baud rate of 38400 Bd.

The coordination software is the primary means of running experiments; it collects and
records data from the embedded layer and the peripherals. The communication with the
embedded layer is achieved with the pySerial [148] package, directly communicating with
micro-controllers via the serial port, or through the subprocess package routing commands
through the UNIX terminal. The peripheral instruments are interfaced with Python using
preexisting packages; pylepton [149] for the thermal camera, usbtmc [150] for interfac-
ing with the oscilloscope and seabreze[151] for the spectrometer. The measurements are
collected using “asynchronous programming". Unlike in conventional synchronous program-
ming, with the asynchronous method, information is collected in parallel from each of the
instruments, allowing for a faster sampling rate. The coordination software is also capable
of running a web socket server to allow communication over Wi-Fi using TCP/IP protocol.
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This allows for monitoring and supervisory software to exercise control over different aspects
(set actuate variables, change control setpoints, etc.) of the coordination software.

3.5 Conclusions
This chapter investigated the choice and design of sensing and actuation instrumentation,
and their integration via software. The experimental setup design presented in this chapter is
by no means definitive. There are various issues related to each aspect of design; for example,
the methods for voltage signal generation and the position actuation are chosen primarily
based on the relative ease of implementation. Considerable additional effort is required to
extend the setup to a commercially viable medical or plasma processing device, re-considering
and improving the design and instrumentation choices. Nevertheless, the methods outlined
in this chapter presents an open-source, flexible, reliable, and comparatively cheap design
for an automated data collection and control test-bed.

The experimental setup described in this chapter is primarily responsible for continuously
collecting and recording information. However, the question of how to effectively use the
incoming measurements is left open. The next chapters investigate the effective means for
utilizing these signals to identify system dynamics and improve the reliability and repro-
ducibility of operation via feedback control.



34

Chapter 4

Control-Oriented Modeling for
Atmospheric Pressure Plasma Jets

Development of dynamic models is crucial for the design and evaluation of effective
control strategies. Numerous models of APPJs are developed with the purpose of
understanding the physical characteristics of discharges. However, model-based control
strategies require so-called “control-oriented" models, which describe the evolution of,
preferably measurable, dynamics to be controlled in response to changes in manipulated
variables. This chapter aims to bridge this gap with physics-based and data-driven
control-oriented modeling strategies

4.1 Introduction
Computational models are useful tools to obtain insight into difficult-to-measure physical
phenomena in light of the complexity of the discharge phenomena. Models are also an
essential component for the design of both classical and advanced control strategies. Partic-
ularly, the optimization-based model predictive control (MPC) strategy directly relies on the
real-time solution of a tractable dynamic model of the controlled dynamics [152]. However,
requirements of a control-oriented model can significantly differ from models constructed for
purposes of investigating discharge physics.

Modeling needs for process control are centered around the end goal of operation; main-
taining some discharge property or delivery of a cumulative effect (i.e., a “plasma dose") to
a treated substrate. A control-oriented model is then, required to represent the evolution
of discharge dynamics as they relate to dose accumulation in the substrate in response to
actuated inputs. Moreover, particularly for model predictive control strategies, there is a
limitation on model complexity for feasible implementation [152]. The allowable complex-
ity depends on available computational power and the timescale over which the controlled
dynamics evolve. The goal of the control-oriented modeling efforts is, therefore, to obtain a
simple and adequate description of the relevant dynamics of the APPJs.



CHAPTER 4. CONTROL-ORIENTED MODELING FOR ATMOSPHERIC PRESSURE
PLASMA JETS 35

The literature on modeling of discharges is extensive. Although control-oriented model-
ing has significantly different requirements, existing discharge models can be a key source of
information for control-oriented models. For example, choice and validation of appropriate
assumptions and simplifications in control-oriented modeling can be guided by more com-
plex fluid models. Moreover, some existing modeling practices, such as equivalent circuit
modeling, can be readily adopted as a part of a control-oriented modeling strategy.

The rest of this chapter first presents a brief overview of the modeling practices. Then,
dose metrics quantifying thermal and non-thermal effects of APPJs on substrates are pre-
sented. A simplified fluid model of the APPJ-substrate thermal interactions is developed,
which is used to inform a control-oriented lumped-parameter modeling strategy in the follow-
ing section. Finally, data-driven modeling strategies are presented for obtaining single-input-
single-output and multi-variable linear dynamic models based on input-output data. The
control-oriented modeling strategies presented in this chapter use simplifications to describe
the discharge phenomena. Therefore, the strategies can be readily adapted to accommodate
various discharge characteristics such as electrode geometry, excitation frequency, and work-
ing gas. The modeling efforts are focused on two main types APPJs; the RF-excited Ar
discharge, which is commonly used in plasma medicine and the kHz-excited APPJ setup in
helium described in the previous chapter.

4.2 Current Modeling Practices
The most common approach for modeling of APPJs is the development of fluid models which
involve solving mass, heat and momentum transport equations coupled with Poisson’s equa-
tion. Fluid models have the key advantage of capturing the spatial and temporal variation
of the discharge phenomena which make them particularly suited for mechanistic studies of
physical phenomena. For example, the fluid model of the RF-excited plasma needle in He,
reveal the ring-shaped profile of the discharge emission [24], [120]. Several studies use fluid
models to investigate temporally resolved phenomena such as the propagation of guided ion-
ization waves (or plasma bullets) in He atmospheric discharges [108], [133], [153], [154]. Such
models can reveal significant insight on mechanisms of discharge propagation. Boeuf et. al
[108] indicate the importance of the He-air interface in guiding the plasma pullet. Breden et
al. examine the importance of photoionization in streamer propagation [154]. Naidis et al.
modeled the effect of applied voltage and flow on bullet characteristics [133]. Fluid models
have also been developed to investigate the coupling between APPJs and substrate proper-
ties, an area of key interest for plasma medicine and plasma processing applications. Studies
by Norberg et al. [25] and Breden et al. [155] investigate APPJ dynamics impinging on sur-
faces with varying electrical properties for timescales of a few tens of nanoseconds. Models
developed by Chen et al. [37] and Norberg et al. [156] further investigate the interaction of
helium APPJs with biological substrates. Schroder et al. [157] model the thermal effects of
an RF-excited He APPJ on the skin. Despite the wealth of information they provide, fluid
models of APPJs can be challenging and computationally expensive to solve. Particularly
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for MPC applications where the real-time solution of the model is needed, fluid models are
often prohibitively complex.

Lower dimensional, 1D and 0D (global) models are also developed in the literature fo-
cusing on different aspects of the discharge. These models often focus on uncovering the
relationships between the discharge phenomena and the electrical characteristics of the dis-
charge. For example, Mangolini et al. use a 1D model to describe the ionization mechanisms
and electrical characteristics of a kHz dielectric barrier discharge (DBD) in He [158]. Gol-
ubovskii et al., predict the glow-to-filamentary transition of a kHz-DBD in He using a similar
model [99]. Waskoenig et. al, model the reaction chemistry with a focus on atomic O pro-
duction in RF-APPJ in He [159]. Balcon et al., model the dynamics of an RF-APPJ in
Ar using a 1D model, predicting α-γ mode transition. Lazzaroni et al., use a global model
to describe the behavior of electron temperature and density in an RF-APPJ in He [160],
[161]. Van Gaens et al., [162] investigate the discharge chemistry in an RF-APPJ in Ar
using a 0D kinetic model. Schmidt-Bleker et. al., use a similar model to investigate the
effect of shielding gas composition to the reaction chemistry of an RF-exited APPJ in Ar
[126]. 1D and 0D models can be more conducive to use in conjunction with control strate-
gies. However, these models are still considerably complex. Even 0D models can require
comparatively large reaction networks in order to describe the APPJ behavior (see [126],
[162]). Moreover, the validation of such models can be challenging as direct measurements
of discharge characteristics such as species, electron and ion densities and temperatures may
not be readily available.

Circuit models are used to describe the electrical behavior of the plasma circuit, often
abstracting the discharge as a variable resistor and/or capacitor. Hofmann et al., use a circuit
model of an RF-APPJ in argon to describe its electrical behavior [106]. Kieft et al., describe
the electrical properties of an RF-APPJ in He [163]. Fang et al., use equivalent circuit
models to differentiate between the operating regimes in a kHz-excited APPJ in He. Naudé
et. al, describe the transition between Townsend and filamentary modes using a parametric
representation of discharge current [164]. Although circuit models are comparatively easy to
construct their use can be limited by their simplicity. Therefore circuit models are often used
in a descriptive capacity or, they involve some parametric description of discharge electrical
characteristics which relies on a deeper understanding of discharge physics.

4.3 Dose Metrics
A common objective in plasma medicine is delivery of a predefined “plasma dose". However,
generally, accurate quantification of therapeutic doses is challenging due to lack of direct
measurements for short- and long-term biological effects of a therapy [165]. This challenge
is further aggravated in plasma medicine because of the presence of a multitude of different
therapeutic effects (e.g., thermal, chemical, and electrical) and their synergistic interactions
[19], [80]. Although dose quantification is highly specialized in different therapies, dose
metrics share some commonalities: (i) they should describe the cumulative, non-retractable
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(a) (b)

Figure 4.1: (a) Thermal energy accumulation CEMT during one minute treatment as a
function of the substrate temperature Ts; (b) Nonthermal energy accumulation CEMP during
one minute treatment as a function of power deposited onto substrate per area. The dose
metrics are nondecreasing and have a time unit (min).

nature of a therapeutic effect, and (ii) they should be defined in terms of a measurable
property of a target substrate, which is related to some characteristics of underlying biolog-
ical processes (e.g., volumetric energy absorbed as ionizing radiation in radiotherapy [165],
or substrate temperature in hyperthermia [27]). Additionally, concepts such as isodose in
radiotherapy [165] or equivalent dose in hyperthermia [166] are commonly adopted in order
to quantify how therapeutic effects vary under different treatment protocols relative to a
reference treatment condition or protocol.

The thermal effects of the APPJ on the substrate is comparatively easy to quantify and
important and regulate to ensure safety and comfort of operation. Although APPJs are
considered to be “low temperature" the gas temperatures in APPJs can be considerably
higher than room temperature (≥ 100 oC) depending on the operating conditions [88], [89].
As a result, the APPJ can damage heat-sensitive materials [167] particularly in presence of
operational variability. In medical context the well-established metric of cumulative equiv-
alent minutes at 43◦C (CEMT ) [18], [27], [168] is used for determining thermal dose for
hyperthermia therapies. CEMT is defined as [27],

CEMT =

∫ t

0

K(43−Ts(τ)) dτ (4.1)

or, equivalently,
dCEMT

dt
= K(43−Ts(t)), CEMT(0) = 0, (4.2)

where the constant K describes the thermal-stress response of the treated substrate. A
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typical value of K is derived derived based on the response of CHO cells to thermal stress,

K =


0 Ts ≤ 39◦C
0.25 39◦C < Ts < 43◦C
0.5 Ts ≥ 43◦C.

(4.3)

CEMT , describes the thermal effects normalized with respect to treatment at 43◦C, where
each 1oC increase in temperature doubles the thermal dose. The dose definition 4.1 can be
readily extended to describe the spatial distribution of dose, provided a spatial distribution
of the substrate temperature Ts(x, y) is available.

To mirror the CEMT metric, accounting for some non-thermal effect imparted by the
plasma to the substrate, the metric CEMP is defined as the total non-thermal energy ab-
sorbed by the substrate. In principle, this metric describes the cumulative energy absorbed
by the substrate in the form of UV radiation and as energy stored in various chemical reaction
products. CEMP is calculated as

CEMP =

∫ t

0

γ(1− η)P (τ)dτ (4.4)

or, equivalently,
dCEMP

dt
= γ(1− η)P (t), CEMP(0) = 0, (4.5)

where γ is an absorption factor of the substrate. Note that CEMP takes the units of Joules
and, assuming a constant cross-sectional area for the jet, can be used interchangeably with
fluence.

4.4 Thermal Model of APPJ in COMSOL
The APPJ interaction with substrates are heavily influenced by the transport phenomena
which occur as the flowing gas impinges on the treated substrate [119], [169]–[172]. In order
to inform control-oriented modeling strategies a fluid model is constructed, simplifying the
APPJ behavior as a hot noble gas jet impinging on a substrate. In this model, the discharge
phenomena are neglected and the effect of the plasma on the working gas is reduced to that
of a heat source. Although this is an oversimplification, the so-called hot-jet assumption is
a useful tool to investigate the transport phenomena which occur in APPJs.

The 2D axisymmetric fluid model describes the behavior of a hot jet of helium flowing
through a quartz tube, impinging on a borosilicate cover slip placed on an aluminum plate.
The model geometry is shown in Figure 4.2 and the material properties are summarized in
Appendix C.1. The heating of the gas due to the plasma is simulated as a uniform heat
source adjacent to the electrode. The discharge is observed to not extend radially to fill the
tube. Thus the power deposition region is specified to have a smaller radius than that of
the tube (∼ 0.6r). The deposited power and He flow rate are two inputs to the model. The
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Figure 4.2: The geometry used for the COMSOL model with the different regions labeled.

temperature of the tube and the temperature distribution on the substrate are the outputs
of interest.

The model involves the solution of coupled heat, mass and momentum transport equa-
tions (4.6)-(4.8), and the continuity equation (4.9) for the gas phase. These equations are
coupled with heat transfer in solid bodies of the tube, the substrate (coverslip) and the alu-
minum plate. For the gas phase, neglecting the viscous heating and pressure work, the heat
equation for gas temperature T is expressed as,

ρcp
∂T

∂t
+ ρcpu · ∇T = ∇ · (k∇T ) +Q. (4.6)

Here, ρ, cp and k are material density, specific heat capacity, and thermal conductivity,
respectively. u is the velocity vector and Q represents the uniform volumetric heat source.
In this case, the flowing gas is heated by the plasma with a contributing fraction of η of the
deposited power, giving Q = ηP . The power deposition efficiency η is a fitting parameter,
found to be about η = 0.47 for the APPJ at hand. This is consistent with the results reported
by Sobota et al. who determined the power transfer efficiency to a similar He APPJ to be
in the order of 0.50 [105]. Two species; helium and air, are considered in the gas phase.
Assuming the diffusive flux is the main contribution to the concentration changes in the jet,
the mass transport equation for concentration of species i is expressed as,

∂ci
∂t

+∇ · (−Di∇ci) + u · ∇ci) = 0. (4.7)

Here, Di is the mass diffusivity of species i. Under the investigated conditions the Reynolds
Number of He is computed to be about 80 indicating the flow is in the laminar regime.
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Assuming the fluid is Newtonian, the momentum equation is formulated as follows,

ρ
∂u

∂t
+ ρ(u · ∇)u = ∇ ·

[
− pI + µ(∇u + (∇u)T)− 2

3
µ(∇ · u)I

]
. (4.8)

Here, u is the flow speed, p is pressure, µ is material viscosity and I is the identity matrix.
The system of equations are completed with the the continuity equation,

∂ρ

∂t
+∇ · (ρu) = 0. (4.9)

The physical properties (ρ, cp and k) of the jet plume is computed at every point as the sum
of the properties of the two components, weighted by their mass fractions as follows:

ρ = (wHeρHe + (1− wHe)ρAir)
298

T
, (4.10)

cp = wHecp,He + (1− wHe)cp,Air, (4.11)

k = wHekHe + (1− wHe)kAir. (4.12)

A reduced form of the heat equation (4.6) is solved for the solid bodies, with no flow term
u = 0, and no volumetric heat sources. The gas-phase simulation volume is initialized as
pure air at 18 oC. Constant temperature boundary condition is applied to the top boundary,
while the sides of simulation volume and bottom of the aluminum ground plate are assumed
to be thermally insulated. The tube inlet is assumed to have an influx of pure helium at
a constant mass flow rate. Top and the side boundaries are assumed be constant pressure
outlets. The boundary conditions imposed on the system are summarized in Table 4.4. The
aluminum plate and the glass coverslip are not in perfect thermal contact. Therefore, the
addition of a thin thermally resistive layer on the boundary HK in Figure 4.2 was necessary
to reconcile the model with experimental observations. The thermal resistance RS is a fitting
parameter found to be 3.3×10−3 Km2W−1.

4.4.1 Results

The COMSOL model is used to obtain steady-state flow, temperature and concentration
profiles at nominal input conditions corresponding to a power deposition 3.2 W and an inlet
flow rate of 2 slm (∼5 m/s).

The velocity profile and the flow field computed in COMSOL are shown in Figure 4.3.
Notably, the flow increases within the tube along the power deposition region. The laminar
flow channel extends from the tube nozzle and stagnates as it impinges on the surface. As
indicated by the white arrows in 4.3 there is a region of recirculation adjacent to the jet.
The size and the distance of this region to the axis of symmetry (jet centerline) is influenced
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Boundary T cHe u
AB 18 oC 41 mol/m3 −U0n
BC 18 oC – –
CD 18 oC 0 mol/m3 p=pamb

DE -n · (−k∇T ) = 0 0 mol/m3 p=pamb

EF -n · (−k∇T ) = 0 – –
FG -n · (−k∇T ) = 0 – –
IJKE – -n · (−Di∇ci + uci) 0 m/s
BLMC – -n · (−Di∇ci + uci) 0 m/s

Table 4.1: Boundary conditions for the COMSOL model. The symbols (A-M) correspond to
the vertices labeled in Figure 4.2. n is the normal vector to the boundary, U0 is the inlet flow
velocity calculated based on the inlet He mass flow rate and pamb is the ambient pressure,
equal to 1 atm.

Figure 4.3: Steady-state velocity profile (color surface) and velocity field (white arrows)
obtained from the COMSOL model corresponding to operating power of 3.2 W and inlet He
flow rate of 2 slm.

by the inlet gas flow rate and the deposited power. This observation is consistent with those
reported in the literature for APPJ models [173] and experimental investigation of impinging
gas jets [169].

The recirculation behavior also significantly influences the heat transport phenomena.
Figure 4.4(a) shows the steady-state temperature profile and total heat flux at the nominal
operating conditions. The glass coverslip is heated by the impinging and recirculating hot
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(a) Temperature profile

(b) Substrate temperature validation

Figure 4.4: (a) Steady-state temperature profile (color surface) and heat flux (white arrows)
obtained from the COMSOL model, and (b) the radial temperature distribution on the
substrate compared against experimental measurements, corresponding to operating power
of 3.2 W and inlet He flow rate of 2 slm.

gas and is cooled by the aluminum plate which conducts away the heat in the radial direction.
The predicted radial distribution of the substrate temperature is validated against spatially
resolved substrate temperature measurements. As shown in Figure 4.4(b), the COMSOL
model is able to describe the radial distribution of temperature reasonably well. Another
significant observation here is that the gas temperature is predicted to be significantly higher
than the ambient temperature, reaching up to 100 oC. Although gas temperatures close the
ambient are reported under some operating conditions [174], [175], the gas temperature
in APPJ can be relatively high. Indeed, the computed temperature is consistent with some
experimental measurements [88], [89] and modeling studies [157] of He APPJs. Figure 4.5(a)
shows the modeled profile of He concentration in the APPJ and the total flux of He. The
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(a) Concentration profile (b) Air fraction

Figure 4.5: Steady-state (a) concentration profile (color surface), total He flux (white arrows),
and (b) air fraction in logarithmic scale obtained from the COMSOL model corresponding
to operating power of 3.2 W and inlet He flow rate of 2 slm.

gas composition appears to remain dominated by He within the tube, and air in-mixing is
observed only after the gas exits the tube nozzle. The impingement and spreading out of
the gas on the surface has a shielding effect, which allows a relatively high concentration of
helium to extend up to 1 cm away from the jet centerline. The centerline of the flow channel
appears to remain close-to-pure helium throughout as the convective flow dominates over
radial diffusion of air. The log-scale plot of air mass fraction shown in 4.5(b), shows that
small amounts of air diffuse up the tube nozzle and into to the centerline of the jet. These
findings are consistent with results reported in the literature [121], [171].

Next, the performance of the COMSOL model is evaluated in predicting the dynamic
behavior of the thermal dynamics of the substrate and the APPJ tube. As direct measure-
ments of the gas temperature are not available, the tube temperature is used as a proxy for
evaluating the thermal dynamics of the flowing gas. Figure 4.6(a) shows the predictions of
the COMSOL model and the experimental measurements of the tube and maximum sub-
strate temperature dynamics, for the range of operating conditions given in Figure 4.6(b).
As shown in Figure 4.6(a), the COMSOL model performs adequately in describing the dy-
namics of maximum substrate temperature and is capable of qualitatively describing the
dynamics of the tube temperature. However, the COMSOL model under-predicts the tube
temperature for high flow conditions (t > 375 s). This behavior is attributed to the chosen
simplified power deposition profile as well to un-modeled phenomena such as changes plasma
radius with changing flow rate.

The COMSOL model described in this section presents a fairly simple but surprisingly
accurate description of the transport phenomena in the APPJ. The spatiotemporal charac-
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(a) Dynamics of tube and substrate temperatures

(b) Deposited power and input mass flow rate of He

Figure 4.6: (a) Measured dynamic behavior of maximum substrate temperature and tube
temperature compared against dynamics computed from the COMSOL model and (b) cor-
responding input power and flow sequence.

teristics of the substrate temperature, in contact with the APPJ, is well-captured by the
model for the investigated operating conditions. The fluid model provides useful informa-
tion for construction of physics-based control-oriented models; simplifying assumptions can
be validated and lumped-parameters such as averaged heat and mass transfer coefficients
can be estimated based on the COMSOL model.

4.5 Physics-Based Control-Oriented Modeling
A physics-based control-oriented model of the kHz-APPJ in He depicted in Figure 4.7 is
developed for use in conjunction with MPC strategies. In addition to transport phenomena,
a lumped-parameter model is developed to describe the electrical behavior of the APPJ,
relating the voltage amplitude and frequency to the power deposition in the jet. This allows
for the lumped-parameter model to be readily extended to include the cumulative effects of
the APPJ on the substrate, i.e., dose delivery, as described by the metrics is presented in
Section 4.3. The principle of timescale separation is used to develop the control-oriented
lumped-parameter model of the APPJ. Figure 4.8 depicts the modeling framework, which
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Figure 4.7: Diagram of the APPJ with the regions corresponding to the power deposition
and gas heating, heat and mass transfer in separation distance, and substrate heating labeled
in dashed lines.

consists of three coupled modules — power deposition and gas heating within the dielectric
tube, heat and mass transfer in the separation distance between the tip of the tube and the
substrate, and substrate heating and dose accumulation.

The electrical power deposition in the plasma and the associated heating of the flowing
gas are assumed to occur adjacent to the electrode in the dielectric tube, as in the COMSOL
model. The dynamics of power deposition and gas heating within the tube are neglected and,
therefore, this module of the model is assumed to be at steady state. The spatial variations
within the dielectric tube are also neglected in order to obtain a 0-dimensional equivalent
circuit model for the plasma. Under these assumptions, the plasma electrical properties
can be described by a parametric expression intended to capture aspects of the nonlinear
behavior of the plasma electrical properties. Note that gas heating in the dielectric tube is
coupled with the plasma electrical properties. This is due to the dependence of the plasma
resistance on the gas number density (see Section 4.5.1). Modeling the APPJ as a 0D system
inevitably introduces a number of approximations. The goal of this model is to provide a
computationally efficient and sufficiently accurate description of the thermal dynamics of the
APPJ for process control applications.

The radial mixing of air and heat in the free jet region between the tip of the tube and
the substrate are approximated by lumped mass and heat transfer coefficients, respectively.
The latter coefficients are obtained from the 2D axisymmetric COMSOL fluid model of mass
and heat transfer in the distance between the tip of the tube and the substrate. The length
of the plume is assumed to be equivalent to the separation distance between the tube nozzle
and the substrate. Note that this distance can change during hand-held operation of the
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Figure 4.8: Framework of the physics-based model of the RF-APPJ coupled with a sub-
strate. Input variables include applied voltage VA, frequency f and gas flow velocity vin

with disturbances associated with substrate impedance Zs and jet-tip-to-substrate distance
dsep. The model consists of three coupled modules: power deposition and gas heating in the
dielectric tube (top); heat and mass transfer in the jet separation distance (middle); and
substrate heating and dose accumulation (bottom).

APPJ.
The lumped-parameter model includes the thermal and electrical effects of the plasma on

the target substrate. The heat transfer coefficient between the incident jet and the substrate
is obtained from the 2D axisymmetric COMSOL fluid model, assuming that the substrate
properties are spatially averaged. The dynamics of substrate effect are considerably slower
than that of the plasma dynamics within the dielectric tube and the heat and mass transfer in
the separation distance. In the following, the physics-based model equations are presented
for the kHz-APPJ in He. The same modeling strategy is applied to an RF-APPJ in Ar,
under slightly different assumptions. The equations corresponding to this configuration
are presented in Appendix C.2. The parameters and material properties for the lumped-
parameter model for kHz-APPJ in He described in the following section can be found in
Appendices C.3 and C.1, respectively.
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Figure 4.9: Equivalent circuit for the APPJ. The circuit elements corresponding to the
discharge (Rp and Cp) and to the substrate (Rp and Cp) are indicated with boxes.

4.5.1 Power Deposition and Gas Heating

Figure 4.9 shows an equivalent circuit for the APPJ, whereR is the external circuit resistance,
C0 is the parasitic capacitance, Zp is the plasma complex impedance consisting of the bulk
plasma resistance Rp and plasma capacitance Cp, and Zs is the surface impedance with
the resistive and capacitative components Cs and Rs, respectively. At steady state, the
equivalent circuit can be modeled by Kirchhoff’s second law,

VA − |Zip|ip = 0, (4.13)

where the overall impedance Zip relates the plasma current ip to the applied voltage VA. The
expression for Zip is derived from the circuit structure as

Zip = Zp + Zs + Zc + Zc
(Zp + Zs)

Z0

, (4.14)

where Zc is the impedance associated with the external circuit, and Z0 is the impedance
associated with the parasitic capacitance C0.

A key issue in describing the electrical characteristics of the APPJ with the equivalent
circuit model is capturing the variable plasma resistance Rp. The discharge resistance is a
spatially and temporally varying quantity, therefore the choice of a valid parametrization of
the plasma resistance is not trivial. Depending on the discharge type Rp can depend on gas
temperature, plasma current, separation distance, and other factors. Based on knowledge of
physics and experimental observation, the plasma resistance Rp is expressed in a parametric
form.

The plasma resistance can be related to other discharge quantities through the relation
[39]

Rp =
Vp
ip

=
dsep
Se

me

e2

ν̄eH
ne

, (4.15)

where Vp is the plasma potential, ip is the plasma current, Se is the surface area of electrodes,
me and e are the electron mass and charge, respectively, ne is the electron density, and ν̄eH
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is the electron-heavy particle collision frequency. Due to direct treatment of the substrate,
the inter-electrode distance in the APPJ is equivalent to the separation distance between
the tip of the dielectric tube and the substrate. Thus, the plasma resistance depends on the
separation distance dsep. The plasma resistance is also dependent on the gas temperature
through the electron-heavy particle collision frequency

ν̄eH = k(Te, ne)n0, (4.16)

where k is the collision rate constant, that is a function of the electron temperature Te and
electron density ne, and n0 is the neutral density. The dependence of the plasma resistance
Rp on the gas temperature arises from the neutral density n0, which is assumed to obey the
ideal gas law

n0 =
Patm
kbTg,0

, (4.17)

where kb is the Boltzmann constant and Patm is atmospheric pressure. Notice that (4.16)-
(4.17) indicate that the plasma resistance Rp is inversely related to the gas temperature
exiting the tube nozzle Tg,0.

For the kHz excited APPJ, the following parametrization was found to effectively describe
the plasma resistance:

Rp = Rp,0
340 K

Tg,0

dsep
4 mm

. (4.18)

Here, Rp,0 is the constant resistance fitted from experimental measurements. The constant
values 340 K and 4 mm represent nominal values of gas temperature and separation distance,
used as normalization factors. Tg,0 is computed by solving an energy balance for the gas
within the tube. From COMSOL simulations, the axial variations of temperature is observed
to primarily occur within the tube (see Figure 4.4(a)). Since the temperature dynamics of
the gas within the tube is faster than the thermal dynamics of the substrate, Tg,0 is calculated
at steady-state. The axially varying temperature within the tube is, then, expressed as,

dT

dz
=

1

ρcpv

[
ηP (z)− UI

r
(T − Tinf )

]
, T (z = 0) = 298K. (4.19)

Here, UI represents a lumped heat transfer coefficient and r is the tube internal radius. As
in the COMSOL model, the power is assumed to be deposited uniformly adjacent to the
electrode, The spatial power deposition is described by the piecewise function,

P (z) =

{
1
2
|ip|2|Zp|cos(φ) 0 mm < z ≤ 10 mm

0 otherwise
(4.20)

where φ is the angle between the sinusoidal plasma current and voltage across the dis-
charge. Note, since air fraction is negligible within the tube (see Figure 4.5(b)), (4.19) can
be solved analytically. In this region, ρ and cp refer to the density and heat capacity of pure
helium. Equation (4.19) is coupled with the circuit solution (4.13) setting gas temperature
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(a) Outputs

(b) Inputs

Figure 4.10: (a) Predictions of the plasma power compared against measurements over (b)
a range of operating conditions.

at the nozzle Tg,0 = T (z = 2cm). The predictions of this model are compared against ex-
perimental data. Figure 4.10 shows that the measured APPJ power is reasonably captured
over a range of operating conditions.

4.5.2 Heat and Mass Transfer in the Separation Distance

As the gas plume extends to the substrate, it exchanges heat and mass transfer with the
surrounding air due to radial heat losses and in-mixing of air. Based on the COMSOL
simulations, the temperature of the jet exposed to air does not vary significantly in the axial
direction within the distance between the tube nozzle and the substrate (see Figure 4.4(b)).
Thus, the temperature dynamics as well as the in-mixing of air into the stream is described
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Figure 4.11: Substrate temperature measured and calculated from the lumped-parameter
physics based model over operating conditions shown in Figure 4.10(b).

by spatially averaged differential equations,

dTg
dt

=
ρvAc

(
Tg0 − Tg

)
− UII2πrdsep

(
Tg − Tinf

)
ρCpAcdsep

, Tg(0) = 298K. (4.21)

dwHe
dt

=
ρvAc

(
1− wHe

)
−K2πrdsepρ

(
wHe − winf

)
ρAcdsep

, wHe(0) = 0 . (4.22)

Here, UII and K are lumped heat and mass transfer coefficients respectively. dsep is the
jet-tip-to-substrate separation distance, Ac is the jet cross-sectional area and v is the flow
velocity. Density ρ and heat capacity cp of the gas in this region are calculated as in (4.10)
and (4.11). Continuity equation (4.9) reduces to

d(ρv)

dz
= 0, v(z = 0) = vin, ρ(z = 0) = ρin, (4.23)

4.5.3 Substrate Temperature

The substrate temperature during plasma treatment is characterized by a sharp spatial gradi-
ent with peak temperature at the axis of symmetry (see Figure 4.4(b)). The key output of the
lumped-parameter model is the peak substrate temperature. In order to capture the radial
distribution of the temperature to some extent, the substrate is modeled as two concentric
circles with uniform temperature. The center corresponds to the maximum temperature,
and the surrounding area acts as a reservoir. Ts,max is described by,

dTs,max
dt

=
AcUIII(Tg − Ts,max)− 2πrts

2ks
r+rr

(Ts,max − Tr)
ρsCp,sActs

, Ts,max(0) = 298K, (4.24)
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where UIII represents a lumped heat transfer coefficient between the jet and the substrate,
ρs, cp,s, ks and ts are the density, specific heat capacity and thermal conductivity and the
thickness of the substrate, respectively. The time-evolution of the reservoir temperature is
given by.

dTr
dt

=
2πtsks

UIV ρsCp,sπ(rr − r)2ts

( 2r

r + rr
(Ts,max−Tr)−

2rr
rr

(Tr−Tinf )
)
, Tr(0) = 298K. (4.25)

Here, the lumped parameter UIV is the scaling factor for the thermal inertia of the reservoir,
and rr is the reservoir radius. The model equations constitute a system of differential alge-
braic equations (DAE). Equations (4.13) and (4.19) make-up the algebraic equations while
equations (4.21)-(4.25) represent the differential component of the lumped-parameter model.
The model equations can be expressed in terms in state space form,

dx
dt

= f(x, z, u, θ), x0 = x(0)
0 = g(x, z, u, θ),

with algebraic states z = [P, Tg,0]>, differential states x = [Tg, wHe, Ts,max, Tr]
>, inputs

u = [Vp2p, f, q]
> and model parameters θ=[Rp,0,UI , UII , UIII , UIV , K]. Note the peak-to-peak

voltage Vp2p relates trivially to voltage amplitude Vp2p = 2VA and mass flow rate q relates
to the inlet flow velocity with q = ρinAcvin. Figure 4.11 shows that the substrate dynamics
of the substrate at the center line Ts,max as well as the substrate temperature further out at
r ∼5 mm (Tr) are well-described by lumped-parameter model.

4.6 Data-Driven Modeling
As the name implies, data-driven modeling strategies only rely on input-output data collected
from the experimental setup. While there is an obvious drawback to discarding knowledge
of the system physics, data-driven models can allow for simplified representations of compli-
cated dynamic systems [176]. Moreover, the behavior of physical variables which are difficult
to model with physics-based approaches can be captured with data-driven models. Since the
complexity of APPJs presents numerous challenges for physics-based modeling, data-driven
models can provide an advantage particularly in the context of control applications.

This section focuses on linear parametric data-driven models to describe the dynamics of
the kHz-APPJ and the treated substrate. These models represent a limited, and arguably
the simplest, subset of data-driven modeling strategies. To this end, first, a linear operating
region is established with respect to two outputs, maximum substrate temperature Ts,max
and total optical emission intensity measured at the surface I. The total optical emission I
contains information about the chemical processes occurring in the discharge and requires
considerable effort to model with a physics-based approach. Each of the inputs are excited
individually around the nominal operating point (Vp2p=8 kV, f=16 kHz, q=1.2 slm) and the
corresponding steady state values of the two outputs from their nominal values (Ts,max=58



CHAPTER 4. CONTROL-ORIENTED MODELING FOR ATMOSPHERIC PRESSURE
PLASMA JETS 52

(a) Deviations in maximum temperature (b) Deviations in optical intensity

Figure 4.12: Steady-state deviations from the nominal operating condition observed through
single-input step tests of different magnitudes: (a) deviations in the maximum temperature
Ts,max and (b) deviations in the total optical intensity I at the surface.

◦C, I=87 a.u.) are recorded. The resulting trends plotted in Figure 4.12 are used to deter-
mine the linear operating range,

6 kV ≤Vp2p ≤ 9.5 kV
13 kHz ≤f ≤ 18 kHz
0.8 slm ≤q ≤ 1.8 slm.

4.6.1 Transfer Function Models

Transfer function models are useful in describing single-input-single-output (SISO) system
models in frequency domain. Their properties and use are well-established in classical con-
trol theory for design and evaluation of proportional-integral (PI) and feedforward controllers
[30]. Although the thermal dynamics of substrates in contact with APPJs result from com-
plicated physical processes coupled across multiple timescales, the behavior of the maximum
substrate temperature can be described with a first-order transfer function using only two
parameters: a gain and a time constant. Figure 4.13(a) shows the measured dynamics of
maximum substrate temperature in response to changing applied voltage in terms of devia-
tion variables. Similarly, transfer functions can be useful in describing disturbance response
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(a) (b)

Figure 4.13: Deviation in maximum substrate temperature (∆Ts,max) (a) in response to
deviations in applied peak-to-peak voltage (∆Vp2p), compared to a 1st order transfer function,
and (b) in response to changing substrate temperatures compared to a 3rd order transfer
function. The transfer functions shown in (a) and (b) are given in Appendix C.4.

of temperature dynamics. The physical phenomena occurring in the APPJ changes consid-
erably with changing electrical and thermal properties of the substrate [6], [25], [127], [177],
[178]. For example, the APPJ tends to spread on dielectric substrates and a so-called dis-
charge restrike is observed when the APPJ is in contact with conductive substrates [6], [25],
[178]. Physics-based modeling of this behavior can be particularly challenging. In contrast,
as shown in Figure 4.13(b), a third order transfer function model can describe the response
of maximum substrate temperature to changing substrate type with reasonable accuracy.

4.6.2 Linear Subspace Identification
1Despite the usefulness of transfer functions, it can be challenging to extend them to describe
multiple-input-multiple-output (MIMO) dynamics. It is more convenient, instead, to use the
so-called state space representation in the time domain. In discrete form, the linear state-
space model is written generally as

xk+1 = Axk +Buk

yk = Cxk +Duk,
(4.27)

where k is the time index; x denotes the states; u denotes the manipulated inputs, and y
denotes the outputs. Although it is possible to convert between linear state space models

1Results in this section are published in [179]
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(a) Model predictions (b) Inputs

Figure 4.14: Model predictions compared against a validation data set: (a) outputs —
maximum temperature Ts,max and total optical intensity of plasma I at the surface and (b)
manipulated inputs — peak-to-peak voltage Vp2p, frequency of excitation f , and He mass
flow rate q. The shaded regions in (a) show standard deviations of the measured outputs
computed based on the three validation data sets.

and transfer function models, the mapping between transfer function and state space is
not unique. Therefore, subspace identification methods are used as a means for directly
identifying state space models with robust numerical properties. These methods rely on
projecting the measured data into a space of “states" that are not necessarily physically
meaningful but mathematically characterize the modes of system dynamics. The relationship
between the inputs, the states and the outputs are then determined via a least squares
estimation [26].

Note that the SISO step tests broadly describe the linear operating region (see Figure
4.12) however, they do not capture the effects of coupling between the multiple inputs. To
fully characterize the APPJ dynamics, multi-input step excitation tests are conducted where
two or more inputs are excited simultaneously. The input-output data obtained as a result of
these tests are used to identify a linear system model using the canonical variable algorithm
(CVA) for subspace identification [26]. The subspace model identification was performed in
MATLAB (MathWorks R©) using the n4sid function. The identified model is of the discrete-
time form (4.27). x ∈ R7 denotes the states; u = [Vp2p f q]

> ∈ R3 denotes the manipulated
inputs; y = [Ts,max I]> ∈ R2 denotes the measured outputs; and A, B, and C and D are
time-invariant system matrices of appropriate dimension. The system matrices are given in
Appendix C.5.

The descriptive capability of the identified model was examined based on independent
validation data, generated using a different multi-step input profile than that used in the
identification experiments. The validation experiments were repeated three times to ensure
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reproducibility of the data. Figure 4.14 shows the model validation results. The iden-
tified model exhibits adequate performance in capturing the dynamics of the maximum
substrate temperature Ts,max and the total optical intensity of plasma I at the surface (see
Figure 4.14(a)). As expected, the model predictions can more adequately describe the data
when the system operation remains closer to the nominal operating condition. The quality
of the identified model deteriorates as the inputs are pushed farther away from the nominal
values after time 2500 s (see Figure 4.14(b)).

4.7 Conclusions
Two main strategies are demonstrated for control-oriented modeling of APPJs; lumped-
parameter physics-based, and data-driven modeling. The main conclusion of this chapter
is that it is possible to obtain reasonably accurate descriptions of APPJ characteristic for
process control applications using relatively simple models. The choice of the method relies
on the specific needs of the control application e.g., how difficult it is to obtain input-output
data or to describe the controlled variables using fundamental physical laws. Both of the
methods have certain challenges. Lumped-parameter physics-based models require tractable
representations of the complex plasma physics with few parameters; selecting and validat-
ing appropriate assumptions for these models is a key barrier. Data-driven models, on the
other hand, allow the use of input-output data for modeling APPJ characteristics, such as
emission intensity, which are challenging to model using a physics-based approach. However,
in the absence of knowledge of physics choice of model structure can be complicated. Par-
ticularly, the restriction of the model structure to linear introduces considerable drawbacks
in describing the APPJ behavior over a large range of parameters (see Figure 4.14). A po-
tential path forward may involve so-called grey-box modeling, combining the two methods:
leveraging the knowledge of physics to inform model structures and using data to determine
the appropriate model parameters.

Another challenge for control-oriented modeling pertains to the definition of dose met-
rics. The metrics provided in Section 4.3 are tentative definitions whose usefulness in a
clinical context remain unclear. In contrast, effective regulation of plasma treatment relies
on the ability to effectively represent relationships between APPJ characteristics (such as
current, emission intensities, reactive species concentrations and thermal effects), the sub-
strate response (such as tissue oxygenation, cell death, extent of metabolic up-regulation)
and biological effects (such as wound healing response, extent of cancer reduction, systemic
immune response). Although some preliminary efforts are present in the literature [180],
there is no widely accepted definition for a “plasma dose". Obtaining more clinically-relevant
plasma dose models to replace those presented in Section 4.3 is likely a multi-disciplinary
and multi-year effort requiring input form plasma scientists as well as medical professionals.

As dictated by choice of the dose metrics, the control-oriented modeling of APPJs, in
this chapter, has focused on primarily thermal and to a lesser extent electrical and optical
characteristics. The chemical effects of the APPJs are largely left out of the discussion.
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This is due to two related reasons: (i) difficulties in measuring the chemical species con-
centrations in gas-phase in the APPJ and their subsequent effect on surfaces in real-time,
and (ii) the consequent lack effective dose definitions based on chemical effects of APPJs.
Direct measurement of species concentrations often relies on methods requiring expensive
and cumbersome equipment such as laser-induced fluorescence [181] and mass spectrometry
[182] which are also difficult to adopt for real-time measurements. Some potential methods
to mitigate these challenges are presented in Chapter 10.
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Chapter 5

Basic Control of Atmospheric Pressure
Plasma Jets

Basic control strategies such as proportional-integral (PI) control and feedforward con-
trol can be a powerful means of regulating the electrical characteristics and thermal
effects of APPJs. This chapter demonstrates use cases of basic controls strategies for
regulation of electrical properties of the APPJ and their thermal effects on the substrate.
In single-input-single-output context, basic control strategies can enable effective rejec-
tion of a variety of disturbances including run-to-run variability, change in separation
distance, substrate impedance among others. The basic control strategies shown in this
chapter can reduce variability in atmospheric pressure plasma jets in a single-input-
single-output context and, as shown in later chapters, may be used in conjunction with
advanced control strategies to aid dose delivery.

5.1 Introduction
APPJ characteristics are impacted by the intrinsic variability of the discharge and the ex-
ogenous disturbances acting on the APPJ such as ambient temperature, jet position, jet-tip-
to-surface separation distance, substrate impedance and the admixture of molecular gases.
Basic feedback control strategies such as proportional-integral (PI) and feedforward con-
trols can aid in the rejection of disturbances as well as in reducing the variability in APPJ
characteristics and their effects on substrates.

The goal of this chapter is to motivate the need for feedback control for APPJs, partic-
ularly under disturbances, and to demonstrate the effectiveness and shortcomings of basic
control strategies for regulating APPJ effects. To this end, PI and feedforward control
strategies are implemented on the kHz-APPJ setup in He described in Chapter 3 in order to
control the electrical characteristics of the APPJ and their thermal effects on substrates.
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Figure 5.1: Block diagrams for basic PI feedback control; y is the output, yref is the setpoint,
and u is manipulated input.

5.2 Proportional-Integral Control
Proportional-integral (PI) control is the workhorse of process control systems [183]. PI
control uses the difference between a single output y and its prespecified setpoint, or reference
yref to determine the value of a single control input u that eliminates the setpoint tracking
error e(t) = yref − y(t), in the face of setpoint changes and system disturbances. A block
diagram of a simple PI control loop is shown in 5.2. The mathematical expression for the
PI controller is given as

u(t) = kp

(
e(t) +

1

τi

∫ t

0

e(τ)dτ

)
, (5.1)

which consists of a proportional-error action (first term) and an integrating-error action
(second term). The proportional term allows the controller to respond proportionally to
instantaneous error, and the integral term allows elimination accumulated errors for offset-
free setpoint tracking. The proportional gain kp and the integral-time constant τi are the
tuning parameters of a PI controller. Due to its simplicity and ease of design, PI control can
be a powerful tool. Most modern control systems employ PI-type controllers, at some level,
to allow for rapid rejection of disturbances [36], [184].

The design of PI control strategies relies on the selection of the tuning parameters of the
controller (see (5.1)). PI tuning methods are typically based on modeling and analysis of
the dynamics of the closed-loop system arising from feedback control [29], [30]. The Internal
Model Control (IMC) method allows the systematic selection of PI tuning parameters. De-
veloped by Morari et al., IMC method makes use of a transfer-function representation of the
controlled dynamics to obtain analytical expressions for controller tuning parameters. The
various analytical expressions for controller optimal turnings for dynamic models of different
levels of complexity are tabulated [185]. The IMC control strategy involves a single user-
defined parameter λ which relates to the response time of the closed-loop system dynamics.
Note here, that for the simplest, first order system dynamics the IMC procedure results
in a PI-type controller. For more complicated transfer function models, the inclusion of a
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derivative-action term to the controller is recommended. Tuning of the various PI controllers
implemented in this section is reported in Appendix D.

Another key consideration in the implementation of PI strategies is enforcing bounds
on the manipulated variables. Instruments are often capable of manipulating inputs only
over a limited range, whereas the input values computed by the PI controller, as given by
(5.1), are unbounded. Simply clipping (i.e., saturating) the input values computed by the
PI controller can give rise to the so-called windup effect. When the input saturates at the
bounds, the error continues to accumulate and due to the integrating action “winding up"
the controller. Once the input is no longer saturated, the PI controller overcompensates
giving rise to undesirable behavior. In order to avoid this behavior, an anti-windup strategy
is applied to the PI controllers implemented in this section [186].

5.3 Disturbance Rejection with Single-Loop PI Control
In this section, the effectiveness of PI control strategies in regulating the thermal effects of
the APPJ on the substrate in the presence of key disturbances is investigated. Common
disturbances arising in APPJ operation; variations due to ambient temperature and jet
translation, changes in jet-tip-to-surface separation distance, and substrate characteristics
can drastically affect the electrical and thermal phenomena occurring in the APPJ and
treated substrates.

The APPJ has multiple input variables available for use in feedback control loops. Ap-
plied peak-to-peak voltage, frequency, and duty cycle influence the substrate temperature
through the effecting the power dissipated in the discharge, changing the electrical proper-
ties of the APPJ. The input He flow rate influences the substrate temperature affecting the
transport phenomena in the jet. This investigation focuses on the effectiveness of two manip-
ulated variables relating to electrical properties of the APPJ (the peak-to-peak voltage Vp2p)
and He flow rate q in rejecting disturbance. The effect of the disturbances and the PI control
strategies on the electrical properties of the discharge, as quantified by dissipated power P ,
and the thermal effects on the substrate, as quantified by maximum substrate temperature
Ts,max, are investigated.

5.3.1 Run-to-Run Variability of Substrate Temperature

Variations in the ambient temperature, as well as run-to-run variability observed in APPJs,
can make reliable operation challenging [9], [11]. Figure 5.3 shows experimental observations
of the maximum substrate temperature, Ts,max, as the APPJ is translated across a glass
substrate following the trajectory given in Figure 5.2, under (a) no feedback control (i.e.,
constant applied peak-to-peak voltage Vp2p), and (b) PI control. For each case, two sets of
experiments are carried out on different days under different ambient temperature, where
each run is replicated three times.
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Figure 5.2: Position profile used to perturb the APPJ operation for disturbance rejection
studies.

(a) No Control (b) PI Control

Figure 5.3: Maximum substrate temperature Ts,max and applied peak-to-peak voltage Vp2p
under the APPJ translation profile 5.2 under (a) no feedback control and (b) PI control with
the reference maximum substrate temperature T ref

s,max = 42 ◦C. Two sets of experiments are
carried out for each case under different ambient temperature Tinf. The error bars show the
standard deviation of temperature measurements based on three replicate runs.

In the case of no feedback control, Figure 5.3(a) suggests that Ts,max is sensitive to am-
bient temperature, and there is considerable run-to-run variability over the three replicate
runs. The effect of the APPJ translation is also reflected in the Ts,max profile, where abrupt
changes at t=100 s and t=200 s are observed – consistent with the APPJ translation shown
in Figure 5.2. The timescale of APPJ translation is on par with that of the substrate tem-
perature dynamics. Thus, when the APPJ is translated to a new point (e.g., at t=100 s),
that point has already been exposed to thermal energy due to the spatial distribution of
substrate temperature along the target region x. This presents one possible explanation for
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Figure 5.4: Disturbance profile used to investigate the effect of jet-tip-to-substrate separation
distance, dsep, on APPJ operation.

the observed increase in Ts,max as the APPJ is translated over the target region. Since the
discharge is very sensitive to external conditions, other disturbances such as inhomogeneity
in substrate properties or small changes in separation distance along the movement direction
can also affect thermal behavior. This behavior demonstrates the need for feedback con-
trol for regulation thermal effects of the APPJ on the substrate even under relatively mild
disturbance conditions investigated here.

On the other hand, Figure 5.3(b) suggests that the PI controller can effectively main-
tain Ts,max at its arbitrarily chosen reference T ref

s,max = 42 ◦C. The PI controller is able to
maintain the user-specified reference temperature under both ambient temperatures, while
significantly reducing the variability of Ts,max across the replicate runs. This is achieved by
manipulating the applied peak-to-peak voltage Vp2p based on real-time substrate temperature
measurements. In order to maintain constant that Ts,max, the input Vp2p varies considerably
during the operation.

5.3.2 Separation Distance

Changes in jet-tip-to-surface separation distance dsep can occur due to variations in substrate
topology or during hand-held treatment. The substrate temperature is particularly sensitive
to changes in separation distance. Since the investigated APPJ is of single electrode con-
figuration, changing separation distance impacts some key discharge parameters. Changes
in the position of the ground, the electric field strength, as well as the amount of in-mixing
from the ambient air all, vary with separation distance causing significant variability in dis-
charge characteristics [7], [127], [187]. Figure 5.3.2 shows the behavior of the maximum
substrate temperature and dissipated discharge power in the absence of feedback control as
the separation distance is gradually increased. The dissipated power decreases with increas-
ing separation distance. However, Ts,max does not follow this trend. Instead, the maximum
substrate temperature increases by about 10 oC as dsep is increased from 4 to 10 mm, after
which it starts to decrease. As the APPJ is pulled away from the grounded surface beyond
a separation distance of 10 mm (t > 100 s), the visual appearance of the discharge becomes
unstable. The spikes observed in P during this time period are accompanied by fluctuations
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Figure 5.5: Maximum substrate temperature, Ts,max and discharge power P under the sepa-
ration distance profile in Figure 5.4 in absence of feedback control; applied voltage Vp2p and
helium mass flow rate q are maintained at their constant values.

of the discharge. Eventually, at dsep=15 mm, the discharge is decoupled completely from the
surface.

Two PI control strategies are tested in their ability to mitigate the effect of the disturbance
in dsep. Ts,max is controlled with two different manipulated variables; the applied voltage
Vp2p and the helium mass flow rate q. Figure 5.6(a) shows the control performance with
manipulated Vp2p. Initially, with this strategy, Ts,max cannot reach the setpoint, on account
of the saturation of the input. However, as dsep is increased beyond 6 mm (t > 25 s) the
PI controller tracks the setpoint in maximum substrate temperature effectively, until dsep
reaches 14 mm (t = 120 s). After this time, as in the no control case, spikes are observed in
P and Ts,max starts to decline as the discharge starts to decouple from the surface. Figure
5.6(b) shows the control results obtained with q as the manipulated variable. The control
performance is noticeably better compared to results obtained using Vp2p as the manipulated
variable. The setpoint in Ts,max is tracked well throughout the operation as q increases
with increasing separation distance. Moreover, P remains comparatively constant with no
indication of the spiking behavior associated with discharge instability and decoupling from
the surface. Visually, the discharge also remains more stable as the APPJ is drawn away from
the surface. One explanation for the comparative advantage of using q as the manipulated
variable may pertain to in-mixing of ambient air species into the discharge plume. Increasing
separation distance allows increased in-mixing of air. This, in turn, results in increased
temperature, as both N2 and O2 have significantly shorter mean free paths resulting in more
frequent collisions, quenching the plasma. Increasing q causes the convective flow in the axial
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(a) (b)

Figure 5.6: Maximum substrate temperature Ts,max, discharge power P , and applied input
profiles with the varying separation distance profile in Figure 5.4, under PI control with
(a) applied peak-to-peak voltage Vp2p and (b) helium mass flow rate q as the manipulated
variable.

direction to dominate over the radial diffusion of air, allowing the discharge to be sustained
in a stable manner over large separation distances. This is similar to reported behavior of
the APPJ increasing length with the increased flow when operated as a free jet, de-coupled
from the ground [117], [133], [188].

Although use of q as manipulated variable appears to be advantageous over using Vp2p
to mitigate the effect of the disturbances in separation distance, both methods appear to be
adequate in maintaining Ts,max over a reasonably broad range of disturbances (dsep 4-10 mm)
in separation distance, offering considerable improvement over the no control case.

5.3.2.1 Substrate Properties

Since the APPJ is electrically coupled to the substrate, variations in substrate characteristics
such as impedance or thermal properties can drastically impact the APPJ properties and its
effects on treated substrates [6], [25], [177]. This, in turn, complicates the reliable operation
of APPJs over a range of substrates. For example, in a medical context, thermal and
electrical properties of the treated location may vary between healthy and wounded tissue,
or between patients. To investigate the effect of the substrate impedance on the substrate
temperature, up to four borosilicate microscope coverslips are stacked on top of one another
under the APPJ. The APPJ is translated across the substrates of varying property (different
number of stacked coverslip) and finally onto a bare aluminum substrate. The corresponding
disturbance profile is shown in Figure 5.7. Note that it is often not possible to de-couple
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Figure 5.7: Disturbance profile used to investigate the effect of substrate impedance; labels
1x, 2x, 3x and 4x indicate the number of borosilicate cover slip stacked under the APPJ,
whereas Metal indicate the APPJ is on the bare grounded aluminum plate.

Figure 5.8: Maximum substrate temperature, Ts,max and discharge power P under the dis-
turbance in substrate properties in Figure 5.7 in absence of feedback control, with applied
voltage Vp2p and helium mass flow rate q are maintained at their constant values.

changing substrate impedance from changes in other properties of the substrate such as heat
capacity and thermal conductivity. For example, borosilicate and aluminum substrates differ
not only in their impedance but also have significantly different thermal conductivity.

Figure 5.8 shows the response of the maximum substrate temperature and dissipated
power to the changes in substrate properties following the profile is given in Figure 5.7. P
appears to steadily decrease as the jet is translated over an increasing number of coverslips.
This can be explained by the increase in substrate impedance with the number of coverslips
stacked. Ts,max, however, follows a different trend; it first appears to increase as the jet is
translated over 2x stacked coverslips and then declines as the number of stacked coverslips



CHAPTER 5. BASIC CONTROL OF ATMOSPHERIC PRESSURE PLASMA JETS 65

(a) (b)

Figure 5.9: Maximum substrate temperature Ts,max, discharge power P , and applied input
profiles under the varying substrate characteristics following the profile in Figure 5.7, with
PI control with (a) applied peak-to-peak voltage Vp2p and (b) helium mass flow rate q as the
manipulated variable.

increase. This counter-intuitive behavior in Ts,max can be attributed to the competing effects
of the additional thermal resistance associated with the non-perfect thermal contact between
coverslips, and the decreasing P . The increased thermal resistance can allow the substrate
temperature to increase despite the decreasing power. Lastly, at the end of the operation, P
significantly increase as the APPJ is translated over the metal substrate. Correspondingly,
Ts,max takes on an increasing trend, although it does not reach steady state within the allowed
time. The response of P and the dynamics of the Ts,max clearly demonstrate the sensitivity
of APPJ operation substrate characteristics.

Two PI control strategies are tested for mitigating the effect of the disturbance in sub-
strate characteristics, controlling Ts,max with two different manipulated variables; Vp2p and
q. Figure 5.9(a) shows the measured Ts,max and P under PI control with Vp2p as manipu-
lated variable. Ts,max tracks the setpoint reasonably well initially. However, oscillations are
observed as the APPJ is translated over 2x, 3x and 4x coverslips. The oscillatory behavior
of temperature may be attributed, at least in part, to the fact the PI controller is tuned
under the nominal substrate condition of 1x coverslip. As the substrate properties change,
the PI tuning may end up being too aggressive giving rise to the observed oscillations.

Figure 5.9(b) show measured Ts,max and P under PI control with q as the manipulated
input. As in the previous case, some oscillations are observed in Ts,max although the controller
appears to give rise to comparatively smooth behavior, particularly as the APPJ is translated
over 3x and 4x stacked coverslips (t = 50–140 s). During this time, q increases close to the
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upper bound and appears to remain fairly stationary. Note that the dissipated power profile
in Figure 5.9(b) is very similar to that of the no control case (Figure 5.8). This indicates
that the flow and electrical effects are somewhat decoupled, save for the slight variation in
P observed at the beginning of the operation corresponding to a particularly low flow rate
of 1 slm. As the APPJ is translated onto metal at the end of the operation, both strategies
in Figure 5.9 appear to perform poorly. Regardless of which manipulated variable is used,
Ts,max considerably overshoots setpoint. This indicates a potential shortcoming of the naive
single-loop PI strategy in handling the drastic disturbance of glass-to-metal transition.

As in the case of changing separation distance, the results indicate some advantage in
using q to Ts,max. However, the advantage is less clear in this case. Using flow as the
manipulated variable leaves the electrical properties of discharge, as quantified by P , to
freely fluctuate in response to disturbances. This is undesirable as power dissipation is a key
discharge property which can impact discharge chemistry and effects on the substrate. This
behavior indicates the need for more complex strategies beyond single-loop PI to effectively
regulate the APPJ characteristics as well as thermal effects in the presence of disturbances.
One possible approach to allow this is presented in the next section.

5.4 Cascade Control of Substrate Temperature
Cascade control is a so-called “enhanced single-loop" control strategy which involves con-
necting multiple PI controllers in serial manner [29]. Figure 5.4 depicts a block diagram
of a cascade control strategy with two PI controllers. In cascade control, the input value
calculated by the controller in the outer loop is fed to a controller in the inner loop as the
setpoint. The APPJ is particularly amenable to cascade control strategies due to the sepa-
ration of timescales between the dynamics of the electrical phenomena in the APPJ (∼ ms)
and the thermal response of the substrate (∼ s). The cascade control structure allows lever-
aging this separation of timescales for rapid disturbance rejection. The electrical properties
of the APPJ can be controlled by an embedded PI controller at a faster timescale, while the
thermal properties can be controlled at a slower timescale. This section first investigates the
embedded control of electrical properties of the APPJ via control of the applied peak-to-peak
voltage Vp2p and dissipated power P . Then, the capability of a cascade control strategy in
setpoint tracking and disturbance rejection is demonstrated.

5.4.1 Embedded Control of Electrical Properties of APPJ

5.4.1.1 Voltage Control

The applied voltage (Vp2p) is one of the key input variables that influence the APPJ charac-
teristics. In current practice, APPJs are operated at constant applied voltage and frequency.
However, conventional high voltage amplifiers have frequency-dependent behavior [189], [190]
which can cause the voltage across the discharge to vary considerably with changing fre-
quency. Figure 5.4.1.1 shows experimental results collected from the kHz-APPJ setup in He.
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Figure 5.10: Block diagram for cascade control, yref , y and u refer to the setpoint, output
and input associated with the PI controller with the corresponding subscript; the input
computed by the controller in the outer loop u1 is the setpoint to the controller in the inner
loop yref2 .

(a) No control (b) Embedded voltage control

Figure 5.11: Measured peak-to-peak voltage (Vp2p in presence of varying discharge frequency
f under (a) no feedback control and (b) embedded voltage control.

Figure 5.11(a) shows the clear mismatch observed between the measured peak-to-peak volt-
age (Vp2p) across the discharge and the amplifier input. Evidently, the frequency response of
the amplifier presents a disturbance to the voltage signal; measured Vp2p considerably varies
with changing frequency. This behavior motivates the need for embedded control strate-
gies for reliably controlling the voltage measured across the APPJ. Indeed, an embedded PI
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(a) Setpoint tracking (b) Disturbance rejection

Figure 5.12: Measured power P , maximum substrate temperature Ts,max and applied peak-
to-peak voltage Vp2p under PI control for (a) setpoint tracking, and (b) rejection of distur-
bance in changing substrate type.

controller implemented in the ms timescale allows the regulation of the measured voltage
(Figure 5.11). The effects of disturbance arising from changes in frequency are mitigated
effectively by the PI controller except for small and short timescale excursions at t = 27 s
and t = 39 s. The embedded PI controller, therefore, ensures that the desired input value
of peak-to-peak voltage is reliably applied to the setup.

5.4.1.2 Power Control

The dissipated power depends not only on the applied voltage but also on the properties
of the discharge such as discharge geometry and the substrate the discharge is in contact
with. Moreover, the dissipated power directly influences the thermal end chemical processes
occurring in the discharge, impacting the APPJ effects delivered to the substrate. There-
fore, directly controlling the discharge power of key interest. An embedded PI controller
is configured to maintain the dissipated power by manipulating the applied peak-to-peak
voltage Vp2p. As described in Chapter 3, the embedded power is computed as the product of
analog measurements of root-mean-squared (RMS) voltage and current. Figure 5.12 shows
the experimental results concerning the embedded PI control of power. Figure 5.12(a) indi-
cates that the controller is able to accurately track the power setpoint by manipulating the
applied voltage. The input, Vp2p, appears to vary in a similar manner with P indicating a
constant Vp2p, for the most part, can allow maintaining a constant power in the absence of
disturbances. Notably, the final change in setpoint from 4 to 4.5 W results in a sharper rise
in Vp2p compared to the previous changes. This behavior indicates an advantage of PI control
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Figure 5.13: Temperature setpoint tracking using cascaded control strategy; the lower level
embedded controller regulates P by manipulating Vp2p is cascaded to a controller for Ts,max.

in reliably maintaining P , beyond simply controlling the applied voltage. Moreover, Ts,max
appears to vary in a similar manner with P , indicating P can allow regulation of Ts,max in
a similar manner as voltage.

The advantage of PI control of dissipated power is more evident in the presence of dis-
turbances. Figure 5.12(b) shows the performance of the embedded PI power controller in
maintaining power in presence of a periodic disturbance in substrate type; the operation
is started on a glass substrate and the APPJ is transitioned between a dielectric and con-
ductive substrate every 120 s. Dielectric and conductive substrates can result in drastically
different electrical behavior in the discharge [6], [25]. The experimental observations verify
the sensitivity of electrical and thermal characteristics of to substrate type. The input profile
clearly indicates that a considerably lower Vp2p is needed to maintain the dissipated power on
the conductive substrate. The advantage of embedded PI control is clear in this case, as the
dissipated power is effectively regulated in the presence of the disturbance in the presence
of disturbances.

5.4.2 Setpoint Tracking with Cascade Control

While the embedded PI control allows effectively regulating the electrical properties of the
APPJ, it does not necessarily allow maintaining of the thermal effects of the substrate as
shown in Figure 5.12(b). Therefore, a cascade control strategy is adopted for regulation
of maximum substrate temperature. The embedded power controller described in Section
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Figure 5.14: Disturbance profile used to investigate the effect of O2 admixture on APPJ
operation.

Figure 5.15: Maximum substrate temperature, Ts,max and discharge power P under the
disturbance in admixed O2 concentration in Figure 5.4.3 in absence of feedback control,
with constant applied voltage Vp2p.

5.4.1.2 is used in the inner loop (PI1 in Figure 5.4). A PI controller regulating Ts,max by
manipulating the power setpoint is configured for the outer loop (PI2 in Figure 5.4).

Figure 5.13 shows results obtained for setpoint tracking with the cascade control strategy.
The results indicate that the cascade control strategy is able to track the Ts,max set point
adequately. Moreover, the embedded power controller in the inner loop effectively tracks the
setpoints computed by the controller in the outer loop. Note that it takes considerable time
for Ts,max to reach the setpoint, however, P reaches its setpoint almost instantaneously due
to the faster timescale of the embedded control.



CHAPTER 5. BASIC CONTROL OF ATMOSPHERIC PRESSURE PLASMA JETS 71

(a) (b)

Figure 5.16: Maximum substrate temperature, Ts,max and discharge power P under the
disturbance in admixed O2 concentration in Figure 5.4.3 with (a) embedded control of power
(b) cascade control of maximum substrate temperature.

5.4.3 Disturbance Rejection with Cascade Control

APPJs are often operated with small amounts of molecular gases (N2, O2 and H2O) admixed
into the working gas in order to enhance the discharge chemistry [5], [121]–[123], [126].
However, molecular gases can significantly impact both thermal and electrical characteristics
of the APPJ. While addition molecular gases allow production of biologically active reactive
oxygen and nitrogen species in greater quantities, they also quench the discharge making it
more difficult to sustain the discharge. To investigate the effect of molecular gas admixing,
small quantities of O2 are added to the working gas. Figure 5.4.3 shows the measured
Ts,max and P in response to O2 admixture following the profile given in Figure 5.4.3. At
constant Vp2p, both P and Ts,max steadily decline with increasing O2 concentration. As the
O2 concentration is increased to 0.1% at t = 900 s, the discharge is extinguished.

Figure 5.16(a) shows measured Ts,max and P in presence of embedded power control. As
in Figure 5.12(b), embedded PI controller is able to regulate P effectively, however Ts,max
fluctuates. A clear benefit to embedded power control is that the discharge remains ignited
up to an O2 concentration of 0.17%. The behavior in Ts,max; an initial decrease, followed by
a stationary period and another period of decrease, is difficult to explain in simple terms.
However, clearly, a strategy beyond embedded power is needed to regulate Ts,max. Figure
5.16(b) show the performance of the cascade control strategy in rejecting the disturbance
in O2 concentration. Note that in order to obtain acceptable performance with the cascade
control strategy the tuning of the outer PI controller is re-visited based on dynamics observed
with 0.1 % O2 admixture (see D.2). The measured profile of Ts,max under cascade control
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Figure 5.17: Block diagram for cascade control with feedforward (FF) action, yref , y and
u refer to the setpoint, output, and input associated with the PI controller with the corre-
sponding subscript; setpoint to the controller in the inner loop yref2 is is computed by adding
the controller input u1 to the feedforward action.

in Figure 5.16(b), indicates that the disturbance is effectively rejected. Note at t = 1200 s
as O2 concentration increases to 0.13%, it is not possible for the embedded power controller
to reach the setpoint determined by the cascade temperature controller, as the input Vp2p
saturates. Overall the cascade control strategy is able to effectively reject the disturbance
in O2 admixture disturbance, allowing regulation of both electrical properties of the APPJ
and the thermal effects on the substrate.

5.5 Feedforward Control
PI control strategies may not, on their own, be effective in rejecting particularly drastic dis-
turbances effectively. In particular, feedback control cannot directly take advantage of the
knowledge of disturbance dynamics. Feedforward strategies can be used to take predictive
action, leveraging knowledge of the disturbance response of the system dynamics. In feed-
forward control, the effect of the disturbance is directly compensated for based on a model of
the dynamic of the disturbance response [29]. The feedforward action is combined additively
with action computed by the feedback control as shown in the block diagram in Figure 5.5.
In order to demonstrate this strategy, the particularly drastic disturbance of the transition
between a dielectric and conductive substrate is revisited.

Results shown in Figures 5.9(a), 5.9(b), and 5.12(b) indicate the disturbance in glass-to-
metal transition is challenging to handle with single-loop control strategies. Figure 5.18(a)
shows the performance of the cascade temperature controller, tuned based on a transfer
function model of the thermal dynamics on the glass substrate. As the disturbance acts at
t = 120 s, the aggressive tuning of the controller gives rise to oscillations. One method to
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(a) (b)

Figure 5.18: Maximum substrate temperature, Ts,max and discharge power P as the APPJ is
translated from a dielectric to a conductive substrate (t = 120 s) and back (t = 240), under
cascade PI controller (a) tuned based on observed dynamics on glass and (b) de-tuned

deal with this behavior is to de-tune the controller by increasing the λ parameter, in effect
increasing the response time of the control loop. Figure 5.18(b) shows the performance of
the de-tuned cascade control strategy. The measured Ts,max profile indicates that de-tuning
prevents the oscillatory behavior, at the expense of a considerably slower response. As a
result, Ts,max overshoots the setpoint significantly and takes a comparatively long time to
recover during transitions from both glass-to-metal (t = 120 s) and metal-to-glass (t = 240 s).

Figure 5.19 shows the effectiveness of the feedforward controller in rejecting the distur-
bance in substrate type. The overshoot observed when the disturbance acts are considerably
smaller, allowing for the temperature to return to the desired setpoint rapidly. The differ-
ence between the profiles of P and Vp2p in Figures 5.19 and 5.18(b) is subtle. Noticeably,
the peak observed in P following the glass-to-metal transition at t = 120 s is sharper in
Figure 5.19, spanning a shorter duration. Although small, this difference allows for a con-
siderably less drastic overshoot as Ts,max recovers from its initial drop. Another peak in P
is observed in Figure 5.19 when the APPJ is translated back onto the dielectric, which is
absent in Figure 5.18(b). This behavior allows for Ts,max to recover more rapidly from the
undershoot observed when the APPJ is back on the glass. Note that a crucial aspect of the
design and implementation of feedforward strategies is the measurement of the disturbance.
In particular, the direct measurement of the substrate type can be challenging. The method
used in this section to discriminate between dielectric and conductive substrates is described
in the later chapters (see 10.2.2).
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Figure 5.19: Measured voltage in presence of varying discharge frequency under (a) no
feedback control and (b) embedded voltage control.

5.6 Conclusions
Results presented in this section demonstrate the effectiveness of basic control strategies,
namely, single-loop and cascade PI control and feedforward control, in regulating electrical
characteristics of the APPJ and their thermal effects on substrates. Basic control strategies
allow rejection of a range of disturbances which may arise in APPJ operation, including,
variability in environment and change in APPJ position (Figure 5.3), changes in separation
distance (Figure 5.6), varying substrate properties (Figures 5.6 and 5.19), and molecular gas
admixing (Figure 5.16(b)). Therefore, a key conclusion of this chapter is that basic control
strategies can provide a significant advantage in mitigating effects of disturbances on APPJ
operation.

However basic control strategies have some limitations. For example, it is challenging to
address multi-variable dynamics with basic control strategies. This issue is touched upon
in Sections 5.3 and 5.4. Single loop control of Ts,max indicates the advantage of using q
as a manipulated variable. However, manipulating only q has the disadvantage of leaving
the electrical characteristics of the APPJ unregulated. The cascade control strategy allows
regulation of both P and Ts,max, although, not independently. With the cascade strategy,
choice of setpoint in P is dictated by the outer PI controller for Ts,max. Therefore, a strategy
is required for manipulating multiple inputs to regulate multiple outputs simultaneously
to fully exploit the operating region of the APPJ. Moreover, basic control strategies cannot
systematically address nonlinear and spatially distributed dynamics which arise, for example,
in dose delivery problems. The use of advanced, optimization-based control strategies to
address these issues are investigated in the following chapters.
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Chapter 6

Linear Model Predictive Control Based
on a Data-Driven Model

Atmospheric Pressure Plasma Jets (APPJs) are inherently multiple-input-multiple-
output (MIMO) systems. Moreover, the input-output relationships amongst the dif-
ferent operating variables in APPJs are interdependent and difficult to decouple. As
a result, the problem of controlling the multiple effects produced APPJs is difficult to
address with the classical proportional-integral (PI) control strategies. This chapter
demonstrates the drawbacks of using PI control on a multivariate problem and con-
trasts them with a linear model predictive control (MPC) strategy. Real-time control
experiments reveal the MPC strategy can more effectively regulate the multivariable
dynamics of the APPJ for effective setpoint tracking and constraint handling in the
face of disturbances.1

6.1 Introduction
The ability to influence the discharge properties over a broad range of conditions is one of
the key properties of APPJs that make them attractive tools for bio-chemical processing and
medicine. The broad range of operating conditions observed in APPJs, however, hinge on the
ability to manipulate a number of process inputs (applied voltage amplitude, frequency, flow
rate, molecular gas admixtures...) over relatively large ranges. The electronic, physical and
chemical processes that govern the discharge are highly coupled across multiple timescales,
resulting in tight coupling of the APPJ dynamics. As a result, each output is often influenced
by multiple variables, making it difficult to control with PI control strategies. Individual PI
controllers can only control a single output using a single input variable, disregarding the
possible interactions occurring between various inputs and outputs in APPJs.

This chapter investigates the application of the optimization-based model predictive con-
trol (MPC) strategy to the APPJ for a mutlivariable setpoint tracking problem. A compara-

1This section is adapted from previously published work [179]
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tively simple MPC formulation, based on a linear-data-driven model of the APPJ dynamics
(see Chapter 4.6.2) is investigated. The use of a linear system model allows formulation of
the MPC optimization as a quadratic problem, which is easy to solve. However, the use of a
linear model also significantly limits the accessible operating range for the APPJ. Moreover,
nonlinear aspects of operation such as dose delivery, is neglected to retain the linearity of
the system dynamics. Nevertheless, the results shown in this chapter demonstrate that the
MPC strategy has a clear advantage for regulating multiple APPJ effects over PI control
strategies.

In this chapter, the performance of the linear MPC strategy is compared to that of multi-
loop PI controls. The control objective is to regulate the maximum substrate temperature
Ts,max and intensity of plasma at the target surface I in the presence of step disturbances
in the device tip-to-surface separation distance dsep, while constraining the APPJ operation
within an acceptable operating range. For consistent comparison with the PI strategy, the
issue of input-output pairing of the APPJ is systematically addressed. The same linear-data
driven model is used in the MPC scheme is adopted for tuning the PI controllers using the
internal model control (IMC) method [185].

6.2 Multi-loop PI Control Design

6.2.1 Input-output Pairing

To design the PI controllers for the APPJ at hand, it was necessary to first choose the most
effective pairings between the manipulated inputs and measured outputs. The APPJ system
has three inputs, applied peak-to-peak voltage Vp2p, excitation frequency f , and He flowrate
q; and two inputs, maximum substrate temperature Ts,max„ and total optical intensity I. Two
PI controllers are designed independently for regulating Ts,max and I. Relative gain array
(RGA) and singular value decomposition (SVD) analyses [29], [191] were performed using
the subspace identified model to systematically determine the most effective input-output
pairings.

Relative gain array is constructed based on the steady-state gains Kij, between each
input-output pair i− j, The steady state gains are organized in the so-called steady-state
gain matrix K which is used too determine the RGA as

RGA = K ⊗ (K#)T , (6.1)

where ⊗ is the element-by-element multiplication operation (the Schur product), and #
denotes the pseudo-inverse operation, generalizing the inversion operation to non-square
matrices. This is necessary as in the APPJ system is non-square. Using the linear subspace
identification model (see Section 4.6.2) the RGA is calculated as

RGA =

[
0.5083 0.0947 0.3971
0.3461 0.0511 0.6028

]
. (6.2)
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Here, the rows correspond to the outputs (Ts,max and I respectively), and the columns
correspond to the inputs (V , f and q respectively). The recommended pairing corresponds
to the largest positive elements of the RGA that are closest to one. In (6.2), the elements
0.5081, and 0.6028 are the these two elements, revealing that the maximum temperature
Ts,max and total optical intensity of plasma I are most sensitive to the peak-to-peak voltage
Vp2p and He mass flow rate q, respectively. The third input f is dropped for the PI strategy
as it is the least significant manipulated variable for both of the inputs.

Further insight can be obtained about the multi-variable dynamics of the system using
SVD analysis. Unlike RGA, SVD analysis considers the system dynamics as well as the
scaling of the inputs and outputs. For SVD the inputs and outputs are scaled with respect
to their allowable range (i.e., inputs ui is scaled by umaxi -umini ) [29] and the scaled gain array
Ks is computed,

Ks =

[
0.4258 0.2586 −0.3137
0.3732 0.2195 0.4799

]
. (6.3)

This matrix is then de-composed to obtain the singular values,

Ks = UΣV T , (6.4)

where Σ is the diagonal matrix of the singular values; columns of U are are the output singular
vectors and columns of V are the input singular vectors. These matrices are calculated as
follows assuming the system is at steady state,

U =

[
0.5103 0.8600
0.8600 −0.5103

]
(6.5)

Σ =

[
0.6756 0 0

0 0.5549 0

]
(6.6)

V =

0.7967 0.3167 0.5147
0.4748 0.1990 −0.8573
0.3739 −0.9274 −0.0081

 (6.7)

The metric of interest in SVD is the conditioning number (CN) defined as the ratio of the
largest and smallest non-zero singular values. The calculated steady-state Σ shows that CN
is close to 1, indicating the system is well-conditioned. An important observation based on
SVD pertains to the U matrix. Notably, the singular output vectors have components in
similar magnitude in the two outputs, indicating that they are coupled. The first vector,
the so-called strong output direction that is easy to control, corresponds to simultaneous
increase of Ts,max and I. The second vector indicates the weak input direction that is difficult
to control. The matrix U indicates that it is challenging to reduce I while increasing Ts,max.
The SVD analysis also gives information about the process dynamics. Figure 6.1 shows the
frequency response of the two singular values of the data-driven linear APPJ model. The
trends indicate at higher frequencies the second singular value decreases significantly, which
may cause the system to become ill-conditioned (i.e., large CN). This poses a potential issue
as the outputs would be difficult to control with any control strategy in this case.
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Figure 6.1: The frequency behavior of the two singular values of the multiple-input-multiple-
output linear data-driven APPJ model (See 4.6.2).

6.2.2 Multi-loop Control Structure

A block diagram depicting the multi-loop PI control scheme is shown in Figure 6.2. The
linear subspace identified model is used for tuning of the PI controllers based on the internal
model control (IMC) method [185]. To this end, the first-order response of each output to
its paired input was characterized using the linear subspace model. The first-order transfer
functions mapping each input to each output were then used to explicitly derive expressions
for each controller. The tuning parameters of both PI controllers are given in Appendix

Figure 6.2: Block diagram of the PI control scheme
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(a) Outputs (b) Inputs

Figure 6.3: The APPJ behavior in presence of a step change in the device tip-to-surface
separation distance at 200 s with no feedback control and with feedback control using the PI
scheme: (a) outputs — maximum temperature Ts,max and total optical intensity of plasma
I at the surface and (b) manipulated inputs — peak-to-peak voltage Vp2p, frequency of
excitation f , and He mass flow rate q.

D, Table D.4. Input saturation was implemented to the PI controllers through addition
of antiwindup effect [183], so that the manipulated inputs would always remain within the
bounds of the linear operating region.

6.2.3 Results

First, the performance of the multi-loop PI control strategy in rejecting the disturbance in
jet-tip-to-substrate separation distance is demonstrated. Two APPJ runs were performed:
no feedback control was applied in the first run, while the PI control scheme of Figure 6.2 was
implemented in the other run. In both experiments, the APPJ was allowed to settle nearly
at the nominal operating condition reported in Section 4.6.2 before marking the onset of the
runs. The manipulated inputs were kept at their nominal values in the run with no feedback
control. The results of APPJ runs are shown in Figure 6.3. A step change of magnitude 2
mm was applied to the device tip-to-surface separation distance dsep at 200 s. That is, the
APPJ was moved away from the target surface at 200 s. The step change in dsep leads to a
sharp increase in the maximum temperature Ts,max and a sharp decrease in the total optical
intensity I (see Figure 6.3(a)). This somewhat counter-intuitive behavior can be attributed
to radial contraction of the plasma, resulting in an increase in Ts,max, which is associated
with increased in-mixing of the surrounding air that apparently contributes to the decrease
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in emission intensity I.
Figure 6.3(a) shows that the PI control scheme can follow setpoints of Ts,max and I

closely throughout the run. In particular, after the step change in dsep perturbed the APPJ
operation, the PI controller was able to bring both Ts,max and I back to their respective
setpoints. On the other hand, when the manipulated inputs were kept constant at their
nominal values in the APPJ run with no control (see Figure 6.3(b)), the step change in
dsep steered temperature away from its setpoint to an extent that can be unacceptable,
for example, for safe operation of the APPJ. In the run with no control, the temperature
consistently violated the chosen constraint of 65 ◦C after 200 s. However, note after the
disturbance is applied the PI control scheme results in an oscillatory response. This can be
partially ascribed to controller tuning but also to the interference of the two independently
designed PI control loops with each other. This is a result of the tightly coupled nature of the
APPJ dynamics, i.e., both manipulated variables influence both of the controlled outputs.

A notable observation in Figure 6.3(a) is the difference in the initial behavior (i.e., first
few seconds) of the two runs despite applying identical inputs to the APPJ. This can be
ascribed to the intrinsic variability of the plasma characteristics and/or unknown exogenous
disturbances, which can impede reproducible operation of the APPJ. The results in Fig-
ure 6.3(a) suggest that the multi-loop PI control strategy can allow significant improvement
over operation in absence of control. However, the multi-loop PI control strategy also has
some shortcomings, particularly the interference between the two controllers resulting in the
observed oscillatory response can be problematic.

Figure 6.4: Block diagram of the MPC control scheme.
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6.3 Offset-free Linear MPC Design
MPC is widely used for advanced control of multivariable systems with constraints and
multiple (possibly competing) control objectives (e.g., see [184], [192]). The key notion of
MPC is to optimize the predicted behavior of a system over a horizon in terms of some user-
specified performance criteria, while imposing constraints on the system state and input
variables [34], [35]. To incorporate measurement feedback into MPC, the online system
information obtained at every measurement sampling time is used to initialize the underlying
system model in MPC. This is known as receding-horizon control, which provides MPC with
some degree of robustness to system uncertainties and unmeasured disturbances.

The optimal control problem is commonly formulated to drive the system to desired input
and output targets (ū, ȳ). If the system model were perfect, keeping the inputs constant at ū
would ensure that the system goes to ȳ at steady state. However, due to model uncertainties
and unmeasured system disturbances, integral action (leading to zero e(t)) is not guaranteed
in the standard formulation of MPC.

An MPC scheme with integral action, commonly referred to as offset-free MPC [193], is
adopted for the APPJ to ensure adequate disturbance rejection. The offset-free MPC scheme
requires the system model be updated with measurement feedback information through
two mechanisms: (i) incorporation of an integrating disturbance model and (ii) state and
disturbance estimation based on measured outputs. The disturbance model in offset-free
MPC takes the form [

xk+1

dk+1

]
=

[
A Bd

0 I

] [
xk
dk

]
+

[
B
0

]
uk

yk =
[
C Cd

] [xk
dk

]
,

(6.8)

where dk is the unknown integrating disturbance and the matrices Bd and Cd define the
disturbance model — often chosen to be (Bd = I, Cd = 0) or (Bd = 0, Cd = I) corresponding
to the pure input or output disturbance models, respectively. Note that estimates of the
states and disturbances, denoted by x̂k|k and d̂k|k, respectively, are needed to initialize the
MPC at every measurement sampling time. Subscript k|k denotes the estimate at time
instant k, given the information at the same time instant. For the estimation, a Kalman
filter was used in this work [194]; see the MPC block diagram in Figure 6.4.

The desired input and output targets (ū, ȳ) should be updated based on the disturbance
estimates. Constraints on inputs and outputs, described by

Fuk ≤ f

Hyk ≤ h,

with matrices F and H casting the respective linear combinations of inputs and outputs
below the vectors f and h, may prevent the system from reaching the desired steady state.
Thus, a target calculator was used to find a feasible steady state (ys, xs, us) such that ys and
us are, respectively, as close to ȳ and ū as possible. The target calculator can be formulated
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as the following mathematical program with a least-squares objective

min
ys,xs,us

(ys − ȳ)>Q̃s(ys − ȳ) + (us − ū)>R̃s(us − ū)

s.t.
[
A− I B
C 0

] [
xs
us

]
=

[
−Bdd̂k|k
ys − Cdd̂k|k

]
Fus ≤ f

Hys ≤ h,

(6.9)

where Q̃s and R̃s are (user-specified) weight matrices. The optimization problem (6.9) is a
quadratic program (QP), which can be solved using standard methods. To drive the system
toward the input and output targets computed from (6.9), the optimal control problem in
the designed MPC was formulated in terms of the deviation variables

wj = x̂k+j|k − xs, vj = uk+j|k − us. (6.10)

Here, j refers to the time index of the MPC prediction, whereas k is the time index of the
operation i.e., the real time. Using the fact that xs = Axs + Bus + Bdd̂k|k, the system
dynamics can be described by

x̂k+j+1|k − xs = Ax̂k+j|k +Buk+j|k +Bdd̂k|k − xs
−→ wj+1 = Awj +Bvj,

(6.11)

so that the optimal control problem takes the form of the following regulator problem

min
v0,v1,...,vN−1

N∑
j=0

w>j Qwj + v>j Rvj (6.12a)

s.t. wj+1 = Awj +Bvj (6.12b)
w0 = x̂k|k − xs (6.12c)
Fvj ≤ f − Fus (6.12d)

HCwj+1 ≤ h−H(Cxs + Cdd̂k|k) (6.12e)
∀j = 0, 1, . . . , N − 1.

In the optimal control problem, the objective function (6.12a) is the sum of weighted out-
put deviations from their target and weighted input deviations from their target over the
prediction horizon N . Q is defined by Q = C>Q̄C, where Q̄ specifies the output penalty
weight. R represents the input penalty weight. The system dynamics are enforced through
the equality constraints (6.12b) and (6.12c). Lastly, the input and output constraints are
enforced over the prediction horizon through (6.12d) and (6.12e), respectively. The MPC
algorithm can be summarized as follows:

1. Obtain state/disturbance estimates =⇒ (x̂k|k, d̂k|k).



CHAPTER 6. LINEAR MODEL PREDICTIVE CONTROL BASED ON A
DATA-DRIVEN MODEL 83

(a) (b)

Figure 6.5: The APPJ behavior under feedback control with the PI control and MPC schemes
in the presence of setpoint changes as well as a temporary step change of magnitude 2 mm in
the device tip-to-surface separation distance: (a) outputs — maximum temperature Ts,max
and total optical intensity of plasma I at the surface and (b) manipulated inputs — peak-
to-peak voltage Vp2p, frequency of excitation f , and He mass flow rate q.

2. Determine steady-state target from (6.9) =⇒ (ys, xs, us).

3. Solve the regulation problem (6.12) =⇒ (v?0, . . . , v
?
N−1).

4. Apply first optimal input to system =⇒ uk = v?0 + us.

5. Repeat for k ← k + 1.

Here, the input and output constraints are defined as yk ≤ ymax and umin ≤ uk ≤ umax

through proper choice of F , f , H, and h in (6.12). The maximum temperature and the total
optical intensity of plasma at the surface are constrained by setting ymax = [65 ◦C, 107 a.u.]>.
The input bounds umin = [6 kV, 13 kHz, 0.8 slm]> and umax = [9.5 kV, 18 kHz, 1.8 slm]> are
selected to ensure that the APPJ operation remains within the linear region for which the
system model is developed (see Section 4.6.2). The MPC parameters are given in Appendix
D, Table D.7. The MPC algorithm is implemented using the CasADi interface [195] with
the qpOASES solver [196]. Both the PI control and MPC schemes were implemented on the
single-board computer in Python, with a measurement sampling rate of 5 s.
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6.3.1 Results: PI Control versus Linear MPC

The performance of the PI control and MPC schemes are evaluated in terms of setpoint
tracking for the maximum temperature Ts,max and the total optical intensity of plasma I
at the surface, while accommodating the effects of step changes in the device tip-to-surface
separation distance dsep. The step changes in dsep can be viewed as deterministic disturbances
perturbing the APPJ operation. In all the real-time control experiments, the APPJ nearly
reached the nominal operating condition before marking the onset of runs. All experiments
are repeated three times to examine the reproducibility of results. Figure 6.5 shows the
results of the PI control and MPC runs in which dsep increased by 2 mm at 130 s, followed
by a decrease of 8◦C in the temperature setpoint at 200 s, a decrease of 2 mm in dsep at 300 s,
and finally an increase of 15 a.u. in the total optical intensity setpoint at 450 s. The designed
setpoint trajectory represents a clinically relevant scenario, where it is typically desired to
lower the thermal effects of the APPJ while increasing its non-thermal effects (characterized
by I in this work). The singular value decomposition analysis performed using the linear
subspace identified model (see Section 4.6.2) indicated that moving Ts,max and I in opposite
directions presents an operational challenge due to the high degree of coupling between the
temperature and the intensity of plasma at the surface.

Figure 6.5(a) shows that the increase in the separation distance dsep at 130 s instanta-
neously leads to spikes in Ts,max and I in opposite directions. The spike in Ts,max violated
the constraint of 65 ◦C. The slow rejection of the step change in dsep by both control schemes
at 130 s can be attributed to the slow measurement sampling rate (i.e., 5 s) relative to the
system dynamics. As soon as new measurements becomes available, both control schemes
take corrective action to drive Ts,max and I back to their respective setpoints, even though
the MPC scheme showed a faster response. For the remainder of the run, Figure 6.5(a)
suggests that the MPC scheme exhibits a faster and a smoother response to the setpoint
changes as well as to the step changes in dsep than the PI control scheme. This can be
ascribed to the fact that MPC uses a system model to systematically account for the in-
teractions between all the APPJ inputs and outputs. However, the two PI controllers were
designed independently and thus disregard the coupling between the outputs Ts,max and I,
leading to undesired closed-loop interactions that manifested itself in terms of a somewhat
oscillatory response. While detuning the PI controllers can partly reduce their closed-loop
interactions, the controllers would become less aggressive in rejecting disturbances, which
can be undesirable in practice. The performance of the PI control and MPC schemes for
setpoint tracking are quantified in terms of the setpoint tracking error∫ tf

0

(
y(τ)− yref) dτ,

where yref denotes the setpoint trajectory. The analysis reveal that the MPC scheme resulted
in approximately 44% improvement in setpoint tracking for Ts,max and I as compared to
the PI control scheme. In particular, the plasma intensity I at the surface deviates as
much as 20 a.u. from its setpoint under PI control, which can be detrimental to safe and
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(a) (b)

Figure 6.6: The APPJ behavior under feedback control with the PI control and MPC schemes
in the presence of setpoint changes as well as a temporary step change of magnitude 3 mm in
the device tip-to-surface separation distance: (a) outputs — maximum temperature Ts,max
and total optical intensity of plasma I at the surface and (b) manipulated inputs — peak-
to-peak voltage Vp2p, frequency of excitation f , and He mass flow rate q.

effective application of the APPJ. Under the setpoint changes and disturbances considered in
Figure 6.5, both control schemes show comparable performance in handling the (arbitrarily
chosen) constraints on Ts,max and I, even though PI control generally cannot account for
constraints. Due to the proximity of the setpoint of I to its constraint after 450 s, a slight
degree of constraint violation is observed in both control runs. This can be attributed to
process and measurement noise, which are not accounted for in the deterministic formulations
of the control schemes designed in this work. As expected, Figure 6.5(b) indicates that both
the PI control and MPC schemes keep the manipulated inputs within their specified bounds
at all times during the run.

In order to further evaluate the performance of the PI control and MPC schemes, a larger
step change of magnitude 3 mm in the separation distance dsep is applied between 130 s to
300 s while the setpoints for Ts,max and I are kept the same as in the previous case. Note that
the dsep in hand-held APPJs is likely to constantly fluctuate during the operation. Figure 6.6
shows the results of the PI control and MPC runs. As in the previous case shown in Figure
6.5, the step change in dsep leads to spikes in I and particularly in Ts,max, but with larger
magnitudes and with a more significant temperature constraint violation (see Figure 6.6(a)).
Increasing the measurement sampling rate (i.e., shorter sampling intervals) may enable both
controllers to more effectively accommodate the step increases in the separation distance,
especially when their magnitude is large. After the decrease in the separation distance to
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(a) (b)

Figure 6.7: The APPJ behavior under feedback control with the PI control and MPC schemes
in the presence of setpoint changes as well as a temporary step change of magnitude 3 mm in
the device tip-to-surface separation distance: (a) outputs — maximum temperature Ts,max
and total optical intensity of plasma I at the surface and (b) manipulated inputs — peak-
to-peak voltage Vp2p, frequency of excitation f , and He mass flow rate q.

its original value at 300 s, the MPC scheme is able to adequately handle the step change in
dsep and maintain Ts,max and I at their setpoints. The PI control scheme however exhibits
sharp variations in Ts,max and I, followed by a notable oscillatory behavior in both outputs.
After 300 s, the optical intensity I at the surface increases by as much as 35 a.u. under
PI control, violating the intensity constraint by approximately 15 a.u.. In the context of
medical applications, such a drastic violation of the permitted operating range can lead to
over-exposure of the target surface to the plasma, potentially causing irreversible damage.
Likewise, the temperature Ts,max deviates from its setpoint for as much as 10◦C under PI
control, which can cause discomfort during the treatment. Figure 6.6 suggests that the MPC
scheme considerably outperforms the PI control scheme both in terms of setpoint tracking
and constraint handling, with fast and smooth response to all changes in the setpoints and
the separation distance (except the dsep change at 130 s). The MPC scheme result in 48
% improvement in setpoint tracking, while the PI control scheme leads to approximately
70 % more constraint violations of larger magnitudes. Even when a faster measurement
sampling rate of 1 s was used for the PI control scheme, as shown in Figure 6.7, the control
performance is inferior to that of the MPC scheme with the sampling rate of 5 s.
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6.4 Conclusions
The results in this chapter indicate that even a carefully designed proportional-integral con-
trol system using a sophisticated model-based tuning as IMC method may not be adequate
for dealing with the complex dynamics of APPJs. PI controllers cannot account systemat-
ically for the multivariable dynamics of APPJs that arise from using multiple manipulated
inputs for inducing multiple plasma effects. The design of individual PI controllers relies on
pairing the system inputs and outputs based on the open-loop response of the system, which
cannot capture the closed-loop interactions of the PI controllers and therefore may lead to
reduced closed-loop performance.

On the other hand, model predictive control provides a versatile framework for feedback
control of APPJs. MPC directly incorporates a system model and therefore can system-
atically account for the interactions between the multiple inputs and multiple outputs of
the system. In addition, MPC can explicitly handle system constraints, so that it can be
ensured that the system remains within an acceptable operating range during the operation.
This can be a particularly important consideration for medical applications of APPJs, as the
stringent requirements on safe and consistent APPJ operation can be explicitly defined and
enforced through constraints. Moreover, as discussed in the following chapters, the MPC
framework can be readily extended to accommodate nonlinear and integrating dynamics,
such as those arise in the problem of dose delivery. For the model kHz-excited APPJ used
in this work, MPC consistently showed a superior performance to PI control in terms of
setpoint tracking and constraint handling in the presence of step disturbances.

A key component of any MPC design is a system model that can adequately describe
the system dynamics relevant to the control problem while being computationally amenable
to online computations. The complexity of MPC largely depends on the complexity of its
underlying system model. This chapter focused on the relatively basic MPC design based a
data-driven, linear system model that is valid over a narrow operating range of the APPJ
at hand. The use of the linear model allowed a consistent performance comparison with PI
control, which is an inherently linear control method. However, the linear model limits the
potential effectiveness of MPC. The next chapter focuses on MPC design using nonlinear
lumped-parameter, physics-based models.



88

Chapter 7

Nonlinear Model Predictive Control
based on Physics-Based
Lumped-Parameter Models

APPJ characteristics and their effects on the substrate give rise to nonlinear dynamics.
Therefore, linear models can describe APPJ behavior only over narrow operating re-
gions. Particularly, the problem of dose delivery has nonlinear characteristics that are
challenging to address with linear control strategies. In this chapter, a nonlinear model
predictive control (NMPC) strategy is developed based on lumped-parameter physics-
based descriptions of the APPJ. The effectiveness of the NMPC strategy is investigated
in simulations and experimental studies for setpoint tracking and multicomponent dose
delivery.1

7.1 Introduction
The linear MPC strategy investigated in the previous chapter used a data-driven linear
model to describe APPJ dynamics over a relatively narrow range of operating conditions.
However, nonlinear behavior is prevalent in APPJs and and their applications. For example,
depending on the Reynolds number of the gas flow, the flow can become turbulent thereby
introducing nonlinear hydrodynamic fluctuations [117]. The plasma electrodynamics also
introduce significant nonlinearities. In presence of small admixtures of H2O, He APPJs are
shown to exhibit as many as five different modes of operation depending on the gas flow and
composition and, in particular, the magnitude of the applied voltage [111]. Moreover, the
biological responses of treated substrates to APPJ effects can be nonlinear. The thermal dose
metrics defined in Section 4.3 exemplifies this behavior. Therefore, use of nonlinear models
in conjunction with MPC can enable capturing the behavior of some key variables such

1Part of the results presented in this chapter is adopted from published work [197]



CHAPTER 7. NONLINEAR MODEL PREDICTIVE CONTROL BASED ON
PHYSICS-BASED LUMPED-PARAMETER MODELS 89

as discharge current and power, and systematically addressing the nonlinear dose delivery
problem.

This chapter presents a nonlinear model predictive control (NMPC) [34], [35] strategy,
for setpoint tracking and delivery of a multicomponent dose with the APPJs while ensuring
safe operation of the jet (e.g., arc-free) in the presence of disturbances. NMPC seeks to
optimize the APPJ performance for multicomponent dose delivery using the knowledge of
the system dynamics, described by a mathematical model (see Section 4.5), as well as system
constraints. NMPC can explicitly account for the nonlinear (often cumulative) nature of
plasma dose mechanisms and systematically trade-off between multiple (possibly conflicting)
dose delivery mechanisms. In addition, the inclusion of system constraints into NMPC will
allow for restricting the APPJ operation within a predetermined operating range to ensure
safe and reproducible dose delivery.

The, NMPC strategy is first studied in simulations for feedback control of a radio-
frequency (RF) APPJ in pure argon. NMPC is then applied to the experimental kHz-APPJ
setup He. To address the computational requirements of online optimization in NMPC,
physics-based, lumped-parameter models are used in conjunction with NMPC (see Section
4.5 and Appendix C.2). These models describe the electrical properties of plasma as well
as the mass and heat transfer along the gas plume. Provisional dose metrics (see Section
4.3) are used to quantify the thermal and nonthermal energy effects delivered to a tar-
get substrate. The closed-loop performance of the NMPC is compared to that of a basic
proportional-integral (PI) control system, which is designed using the internal model control
(IMC) method. [185]. Two case studies are considered in simulations and experiments: (i)
rejection of disturbances in jet-tip-to-surface separation distance, and (ii) multicomponent
dose delivery.

7.2 Simulation Study: NMPC on an RF-APPJ in Ar

7.2.1 State-space representation of the lumped-parameter model

The physics-based, lumped-parameter model of the RF-APPJ with the target substrate is
described by the set of nonlinear, differential algebraic equations given in Appendix C.2;
see Figure 4.8. For the NMPC design, the system model is compactly represented by a
discrete-time, state-space description

xk+1 = f(xk, zk, uk, θ), x0 = x(0)
0 = g(xk, zk, uk, θ),

(7.1)

where k is the time index, xk = [Ts,max CEMT CEMP]> is the vector of differential state
variables with the initial conditions x0, zk = [Tg0 ip P Tg(z) mAr(z)]> is the vector of
algebraic state variables, u = [VA vin]> is the vector of RF-APPJ inputs, θ is the vector of
model parameters (given in C.2.4), and f and g are the nonlinear differential and algebraic
model equations, respectively. Variations in the separation distance between the tip of the
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tube and the substrate (dsep) act on the system as unmeasured disturbances. In the next
section, the nonlinear state-space model (7.1) is used for designing the NMPC.

7.2.2 Nonlinear Model Predictive Control

NMPC involves solving the following optimal control problem at every time instant k that
the system states xk are measured [35]:

min
u

J(xk,u)

subject to: x̄i+1 = f(x̄i, z̄i, ui, θ), i = 0, ..., Np − 1 (7.2a)
0 = g(x̄i, z̄i, ui, θ), i = 0, ..., Np (7.2b)
l(x̄i, ui, z̄i, θ) ≤ 0, i = 1, ..., Np (7.2c)
ui ∈ U , i = 0, ..., Nc − 1 (7.2d)
x̄0 = xk, (7.2e)

where u = [u0, ..., uNc−1]> is the control policy over the control horizon Nc, which comprises
the decision variables of the optimization problem (7.2); Np is the prediction horizon over
which the system behavior is predicted (Nc ≤ Np); (7.2a)-(7.2b) represent the system model,
with x̄ and z̄ denoting the predicted differential and algebraic state variables, respectively
(see (7.1)); J is the objective function, defined in terms of the control objective(s); l denotes
(possibly nonlinear) functions representing the state constraints; and U is a convex, compact
set defining the input constraints. The optimal control policy, the optimal solution to (7.2),
is denoted by u∗. The prediction and control horizons Np and Nc are commonly treated as
the tuning parameters of NMPC.

In this section, two NMPC controllers are designed for the RF-APPJ, as described in the
following case studies.

Case Study I (disturbance rejection): The goal of this case study is to maintain
the substrate temperature Ts,max and the plasma power P at user-specified setpoints, while
counteracting the effects of a step change in the separation distance dsep. In this case study,
the control objective function in the optimization problem (7.2) is defined by

J =

NP∑
i=0

(
Ts,max,i − T ref

s,max

)2
+ w

(
Pi − P ref)2

, (7.3)

where NP is the prediction horizon, T ref
s,max = 315 K and P ref = 5 W are the setpoints for the

substrate temperature and plasma power, respectively, and w is a constant chosen such that
both setpoint tracking objectives have an equal weight in the objective function (7.3). The
prediction and control horizons in the optimization problem (7.2) are chosen as 20 and 3,
respectively. State constraints are imposed to maintain the plasma current and power below
critical values in order to avoid potentially damaging conditions (e.g., arcing) as well as to
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keep the substrate temperature within a comfort level. Accordingly, the state constraints
are defined by Ts,maxip

P

 ≤
 316 K

2.5 mA
10 W

 . (7.4)

In addition, the APPJ input values must be maintained within the following bounds[
100 V
8 m/s

]
≤
[
VA
vin

]
≤
[

700 V
35 m/s

]
, (7.5)

where the lower input bounds correspond to the minimum input values required for sustain-
ing the plasma and the upper input bounds correspond to the physical limitations of the
equipment. The rates of input change are also bounded as[

∆VA
∆vin

]
≤
[

300 V
13.5 m/s

]
. (7.6)

Case Study II (dose delivery): The goal of this case study is to safely deliver pre-
scribed thermal and nonthermal energy doses to the substrate within a given treatment
time of 150 s, without inflicting damage on the substrate. The control objective function is
formulated as

J =
(
CEMT,Nt − CEMref

T

)2
+ w

(
CEMP,Nt − CEMref

P

)2
, (7.7)

where the time index Nt corresponds to the total treatment time 150 s, CEMref
T = 9 min and

CEMref
P = 3 min (corresponding to an equivalent fluence of 225 J/cm2) are the prescribed

setpoints for the thermal and nonthermal energy doses, respectively, and w is a constant
weight. The control objective function (7.7) implies that the dose delivery problem requires
that the thermal and nonthermal energy dose accumulation reach their prescribed target at
the end of the treatment time. To ensure safe dose delivery, not only the plasma current
and power must be constrained to prevent mode transition, but also the dose accumulation
CEMT and CEMP must remain below prescribed limits at all times to avoid inflicting damage
on the substrate. Thus, the following state constraints are imposed

Ts
ip
P

CEMT

CEMP

 ≤


319 K
3.7 mA
12 W

10 min
5 min

 . (7.8)

The input bounds and the bounds on the rates of input change in this case study are defined
as in (7.5)-(7.6). The interior-point optimization algorithm IPOPT [198] is used to solve
the optimization problem (7.2) in both case studies. The closed-loop performance of the
NMPC controllers in Case Studies I and II is compared to that of a more conventional
proportional-integral (PI) control system, as demonstrated in Section 7.2.4.2

2In this case study, the NMPC controller is implemented using a shrinking prediction horizon.
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7.2.3 PI Controls

Sensitivity analysis is performed to assess the effect of each input on each output of the
APPJ. Accordingly, the plasma power P is paired with the input voltage VA and the sub-
strate temperature Ts,max is paired with the inlet flow velocity vin. Since the dynamics of
power deposition and gas heating in the dielectric tube are neglected relative to the sub-
strate and dose accumulation dynamics (see 4.5), a proportional-only controller (excluding
the integrating action) is used for regulating the plasma power. To enable a consistent com-
parison with the NMPC controllers, the internal model control (IMC) method [185] is used
for optimal tuning of the PI controllers. To this end, the nonlinear state-space model (7.1) is
used to characterize the first-order-plus-deadtime dynamics between the paired inputs and
outputs. Thus, the same system model is used for designing the NMPC and PI controllers.
The tuning parameters of the PI controllers are given in Appendix D.3. Antiwindup [183]
is incorporated into the PI controllers to handle the input bounds considered in the NMPC
controllers.

For Case Study I, the same setpoints as expressed in the control objective function (7.3)
are used to design the PI controllers. On the other hand, the dose metrics CEMT and
CEMP used in Case Study II cannot be readily incorporated into the PI controllers due
to their non-decreasing, cumulative nature. Thus, the target doses CEMref

T and CEMref
P

in (7.7) are translated into, respectively, their corresponding substrate temperature setpoint
T ref
s,max = 318 K and plasma power setpoint P ref = 6 W for the prescribed treatment time 150

s (see (4.1) and (4.4)). The latter setpoints are then used for designing two PI controllers
for substrate temperature and plasma power setpoint tracking. The closed-loop simulation
results are discussed next.

7.2.4 Closed-loop Simulation Results and Discussion

The closed-loop control systems with the NMPC and the PI controllers are shown in Fig-
ure 7.1. In the closed-loop control simulation studies presented below, the nonlinear state-
space model (7.1) is used to represent the true system.3 In all simulations, the measurement
sampling time is 5 s, that is, the measured system outputs are fed to the controller every 5 s.

Case Study I (disturbance rejection): This case study is designed to assess the
ability of the NMPC controller and the PI control system to achieve setpoint tracking for
the substrate temperature and plasma power while counteracting the effects of a step change
in the separation distance between the tip of the tube and the substrate (i.e., dsep). The
separation distance undergoes a step change from 7.5 mm to 3 mm at time 50 s, as in [199].
The state constraints (7.4) are incorporated into the NMPC controller to ensure that the
plasma properties remain within some prespecified thresholds. This can be important when
the plasma has a tendency to transform into a spark or some other undesirable mode.

3In closed-loop control simulation studies, the model used as the true system is typically different from
that used in the controller.
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(a) NMPC controller

(b) PI control system

Figure 7.1: Block diagram of the closed-loop control systems for the RF-APPJ: (a) the
NMPC controller which uses measurements of maximum substrate temperature, plasma
current, and plasma power for manipulating applied voltage and inlet gas velocity, and
(b) the PI control system which is designed to achieve the same goals using two single-
input-single-output proportional (P) and proportional-integral (PI) controllers operating in
parallel.

The closed-loop simulation results are shown in Figure 7.2. The step change in dsep at
50 s results in an increase in the plasma current (Figure 7.2(a)). The PI control system
can effectively maintain the substrate temperature and plasma power at their respective
setpoints after the step change in dsep (Figure 7.2(a)). However, the plasma current exceeds
the specified current constraint of 2.5 mA. PI controllers cannot handle state constraints
to retain the jet operation within a desired operating region. Thus, when disturbances act
on the APPJ (in this case, the step change in dsep), safe operation of the APPJ may be
compromised. The APPJ inputs (i.e., voltage amplitude and inlet gas velocity) computed
by the PI controllers are shown in Figure 7.2(b). The antiwindup property of the PI con-
trollers enables retaining the inputs within their admissible bounds. However, the PI control
system cannot systematically exploit the mutlivariable dynamics of the APPJ as the two PI
controllers operate independently from each other.
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(a) Outputs (b) Inputs

Figure 7.2: Closed-loop simulation results for the NMPC and the PI control system in Case
Study I: (a) maximum substrate temperature, plasma current and, plasma power; and (b)
voltage amplitude, and inlet gas velocity.

On the other hand, NMPC exploits the multivariable nature of system dynamics to
achieve the control objectives. The NMPC controller simultaneously modulates both APPJ
inputs VA and vin to achieve the setpoint tracking objective for the substrate temperature
and plasma power (as defined in (7.3)). In comparison with the PI control system, the
NMPC controller leads to more effective setpoint tracking for substrate temperature until
the separation distance is changed at 50 s (see Figure 7.2(a)). After the step change in
the separation distance, the performance of the NMPC controller slightly degrades due to
the offset in setpoint tracking for Ts,max and P . However, as shown in Figure 7.2(a), the
NMPC controller can effectively fulfill the constraint on the plasma current in the presence
of the step change in the separation distance (i.e., disturbance). The ability to handle state
constraints is paramount for safe and reliable operation of the plasma jets, particularly in
safety-critical applications such as in plasma medicine. State constraints can be motivated
by various considerations for safe APPJ operation such as avoiding plasma mode transition
via restricting the plasma state to a prespecified operating window, or accounting for re-
quirements of the target substrate (e.g., a temperature range for comfortable treatment).
Even though not demonstrated in this work, the slight offset in the setpoint tracking in
Figure 7.2(a) can be completely eliminated using standard offset-free NMPC techniques, as
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(a) (b)

Figure 7.3: Closed-loop simulation results for the NMPC controller and the PI control system
in Case Study II: (a) substrate temperature, (b) plasma current, (c) plasma power, (d)
thermal dose CEMT, and (e) nonthermal energy dose CEMP.

in the previou chapter [193]. The key advantage of NMPC in this case study lies in its ability
to realize multiple control objectives (setpoint tracking for Ts,max and P ) while handling con-
straints on the system variables (constraint on ip) and bounds on the system inputs (bounds
on VA and vin).

Case Study II (dose delivery): This case study aims to demonstrate the importance
of advanced feedback control for safe and effective dose delivery. The objective is to deliver
a target thermal dose CEMT and nonthermal energy dose CEMP to the substrate by the end
of the treatment time 150 s. To avoid inflicting damage on the substrate, for example, due
to undesired mode transition or arcing, the plasma power and current are constrained in the
NMPC controller to remain below a certain threshold at all times during the APPJ operation
(see expression (7.8)). In addition, upper constraints are imposed on CEMT and CEMP to
prevent excessive dose delivery during the plasma treatment. The substrate temperature is
also constrained, for example, to ensure comfort of a patient being treated. Note that the
latter state constraints cannot be handled in the PI control system.

The closed-loop simulation results for the NMPC controller and the PI control system
are shown in Figure 7.3. As discussed in Section 7.2.3, the PI controllers cannot readily
accommodate the cumulative dose metrics (4.1) and (4.4). Consequently, the dose delivery
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Figure 7.4: Input profiles computed by the NMPC controller and the PI control system in
Case Study II: (a) applied voltage and (b) inlet gas velocity.

problem for the PI controllers is defined in terms of setpoint tracking for the substrate
temperature Ts,max and the plasma power P , the setpoints of which were determined based
on the target dose levels for CEMT and CEMP to be delivered over 150 s. Figure 7.3(b)
indicates that the PI control system fails to realize the dose delivery objective since the
dose metric CEMT exceeds its target level and constraint. While the nonthermal energy
dose CEMP is delivered in 150 s, the violation of the safety threshold on CEMT can result
in severe thermal damage to the substrate. Figure 7.3(a) shows that the constraint on the
substrate temperature is also violated when the PI control system is used.

On the other hand, Figure 7.3 shows that the NMPC controller can effectively achieve the
dose targets at 150 s while satisfying the comfort and safety constraints on the substrate tem-
perature, plasma current, and plasma power. In the NMPC controller the dose requirements
are defined in the objective function (7.7). Hence, they can be viewed as soft constraints,
suggesting that their fulfillment is not guaranteed (in contrast to the safety constraints on
states that are enforced at all times). This leads to a slight offset in the nonthermal dose
CEMP with respect to its target value (less than 10%). It is worth noting that it may not
be possible to deliver any arbitrary combination of thermal and nonthermal dose due to the
tight coupling between the thermal and nonthermal dose delivery mechanisms. However,
NMPC enables achieving a trade-off between the two dose delivery mechanisms through
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selection of the weight constant w in (7.7).
This case study demonstrates that NMPC can handle multiple cumulative (in this case,

linear and nonlinear) dose metrics. This is likely to be paramount in plasma medicine,
particularly in light of the time-integral nature of the dose metrics. Note that dose delivery is
an intrinsically “integrating process” because once a part of the dose is delivered it cannot be
removed from the substrate. NMPC allows for seeking trade-offs between multiple (possibly
conflicting) dose delivery mechanisms in a systematic manner. The constraint handling
ability of NMPC (Figure 7.3(a)) is crucial for ensuring safe and reliable operation of the
APPJ since the plasma state can be restricted to a prespecified operating range. The control
input profiles computed by the NMPC controller and the PI control system are shown in
Figure 7.4. The NMPC and PI controllers result in different input profiles. However, both
control strategies can effectively retain the control inputs within their bounds (see expression
(7.5)), which were defined based on the physical limitations of the APPJ.

7.3 Experimental Investigation of NMPC on the
kHz-APPJ in He

The simulation studies conducted on the RF-APPJ in the previous section are now adapted
for the kHz-APPJ setup in He (see Chapter 3). The physics-based lumped-parameter model
developed in Section 4.5 is used in conjunction with the NMPC. The performance of NMPC
and PI control strategies are tested in real-time control experiments.

7.3.1 PI Controls

Two separate classical controllers are designed for control of Ts,max and P . Using the physics-
based lumped parameter model, sensitivity analysis was conducted to determine the appro-
priate input/output pairing. mass flow rate is found have little effect on power while both
outputs are most sensitive to the applied voltage. Thus, helium mass flow rate (q) is coupled
to the maximum substrate temperature (Ts,max) and applied voltage (Vp2p) is coupled to the
power deposition (P ). Both controllers are designed using IMC tuning rules [185] and were
equipped with antiwindup [186]. The controller tuning used in experiments are given in
Appendix D.5.

7.3.2 Nonlinear Model Predictive Control

As pointed out in Section 6.3, the system model does not perfectly capture the real system
due to presence of unmeasured disturbances and uncertainties in the system model. Conse-
quently, standard MPC formulations are not guaranteed to track setpoints in an offset-free
manner. To deal with this mismatch, integrating action is conferred via an offset-free MPC
strategy, based on an integrating disturbance model [193]. As the system dynamics are
nonlinear an Extended Kalman Filter (EKF) is used to estimate unmeasured states and the
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disturbances. EKF relies on a local linearization of the nonlinear system model for obtaining
estimates of the unmeasured states. The lumped-parameter physics-based model of the kHz-
APPJ in He, described in Section 4.5, is used in conjunction with the NMPC. The system
model is modified to include the noise and integrating disturbance on the measurements. The
following system of differential algebraic equations (DAE) describe the system dynamics,

dx

dt
= f(x, z, u, d, θ) + w, x0 = x(0), (7.9a)

0 = g(x, z, u, d, θ), (7.9b)
y = h(z, x) + v. (7.9d)

with algebraic states z = [P, Tg,0]>, differential states x = [Tg, wHe, Ts,max, Tr]
>, inputs

u = [Vp2p, f, q]
> and model parameters θ. The output function h designates the measured

subset of the states, i.e., y = [P, Ts,max]
> and d is the 2×1 vector of integrating disturbances,

added to P and Ts,max to allow offset-free behavior as in Section 6.3. w and v denote
independent Gaussian white noise with known covariance matrices Q and R.

For compact representation, augmented sates are defined to include the dynamic and al-
gebraic states as well as the disturbance. With the augmented state vector xaug = [x, z, d]>,
the augmented dynamic model is defined as faug = [f, g,0]. To estimate unmeasured states a
discrete-continuous variant of EKF is implemented for the DAE system [200], [201]. The lin-
earized dynamic and algebraic components of the model are computed based on the Jacobian
matrices,

F =
∂faug

∂xaug
and Γ =

[
I

−(∂g
∂z

)−1 ∂g
∂[x,d]

]
(7.10)

respectively. The linearized measurement model is obtained from the Jacobian of the mea-
surement function,

H =
∂h

∂xaug
(7.11)

The EKF algorithm consists of a prediction and correction stages. The prediction stage
involves the following steps at time instant k:

• Predicted estimates x̂augk+1|k are obtained by propagating previous estimates of the aug-
mented states x̂augk forward using the system model 7.9a and the current inputs uk.

• The covariance matrix P in differential states is propagated computing the following
integral over the sampling period

Pk+1|k − Pk =

∫ ∆t

0

(FP + PF> + ΓQ)dtΓ> (7.12)

Then the following steps are used to correct the predictions of the state and covariance
estimates:
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• The Kalman gain is computed from

Kk+1 = Pk+1|kH(HPkH
> +R)−1 (7.13)

• Updated state estimates are obtained using the Kalman gain and current measurements
ymeas

x̂augk+1|k+1 = x̂augk+1|k +Kk+1(ymeas −Hx̂augk+1|k) (7.14)

• Finally, the covariance matrix is updated as,

Pk = (I−Kk+1H)Pk+1|k. (7.15)

Recursively executing the EKF algorithm, state estimates x̂k are obtained at each time steps
in order to initialize the optimal control problem. The control problem takes a similar form
as (7.2). The control objective is defined as the deviation of the outputs from their respective
setpoints,

J =

NP∑
i=0

(
Ts,max,i − T ref

s,max

)2
+W

(
Pi − P ref)2

. (7.16)

The input constraint set U is defined such that the manipulated variables are retained within
the ranges allowed by the experimental setup, 6 kV

10 kHz
1.5 slm

 ≤
Vp2pf
q

 ≤
 10 kV

10 kHz
5 slm

 . (7.17)

The output constraints, denoted with l in (7.2), are defined as 30oC
0 W

0 min

 ≤
 Ts,maxP
CEMT

 ≤
 47 oC

4.7 W
10 min

 , (7.18)

to represent safety and comfort during treatment.

7.3.3 Soft-Sensing for Dose Delivery

PI controllers cannot systematically account for the nonlinear and integrating nature of the
dose definitions, as demonstrated in Section 7.2.4. However, using a so-called soft sensing
technique it is possible to convert the dose delivery problem to a setpoint tracking problem,
which is tractable for PI strategies. The soft sensing method relies on pre-defining the rate
of dose delivery using a parametric expression, such as a linear or quadratic function. With
soft sensing, the necessary temperature setpoint to achieve the incremental increase in dose
can be computed at each sampling instant by inverting the nonlinear dose definition [28]. A
description of the soft sensor algorithm for an assumed linear rate of dose delivery follows.
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Given at time instant k, a dose of CEMT,k is previously accumulated, the necessary linear
rate of dose delivery to achieve the desired final dose CEM ref

T at the end of operation tf , is
computed as

αk =
CEM ref

T − CEMT,k

tf − tk
. (7.19)

Then, the reference thermal dose for the next time point to achieve a linear delivery rate
can be computed from,

CEM set
T,k = CEMT,k + αk[tk+1 − tk]. (7.20)

The temperature setpoint T refs,max,k corresponding to the incremental increase in dose can be
further computed by inverting the dose metric (4.5),

T refs,max,k =

{
M(CEM set

T,k − CEMT,k) αk ≥ 0

30 oC otherwise
(7.21)

Here, the functionM denotes the inverse of the dose metric function. Since the inverse of
the dose metric is not real-valued when αk is less then 0, (i.e., the delivered dose exceeds
the reference), the T refs,max,k is set to its lower bound. An analogous procedure is used for the
non-thermal dose metric CEMP . Using this method, control objectives defined in terms of
dose metrics are translated into setpoint tracking problems in Ts,max and P . Note for the
MPC strategy, instead of a single setpoint, a future trajectory of setpoints are computed.
At each time point, predicted delivered dose is computed, which in turn allows computing
future setpoints in Ts,max over the MPC prediction horizon.

7.3.4 Experimental Results and Discussion

The block diagrams of the PI and MPC strategies, including soft sensing are shown in
Figure 7.5. An embedded voltage controller is implemented in both strategies to ensure that
the applied Vp2p is accurately implemented, not shown in the block diagrams (see Section
5.4.1.1). Two cases are investigated experimentally; In Case Study I, the ability of PI and
MPC strategies are evaluated for rejection of disturbances. In this case, soft sensing is not
used, and the disturbances are applied to the system while the outputs Ts,max and P are
controlled at setpoints chosen close to the system constraints. In Case the Study II, the
effectiveness of the two control strategies in multicomponent dose delivery are compared in
presence of disturbances. Both control strategies are implemented with a sampling time of
3 s.

Case Study I (disturbance rejection): The ability of the PI control and NMPC
strategy to reject disturbances is tested in real-time control experiments. Two disturbances
are investigated; an increase in jet-tip-to-surface separation distance (dsep), and an increase
in substrate impedance via stacking additional cover slips under the APPJ. For this case
study, the setpoints in maximum substrate temperature Ts,max and dissipated power P are
intentionally chosen to be close to the respective constraints, in order to evaluate control
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(a) PI Control Strategy with Soft Sensing

(b) NMPC with Soft Sensing

Figure 7.5: Block diagrams depicting the PI and NMPC control schemes used in the dose
delivery experiments. The Integrator computes the delivered dose based on outputs and
the Soft Sensing block computes the setpoints based on the delivered dose and the control
objective.

performance close to the limits of the operating range. Figure 7.6 shows the performances
of the two control strategies in rejecting a disturbance in dsep. The jet is pulled away from
the substrate at t = 60 s, increasing dsep from 4 to 12 mm. The disturbance is removed after
180 s. Figure 7.6(a) shows the measured Ts,max and P . Evidently, the PI control strategy
results in larger excursion from the setpoint. With PI, the constraint in Ts,max is violated
both when the disturbance acts and when it is removed. In contrast, the NMPC strategy
is able to more effectively reject the disturbance. Although the Ts,max constraint is violated
when the disturbance acts initially, NMPC strategy is able to mitigate the effect of the
disturbance rapidly. This constraint violation can be attributed to the comparatively long
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(a) Outputs (b) Inputs

Figure 7.6: The APPJ behavior under feedback control with the PI control and NNMPC
schemes in presence of a temporary step change of magnitude 8 mm in the device tip-to-
surface separation distance: (a) maximum temperature Ts,max and dissipated power P and
the disturbance profile in dsep (b) peak-to-peak voltage Vp2p, frequency of excitation f , and
He mass flow rate q.

sampling time, not allowing NMPC to act rapidly enough. In contrast, the constraint is not
violated under NMPC when the disturbance is removed, as the NMPC effectively regulates
the dynamics to prevent overshoot. A key advantage of the NMPC strategy for effective
disturbance rejection is the ability account for the full multivariable dynamics of the APPJ.
As seen in Figure 7.6(b), the applied voltage Vp2p is decreased under NMPC immediately
after the disturbance acts, in order to help decrease Ts,max back to the setpoint. This is
done at the expense of a deviation in P away from the setpoint (see Figure 7.6(a)). Since PI
strategy consists of two independent controllers, however, the PI controller for P is unaware
of the dynamics of Ts,max. Thus, under the PI strategy, the setpoint in P is maintained in
spite of undesirable behavior in Ts,max, i.e., larger magnitude deviations of setpoint and more
sustained violations of constraints.

Figure 7.7 shows experimental results obtained with PI and NMPC control strategies in
presence of a disturbance in substrate impedance, imparted by increasing the number of cover
slips stacked under the APPJ from 1x to 3x at t = 60 s. The disturbance is then removed
at t = 180 s. Notably, an offset in P setpoint is observed in presence of the disturbance,
under both control strategies. This behavior is attributed to the fact that the setpoint in P
is not easily reachable when substrate impedance is increased. The offset from setpoint in
P observed under PI control is somewhat larger, as Vp2p saturates. The NPMPC strategy
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(a) Outputs (b) Inputs

Figure 7.7: The APPJ behavior under feedback control with the PI control and MPC schemes
in presence of a temporary change in substrate impedance, imparted by increasing the num-
ber of cover slips stacked under the APPJ from 1x to 3x: (a) maximum temperature Ts,max,
dissipated power P , and the disturbance profile in substrate characteristics and (b) peak-to-
peak voltage Vp2p, frequency of excitation f , and He mass flow rate q.

performs slightly better, with a smaller deviation from the setpoint in P , on account of the
ability of the NMPC to manipulate the discharge frequency f as an additional manipulated
variable. This behaviour underlines the advantage of NMPC in its ability to account for
multivariable dynamics. The requirement for single-input single-output pairing limits the
PI strategy in this case, preventing the use of f as a manipulated variable. The PI control
strategy further results in a sharp increase and a consequent constraint violation in Ts,max
when the disturbance is removed. This behaviour is attributed, again, to the independent
design of the two PI controllers. As the PI controller tracks P setpoint faithfully, once
the disturbance is removed, Ts,max sharply increases causing the excursion and consequent
constraint violation observed in Figure 7.6(a). NMPC, in contrast is able to mitigate this
disturbance without constraint violations in Ts,max. However, small excursions and constraint
violations are observed in P . This is due to the fact that the NMPC is not designed to be
robust against noise and uncertainty in system dynamics.

These two studies demonstrate the advantage of the NMPC strategy for rejection of
disturbances. Notably, the interaction between the two controlled outputs Ts,max and P ,
necessitate some systematic strategy to allow trade-off between the competing objectives
and respecting constraints. NMPC strategy is precisely capable of this, yielding improved
control performance. Figure 7.3.4 summarizes the control performance of PI and NMPC
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Figure 7.8: Summary of performance of the PI and NMPC control strategies for rejection of
disturbances of different magnitude, quantified in terms of the value of the objective function
(7.16) and magnitude of constraint violation in Ts,max. Experiments are conducted in sets
of triplicates and error bars are indicate the a single standard deviation computed over each
set.

control strategies in terms of the value of the objective function 7.16 and the magnitude of
the constraint violation in Ts,max in presence of disturbances of different magnitudes. The two
strategies preform similarly in absence of disturbances. However, control performance with
NMPC is superior to that of the PI control strategy in presence of disturbances, in terms of
both the value of the objective function and the magnitude of constraint violation. Notably,
with increasing disturbance magnitude in dsep, NMPC preforms more than 2x better than
the PI strategy. The performance increase with NMPC is less pronounced with change in
substrate properties as the inputs can easily saturate and setpoints can become inaccessible
with changes in substrate properties (see Figure 7.7). A notable exception is when the
substrate properties are changed with 4x coverslips inserted under the APPJ. This results
in a significantly larger constraint violation with NMPC indicating the limitation of the
strategy. One explanation for this observation is that the mismatch between the dynamics
and the model increases beyond tolerance in presence of this disturbance.

Case Study II (Dose Delivery): The differences in performance between PI and MPC
strategies can result in drastically different dose delivery performances. In particular, the
nonlinearity in dose metrics can exacerbate relatively minor performance differences between
the two control strategies. This case study investigates the delivery of a multicomponent dose
combination in presence of disturbances in dsep and substrate characteristics. The control
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(a) Outputs (b) Inputs

Figure 7.9: The APPJ behavior for dose delivery with the PI control and NMPC schemes
in the presence of a temporary step change of magnitude 2 mm in the device tip-to-surface
separation distance: (a) maximum temperature Ts,max and dissipated power P and the
disturbance profile in dsep (b) peak-to-peak voltage Vp2p, frequency of excitation f , and He
mass flow rate q.

objective is defined in terms of delivery of a fixed combination of thermal and non-thermal
dose, quantified by CEMT and CEMP, respectively (see Section 4.3), over a fixed treatment
time of 200 s. The dose delivery problems are converted to setpoint tracking problems using
soft sensing, assuming a linear dose delivery rate as described in Section 7.3.3. For the
NMPC strategy, although a trajectory of future setpoints are calculated with soft sensing,
for ease of visualization only the current setpoint is plotted at each sampling time.

Figure 7.9 shows the time courses of the measured variables and the setpoints computed
by soft sensing, during multicomponent dose delivery in presence of a disturbance in sepa-
ration distance. dsep is increased by 2 mm at t = 60 s and its reverted back to its original
position at t = 120 s. As seen in Figure 7.9(a) under PI control Ts,max considerably exceeds
its setpoint and constraint when the disturbance acts. This behavior, in turn, results a
drastic spike in the delivered CEMT profile as shown in Figure 7.10; the delivered thermal
dose under the PI strategy drastically exceeds the target value as well as the imposed safety
constraint. In practice, this behavior may correspond to imparting some thermal damage
(i.e., burning) on the treated substrate. Note that, as CEMT exceeds its target value, the PI
setpoints computed by the soft sensor drop sharply, indicating failure of the PI control strat-
egy. In contrast, the NMPC strategy is able to effectively track the setpoint computed by
the soft sensor (see Figure 7.6(b)). With NMPC The disturbance is more effectively rejected.
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Figure 7.10: Delivered dose profiles under PI and NMPC strategies in presence of a dis-
turbance in jet-tip-to-substrate separation distance, corresponding to time courses given in
Figure 7.9.

A significantly smaller excursion is observed in Ts,max which remains below the constraint.
As a result, the MPC strategy is able to reliably deliver the desired multicomponent dose
(see Figure 7.10).

Figure 7.11 shows the measured time courses of outputs and corresponding setpoints
under PI and NMPC strategies for multicomponent dose delivery in presence of a disturbance
in substrate impedance. The disturbance is imparted by increasing the number of coverslips
under the APPJ from 1x to 3x at t = 60 s. The disturbance is then removed at t = 120 s.
Figure 7.11(b) show the profiles of Ts,max and P under the two control strategies. Under
PI control the Ts,max setpoints calculated via soft sensing continue to increase throughout
the operation. Once the disturbance is removed at t = 120 s, the PI controller appears to
be incapable of tracking the setpoint as the input q saturates at the lower bound (Figure
7.11(b)). This is is attributed to the independent nature of the two PI controllers designed.
In this case the power setpoint, which is tracked well by the PI, results in a situation where
the setpoint in Ts,max becomes inaccessible by manipulating q alone. The inability of the
PI strategy to handle the multivariable nature of APPJ dynamics, in this case, results in
a significant undershoot in the delivered CEMT (see Figure 7.12). This may correspond to
ineffective treatment with the APPJ as the desired dose target is not reached. In contrast,
NMPC is able to deliver the desired multicomponent dose effectively (see Figure 7.12).
Notably, the under the NMPC strategy, P initially deviates from its setpoint (see Figure
7.11(b)), presumably in order to achieve effective setpoint tracking in Ts,max. Once the
disturbance acts, a significant fluctuation in Ts,max is observed under NMP,C corresponding
to a large increase in CEMT (see Figure 7.12). However, the NMPC strategy is able to
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(a) Outputs (b) Inputs

Figure 7.11: The APPJ behavior for dose delivery with the PI control and NMPC schemes
in the presence of a temporary change in substrate impedance, imparted by increasing the
number of cover slips stacked under the APPJ from 1x to 3x: (a) maximum temperature
Ts,max and dissipated power P and the disturbance profile in dsep (b) peak-to-peak voltage
Vp2p, frequency of excitation f , and He mass flow rate q.

recover later in the operation as the setpoints in Ts,max and P , calculated by the soft sensor,
are effectively followed.

The two examples investigated in this case study demonstrate the advantage of NMPC
over the PI strategy for multicomponent dose delivery under disturbances. A notable obser-
vation here is that the PI strategy, under both cases is able to deliver the nonthermal dose
component CEMP reliably. This can be attributed to the linear nature of the CEMP metric
(see Section 4.3) as well as the effectiveness and rapid response of the PI controller between
Vp2p and P . However, as demonstrated above, faithful tracking of setpoints in P alone can
be detrimental for overall performance, especially in presence of disturbances. As a result,
the PI control strategy may be unable to regulate the thermal dose, either overshooting or
undershooting the CEMT target. Even when the somewhat complex soft sensing strategy
is used to aid its performance, the PI controls cannot systematically and reliably address
the multicomponent dose delivery problem. For this purpose, the NMPC strategy appears
advantageous. Note, however, that targets for CEMP and CEMT and the disturbance pro-
files in this case study, are picked specifically to demonstrates the shortcomings of the PI
strategy. The key factors impacting the control performance are found to be the magnitude
and the timing of the disturbances. If a disturbance realization causes an extreme overshoot
(for example in Figure 7.9(b) under PI) or if the disturbance acts close to the end of the
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Figure 7.12: Delivered dose profiles under PI and NMPC strategies in presence of a change
in substrate impedance, corresponding to time courses given in Figure 7.11.

operation, when most of the dose have already been delivered, it may simply be not possible
for either control strategy to recover.

7.4 Conclusions
This chapter demonstrated the effectiveness of NMPC for multivariable setpoint tracking and
multicomponent dose delivery in presence of disturbances. Both simulations and experimen-
tal studies indicate the clear advantage of the NMPC over PI control strategies. Simulation
studies indicate that integrating and nonlinear metrics are difficult to readily regulate with
PI control strategies. In contrast, CEMT and CEMP dose definitions can be readily incorpo-
rated to the NMPC strategy as a part of the system model. The end-point control objectives
are systematically addressed though the “shrinking-horizon" implementation demonstrated
in dose delivery simulations. The ability to systematically incorporate constraints and the
multivariate and nonlinear aspects of the system dynamics appear to be a key advantage for
regulating the complex behavior of APPJs.

The nonlinear and integrating nature of the dose metrics, as well as the nonlnearities
in APPJ behavior necessitate the use of nonlinear system models over linear ones. Indeed,
the NMPC strategy demonstrated experimentally in this chapter is capable of exploiting a
broader operating range and rejecting disturbances of larger magnitude compared to the lin-
ear MPC in Chapter 6. The key conclusion of this chapter is that NMPC is uniquely capable
of addressing the challenges of the APPJ dose delivery problem, where safety constraints are
of paramount importance, and dynamics are integrating and nonlinear.
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The effectiveness of the NMPC strategy relies on the descriptive capability and the com-
putational efficiency of the underlying model. The system of differential-algebraic equations
obtained from the lumped-parameter model (see Section 4.5) are a particularly stiff set of
equations. In turn, solving optimal control problems based on this model takes up to 3 - 5
seconds. This in turn, limits the timescales over which the NMPC strategy can be applied.
Fast optimization methods for non-linear optimization may aid this issue.

Another issue pertains to he descriptive capability of the models used for NMPC. For
example, certain aspects of the physics-based model, such as the equivalent circuit, rely
on empirical parametrizations. Moreover, a key aspect of APPJ treatment, the spatial
distribution of the APPJ effects on the substrate are not considered here. In contrast, dose
delivery is fundamentally a spatially distributed problem. The next chapter investigates how
the NMPC strategy can be extended to the spatially distributed dose delivery problem.
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Chapter 8

Spatially Uniform Dose Delivery with
Model Predictive Control in 1D

The effects of the APPJs on substrates are spatially and temporally distributed. More-
over, to treat practical treatment areas APPJs must often be translated across treated
substrates. This results in the complex problem of regulating the spatial dose de-
livery with APPJ while the jet is moving. This chapter experimentally investigates
spatially uniform delivery of thermal effects in 1D and including issues pertaining to
the translation of the APPJ. The thermal dose metric CEMT is extended to quantify
the cumulative, nonlinear thermal effects of the APPJ along a translation trajectory.
An optimization-based feedback control strategy is proposed for real-time regulation of
thermal dose delivery using spatial measurements of substrate temperature.1

8.1 Introduction
In the absence of reliable dosimetry and online diagnostics, the common practice is to devise
treatment protocols offline, largely based on the user’s experience and device characteristics.
The primary challenges in this approach arise from quantifying the complex interactions
between plasma and target substrate and achieving the delivery of a therapeutically effective
plasma dose across a substrate in the face of inherent variabilities of plasma dynamics,
exogenous disturbances, and uneven substrate characteristics.

Previous chapters demonstrated the usefulness of advanced control strategies for mitigat-
ing the effects of variabilities and disturbances on APPJ operation. However, these demon-
strations were limited to regulation of instantaneous APPJ characteristics and point-wise
dose delivery. On the other hand, the APPJ treatment is inherently a spatially distributed
problem. Hence, this chapter focuses on spatially uniform thermal dose delivery in atmo-
spheric pressure plasma jets (APPJs) in 1D. A key consideration in spatial dose delivery
with APPJ is the translation of the device. The small dimensions of APPJs often necessi-

1This chapter is adapted from published material in [202]
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tate that the device is translated over substrates in order to fully treat the target area. The
APPJ translation introduces further variability in plasma characteristic, that can compro-
mise the reproducible and effective operation of APPJs. Moreover, the systematic choice of
a translation trajectory which allows effective spatial dose delivery is not a trivial task.

This chapter addresses the problem of uniform delivery of a thermal dose of the kHz-
excited APPJ in helium along its translation trajectory in 1D. First, the thermal dose metric
is re-visited to quantify spatial thermal effects of the APPJ using spatially-resolved measure-
ments of substrate temperature. An optimization-based advanced control strategy is then
proposed for real-time regulation of thermal dose delivery as the APPJ is translated over
a dielectric substrate. The performance of the advanced control strategy is demonstrated
under different APPJ translation trajectories, where experimental investigations indicate
the critical role of real-time regulation of dose delivery and feedback control for achieving
spatially uniform dose delivery.

8.2 Thermal Dose Delivery
Treatment protocols in plasma medicine are commonly designed based on user’s experience
in terms of some reference operating parameters of a hand-held plasma device, treatment
time, and translation rate of the plasma device on a target substrate [13]. Ideally, however,
the objective of plasma treatment is to deliver a predetermined plasma dose to a target
substrate within a prespecified treatment time frame as the plasma device is translated over
the substrate. This suggests that effective plasma dose delivery hinges on (i) quantifying
the cumulative effects of plasma on the target substrate in terms of tempo-spatial variations
of substrate properties that are intimately related to the plasma effects and (ii) systematic
translation of the plasma device over the substrate. Here, the notion of spatial dose delivery
for the thermal effects of the APPJ in Chapter 3 is demonstrated when the APPJ is translated
along the x-direction.

8.2.1 Spatial Metric for Thermal Dose

Controlling the thermal effects of plasma in medical therapies is important for patient safety
and comfort [167]. Thermal dosimetry is fairly well-established in hyperthermia treatment,
where the thermal dose is commonly quantified point-wise using the Cumulative Equivalent
Minutes (CEMT) metric that is defined at a reference treatment temperature of 43◦C [18],
[27], [168] (see Section 4.3). The dose metric CEMT can be readily extended for any target
point x,

CEMT(τ, x) =

∫ τ

0

K(43−T (t,x)) dt, (8.1)
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Table 8.1: Four cases for the translation rate of the APPJ, which are specified in terms of
characteristic time ∆t and length ∆x.

∆x (mm) ∆t (s)
Case I 7 100
Case II 2 30
Case III 1 7.8
Case IV 0.5 1.3

where τ is a prespecified treatment time and the constant K characterizes the substrate
response to thermal stresses

K =


0 T (t, x) ≤ 39◦C
0.25 39◦C < T (t, x) < 43◦C
0.5 T (t, x) ≥ 43◦C.

This metric is adopted for quantifying the tempo-spatial thermal effects of the APPJ
along the translation trajectory x. Based on empirical observations of substrate temperature
shown in Figure 8.1, a Gaussian parameterization is used to describe the spatial distribution
of substrate temperature along x

T (t, x) = (Tmax(t)− Tinf)e
− (x−µ(t))2

σ2(t) + Tinf. (8.2)

Expression (8.2) suggests that substrate temperature at any point along the translation
trajectory x ∈ [−L, L] can be described in terms of: (i) the maximum substrate temperature
Tmax(t) at the centerline of the APPJ, which determines the highest rate of dose accumulation
according to the CEMT metric in (8.2), (ii) the spatial variance of substrate temperature
around the APPJ centerline σ2(t), and (iii) the position of the APPJ centerline µ(t), which is
governed by the APPJ translation rate. Tinf denotes the ambient temperature in (8.2) and is
used to normalize the temperature distribution. As discussed in Section 8.3, the parameters
Tmax(t), σ2(t), and µ(t) can in principle be controlled for regulation of the thermal dose
delivery along x.

8.2.2 Translation Rate

To treat areas larger than the dimensions of the APPJ, it is necessary to translate the
APPJ over the target substrate. The common practice in plasma medicine is to translate
the APPJ in a “meandering pattern” to achieve an average treatment rate of approximately
1 cm2/min [13], [79]. Generally, prespecifying the APPJ translation rate systematically to
achieve a desired spatial dose profile across the treatment area is not trivial. In radiotherapy,
the device translation is typically specified in terms of either discrete translation steps (i.e.,
step-and-shoot strategy), or continuous translation with some velocity (i.e., moving window



CHAPTER 8. SPATIALLY UNIFORM DOSE DELIVERY WITH MODEL
PREDICTIVE CONTROL IN 1D 113

strategy) [203]. Inspired by the step-and-shoot strategy, a discrete translation scheme is
adopted for the APPJ. The APPJ translation rate is defined in terms of discrete steps of size
∆x, where the APPJ is held for a time interval of ∆t at each step. ∆x and ∆t can be chosen
based on the characteristic time and length scales of the APPJ dynamics. Under nominal
APPJ operation (Vp2p = 8 kV and q = 1.5 slm), the characteristic time of the substrate
temperature dynamics is 30 s, whereas the spatial distribution of substrate temperature has
a variance of approximately 7 mm (i.e., σ2 = 7 mm in (8.2)). However, due to the exponential
nature of the dose metric (8.1), σ2(t) is considerably larger than the region over which dose
accumulates (see Figure 8.1). This characteristic length of dose accumulation is observed to
be similar to the radius of the visible area the plasma spreads across on the substrate.

Table 8.1 lists the time- and length-scale characteristics of four cases for the translation
rate of the APPJ, as considered in the remainder of this article. Note that Cases I and IV
correspond to two extreme translation rates: a discrete translation with few long steps in
Case I and a “continuous” translation with many short steps in Case IV.

8.3 Real-time Regulation of Thermal Dose Delivery
The goal of this chapter is to investigate uniform delivery of thermal dose CEMT(τ, x) along
the APPJ translation trajectory x ∈ [−L, L] under the APPJ translation rates listed in
Table 8.1. A schematic of spatially uniform thermal dose delivery is given in Figure 8.2.

Figure 8.1: A representative measurement of the substrate temperature obtained from the
IR thermal images and its corresponding thermal dose CEMT delivered over 1.3 s along the
translation trajectory x ∈ [−L, L]. d denotes the tube diameter of the APPJ.
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To achieve uniform thermal dose delivery, a hierarchical, feedback control strategy shown
in Figure 8.3 is proposed to control the spatial distribution of substrate temperature along
the translation trajectory. At the lower level of the control strategy, a proportional-integral
(PI) controller is used to control the maximum substrate temperature Tmax at the centerline
of the APPJ via manipulating the applied peak-to-peak voltage Vp2p. The PI controller
computes the control input Vp2p every 1.3 s as Tmax is measured. Physical bounds of the
control input Vp2p are incorporated into the PI controller via addition of antiwindup effect
[29]. The controller tuning is given in Appendix D.1.

The PI controller enables tracking the reference temperature T ref
max in the presence of ex-

ogenous disturbances acting on the APPJ as shown in Chapter 5. However, the PI controller
cannot account for the cumulative, nonlinear nature of the thermal dose CEMT(τ, x). Thus,
an optimization-based supervisory controller (i.e. an NMPC strategy) is adopted for de-
termining the reference temperature T ref

max (see Figure 8.3). Given the accumulated thermal
dose CEMT(tk, x) up to sampling time tk over x ∈ [−L,L], the supervisory controller solves

Figure 8.2: Depiction of thermal dose delivery along the APPJ translation trajectory
x ∈ [−L, L] at an arbitrary time point tk. The accumulated thermal dose CEMT (top)
is quantified in terms of spatial measurements of the substrate temperature obtained in real
time along the translation trajectory x (bottom). µ denotes the centerline of the APPJ,
which shifts along the translation trajectory.
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the dynamic optimization problem

min
T ref
max(t)

∫ L

−L
‖CEMT(τ, x)dx− CEMref

T (τ, x)‖2 +

∫ τ

tk

‖dT ref
max(t)‖2

wdt (8.3a)

s.t.
dCEMT(t, x)

dt
= K(43−T (t,x)), (8.3b)

T (t, x) = (T ref
max(t)− Tinf)e

− (x−µ(t))2

σ2(t) + Tinf, (8.3c)
T ref

max(t) ≤ 45◦C, (8.3d)
t ∈ [tk, τ ], x ∈ [−L,L],

where T ref
max(t) over the time horizon [tk, τ ] is the decision variable of the optimization prob-

lem, τ is the user-specified treatment time in the thermal dose metric (8.1), CEMref
T (τ, x)

is the user-specified reference thermal dose at the end of the treatment time τ along the
translation trajectory x ∈ [−L,L], and w is a user-specified constant weight. In the opti-
mization (8.3), the first term of the objective function (8.3a) describes the integral of squared
deviations between the predicted and reference thermal dose at τ . The second term in (8.3a)
penalizes excessive changes in the decision variable T ref

max(t) to avoid abrupt changes in the
substrate temperature. Expressions (8.3b) and (8.3c) describe the time evolution of thermal
dose accumulation in terms of the dose metric (8.1) and the Gaussian parameterization of
distribution of substrate temperature along x (see expression (8.2)). The thermal dose ac-
cumulation predicted by (8.3b) is dependent on the initial thermal dose CEMT(tk, x) and
the translation rate of the APPJ centerline µ(t). The constraint (8.3d) ensures that the
maximum substrate temperature remains below some user-specified threshold, for example,
to ensure patient safety and comfort.

The dynamic optimization problem (8.3) is solved repeatedly in real time every 6 s to
enable closed-loop thermal dose delivery planning . This entails re-initializing (8.3) at every
sampling time tk based on the thermal dose CEMT(tk, x) accumulated up to time tk (i.e.,
inferred by integrating the substrate temperature measurements), solving the optimization,
and subsequently applying the optimal value for T ref

max(tk) to the lower-level PI controller as
its reference. The repeated solution of the optimization confers a measurement feedback
action to the thermal dose delivery planning in order to provide some degree of robustness
to unmeasured disturbances affecting the dose delivery. Alternatively, the optimization (8.3)
can be solved offline – only once, before the treatment – to determine an optimal trajectory
for T ref

max(t) over the treatment time [0, τ ]. This strategy is hereinafter referred to as open-
loop thermal dose delivery planning. In this work, the optimization (8.3) is solved using
automatic differentiation software CasADi [195] and the interior point optimization library
IPOPT [198] in Python.

It follows from above that the PI controller enables fast rejection of disturbances act-
ing on the APPJ, whereas the optimization-based supervisory controller allows for planning
the thermal dose delivery in terms of the treatment time τ , the reference thermal dose
CEMref

T (τ, x) along the translation trajectory x ∈ [−L, L], and the APPJ translation rate as
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Figure 8.3: The hierarchical, feedback control strategy for real-time regulation of thermal
dose delivery using the APPJ. The control strategy consists of: (i) a proportional-integral
(PI) controller that regulates the maximum substrate temperature Tmax at the APPJ cen-
terline via manipulating the applied peak-to-peak voltage Vp2p every 1.3 s, and (ii) an
optimization-based supervisory controller that plans the thermal dose delivery every 6 s
via determining the optimal values for the reference maximum substrate temperature T ref

max
in the PI controller based on the user-specified treatment time, the reference thermal dose
along the translation trajectory, and the APPJ translation rate.

specified in Table 8.1. Note that other parameters characterizing the spatial distribution of
substrate temperature in expression (8.2) – namely the spatial variance of substrate temper-
ature around the APPJ centerline, σ2, and the APPJ position, µ – can be considered in the
optimization (8.3) as decision variables. To the extent that σ2 can be measured and manip-
ulated effectively, the distribution of the substrate temperature can be controlled to realize a
desired spatial distribution of the reference thermal dose CEMref

T (τ, x). Optimizing for µ in
the optimization (8.3), on the other hand, can allow for determining an optimal translation
trajectory. Although these alternative formulations for the optimization (8.3) can introduce
further computational and/or implementation complexities (e.g., increased solution time of
optimization, or a multivariable lower-level control structure), the hierarchical, optimization-
based control strategy in Figure 8.3 provides a versatile framework for real-time regulation
of spatial dose delivery.

8.4 Results and Discussion
The proposed feedback control strategy is implemented on the APPJ shown in Chapter
3, where the objective is to deliver a thermal dose of 1 min uniformly over a translation
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Figure 8.4: The translation trajectories of the APPJ under the four translation rates given
in Table 8.1. The translation rate increases from Case I to Case IV while the target region
and treatment time remain fixed at 20 mm and 5 min, respectively.

distance of 20 mm during treatment time of τ = 5 min. Thus, the reference thermal dose in
the optimization problem (8.3) is defined as

CEMref
T (5, x) =

{
1 −10mm ≤ x ≤ 10mm
0 otherwise. (8.4)

Figure 8.4 shows the APPJ translation trajectories corresponding to the four APPJ trans-
lation rates given in Table 8.1. Note here, that the translation direction of the APPJ is
reversed during the treatment in Cases III and IV. This is because the APPJ translation
rate in these two cases is high – relative to that in Cases I and II – for the target region be
treated in a “single pass” given the fixed treatment time of 5 min.

In the remainder of this section, the performance of the hierarchical, optimization-based
control strategy for real-time regulation of thermal dose delivery is investigated under the
APPJ translation trajectories depicted in Figure 8.4.

8.4.1 Spatially Uniform Thermal Dose Delivery

As described in Section 8.3, the dynamic optimization problem (8.3) enables designing the
reference temperature T ref

max for the PI controller directly in terms of the desired thermal
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dose delivery objective specified in (8.4). The offline and online solution of the optimization
problem (8.3) is considered respectively for, open-loop and closed-loop dose delivery planning
under the four translation trajectories shown in Figure 8.4. For the translation trajectory of
Case III, Figure 8.5 shows the spatial thermal dose delivered at the end of the treatment time
5 min, the Tmax profile, and the Vp2p profile for the cases of: (a) no feedback control and dose
delivery planning, (b) the open-loop dose delivery planning strategy, and (c) the closed-loop
dose delivery planning strategy. As seen in Figure 8.5(a), Tmax exhibits high variability and
sensitivity to the APPJ translation when no feedback control is used for regulating Tmax.
The inability to plan the dose delivery in this case, along with the variabilities in Tmax,
leads to significant non-uniformity in the spatial dose delivery along the target region. For
example, the thermal dose delivered at x = −5 mm is significantly lower than the desired
thermal dose reference (i.e., CEMref

T (5, x) = 1 min), whereas at x = 5 mm the delivered
thermal dose is approximately twice the reference. Thus, the results suggest that the safety
and effectiveness of dose delivery can be severely compromised in the case of no feedback
control and dose delivery planning.

Figure 8.5(b) shows the results obtained using the open-loop dose delivery planning
strategy, where the reference of the PI controller is determined by solving the optimization
problem (8.3) once, offline. As expected, the PI controller can effectively track the offline-
computed reference profile for the maximum substrate temperature, T ref

max, while mitigating
the variabilities that stem from the APPJ translation and possibly other unknown sources of
disturbances. Yet, even though a significantly more uniform thermal dose is achieved relative
to the case of no feedback control, there is an offset between the delivered thermal dose and
the reference dose. This can be attributed to the discrepancy between the planned dose and
the actual thermal dose delivered due to the fact that the reference profile T ref

max is determined
offline and thus it is blind to the actual state of dose delivery during APPJ treatment. On
the other hand, the closed-loop dose delivery planning strategy mitigates this discrepancy
via the real-time solution of the optimization problem (8.3). In this case, the actual thermal
dose delivered to the substrate is inferred from temperature measurements every 6 s and is
fed back to the supervisory controller (see Figure 8.3). This allows online computation of
the reference temperature T ref

max sent to the PI controller. Figure 8.5(c) suggests that the
closed-loop dose delivery planning enables achieving a close to uniform thermal dose along
the target region at the end of the treatment time while maintaining high reproducibility
and low variability in the dose delivery.

Next, the effect of the APPJ translation rate on the spatial thermal dose delivery is in-
vestigated. Figure 8.6 shows the delivered thermal dose using the open-loop and closed-loop
dose delivery planning strategies under the APPJ translation rates of Cases I to IV given in
Table 8.1, which correspond to the four APPJ translation trajectories shown in Figure 8.4.
APPJ translation along the prespecified trajectories perturbs the substrate temperature dy-
namics, thus acting as a disturbance on the thermal dose delivery. Figure 8.6(a) suggests that
neither the open-loop nor the closed-loop dose delivery planning strategy enables achieving
spatially uniform thermal dose delivery in Case I. This can be attributed to the large, discrete
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(a) (b)

(c)

Figure 8.5: Delivered thermal dose CEMT(5, x) along x ∈ [−10, 10mm], maximum substrate
temperature Tmax, and applied peak-to-peak voltage Vp2p under the APPJ translation tra-
jectory of Case III in Figure 8.4 for: (a) no feedback control and dose delivery planning, (b)
the open-loop dose delivery planning strategy, and (c) the closed-loop dose delivery planning
strategy. The error bars show the standard deviation of variables based on three replicate
runs.

steps of the APPJ translation, which prevent the substrate from being uniformly treated.2
Figure 8.6 shows that a fairly uniform dose delivery can be achieved along the target region
as the APPJ translation rate is increased in Cases II to IV. Higher translation rates result

2Note that similar nonuniformity in treatment is also observed in the case of discrete device translation
strategies in radiotherapy applications [204].
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(a) (b)

(c) (d)

Figure 8.6: Delivered thermal dose CEMT(5, x) along x ∈ [−10, 10mm] using the open-loop
and closed-loop dose delivery planning strategies under the APPJ translation rates of (a)
Case I, (b) Case II, (c) Case III, and (d) Case IV. The red profiles depict the reference
thermal dose CEMref

T (5, x). The error bars show the standard deviation of the delivered
thermal dose based on three replicate runs.



CHAPTER 8. SPATIALLY UNIFORM DOSE DELIVERY WITH MODEL
PREDICTIVE CONTROL IN 1D 121

Figure 8.7: Performance comparison of the open-loop and closed-loop dose delivery planning
strategies under the different APPJ translation rates. The dose delivery performance is
quantified as the integral of squared deviations between the delivered, CEMT(5, x), and
reference, CEMref

T (5, x), thermal dose.

in smaller discrete translation steps, toward continuous APPJ translation in Case IV (see
Figure 8.4). This observation suggests there should exist a minimum translation rate below
which uniform dose delivery is impractical.

Furthermore, Figure 8.6 shows that irrespective of the APPJ translation rate, the open-
loop dose delivery planning strategy leads to an offset in dose delivery with respect to the
reference thermal dose. On the other hand, the closed-loop strategy enables realizing the
reference thermal dose level of CEMref

T (5, x) = 1 fairly uniformly along the target region.
The performance comparison of the open-loop and closed-loop strategies under the different
APPJ translation rates is summarized in Figure 8.7, where the dose delivery performance is
quantified as the integral of squared deviations between the delivered and reference thermal
dose, i.e., ∫ 10

−10

‖CEMT(5, x)dx− CEMref
T (5, x)‖2dx.

Note that the expression above is, in fact, the first term in the objective function of the
optimization problem in the supervisory controller (see (8.3a)). Figure 8.7 indicates that the
closed-loop dose delivery planning strategy consistently outperforms the open-loop strategy
under the four translation rates. However, as the translation rate increases from Case II to
IV, the performance of the closed-loop dose delivery planning strategy slightly deteriorates.
This can be attributed to the fact that a higher rate of the APPJ translation will perturb
the spatial distribution of the delivered thermal dose more significantly.
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Figure 8.8: Delivered thermal dose CEMT(5, x) along x ∈ [−10, 10mm], maximum substrate
temperature Tmax, and applied peak-to-peak voltage Vp2p for the closed-loop dose delivery
planning strategy under the offline-computed optimal APPJ translation trajectory µ. The
error bars show the standard deviation of variables based on three replicate runs.

8.4.2 Thermal Dose Delivery under Optimal APPJ Translation
Trajectory

The dynamic optimization problem (8.3) can be modified to include the APPJ translation
trajectory µ(t) as a decision variable, along with the reference temperature T ref

max. Figure
8.8 shows the delivered thermal dose using the closed-loop dose delivery planning strategy
when the optimal APPJ translation trajectory is computed offline. Interestingly, the optimal
APPJ trajectory has some resemblance to the translation trajectory of Case III (see Figure
8.4) in that the APPJ is translated to the end of the target region and back. In comparison
with the thermal dose delivery under the trajectories of Cases II and III (see Figure 8.4),
the optimal translation trajectory results in slight improvement in the dose delivery.
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8.5 Conclusions
This chapter investigated the usefulness of advanced feedback control methods for real-time
regulation of thermal dose delivery using the kHz-APPJ in He. To this end, a hierarchical,
feedback control strategy is proposed, which consists of a proportional-integral controller for
fast disturbance rejection and a supervisory, optimization-based controller for online planning
of the thermal dose delivery. Although this work focuses only on thermal effects, the proposed
strategy can be readily extended to include multiple plasma effects. As demonstrated in
Chapters 6 and 7, optimization-based control strategies can accommodate multivariable
dynamics. The key challenges remaining in the development of practical and comprehensive
control strategies for APPJ are effective sensing and tractable modeling of complex plasma
effects including chemistry. Particularly, models of plasma dose in terms of measurable
plasma properties is an essential component for the regulation of dose delivery.

The real-time control experiments demonstrated that the supervisory controller enables
achieving close-to-uniform dose delivery along the one-dimensional target region under dif-
ferent translation rates of the APPJ. However, the implementation here is limited to a single
output variable and 1D. Moreover, the dynamics that arise from the closed-loop system
(that is APPJ and the PI controller for Tmax) are neglected here. Next chapter focuses
on extending this to approach to address these issues for uniform thermal dose delivery on
two-dimensional surfaces with non-uniform electrical and thermal characteristics and in the
presence of disturbances.
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Chapter 9

Spatially Uniform Dose Delivery with
Model Predictive Control in 2D

The regulation of dose delivery in 2D in presence of disturbances is demonstrated. A
hierarchical control strategy is employed composed of a basic proportional-integral con-
trol layer for rapid disturbance rejection and a supervisory nonlinear model predictive
control (NMPC) layer for regulating the spatial thermal dose delivery in 2D. The closed-
loop dynamics of the lower-level basic control layer is identified and incorporated into
the NMPC strategy to allow effective dose regulation in the presence of disturbances.
Experimental results demonstrate drastically improved dose delivery performance with
the hierarchical control strategy in the presence of disturbances in jet tip-to-surface
separation distance and in electrical and thermal properties of the treated substrate.1

9.1 Introduction
As outlined in the previous chapters, the end-goal of APPJ treatment is the reliable and
effective delivery of a cumulative and spatially distributed effect, or a spatial plasma dose
to the target substrate. This can be a challenging task due to the sensitivity of APPJs
to disturbances (i.e., disturbance), which can drastically impact dose delivery. The sharp
spatial gradients in APPJ characteristics can easily result in non-uniformity in delivered
dose distributions. Moreover, hand-held operation relies on the operator to maintain the
jet-tip-to-substrate separation distance, variation of which can result in drastic changes in
APPJ characteristics and the delivered cumulative effects [7], [123], [179], [187]. Similarly,
changing electrical and thermal properties of the substrate can considerably influence the
APPJ characteristics, particularly when the substrate is electrically coupled to the discharge
[6], [25], [127], [177].

The previous chapter demonstrated that optimization-based advanced control strategies
can significantly improve reliable, reproducible and effective spatially distributed dose de-

1This chapter is adapted from material submitted for publication in [205].
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livery with APPJs in 1D. This chapter extends the spatial dose delivery approach to 2D.
Specifically, the effects of the disturbances on key characteristics of APPJ-substrate system
(e.g., discharge power, substrate temperature) and on spatiotemporal dose delivery is inves-
tigated. The separation of timescales of physical phenomena in the APPJ and the target
substrate can guide the development of a control architecture capable of achieving this task.
Fast phenomena such as the response of discharge electrical properties (∼ms) and substrate
thermal response (∼s) to exogenous perturbations should be addressed rapidly. In contrast,
the dose accumulation is considerably slower ( ∼min), allowing for the time needed for the
complex task of treatment planning. Hence, a hierarchical (i.e., multi-level) control structure
is well-suited for this problem: basic proportional-integral (PI) controller implemented in the
lower level (i.e., fast timescales) can allow fast rejection disturbances. An optimization-based
nonlinear model predictive control (NMPC) strategy, acting in a supervisory capacity, can
plan dose delivery accounting for the nonlinear and spatially varying nature of dose accumu-
lation as well as the APPJ translation trajectory. There are two key differences between the
strategy proposed here and the strategy presented in the previous chapter. First, a cascade
control strategy is employed in the lower level including an embedded power controller for
fast disturbance rejection (see Section 5.4). Second, the closed-loop dynamics of the basic
control layer is identified and incorporated into the MPC optimization.

The hierarchical control strategy is experimentally demonstrated to enable spatially uni-
form thermal dose delivery in 2D in the presence of two key disturbances in APPJ operation:
(i) changes in separation distance, which can arise during hand-held treatment or treatment
of uneven surfaces and (ii) abrupt changes in substrate properties, which can arise when ther-
mally and electrically heterogeneous substrates are treated. Using the experimental setup
described in Chapter 3, dose delivery performance is investigated under comparatively dras-
tic disturbance realizations in order to examine the limits of the proposed control strategy.
The results indicate that the proposed hierarchical control strategy with NMPC is crucial
for reproducible and effective spatial dose delivery.

9.2 Thermal Dose Delivery
As in previous chapters. the thermal dose metric of Cumulative Equivalent Minutes (CEMT)
at a reference temperature of 43 oC is adapted to quantify the nonlinear thermal effects of
the APPJ on a substrate (see Section 4.3). [27]. The spatially-varying CEMT is defined as

CEMT(τ, x, y) =

∫ τ

0

K

(
43−T (t,x,y)

)
dt. (9.1)

Recall here, that the parameter K describes the response of the substrate to thermal stress.
The reference temperature and the value of K can be chosen according to the properties of
the target heat-sensitive substrate. In this chapter, the expression reported in Section 4.3 is
employed, which describes the thermal stress-response of biological substrates based on the
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response of CHO cells to thermal stress. The dose definition (9.1) is widely used clinically
for dosing hyperthermia treatments [18], [27], [168].

(a) (b)

Figure 9.1: Spatial distribution of the thermal effects of the APPJ across the x-y plane.
Surface plots and projected contour plots of (a) the temperature distribution on a glass
substrate and (b) the corresponding rate of the thermal dose accumulation. APPJ is operated
with dissipated power of 3 W and He flow rate of 1.5 slm. The dashed lines circumscribe a
treatment area of 1 cm2.

The spatial nature of the dose definition (9.1) requires a description of the spatial distri-
bution of temperature on the substrate. A typical measurement of the substrate temperature
for the APPJ at hand is shown in Figure 9.1(a). The spatial distribution of the substrate
temperature is approximated by a bivariate Gaussian distribution as

T (t, x, y) = (Tmax(t)− Tinf)e
−

(
[x,y]−[µx(t),µy(t)]

)2
σ(t)2 + Tinf, (9.2)

where, Tmax is the the maximum substrate temperature, Tinf is the ambient temperature,
σ2 is the spatial variance of the temperature distribution, and µx and µy are the x− and
y−position of the jet centerline. An important observation here is that the exponential
nature of CEMT (see (9.1)) results in a spatial distribution for the thermal dose delivered
to the substrate that is sharper (i.e., a smaller variance) than that of the temperature, as
shown in Figure 9.1(b).

The time-evolution of the two variables µx(t) and µy(t) constitutes the translation trajec-
tory of the APPJ, chosen by the user. The translation trajectory is generally a function of the
desired dose delivery objective, the thermal dynamics of the substrate, the total treatment
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Figure 9.2: The basic control layer. The dashed box shows the embedded proportional-
integral controller for the plasma power, which is implemented in the ms timescale. The
proportional-integral controller for the maximum substrate temperature is cascaded to the
embedded controller.

time, and the spatial distribution of the dose. In the next section, an open-loop "optimal"
approach for computing the translation trajectory is presented.

9.3 Hierarchical Control Strategy for Thermal Dose
Delivery

Based on the separation of timescales between the APPJ dynamics and the thermal dynamics
of the target substrate, a hierarchical control strategy is proposed for regulating the 2D
spatial distribution of the delivered thermal dose. The hierarchical control strategy, consists
of (i) a basic control layer that enables fast rejection of disturbances acting on the substrate
temperature dynamics, and (ii) NMPC layer that computes the “optimal” setpoint for the
maximum substrate temperature at the APPJ centerline, supplied to the basic control layer.
In addition, a feedforward controller is designed to mitigate measured variations in the type
of the substrate. Each of the components of the hierarchical control structure are discussed
below.

9.3.1 Basic Control Layer

Figure 9.2 depicts the basic control layer consisting of two proportional-integral (PI) con-
trollers: an embedded controller for the plasma power and a cascade controller for the
maximum substrate temperature. The embedded power controller is used to maintain the
plasma power at the desired setpoint P ref in the presence of unknown (i.e., unmeasured)
disturbances acting on the APPJ by manipulating the applied voltage Vapp in ms timescale.
Note that the dissipated power in the APPJ is one of the main plasma outputs that influence
the substrate thermal dynamics. The cascade temperature controller, thus, aims to control
the maximum substrate temperature measured at the jet centerline (Tmax) by manipulating
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Figure 9.3: The hierarchical control strategy with NMPC. The dashed box shows the closed-
loop system consisting of the basic control layer and the measurement The NMPC is tasked to
predict and accordingly plan the spatial dose delivery by computing the “optimal" setpoints
for the temperature controller.

the power setpoint (P ref) of the embedded controller. Tmax is a key state variable governing
the spatial distribution of the substrate temperature, as described by (9.2). Both PI con-
trollers in the basic control layer are designed using the internal model control (IMC) tuning
rules [185]. The tunings for the PI controllers are given in Appendix D.

9.3.2 Nonlinear Model Predictive Control

Figure 9.3 depicts the hierarchical control strategy with NMPC. The NMPC is tasked to
determine the “optimal” setpoints of the cascade temperature controller in the basic control
layer, accounting for the spatially distributed and nonlinear nature of the dose delivery
problem. For planning dose delivery, MPC relies on predictions of the dose distribution
based on a model of the spatiotemporal behavior of the substrate temperature. As the
spatial temperature distribution is parametrized with (9.2), it is necessary to first model
the dynamics of Tmax and σ2 in response changes to actuated variables. Thus measurement
block in Figure 9.3 extracts the values of Tmax and σ2 from spatially resolved temperature
measurements T (x, y). The other function of the measurement block is to keep track of the
delivered dose by integrating T (x, y) according to (9.1), which is also necessary for predictions
of the dose distribution. We describe the dynamics of Tmax and σ2 as “closed-loop dynamics"
as they rely on the basic control layer (Figure 9.2). We employ a linear state-space model
to describe the closed-loop dynamics

xcl
i+1 = Axcl

i +Bui (9.3)
ycl = Cxcl

i ,

where xcl are a-physical states describing the time evolution of the dynamics, the outputs ycl

are the mean (i.e., maximum substrate temperature) and variance of the spatial distribution
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of the substrate temperature ycl = [Tmax, σ]>; and inputs u are the maximum temperature
setpoint and the flow rate of He u = [T ref

max, q]
>. The state-space model (9.3) is identified

from experimental data collected using only the basic control, exciting q and T ref
max. The

subspace identification routine routine n4sid (the canonical variable algorithm) is used in
MATLAB (MathWorks R©) for model identification. The model identification and validation
results for the closed-loop model are presented in Appendix C.6.

To predict the thermal dose accumulation on the substrate, the closed-loop dynamics
(9.3) are coupled with a discrete-form of the CEMT expressions (9.1)-(9.2), which describe the
thermal dose delivery in terms of the spatiotemporal dynamics of the substrate temperature.
Accordingly, the dynamics of the dose delivery are described by a set of nonlinear ordinary
differential equations of the discrete-time form

xi+1 = f(xi,ui,θ) (9.4)
yi = h(xi,ui,θ),

where the states are x = [xcl,CEMT(x, y)]>, the outputs are y = [ycl,CEMT(x, y)]>, and
the parameters are θ = [A,B,C,D,K, µx, µy]

>.2 Note here that CEMT also depends on the
Tmax and σ2 which are the outputs of the closed-loop model (9.3).

The 2D thermal dose delivery problem is formulated in terms of minimizing the square
of 2-norm of the difference between the thermal dose distribution at the end of the treat-
ment time CEMT(τ, x, y) and a user-specified spatial thermal dose CEMref

T (x, y). Thus, the
objective function of the NMPC, discretized in time and space, takes the form of

J =
L∑
x

L∑
y

‖CEMT(τ, x, y)− CEMref
T (x, y)‖2 +

Nc∑
i=1

‖∆ui‖2
Q, (9.5)

where τ denotes a user-specified treatment time, L denotes the length of the square-shaped
treatment area, Q = 0.01 is the relative weights assigned to input changes, and Nc is the
control horizon over which the decision variables ui are designed. Here, the the treatment
area of dimensions L× L is discretized into a grid of 2 × 2 mm squares (see Figure 9.1).

To account for practical considerations such as the operational limitations of the APPJ
or the reliability and reproducibility of the plasma treatment, the objective function (9.5) is
minimized subject to the following constraints on the inputs u and outputs y

Y =
{
y | 30 oC ≤ Tmax ≤ 46 oC and 5 mm ≤ σ2 ≤ ∞

}
, (9.6)

U =
{
u | 30 oC ≤ T ref

max ≤ 45 oC and 1.5 slm ≤ q ≤ 3.5 slm
}
. (9.7)

The upper bound on Tmax in (9.6) represents a critical temperature above which the heat-
sensitive substrate can be damaged. On the other hand, σ2 is a proxy for the width of

2Note that boldface x,y are the vectors of states and outputs while italic x, y are spatial coordinates
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the incident discharge. The discharge shrinks as it tends toward extinguishment, causing a
sharper temperature distribution on the substrate and thus a smaller value of σ2 . Hence,
the lower bound σ2 ensures the discharge is ignited and stable. The input constraints (9.7)
correspond to the limits of the operating region for which the closed-loop model (9.3) remains
valid.

Dose delivery is implemented in a feedback fashion. This implies that the objective
(9.5) should be minimized subject to the constraints (9.6)-(9.7) and the nonlinear dose
delivery dynamics (9.4), given the most recent state of the system, and more specifically
the current dose delivered. The feedback implementation, therefore, requires knowing the
states of the nonlinear system (9.4). However, the closed loop states xcl cannot be directly
measured. Thus a Luenberger observer [206] is used to estimate the closed-loop states based
on measurements of the closed-loop outputs ycl. On the other hand, the delivered dose
CEMT(x, y) is directly inferred from spatially resolved temperature measurements T (x, y)
(see Figure 9.3). Once the states x̂k are estimated from measurements, at every sampling
time k the NMPC solves the following optimal control problem

min
π

J(π, x̂k) (9.8a)

xi+1|k = f(xi|k,ui,θ) i = 0, . . . , Np−1 (9.8b)
yi|k = h(xi|k,ui,θ) i = 0, . . . , Np (9.8c)
ui|k ∈ U i = 0, . . . , Nc−1 (9.8d)
yi|k ∈ Y i = 0, . . . , Np (9.8e)
x0|k = x̂k, (9.8f)

where Np and Nc are prediction and control horizons, respectively, and π = [u0, . . . ,uNc−1]>

is the vector of decision variables. First element of the vector of the optimal decision variables,
the solution to (6.12), is applied to the APPJ. One of the inputs, T ref

max, is the setpoint to
the cascade substrate temperature controller in the basic control layer. The other input,
the He flowrate q, is directly applied to the jet (see Figure 9.2. Since the objective (9.5)
is defined in terms of the final dose distribution CEMT(τ, x, y), the predictions of spatial
dose delivery (9.8b)-(9.8c), are carried out until the end of the operation time. Thus, the
prediction horizon Np spans the time interval between the current operation time and the
total treatment time τ . Thus Np gets smaller, i.e. shrinks as the treatment progresses. This
implementation is termed shrinking-horizon. Recall Nc describes the interval over which the
inputs are designed, chosen here as Nc=Np. The measurement sampling time in this study
is 1.3 s, limited by the time required to acquire and process the measurements from the
IR thermal camera and optical emission spectrometer (see Figure Chapter 3). The optimal
control problem (9.8) is solved in Python using the automatic differentiation toolbox CasADi
[195] and the interior-point optimization solver IPOPT [198].
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9.3.3 Feedforward Control

The thermal dose delivery is investigated in the presence of an abrupt change in the electrical
properties of the substrate, which is mimicked by the transition between glass (dielectric) and
metal (conductive) substrates. This change in the type of the substrate can be considered
as a drastic disturbance perturbing the thermal dose delivery. To mitigate the effect of this
disturbance, a feedforward controller is added to the basic control layer. The key challenge
in designing this feedforward controller arises from lack of real-time measurement for the
disturbance. To this end, a soft sensor based on k-means clustering [207] is utilized to
classify the optical emission signal from the APPJ into two distinct categories corresponding
to the glass and metal substrates. The details of the k-means clustering and the feedforward
control strategy are presented in Sections 5.5 and 10.2.2, respectively.

9.4 Results
The proposed hierarchical control strategy based on NMPC is now tested on the APPJ.
The goal is to uniformly deliver a CEMT of 0.25 minutes over an area of 1 cm2 within
a treatment time of 1 minute. The chosen translation rate of 1 cm2/min is relatively fast
compared to thermal dynamics of the substrate which have a time constant of approximately
30 s. This rate of translation is inspired by medical applications where the time available
for treatment is limited [13], [79]. Note that the APPJ translation presents a disturbance
to the thermal dynamics of the substrate and thus, a fast translation rate can complicate
spatial dose delivery. The magnitude of the reference thermal dose is chosen according
to what is achievable given the thermal dynamics of the substrate in the APPJ setup at
hand as well as the predetermined treatment time of 1 min. Four different strategies are
investigated for dose delivery: (i) no control (constant voltage), (ii) embedded power control
only, (iii) basic control including the cascade temperature controller in Figure 9.2, and (iv) the
hierarchical control strategy including the NMPC for spatial thermal dose delivery planning
in Figure 9.3. The control strategies are tested under three different operating scenarios:
(i) no disturbances (base case), (ii) step changes in jet-tip-to-substrate separation distance
(iii) changing substrate type. The time-course profiles of the main state variables and the
delivered thermal dose are presented. However, since dose delivery results are generally poor
under no control (constant voltage), the corresponding dose distributions are not reported.
Prior to implementing the control strategies, a translation trajectory should be selected to
allow for the treatment of the desired area. The next section describes the computation of
an “optimal" translation trajectory for uniform dose delivery.

9.4.1 Translation Trajectory

The choice of the translation trajectory of the APPJ is one of the key components of the
spatial dose delivery problem as it can drastically effect the dose distribution. However,
selection of an appropriate translation trajectory is not trivial. The spatial distribution of
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(a) (b)

Figure 9.4: The APPJ translation trajectory utilized in control experiments. (a)Time evolu-
tion of the APPJ centerline in x- and y- coordinates and, (b) the treatment area (red square)
and the meandering shape of the translation trajectory (solid black line).

the substrate temperature, the treatment time, and the thermal response of the substrate
generally influence the choice of the translation trajectory. To address the complexities of
this problem, we formulated an offline optimization to determine the “optimal" translation
trajectory in an open-loop sense (i.e., in the absence of any measurement feedback). The
optimal control problem (9.8) is modified to include the translation trajectory (µx, µy) as
additional decision variables. Solving the optimization problem result in multiple optima,
which implies multiple possible translation trajectories which can correspond to a similar dose
delivery performance. It should be noted that solving the modified optimization problem
is both computationally expensive, and the solution is sensitive to initial guesses for the
translation trajectory. The increased computation time for the problem can make the online
computation of an optimal translation trajectory prohibitive. Depending on the supplied
initial guesses, the optimal translation trajectories are observed to follow either spiraling
or meandering patterns. No apparent advantage is observed for using one pattern over the
other in the control experiments discussed below. Thus, the meandering optimal translation
trajectory, shown in Figure 9.4 is chosen for control experiments. Figure 9.4(a) depicts the
time evolution of the x− and y− position of the APPJ centerline is shown. Notably, the
APPJ remains somewhat stationary between the treatment times 5 and 15 seconds. This
behavior is likely to account for the initial transient of the temperature dynamics as the
surface warms-up. The meandering pattern of the translation trajectory is illustrated in
Figure 9.4(b). The number and spacing of the back and forth strokes are dictated by the
spatial distribution of the CEMT (Figure 9.1(b)).
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(a) No control - constant voltage (b) Embedded power control

(c) Cascade temperature control (d) Hierarchical control with NMPC

Figure 9.5: Base case control experiments in the absence of measured disturbances acting
on the APPJ. The time evolution of the maximum substrate temperature Tmax and, the
variance of the temperature distribution on the substrate σ2 and the APPJ inputs applied
power P and flow rate q.

9.4.2 Base Case

First, a base case is established for comparing the effectiveness of the spatial thermal dose
delivery achieved using the four control strategies in the absence of any measured APPJ
variations or disturbances. Figure 9.5 the time evolution of the APPJ inputs and outputs
for the four investigated strategies: no control (Figure 9.5(a)), constant power P maintained
by the embedded power controller (Figure 9.5(b)), constant maximum substrate temperature
Tmax maintained by the cascade temperature controller (Figure 9.5(c)), and, the hierarchical
control strategy that uses the NMPC control to regulate the 2D thermal dose delivery.
(Figure 9.5(d)). The 2D spatial distribution of the thermal dose delivered at the end of the
treatment time using each strategy is shown in Figure 9.6.

Figure 9.5(a) suggests that, in the absence of known/measured disturbances, the plasma
power can be retained at the desired level fairly effectively by applying a constant voltage
Vapp to the APPJ. Note that the embedded power controller used in 9.5(b) to maintain a
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(a) Reference (b) Embedded power control

(c) Cascade temperature control (d) Hierarchical control with NMPC

Figure 9.6: The spatial distribution of the delivered CEMT across the x − y plane at the
end of the treatment in the absence of measured disturbances. In subplot (a) the translation
trajectory (black) superimposed on the reference dose distribution.

constant power enables rejection of unknown disturbances acting on the APPJ. However,
the maximum substrate temperature Tmax and the variance of the spatial temperature dis-
tribution σ2 cannot be kept constant by maintaining the power (Figures 9.5(a) and 9.5(b)
). As a result, the delivered thermal dose with the embedded power controller is spatially
non-uniform (Figure 9.6(b)). This indicates the importance of directly controlling the sub-
strate temperature for regulating the thermal dose delivery, even in the absence of known
disturbances.

Figure 9.5(c) shows that the cascade temperature controller enables controlling the max-
imum substrate temperature to remain constant. It is evident that the cascade temperature
controller can effectively reject the unmeasured disturbances that upset the thermal dynam-
ics of the substrate (e.g., due to the translation of the APPJ), whereas such disturbances
lead to variations in the variance of the temperature distribution that is uncontrolled. Al-
though the cascade temperature control strategy offers an improvement upon the embedded
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power control, the delivered thermal dose distribution is still not spatially uniform (Figure
9.6(c)). Specifically, determining the appropriate maximum substrate temperature setpoints
that correspond to a desired final spatially distributed thermal dose distribution remains a
challenge with the basic control strategy. On the other hand, the NMPC controller in the
proposed hierarchical control strategy is capable of systematically determining the optimal
sequence of setpoints for the cascade temperature controller, allowing for a close-to-uniform
spatial dose delivery (Figure 9.6(d)). Under the hierarchical control strategy, the “optimal"
setpoint is evaluated at every sampling time based on the current measurements of dose and
estimates of the system states. This allows combining fast disturbance rejection, handled
by the basic control layer, with optimal dose planing achieved by the NMPC. Note that in
Figure 9.5(d) the optimal setpoints in Tmax are not tracked particularly closely. However,
since the closed-loop dynamics of the basic control layer in Figure 9.2 are explicitly identified
and incorporated ((9.3)) in the optimal control problem (9.8), temperature response of the
closed-loop system results in a desirable final thermal dose distribution. Noticeably, Figure
9.6(d), shows overshoot at the APPJ position x=5, y=10. This is attributed to the fact
that the objective is fairly difficult to achieve, considering the characteristic timescale of the
thermal response of the substrate is about 30 seconds, half of the total treatment time.

9.4.3 Step Change in the Separation Distance

A common source of disturbance in the operation of APPJs results from variations in the
separation distance between the tube nozzle and the substrate. This can typically occur
in hand-held treatments or in treatment of substrates with non-uniform topology. Since
portable and hand-held operation of APPJs is one of the key considerations in allowing their
flexible use, it is crucial that disturbances in separation distance can be rejected effectively.

The effectiveness of the spatial thermal dose delivery is investigated using the four control
strategies in the presence of a relatively large disturbance: the separation distance is increased
from 4 mm to 10 mm when approximately half of the substrate is treated. At a separation
distance of 10 mm, the APPJ is on the verge of decoupling from the substrate, giving rise
to fluctuations and erratic behavior. The time evolution of the APPJ inputs and outputs
along with the 2D spatial distribution of the delivered thermal dose are shown in Figures
9.7 and 9.8, respectively. Figure 9.7(a) suggests that in the absence of feedback control the
increase in the separation distance results in a sharp decrease in the maximum substrate
temperature, coupled with a drop in the dissipated power. The time profile of the variance
of the temperature distribution σ2 indicates that the treatment area shrinks at a separation
distance of 10 mm. With control, on the other hand, the effects of the separation change on
the dissipated power can be rejected rapidly and effectively (Figure 9.7(b)). However, the
step change in the separation distance leads to an increase in Tmax and, in turn, to a drastic
overshoot in the delivered thermal dose (i.e., more than 500-fold relative to the reference
thermal dose CEMTref), as shown in Figure 9.8(b). Such a drastic overshoot results from
the nonlinear nature of the thermal dose definition (9.1).



CHAPTER 9. SPATIALLY UNIFORM DOSE DELIVERY WITH MODEL
PREDICTIVE CONTROL IN 2D 136

(a) No control - constant voltage (b) Embedded power control

(c) Cascade temperature control (d) Hierarchical control with NMPC

Figure 9.7: Control experiments under a step change of magnitude 6 mm in the jet-tip-to-
substrate separation distance. The time evolution of the maximum substrate temperature
Tmax, the variance of the temperature distribution on the substrate σ2 , and the APPJ inputs
applied power P and flow rate q.

The cascade temperature control also exhibits some limitations in effectively rejecting
the step disturbance in the separation distance. Figure 9.7(c) shows an oscillatory behavior
in the maximum substrate temperature Tmax and rapid changes in the applied power P
after the separation distance is increased. Moreover, flickering behavior is observed in the
visual appearance of the APPJ, which manifests as spikes in the measurement of σ2. The still
images of the APPJ shown in Figure 9.9(a) indicate that the plasma considerably shrinks and
dims during the operation. This behavior indicates that the plasma is unstable, which can
impede effective and reproducible thermal dose delivery. As a result, the delivered thermal
dose distribution under cascade temperature control is jagged and considerably lower than
the reference thermal dose CEMTref across the target area once the disturbance occurs.
(Figure 9.8(c)).

The effectiveness of the thermal dose delivery is significantly improved using the hierar-
chical control strategy with NMPC (Figure 7.6). A key advantage of the NMPC is the ability
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to handle multiple manipulated variables simultaneously. In this case, by manipulating q
and the T ref

max at the same time, the NMPC allows for mitigating the effect of the change in
separation distance. In this case, no oscillations are observed in the Tmax (Figure 9.7(d)),
and the visual appearance of the APPJ remains stable as shown in Figure 9.9(b). Similarly,
the σ2 remains consistently above the imposed lower bound, indicating the discharge does
not shrink or flicker (Figure 9.7(c)). However, there remains an untreated region on the
substrate (Figure 7.6). This may have resulted from actuation limitations. Note that there
is a trade-off between the achievable combination of Tmax and σ2 with increasing q; higher q
is associated with a decrease in Tmax and an increase in σ2. This implies that it may not be
possible to achieve the necessary temperature distribution required for uniform dose delivery.

(a) Reference (b) Embedded power control

(c) Cascade temperature control (d) Hierarchical control with NMPC

Figure 9.8: The spatial distribution of the delivered CEMT across the x − y plane at the
end of the treatment in presence of a step change in separation distance. In subplot (a) the
translation trajectory (black) and the location of the applied disturbance (marked with X)
is superimposed on the reference dose distribution.
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(a) Cascade temperature control (b) NMPC

Figure 9.9: Still images of the APPJ at a separation distance of 10 mm under (a) the cascade
temperature control and (b) hierarchical control strategy with NMPC.

9.4.4 Abrupt Change in Substrate Type

Abrupt changes in the electrical and thermal characteristic of the substrate can drastically
influence plasma properties [6], [25], [127], [177]. Hence, different operating parameters are
typically are required to accommodate different substrate types. This can significantly ham-
pers the operational flexibility of APPJs, particularly when the properties of the substrate
vary during operation. To investigate the effect of variations in the substrate characteristics
on the dose delivery, the APPJ is translated across the a dielectric (glass cover slip) and
a conductive (grounded aluminum plate) substrates during treatment (see Figure 9.11(a)).
Note that this disturbance is particularly drastic as the electrical properties (e.g., substrate
impedance) and thermal properties (e.g., conductivity, heat capacity) of the two substrates
are considerably different.

Figure 9.10(a) shows that transitioning the APPJ from a dielectric to a conductive sub-
strate results in the case of constant voltage (i.e., no feedback control) in a sharp increase in
P and Tmax. This can be attributed to the lower impedance of the conductive substrate. In
the case of the embedded power control (Figure 9.10(b)), the disturbance in the electrical
properties of the substrate is mitigated effectively since the plasma power can be maintained
at its setpoint. However, the disturbance in the thermal properties of the two substrates
leads to a drastic increase in Tmax which cannot be accommodated with the embedded power
control strategy. The increase in Tmax, in turn, results in a large overshoot of approximately
4-fold in the delivered thermal dose relative to the reference CEMref

T (Figure 9.11(b)).
On the other hand, the cascade temperature control strategy can mitigate the disturbance

in the substrate type to a considerable extent (Figure 9.10(c)). However, an overshoot in
Tmax is observed after the substrate transition, which results in a sharp overshoot in the
delivered thermal dose distribution (Figure 9.11(c)). Therefore, the cascade temperature
control strategy is not capable of effective dose delivery on its own. Note that the cascade
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(a) No control - constant voltage (b) Embedded power control

(c) Cascade temperature control (d) Hierarchical control with NMPC and feed-
forward

Figure 9.10: Control experiments under an abrupt change in the substrate type when the
APPJ transitioned from a glass to a metal substrate at 48 s. The time evolution of the
maximum substrate temperature Tmax, the variance of the temperature distribution on the
substrate σ2 , and the APPJ inputs applied power P and flow rate q.

temperature control results reported here are in the absence of feedforward control.
To enhance the ability to handle the change in the substrate type, the hierarchical control

strategy combined with a feedforward controller is implemented, leading to a considerable
improvement in thermal dose delivery (Figure 9.11(d)). As in the case of the step change
in separation distance, actuation limitations can limit the effectiveness of spatially uniform
thermal dose delivery. The physical phenomena occurring at the plasma-substrate interface
are fundamentally different for conductive and dielectric substrates [6], [25], [178]. For
example, charge accumulates on dielectric substrates, allowing the plasma to spread over the
treated region. The interaction of the plasma with conductive substrate results in distinct
physical phenomena such as the “discharge restrike” [6], [25], [178], leading to a considerable
change in the plasma characteristics. It may not be possible to fully mitigate these effects by
actuating the given manipulated variables. Moreover, the APPJ has a tendency to couple
onto the lower impedance (metal) substrate when it is sufficiently close, making it challenging
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to treat the interface of the metal and dielectric substrates.

9.4.5 Summary of Thermal Dose Delivery Results

Finally, in order to quantify the dose delivery performance under the investigated strategies
and disturbances, the score metric is defined,

Score = 1−

L∑
x

L∑
y

‖CEMT(τ, x, y)− CEMref
T (x, y)‖2

L∑
x

L∑
y

CEMref(x, y)

. (9.9)

(a) Reference (b) Embedded power control

(c) Cascade temperature control (d) Hierarchical control with NMPC and
feedforward

Figure 9.11: The spatial distribution of the delivered CEMT across the x−y plane at the end
of the treatment in an abrupt change in the substrate type. In subplot (a) the translation
trajectory (black) and the location of the applied disturbance (dashed line) is superimposed
on the reference dose distribution.
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Figure 9.12: Summary of the effectiveness of the four control strategies for uniform dose
delivery CEMT of 0.25 min across an area of 1 cm2 at the final treatment time of 1 min. The
hierarchical control strategy with NMPC is superior to other control strategies. In contrast,
using no control (constant voltage) and the embedded power control strategies can result in
failure with extreme overshoot.

With (9.9), perfect dose delivery corresponds to a score of 1, whereas a score of 0 corresponds
to no treatment. The scores calculated using (9.9) for the conditions investigated above are
summarized in Figure 9.12. As expected, dose delivery performance under no control is
generally poor. Even under embedded power control the dose delivery score remains consis-
tently below 0.5, even in absence of disturbances. In presence of disturbances, critical failure
of the treatment is observed, with extreme overshoot in delivered dose distribution under
constant voltage (for changing substrate type) and embedded power control strategies (for
both disturbances). With cascade temperature control, the dose delivery score increases to
about 0.6. and critical failures are avoided. However, this performance is not acceptable for
applications where precise treatment is required, for example, in case of medical applications.
Under the hierarchical control strategy with NMPC, the dose delivery score can reach above
0.9 in absence of disturbances and remains consistently above 0.8 even in presence of the
comparatively drastic disturbances offering a significant increase in performance.
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9.5 Conclusions
The results demonstrate the effectiveness of the proposed hierarchical control strategy for
the regulation of dose delivery in APPJs under disturbances. Dose planning achieved with
NMPC, combined with the rapid disturbance rejection achieved with the basic control layer
allows reliable and effective dose delivery. Limitations inherent to the discharge physics and
the actuated variables can complicate the uniform delivery of dose under drastic disturbances
such as during transition between dielectric and conductive substrates. However, even under
such conditions, the proposed control strategy can be instrumental in avoiding drastic failure
of operation i.e., thermal damage to the substrate.

A key parameter affecting dose delivery performance is the translation trajectory. In this
work, an optimal translation trajectory is determined a priori solving an offline optimization
problem. However, our results indicate that real-time trajectory planning can help further
improve the control performance, and mitigate some of the shortcomings of the proposed
control strategy. For example, untreated regions observed in the presence of changing sep-
aration distance can be re-visited with real-time trajectory planning. Another important
direction for future work involves substrates with time-varying properties. Substrates can
respond to APPJ treatment in various ways (such as drying, coagulation, etc.) which can
impact physical properties of the substrate and the discharge-substrate interaction. Obtain-
ing models and developing control strategies which can adapt to the time-varying, nonlinear
substrate dynamics during APPJ treatment is a key challenge to be addressed to extend the
reliability and capabilities of APPJs.
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Chapter 10

Machine Learning for Real-Time
Diagnostics

Real-time diagnostics of cold atmospheric plasma (CAP) sources are a key requirement
for effective control. However, direct diagnostics of CAPs can be challenging due to the
requirement for expensive equipment and complicated analysis. Data analytics that
relies on machine learning methods can help address this challenge. In this chapter,
the application of several machine learning methods for real-time diagnosis of CAPs
is demonstrated using information-rich optical emission spectra and electro-acoustic
emission. Data analytics based on machine learning can provide a simple and effective
means for estimation of operation-relevant parameters such as rotational and vibrational
temperature and substrate characteristic in real time. The results indicate a great
potential promise for machine learning for real-time diagnostics of CAPs.1

10.1 Introduction
Previous chapters demonstrated the importance and potential of advanced process control in
CAPs for safe and reliable operation. A key requirement for effective control is the ability to
monitor variabilities in plasma characteristics in real time, for both understanding and min-
imizing irreproducible plasma effects. The demonstrated control strategies in the previous
chapters focused on easily-measured characteristics of the substrates such as temperature
and optical emission intensity. However, several potentially important discharge properties
such as gas temperatures, species concentrations, and electric fields are not discussed. This
is due to the fact that direct quantitative diagnostics of CAP sources can pose a considerable
challenge. Methods such as laser-induced fluorescence (LIF) [181], mass spectrometry [182],
and spontaneous Raman scattering [209], for example, rely on sophisticated instrumentation
and specially designed experimental setups. This is in stark contrast with the current prac-
tice of CAP operation in plasma medicine that relies on the flexibility of hand-held treatment

1This chapter is adapted from published material in [208]
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in the absence of plasma diagnostics [13]. Spectral information from various sources such as
optical and electro-acoustic emission can be used for plasma diagnostics. Emission signals
are often easy to acquire and typically contain a wealth of implicit information about the
plasma characteristics [145], [210], [211]. However, this information is often indirect and
requires computationally expensive analysis to extract physical quantities such as gas and
electron temperatures or reactive species concentrations [211]. This can make the use of
spectral information for real-time diagnostics impractical.

Investigation of spectral information for real-time diagnostics of CAP sources has received
some attention in the literature. Most notably, O’Connor et al. reported on a multivari-
ate method based on principal component analysis for correlating various optical emission
spectrum (OES) peaks to electrical properties and electron density for a dielectric barrier
discharge in helium [212]. In contrast to the well-established method of analyzing OES by
generating and fitting synthetic spectra to measurements [145], [213], these authors note the
potential for developing correlations across large data sets for novel applications

Electro-acoustic emission also contains useful information on plasma characteristics. Di-
agnostics based on electro-acoustic emission is commonly used in high-temperature mate-
rials processing applications such as arc welding [96] and plasma anodizing [214]. Law et
al. investigated the application of electro-acoustic emission for process monitoring and con-
trol in a DC pulse-modulated APPJ in air [215]. These authors point to the usefulness of
spectrally-resolved electro-acoustic emission as a diagnostic tool for various plasma charac-
teristics including surface properties, dissipated power, and the separation distance between
the jet nozzle and substrate. O’Connor et al. investigated the electro-acoustic emission of a
non-thermal helium plasma jet for process monitoring [216]. They utilize wavelet transforms
of electro-acoustic emission for detection of flow modes and anomalies in operation such as
sparking phenomena.

In addition, the voltage-current signal is easily available in most plasma setups. Utiliza-
tion of these signals for diagnostics has been investigated by Walsh et al. in the context of
mode behavior of a non-thermal kHz-excited APPJ in helium [110]. These authors demon-
strate that phase-space representations of current signals can help distinguish between the
three identified modes, although later work by Liu and Kong indicates the detection of mode
behavior may be more complicated in the presence of humidity [111]. In [217], Law et al.
review the potential application of electro-acoustic emission and current signals for real-time
diagnostics and process control.

Data analytics can present an alternative to the commonly used purely physics-based
approaches for extracting information from spectra. With the increasing size of available
data sets, automated algorithms for discovering patterns in data, broadly referred to as ML
methods, have found success as data analytics tools [218], [219]. Some notable applications
of ML for data analytics, among many others, include gene discovery [220], remote sensing
[221], natrual language processing [222], [223], object recognition in images [224], as well as
real-time diagnostics and modeling of low-pressure plasma etch processes [225]–[229]. The
availability of easy-to-use software packages such as the open source package scikit-learn
[230] and Google’s Tensor Flow [231] has made ML methods more accessible, contributing
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to their popularity.
This chapter demonstrates the potential of data analytics for real-time diagnostics of CAP

sources. Through the use of ML methods, physical quantities, which are otherwise difficult to
obtain in real-time due to limitations of instrumentation (e.g., optical setup required for LIF)
or time required for analysis (e.g., fitting OES spectra), can be inferred by utilizing the raw
spectral information. Three case studies are presented to demonstrate the application of data
analytics tools for real-time CAP diagnostics: (i) determination of rotational and vibrational
temperature from OES; (ii) discrimination between a conductive and an insulating substrate
from OES; and (iii) determination of discharge gap distance from electro-acoustic emission.
The rest of the chapter first presents an overview of selected machine learning methods, then
describes the utilized experimental setup, and finally presents results pertaining to each of
the three investigated cases.

10.2 Machine Learning Methods
In this section the ML methods used in this chapter are reviewed (see, e.g., [218], [219], [232],
[233] for a detailed description).

The selection of a suitable ML method relies on two principal considerations related to
the output data: (i) whether the output variables are continuous or discrete, and (ii) whether
they are used for training a model. When a ML method uses the output data for training,
it is known as supervised learning, where the goal is to predict continuous (e.g., regression)
or discrete (e.g., classification) output variables. On the other hand, unsupervised learning
only uses the input data to discover patterns in the data. For example, clustering methods
are used to separate data into discrete bins.

Data sets used for ML consist of inputs denoted by X ∈ RN×n and, where applicable,
outputs denoted by Y ∈ RN×m. Here, n and m are the dimensions of the inputs and
outputs, respectively, and N is the number of samples in the data set. One sample of inputs
is denoted by x ∈ Rn and one sample of outputs by y ∈ Rm. Predictions of a ML are further
denoted by Ŷ ∈ RN×m and a single instance of prediction by ŷ ∈ Rm. Data are typically
divided into training, validation, and test sets. In general, the majority of the data set (50-
90%) is used for training and validation [219]. During training, mathematical descriptions
of the relationships among the data are inferred. Training typically involves a parametric
or non-parametric fitting process. In order to systematically assess the quality of inferences
made by an ML model, a validation procedure is employed. A common approach is k-fold
cross-validation procedure in which the training data are partitioned into k complementary
training and validation subsets or folds [218]. k−1 of the subsets are used for training and the
remaining subset is used for validation. To overcome the inherent randomness of arbitrarily
partitioning a data set, this process is systematically repeated for different partitioned sets
[218]. Furthermore, ML models often have some hyperparameters, whose values cannot be
directly estimated from data and thus are fixed prior to training. The models are often
trained using different values of hyperparameters and subsequently, the appropriate values
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are selected based on the model performance in the validation step. Finally, in the testing
stage, the capability of the ML model is assessed against an independent data set. The
performance of the ML model is quantified in terms of some error metrics such as root mean
squared error (RMSE) and error fraction when the output variables are continuous and
discrete, respectively. These error metrics are defined as

RMSE(Y, Ŷ ) =
1

N

N∑
i=1

√
(ŷi − yi)2, (10.1)

and

Error Fraction(Y, Ŷ ) =
1

N

N∑
i=1

1(ŷi 6= yi). (10.2)

In expression (10.2), the indicator function 1 takes the value 1 when the condition ŷi 6= yi
is met and 0 otherwise.

In Section 10.4, the use of supervised methods for determination of rotational and vi-
brational temperatures (linear regression) and discharge gap distance (Gaussian process re-
gression), and unsupervised learning methods for discrimination between glass and metal
substrates (k-means clustering) are explored. An overview of the adopted ML methods is
presented in the remainder of this section.

10.2.1 Linear Regression

Linear regression is widely used in statistical analysis [234]. In linear regression, output
variables are described by a linear combination of some (nonlinear) function of the inputs
[218]. For a scalar output, a regression model can be written as

ŷ =
O∑
j=1

wjφj(x), (10.3)

where w = [w1, . . . , wO] is the vector of weights, x is the vector of inputs, and φj(x) denotes
basis functions. Note that expression (10.3) readily generalizes to higher output dimensions.
A common choice for the basis functions, which is utilized in this work, is powers of the
inputs defined as

φj(x) = xj. (10.4)

In this case, O, the highest order of the polynomial basis functions in (10.4), comprises the
order of the regression model. O is treated as a hyperparameter.

In linear regression, the weights w are determined by solving a least-squares minimization
problem. A key challenge in regression is over-fitting. In particular, when a large model
order O in (10.3) is selected, a large number of weights should be fitted. This can lead to
a regression model that describes the data too closely, even describing the random noise in
the data. To avoid overfitting, regularized least-squares estimation is commonly used. Here,
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the least absolute shrinkage and selection operator (LASSO) method is utilized. The LASSO
regression problem for a scalar output is expressed as [235]

min
w
||ŷ − y||22 + α||w||1, (10.5)

with α being the regularization hyperparameter. In classic linear regression, α is set to 0,
leaving only the first term in the least squares problem (10.5). The selection of α governs
what is known as the bias-variance tradeoff [218]. An excessively large value of α gives
rise to under-fitting of the data, therefore leading to predictions with a large bias and a
small variance. On the other hand, excessively small values of α cause over-fitting of the
data, yielding predictions with small bias but high variance, since the regression model also
captures the noise of the data [233]. The appropriate value of α is selected during the
validation step, as described in Section 10.4.1.

The RMSE metric (10.1) provides a measure of the average error between true values and
predictions; however, this metric is not sufficiently sensitive to noise in the measurement.
Therefore the metric R2 score is also employed. R2 indicates the capability of the regression
model in capturing the variability in the output variables. The R2 score is defined by

R2 = 1−

N∑
i=1

(yi − ŷi)2

N∑
i=1

(y − ŷi)2

, (10.6)

where N is the total number of samples, ŷ is computed from (10.3), yi is the ith measured
sample of the scalar output y, and y is the mean of the true values of the scalar output

y =
1

N

N∑
i=1

yi. (10.7)

10.2.2 k-Means Clustering

k-means clustering is an unsupervised ML method used to separate data into k distinct
groups or clusters [207]. The clusters are characterized in terms of their center points or
centroids. In k-means clustering, the centroids of the clusters are initialized at random points
and the distance between each input in a cluster to the corresponding centroid is evaluated in
terms of some distance metric such as the Euclidean norm. The clusters are then iteratively
updated and input clustering is refined by minimizing the sum of distances between the
centroids and the inputs in each cluster. k-means clustering relies on the minimization
problem

min
S

k∑
i=1

∑
x∈Si

||x− µi||22, (10.8)
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where Si is the set corresponding to the ith cluster, S ∈ Rn is the set of sets Si, and µi ∈ Rn

denotes the centroid of the cluster i. The user-defined hyperparameter in k-means clustering
is the value of k. The choice of k can depend on some prior knowledge of data, or can rely on
heuristics. In the case study presented in Section 10.4.2, prior knowledge of data is utilized
for selection of k.

Note that since k-means clustering is an unsupervised learning method it does not predict
clusters of new samples [233]. Nevertheless, new samples can be assigned to a cluster either
by pre-computing the relevant groups and dividing the space into regions or by retraining
the k-means clustering model when new data becomes available.

10.2.3 Gaussian Process Regression

Gaussian process (GP) regression is a non-parametric supervised ML method that relies on
a probabilistic interpretation of the data [236]. In GP regression models, the outputs are
assumed to have a joint Gaussian distribution [219]. Thus, the GP regression problem is
formulated as estimation of the probability distribution of the predicted variables conditional
on the training data. The joint prior probability distribution of the outputs is expressed as(

Y

Ŷ

)
∼ N

(
0,Σ

)
, (10.9)

where N represents a Gaussian distribution with mean 0 and covariance matrix Σ. Without
loss of generality, the mean of the joint distribution can be assumed to be zero. Even if the
outputs are distributed around some non-zero mean, this value can be subtracted from the
joint distribution to satisfy the zero-mean assumption. The covariance matrix Σ is defined
by

Σ =

(
K K∗
K>∗ K∗∗

)
, (10.10)

where K, K∗, and K∗∗ denote the individual covariance matrices corresponding to combi-
nations of training and test data sets: K = K(Xtrain, Xtrain), K∗ = K(Xtrain, Xtest), and
K∗∗ = K(Xtest, Xtest). The covariance matrices K can be defined in terms of a positive
definite kernel function:

K(x,x′) = −λexp
(

1

2σ2
||x− x′||22

)
, (10.11)

where x and x′ are inputs pairs belonging to appropriate data sets, and σ and λ are the
model hyperparameters. The kernel function K describes a measure of distance or similarity
between the input pairs. Given the prior Gaussian distribution (10.9), the goal in GP
regression is to predict the posterior distribution of the test data conditional on the training
data. Then, the expected value E and covariance Σ̂ of this posterior distribution are extracted
using standard formulas for conditioning of multivariate Gaussian distributions, based on
Bayes’ rule [236]:

E(Ŷ |Y,Xtrain, Xtest) = K∗K
−1Y, (10.12)
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and
Σ̂(Ŷ |Y,Xtrain, Xtest) = K∗∗ −K∗K−1K∗. (10.13)

Expressions (10.12) and (10.13) fully define the distribution of outputs predicted by GP.
A key difference between GP and linear regression is that a GP model does not have

a parametric functional form. Instead, GP explicitly uses the provided training data when
making predictions. The hyperparameters of the kernel function (10.11) can be obtained
a priori, for example, by maximizing the log marginal likelihood function with respect to
the hyperparameters [236]. The non-parametric nature of GP is advantageous in predicting
arbitrarily nonlinear behaviors. Another important feature of GP regression is that it predicts
a variance associated with the expected value of the prediction, which provides confidence
bounds on the model predictions.

10.3 Experimental Methods
Two different CAP sources are utilized to demonstrate the applicability of ML to different
types of discharges; a kHz-range APPJ in helium described in Chapter 3 and the “Plasma
Flashlight” [237], a hand-held corona-like discharge in air. The kHz-range APPJ has the
advantage of being a very stable discharge with easily-obtainable OES spectra. On the other
hand, the corona-like discharge produces clearly audible electro-acoustic emission.

Fitting accurate ML models generally require large amounts of data which are both
labor and time intensive to collect manually. Therefore, automation of data acquisition and
processing is a key requirement for effective implementation of ML strategies. To this end,
both setups are equipped with automated data acquisition and actuation systems similar
to that is described in Chapter 3 based on the open-source microcontroller Arduino UNO
and the single board computer Raspberry Pi 3. Automated data collection and actuation
is implemented in Python and the ML methods are implemented using scikit-learn package
[230].

The details of the APPJ configuration is presented in detail in Chapter 3. The APPJ
is ignited at a frequency of 20kHz with a borosilicate glass coverslip and aluminum ground
plate used as substrates. The schematic representation of the corona-like discharge is shown
in Figure 10.3). This device is identical to the Plasma Flashlight device reported in [237].
The device consists of a needle-type electrode situated in a plastic nozzle. The plasma
is ignited by DC voltage amplified by booster circuit and exhibits self-pulsing behavior.
The separation distance between the tip of the electrode in the Plasma Flashlight and the
substrate is manipulated through a linear actuator based on a stepper motor controlled by
the Arduino UNO. The electro-acoustic emission is collected in the range of 0.5-25 kHz with
a resolution of 200 Hz using an adjustable gain microphone (MAX4466). The fast Fourier
transform (FFT) of the signal is implemented via the Open Music library [238].
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Figure 10.1: The experimental setup for the Plasma Flashlight. Dashed lines indicate the
flow of information, where blue represents actuation and red represents measurements.

10.4 Results and Discussion
The application of the ML methods of Section 10.2 is discussed for real-time diagnostics
of CAP operation using three case studies: (i) determination of rotational and vibrational
temperatures of APPJ using OES, (ii) discrimination between a conductive and an insulating
substrate using OES, and (iii) determination of the discharge gap distance using electro-
acoustic emission.

10.4.1 Determination of Rotational and Vibrational Temperatures
using OES

Rotational (Trot) and vibrational (Tvib) temperatures contain vital information about gas
temperature and energy transport processes within the discharge. Different OES peaks such
as OH (A 2Σ+ → X 2Π at 306-328 nm) and N2 (C3Πu → B 3Πg at 365-390 nm) transitions
are commonly used to estimate rotational and vibrational temperatures [145]. The current
practice is to estimate these temperatures offline using specialized software (such as SpecAir
[145]) to achieve a fit between generated synthetic spectra and measured OES spectra. Due
to the presence of a large number of fitting parameters, this approach can be computationally
expensive for real-time diagnostics, taking several seconds to a few minutes. Here, a data-
driven diagnostics tool based on linear regression (see Section 10.2.1) is proposed for real-time
inference of the rotational and vibrational temperatures from the OES spectra.

The regression model is trained using 1500 samples of the normalized peaks of N2 sec-
ond positive system between 365-385 nm (input) and estimated rotational and vibrational
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Figure 10.2: An example OES spectrum of N2 (C3Πu → B 3Πg) second positive transition
and corresponding fit from Massive OES [213], used to estimate rotational and vibrational
temperatures of the APPJ operated at P = 3 W and q = 1.5 slm over glass substrate.

temperatures (outputs). A typical OES spectrum over the wavelengths corresponding to N2

(C3Πu → B 3Πg) transition and the fit of the synthetic spectrum is shown in Figure 10.2. The
training data for values Trot and Tvib are determined via fitting synthetic spectra in Massive
OES [213]. The data set is collected over a range of operating conditions: varying He flow,
applied power, and substrate type (i.e., insulating and conductive). The data are split into
80% training and 20% testing segments. The training data are presented in Appendix E.

Two hyperparameters for linear regression are considered: the model order as defined by
the choice of basis functions (10.4) and the choice of the regularization parameter α in (10.5).
The model is validated using 10-fold cross-validation. Figures 10.3(a) and 10.3(b) show the

(a) (b)

Figure 10.3: Determination of rotational and vibrational temperature using linear regression.
Effect of (a) the order of the linear regression model and (b) the regularization parameter α
on the predictive capability of the model as quantified by R2 score.
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average R2 score of the model predictions over 10 folds as a function of the model order and
as a function of the regularization parameter α, respectively. The R2 score increases with
model order and appears to plateau at an order of four (Figure 10.3(a)). Above this model
order, increasing the complexity of the model does not provide further improvement in the
predictive capability of the model. In contrast, R2 score is low for low values of α, possibly
causing the model to over-fit (Figure 10.3(b)). In this case the model is unnecessarily complex
due to fitting the noise in the output data. When α is increased beyond α = 0.7×10−5, the
model tends to under-fit. Thus, the model order O = 3 in (10.3) and regularization parameter
α = 0.7×10−5 in (10.5) are chosen in order to strike a balance in the bias-variance trade-off.

Figure 10.4 depicts the predictions of the linear regression model against the test data.
The operating conditions under which the test data are obtained are shown in Figure 10.4(b).
The predictive capability of the linear regression model is quantified separately for the two
outputs Trot and Tvib. The RMSE values, calculated using (10.1), are 30.2 K and 141.0 K,
respectively, and R2 scores are computed as 0.79 for both outputs. Figure 10.4(a) suggests
that the regression model can describe the fitted Trot and Tvib fairly well. Notably, poor
performance is observed between sampling instances 210 - 250, where the flow rate is de-
creased and power is increased on the metal substrate. Under these conditions, the fitted
temperatures are subject to more noise. This can be attributed to the fact that the plasma
jet under these conditions moves rapidly from point to point on the surface, disrupting the
OES signal collection.

The results illustrated in Figure 10.4 indicate that the predictions of the linear regression
model are comparable to the fitted values from Massive OES under a range of operating
conditions. Further testing also revealed that the linear regression model retains its accuracy
even under additional variations which may be expected to significantly impact the emission
from the second positive transition of N2 such as jet-tip-to-substrate separation distance and
O2 admixture in the working gas as shown in Figure 10.5. The robustness of the linear
regression model can be attributed, in part, to the inherent repeatability of underlying
physical phenomena in this type of discharges [101].

The real-time diagnostics for Trot and Tvib can be directly incorporated into feedback
control schemes. As an example, a PI controller is configured between Trot manipulating the
discharge power P . The PI control results for setpoint tracking and rejection of disturbances
in separation distance are shown in Figure 10.6. The results demonstrate that the linear
regression model opens up the ability to control Trot in the discharge. Particularly, in the
presence of disturbances in separation distance regulation of Trot can provide a significant
advantage.

Thus, the linear regression model can provide an effective tool for real-time inference of
Trot and Tvib. This type of regression model relating OES to physical quantities can be a
powerful diagnostic tool even beyond the determination of temperatures. When additional
quantitative measurements such as LIF and picosecond second harmonic generation are
available for training, supervised regression models might be developed using OES data to
provide real-time estimates of other process variables such as chemical species concentrations
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(a)

(b)

Figure 10.4: Determination of rotational and vibrational temperature using linear regression.
(a) Predictions of the linear regression model for Trot and Tvib compared against the fitted
values from Massive OES using the test data and (b) operating conditions (applied power,
He flow rate, and substrate type) under which the test data are obtained.

and electric field strength. These diagnostic tools, in turn, can allow real-time control of these
difficult-to-measure discharge properties.

10.4.2 Substrate Discrimination using OES

APPJ characteristics can significantly change as a function of the substrate properties such
as the conductive or insulating nature of the substrate [25]. However, it is often impractical
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(a) (b)

Figure 10.5: Determination of rotational and vibrational temperature using linear regression.
Predictions of the linear regression model for Trot and Tvib compared against the fitted values
from Massive OES (a) under varying separation distance over glass (t < 180 s) and metal (t
< 180 s) substrates, and (b) under increasing O2 admixture to feed gas.

(a) (b)

Figure 10.6: Control of rotational temperature based on estimates obtained from the linear
regression mode. (a) Setpoint tracking in Trot and (b) rejection of disturbance in separation
distance compared against the no control case.

to directly measure the substrate properties in real time. Changes in the optical emission of
the discharge can provide an indication of changing substrate properties and allow detection
of distinct substrates such as tumorous tissues as compared to healthy tissue [239]. Here,
real-time diagnostics tool is developed based on k-means clustering to detect the substrate
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(a) (b)

Figure 10.7: Substrate discrimination using k-means. (a) Centroids of the clusters that cor-
respond to glass and metal substrates and (b) the rotational temperature Trot and vibrational
temperature Tvib in the training data, fitted using Massive OES.

type based on OES measurements. The same data set as in the previous section is used for
training (see Appendix E). The data set consists of 1500 samples, 1000 of which are collected
over a glass substrate and 500 are collected over a metal substrate. The inputs are the raw
OES spectra of the second positive transition of N2 as in the previous section. Labels of
the substrate types are the outputs. However, as k-means is an unsupervised method, the
output labels are not used for training. The OES spectra are intended to be clustered in two
distinct groups (k = 2) using k-means clustering. 10-fold cross-validation is used to validate
the ability of the k-means method to assign data to appropriate classes. k-means model is
able to classify the glass and metal substrates with an error fraction (10.2) of 0.01. This
means that the clustering model misclassifies the substrate only 1% of the time.

The centroids, or the average spectra, corresponding to the two clusters are shown in
Figure 10.7(a). The k-means method clusters the OES spectra into two classes coinciding
with glass and metal substrates. The clustering is further verified respect to the two substrate
types by plotting the Trot and Tvib values fitted from Massive OES. As shown in Figure
10.7(b), the temperatures over glass and metal are clearly separated by the dashed diagonal
line. This clustering of temperatures is not particularly surprising given the sensitivity of
the discharge to electrical properties of the substrate. However, to the authors’ knowledge,
this clustering behavior has not been previously reported.

This clustering model is further tested for substrate discrimination in real-time. In this
scenario, the glass coverslip used as the insulating substrate is removed from under the jet
after 30 seconds of operation and is re-inserted after another 30 seconds. The jet is operated
with 3 W of applied power and He flow of 1.5 slm. Under these conditions, perfect identi-
fication of the substrate type is observed (an error fraction of 0), indicating the promising
potential for the real-time use of k-means clustering. Note that the case examined here
is fairly simple since the transition between a purely conductive and a purely insulating
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substrate is fairly drastic. Nevertheless, this case study demonstrates the promise of unsu-
pervised clustering for real-time diagnostics of discrete phenomena. Knowledge of discrete
phenomena, such as substrate type or discharge modes can greatly increase the flexibility of
operation, for example, for treatment of electrically heterogeneous substrates.

10.4.3 Determination of Separation Distance using
Electro-acoustic Emission

Figure 10.8: Fast Fourier Transform of the electro-acoustic emission of the Plasma Flashlight,
recorded at two different inter-electrode separation distances of d = 2 mm and d = 5 mm.

Here, the hand-held battery-operated air discharge, the Plasma Flashlight [237] is used.
This device exemplifies typical plasma medical devices, such as KINPen (neoplas tools GmbH
[15]), in the sense that it is hand-held and relies on the expertise of the user for reliable
operation. In these devices, changes in the electrode-to-substrate distance can generate
significant variability in operation, caused by the sharp gradients and drastic changes in
discharge properties [8]. Hence, real-time measurement of the separation distance can be
useful. Conventional non-contact sensors based on infrared [240], ultrasound [241] or time-
of-flight [242] may not be able to readily address this issue as the desired measurement range
is particularly small, and the discharge interference with electronics limit their use. Here the
information provided by the discharge is employed to extract information about separation
distance.

The Plasma Flashlight has audible electro-acoustic emission, which noticeably changes
with variations in the separation distance. Based on the literature [215], [216], fast Fourier
Transform is employed to analyze the effect of the separation distance on the sound signal
in the frequency domain. Figure 10.8 shows an example of fast Fourier Transforms of the
electro-acoustic emission collected under two separation distances at 2 mm and 5 mm. GP
regression is used to describe the complex relationship between the fast Fourier Transform
of the electro-acoustic emission and the separation distance. The data set for training and
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testing the GP regression model consists of 2500 samples collected over a range of labeled
separation distances dsep, which is also the output. 60% of the data are used for training
and validation while the rest is reserved for testing. The GP regression model is trained as
described in Section 10.2.3. The training data are given in Appendix E.

Figure 10.9: Determination of separation distance using GP regression. Comparison of
predictions of the GP regression model against the test data. The confidence interval of in
the GP predictions, quantified within one standard deviation shown with solid gray lines.

In the GP regression model, the hyperparameters in (10.11) are systematically chosen by
maximizing the log marginal likelihood of predictions with respect to the hyperparameters
[236]. This results in λ = 1.73 and σ = 0.08. After training and validation of the GP
model, its performance is evaluated with respect to the test data, as shown in Figure 10.9.
The performance of the GP model is quantified with an R2 score of 0.98 and RMSE of
0.34 mm. Figure 10.9 suggests that the GP model reliably predicts the true value of the
separation distance. The noisy nature of the prediction is attributed to the high noise level
of the raw electro-acoustic emission data. Notably, the standard deviation predicted by the
GP prediction is smaller for larger separation distances, as indicated by the dashed lines in
Figure 10.9. Overall, the GP regression model is capable of predicting the separation distance
based on electro-acoustic emission with reasonable accuracy. Thus, the GP regression model
provides a real-time diagnostic for determination of the separation distance, for example,
to monitor if the separation distance is outside a prescribed region that is safe for plasma
treatment.
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10.5 Conclusions
This chapter demonstrated three examples of data analytics applications to real-time diag-
nostics of atmospheric pressure plasma devices: (i) determination of Trot and Tvib from OES
using linear regression, (ii) discrimination of glass and metal substrates from OES using
k-means clustering and (iii) determination of separation distance from electro-acoustic emis-
sion using GP. A common feature of all the investigated examples is that difficult-to-obtain
information is extracted from data which are available in real time. The caveat is that large
quantities of data have to be collected and processed off-line in order to be able to draw
accurate inferences. Where possible, this off-line processing and external measurements is
employed (as in determination of Trot, Tvib and separation distance) in conjunction with
supervisory methods. In addition, the use of unsupervised methods to obtain insight on
physical characteristics is demonstrated (e.g., the clustering of Trot, Tvib based on substrate
types) from patterns in the data. The results indicate that, despite the simplicity of the uti-
lized methods, the performance of the ML inferences is more than adequate in the context of
the respective examples. A key feature of the diagnostics tools developed in this chapter is
that they provide a significant advantage in terms of time required to obtain inferences. For
example, generating and fitting synthetic spectra to a single spectrum to obtain Trot, Tvib can
take 40 - 50 s. In contrast, linear regression takes on the order of 1 millisecond for the same
task. Moreover, it only takes about two hours to collect the data required to train the linear
regression model. Classification of the substrate type is also achieved with the same data
set in a few milliseconds. Similarly, two hours worth of electro-acoustic emission data allows
training the GP regression to infer the separation distance in about 5 milliseconds. This
serves to show the potential promise of ML methods in the context of CAPs. In particular,
ML methods can create vast opportunities in plasma medicine for modeling the end effects
(i.e., dose) of plasma treatment and enabling the development of personalized treatment
protocols.

A key challenge in applying data analytics to real-time diagnostics is the choice of appro-
priate sources of spectral information and ML methods. For example, in the third case, the
electro-acoustic signal is used due to its ease of collection. The GP method was chosen since
simpler regression methods like linear regression did not produce adequate results. It may
not be possible to readily extend the same approach in all circumstances; for example, in
radio frequency discharges, the excitation frequency considerably exceeds the audible range.
Discovering the appropriate combinations of methods and measurements, then, largely relies
on heuristics. Employing data analytics tools for building accurate data-driven models of the
plasma can provide significant advantages in addressing modeling challenges (see Chapter
4). Advanced ML methods based on neural networks such as reinforcement learning can be
used for generating more complex models or directly training control agents with capabilities
beyond conventional controllers. Such methods have the capacity to be combined with the
real-time diagnostic tools presented in this work to achieve high-performance automation
and process control on CAP devices.
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Chapter 11

Conclusions

This work investigated the advanced control of atmospheric pressure plasma jets. The
presented results reveal that optimization-based control strategies are crucial for effec-
tive regulation of multiple plasma effects and the delivery of multi-variable and spatially
distributed dose metrics in presence of disturbances. This chapter summarizes the main
conclusions of this work and presents some key questions to be addressed going forward

This dissertation has investigated the advanced feedback control of atmospheric pres-
sure plasma jets (APPJs). The key issues of control-oriented modeling and control problem
formulation are undertaken for the development of effective model-based control strategies.
Some key modeling and control approaches are presented which can greatly improve the reli-
ability, repeatability and effectiveness of APPJ treatment. An experimental setup, modeling
frameworks, and control structures are presented to systematically address some of the key
issues in APPJ operation. The effectiveness of the presented approaches in the reduction of
process variability and reliable dose delivery is demonstrated experimentally.

The first part of the dissertation focused on the fundamentals of atmospheric pressure
plasmas, the design of an automated experimental setup for control, and control-oriented
modeling approaches. APPJs are established as the setup of choice for this investigation due
to their widespread use and their broad operating range owing multiple available manipu-
lated variables. The sources of variability in APPJs are outlined motivating the need for
feedback control for safe, reliable, and repeatable treatment. An experimental setup is de-
veloped for automated sensing and actuation to enable the application of control algorithms.
The investigation of control-oriented modeling of the APPJ revealed the potential for both
physics-based and data-driven techniques for describing control-relevant system dynamics.
The key issue of modeling a “plasma dose" is identified, with metrics for thermal and non-
thermal dose delivery adopted from the literature. Simple lumped-parameter models were
developed to effectively represent the dynamics of discharge power, and gas and substrate
temperatures. A more complicated, spatially resolved fluid model is used to inform the
simplified model structure and the values of the lumped parameters. For variables that are
difficult to model with a physics-based approach, data-driven linear models were shown to
be a viable alternative, albeit for a limited operating range.
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The effectiveness of control algorithms was evaluated for rejection of disturbances and
dose delivery. Basic control strategies (i.e., proportional-integral (PI) controls) were shown
to be effective in rejecting a variety of disturbances in a single-input-single-output con-
text. However, results revealed that the PI control strategies have limitations for regulating
multiple discharge effects simultaneously. For this task, model predictive control (MPC)
strategies were shown to outperform PI controls, even when they are based on a linear data-
driven model valid only for a narrow operating range. The operating range of the MPC is
extended using a nonlinear physics-based lumped-parameter model. The effectiveness of the
nonlinear MPC (NMPC) strategy is demonstrated for multi-component dose delivery in the
presence of disturbances in jet-tip-to-substrate separation distance and substrate type. PI
controls were found to have a limited capacity for dose delivery, even though soft-sensing
methods were used to alleviate issues stemming from nonlinear and cumulative aspects of
the dose delivery problem.

NMPC and PI control strategies were used synergistically in a hierarchical control struc-
ture to address the spatial aspects of the thermal dose delivery problem. In this case, the
PI control strategy was employed to allow fast disturbance rejection, while MPC managed
the more complicated task of planning spatial dose delivery. The issue of APPJ translation
across treated substrates was undertaken systematically, demonstrating the trade-off between
the translation rate and dose delivery performance. Calculation of an “optimal" translation
trajectory is demonstrated, given the interdependence between the APPJ translation, the
dynamics and spatial distribution of the substrate temperature, and the treatment objective.
The hierarchical control strategy based on NMPC was found to drastically improve spatially
uniform thermal dose delivery performance in presence of disturbances of large magnitudes.

The key conclusion of this work is that the advanced control strategies are crucial for
APPJs in addressing the issues of variability in operation and reliable dose delivery. Partic-
ularly in the context of medical applications, where high-performance operation is necessary,
the advanced control strategies can greatly improve the reliability of APPJs. The meth-
ods developed in this work can also be applied to other APPJ treatment problems such
as materials processing. The variability issues in operation and the end-goal of delivery of
cumulative APPJ effects are common to applications such as deposition, etching, and sur-
face activation. The next sections present some suggestions for future work. The key areas
of suggested future work include development improved optimization methods and problem
formulations, and broader use of machine learning methods to address modeling and control
challenges of APPJs.

11.1 Suggestions for Future Work

11.1.1 Optimization Algorithms

Improving the efficiency of the optimization algorithms remains one of the key open issues
for advanced control of APPJs. In particular, the nonlinear lumped-parameter physics-based
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model (see Chapter 4) comprising of differential-algebraic models can present numerical chal-
lenges for solving optimal control problems online. Note that this work focused primarily on
the thermal effects of the APPJs and considerably simple models of the APPJ-substrate in-
teractions. Improving the model accuracy and incorporating additional discharge phenomena
to control-oriented models is a clear goal for future research efforts. However, with increas-
ing model complexity, challenges pertaining to numerical issues and the solution time of the
optimal control problems are liable to grow. Moreover, plasma medicine applications require
regulation of multiple spatially distributed discharge effects (e.g., spatially distributed elec-
tric fields, species concentrations etc.). With an increasing number of controlled variables
and spatial dimensions, MPC strategies can suffer from increased computational complexity.
This can quickly make real-time solution of optimal control problems intractable. Thus, the
development of efficient optimization algorithms is a key area of interest to further extend
the effectiveness advanced control strategies developed in this work. One potential avenue is
the use of so-called “explicit MPC" methods, which enable embedded control at the millisec-
ond timescales. However, while there are well-established methods for linear explicit MPC
[243], development of explicit NMPC strategies is an open area of research.

11.1.2 Real-time Trajectory Planning

As demonstrated in Chapters 8 and 9, the translation trajectory has a significant impact
on dose delivery. Especially in the presence of disturbances the ability to re-calculate the
translation trajectory online can provide a key advantage. However, introducing the transla-
tion trajectory as a decision variable to the optimal control problem can make the real-time
implementation prohibitively expensive. Particularly, as the treated areas and the total
treatment time increases, the real-time implementation of NMPC becomes increasingly chal-
lenging. One potential remedy for this problem is improving the efficiency of the optimization
algorithms as discussed above. Other avenues involve introducing parametrizations of the
translation trajectory and the dose distribution. For example, spectral de-composition of the
delivered dose profiles can allow representation of the spatial dose distribution with fewer
variables, decreasing computational burden. Similarly, the parametrization of the transla-
tion trajectory can reduce the number of decision variables to reduce the time required for
optimization at the expense of some flexibility (e.g., parametrization may limit the acces-
sible subset of translation trajectories). Given the sensitivity of the dose delivery to the
translation trajectory, developing means for effective real-time trajectory planning for APPJ
treatments is a clear need. This problem of real-time trajectory planning also bears similar-
ities to problems arising in robotics [244] and autonomous navigation [245]. Thus methods
developed in these fields may provide some insight on potential solutions to this problem.

11.1.3 Control of APPJ Chemistry

Considering that one of the major sources of the medicinal effects of the APPJs is the delivery
of reactive oxygen and nitrogen species, the control of APPJ chemistry has clear significance.
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The key issue hindering the control of chemical effects of the APPJ is the challenging di-
agnostics. Measurement of gas-phase chemistry and its effect on substrates are difficult to
quantify. The conventional methods for the measurement of reactive species concentrations
rely on complicated techniques (e.g, laser-induced fluorescence LIF spectroscopy [181]) which
can be difficult to utilize in real time and cannot easily accommodate the flexibility required
for medical treatment (e.g., the need to translate the APPJ). Moreover, the key area of
interest for plasma medicine is the chemical effects of the APPJ on the substrates. Methods
for quantifying the chemical response of substrates can even be more daunting.

One key area of active research is the development of tissue substitutes to test APPJ
effects [246]–[248]. Similar to the idea of a “tissue phantom" in radiation and ultrasound
therapies, a standardized platform which bears electrical and chemical resemblance to human
tissue can greatly aid quantification of discharge effects. Use of fluorescent and color changing
indicators in conjunction with such a platform can allow a semi-quantitative diagnostics of
the chemical effects of discharges [246], [247]. Specialized chemical detector strips, in the
same way, can be used to asses the chemical footprint of different species the APPJ delivers
[121]. Quantifying and assimilating the available information about the chemical effects of
the discharge to a tractable model remains a key open question for control of APPJ chemistry.
This problem requires a repeatable and easy-to-use platform and methods for quantifying
the dynamics of the “chemical dose" of the APPJ, as it varies with the manipulated inputs.
Preferably, real-time measurements of the chemical dose would be available. The increasingly
powerful methods for image processing [249] can provide one potential avenue to tackle this
challenge. Another possibility may be to develop real-time diagnostics methods for discharge
chemical effects using data analytics methods as pointed out in Chapter 10.

11.1.4 Machine Learning Methods for Modeling, Diagnostics, and
Control

Chapter 10 hint at the potential for machine learning (ML) methods for APPJ applications.
APPJ, and non-equilibrium plasma applications, in general, can particularly benefit from ML
methods. As described in Chapter 4 developing high fidelity plasma models and in particular
models of plasma effects on treated surfaces (i.e., dose models) can be a significant challenge.
Moreover, the fast timescales of plasma dynamics require diagnostics and control strategies
that can be deployed rapidly, while accounting for the complexities of the plasma dynamics.
On the other hand, copious amounts of indirect information can be collected from plasmas
with relative ease (such as optical emission spectra, voltage-current waveforms, and electro-
acoustic emission) without practical means for relating them to operationally relevant plasma
characteristics. Hence, non-equilibrium plasma sources are particularly suited for application
of ML methods for modeling, monitoring and diagnostics, and process control [250].

The potential for data-driven modeling strategies is demonstrated in Section 4.6.2 with
linear subspace identified models. However, linear models are only valid for a limited operat-
ing range. Advanced ML methods such as Gaussian processes and artificial neural networks
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can capture multi-variable and nonlinear aspects of APPJ-substrate interactions. Difficult-
to-model phenomena such as time-varying response of biological substrates to APPJ treat-
ment (e.g., blood coagulation during treatment [251]–[253]) can be modeled using ML meth-
ods. Moreover, so-called on-line learning strategies can be used to update a system model
in real-time, based on measured changes in the dynamics. Thus adaptive control strategies
can be developed based on ML methods. ML methods can also allow personalized treat-
ment models to accurately quantify the plasma dose and to account for patient-to-patient
variations in plamsa medicine applications.

Example uses of ML methods for real-time diagnostics are demonstrated in Chapter 10.
A key area of opportunity for the use of ML methods in diagnostics is the development of
tools for real-time estimation of reactive species concentrations in the plasma. Correlation
of independent measurements of concentrations of key chemical species (e.g., from LIF, IR
spectroscopy or Mass spectrometry) with optical and electro-acoustic emission signals can
provide a significant advantage for non-equilibrium plasma applications. Effective real-time
diagnostics can create opportunities for probing the dynamic behavior of reactive species
concentrations in real time as well as the feedback control of the discharge chemistry. More-
over, classification algorithms can be used to detect modes of failure and abnormal operation
based on the various information-rich signals. For example, detection of transitions to un-
desired modes (e.g., arcing) can provide a key advantage in improving the safety of APPJ
applications.

Lastly, ML methods can be directly employed as control agents. Artificial neural net-
works trained on offline-generated data can approximate the solution of a nonlinear MPC
optimization. This method would enable the rapid computation of control actions, circum-
venting the computational burden of real-time optimization. Another approach may involve
training an artificial neural network to directly compute the control actions. Data generated
based on a dynamic system model can be used to implement so-called sim-to-real transfer
reinforcement learning. This method involves training a neural network agent in a simula-
tion environment, which is then capable of performing similarly in-situ. Domain or dynamics
randomization methods are employed to expose the neural network control agent to a range
of possible dynamics (e.g., varying thermal dynamics with substrate type) in simulations.
Thus the mismatch between the simulation and real environments and the uncertainties in
controlled dynamics can be accommodated [254], [255].
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Appendix A

Diagrams of Experimental Setup
Components

The chapter contains diagrams of the actuation and measurement circuitry as well the tech-
nical drawings of the custom-designed and 3D-printed parts used in the APPJ setup. The
function generator circuitry consists of the digital-to-analog converter (Figure A.1), an op-
erational amplifier (Figure A.2), the monolithic function generator (Figure A.3) and the
switching circuit (Figure A.4). The digital-to-analog converter (Figure A.1) is also utilized
to actuate gas flow rates. The custom-designed 3D printed parts include the substrate sup-
port (Figure A.6), the z-axis holder assembly (Figure A.7 and A.8) and the optical emission
adaptor (Figure A.9). The designed parts are 3D printed in poly-lactic acid (PLA) filament
using a Monoprice Mini v1 3D printer.
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A.1 Circuit Diagrams

Figure A.1: Circuit diagram of the digital-to-analog converter MCP4922
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Figure A.2: Circuit diagram of the dual operational amplifier MC340727P.
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Figure A.3: Circuit diagram of the monolithic function generator XR-2206CP configured to a generate sinusoidal signal
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Figure A.4: Circuit diagram of the switching circuit used to modulate the duty cycle of the applied voltage.
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Figure A.5: Circuit diagram of the AC to RMS converter.
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A.2 Technical Drawings

Figure A.6: Technical drawing depicting the substrate support.The bottom of the end of the part connects to the x-y
axis gantry while the two extended ends of the surface supports the grounded metal plate.
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Figure A.7: Technical drawing depicting the first part of the z-axis holder assembly. The lead screw is situated in the
center hole. The extension with three holes allows different parts to fixed to the z-axis gantry.
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Figure A.8: Technical drawing depicting the second part of the z-axis holder assembly. The three holes and connect to
the first part of the assembly while the circular end situates the APPJ tube.
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Figure A.9: Technical drawing depicting the OES adaptor. The APPJ tube is situated in the semi-circular end of the
part and the OES probe is inserted to the hollow area. The ring-shaped overhang at the side of the part accommodates
an additional fiber-optic cable (without any connectors) for total intensity measurement at the same location.
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Appendix B

Code

This chapter presents the scripts used in conjunction with the experimental setup for co-
ordinating actuating and synchronizing and recording measurements from different sources.
The firmware coded in C++, running on the Arduino micro-controllers and the coordination
software coded in Python is based on previous work [147]. The code is presented below.

B.1 Firmware

Listing B.1: Firmware running on the Arudino micro-controllers in the embedded layer. This
version of the code includes embedded the embedded PI controller for maintaining the power
by manipulating the applied voltage.
char junk;
// running with 24V power supply for op amp and function generator

/* This minimal example shows how to get a single-shot range
measurements from the VL6180X.
The range readings are in units of mm. */

// DEFINES
#define DEBUG falsev

// IMPORTS
#include <Wire.h>
#include <MCP4922.h>
#include <VL6180X.h> // library: VL6180X proximity sensor
#include <avr/wdt.h> // library: watchdog timer
#include <MCP4922.h> // library: DAC
#include <SPI.h>
#include <Adafruit_MotorShield.h>
#include "utility/Adafruit_MS_PWMServoDriver.h"
#include <Adafruit_MLX90614.h> // library: MLX90614 thermopile
#include <SPI.h>



APPENDIX B. CODE 175

#include <Wire.h>

// GLOBAL VARS
VL6180X proxsensor;
//MCP4922 DAC(51,52,53,5); // (MOSI,SCK,CS,LDAC) define Connections for MEGA_board
MCP4922 DAC_FXN(11,13,10,5); // (MOSI,SCK,CS,LDAC) define Connections for UNO_board
MCP4922 DAC_MFC(11,13,9,5); // (MOSI,SCK,CS,LDAC) define Connections for UNO_board
Adafruit_MLX90614 mlx_5deg = Adafruit_MLX90614(0x5A); // default address of MLX90614

↪→ thermopile

// Create the motor shield object with the default I2C address
Adafruit_MotorShield AFMS(0x60); //top shield
Adafruit_MotorShield AFMS_bot(0x61); //bottom shield

// Connect a stepper motor with 200 steps per revolution (1.8 degree)
// to motor port #1 (M3 and M4)
Adafruit_StepperMotor *dMotor = AFMS.getStepper(150, 1);
// to motor port #1 (M1 and M2)
Adafruit_StepperMotor *xMotor = AFMS.getStepper(150, 2);
// to motor port #1 (M1 and M2) bottom shield
Adafruit_StepperMotor *yMotor = AFMS_bot.getStepper(150, 1);

String inputString = ""; // a string to hold incoming data

const int read_num = 100;
int read_data[read_num];
float read_average = 0;
int read_index = 0;
int read_total = 0;

// GLOBAL CONSTANTS
const double SERIAL_BAUD = 38400;
const int PROXIMITY_TIMEOUT = 25;
const int LOOPDELAY = 1; // milliseconds
const int DACSTEPS = 4096;
const int t_samp = 20; //milliseconds
double t_prev = 0;

// PINOUT
const int PIN_PHOTO_A = 0;
const int PIN_PHOTO_B = 1;
const int PIN_DAC_A = 2;
const int PIN_DAC_B = 3;
const int PIN_V_RMS = A3;
const int PIN_I_RMS = A2;
const int PIN_PWM = 5;

namespace data {
int dac_a;
int dac_b;
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int dist;
int x_pos;
int photo_a;
int photo_b;
float v_rms;
float i_rms;
float t_emb;
float p_rms;

}

namespace PI_V{
float Kc = 3/(0.56*20);
float Tau_i = 3;
float I = 0;
float err = 0 ;

}

namespace time_var{
double ts=1.3;
double t_prev=0;
}

namespace setpoint {
float voltage = 0.1;
float power=0;
float vapp = 0;
float frequency = 20;
float flowrate = 0;
float flowrate2 = 0;
float dist = 400;
float x_pos = 0;
float y_pos = 0;
float duty = 0;
float pow_mod=0;

}

float v_calc=0;

namespace location {
float delta = 0;
float cur_loc = 400;
float delta_x = 0;
float cur_x = 0;
float delta_y = 0;
float cur_y = 0;

}

//////////////////////// CYCLIC REDUNDANCY CHECK
////////////////////////
static const uint8_t PROGMEM dscrc_table[] = {
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0, 94,188,226, 97, 63,221,131,194,156,126, 32,163,253, 31, 65,
157,195, 33,127,252,162, 64, 30, 95, 1,227,189, 62, 96,130,220,
35,125,159,193, 66, 28,254,160,225,191, 93, 3,128,222, 60, 98,
190,224, 2, 92,223,129, 99, 61,124, 34,192,158, 29, 67,161,255,
70, 24,250,164, 39,121,155,197,132,218, 56,102,229,187, 89, 7,
219,133,103, 57,186,228, 6, 88, 25, 71,165,251,120, 38,196,154,
101, 59,217,135, 4, 90,184,230,167,249, 27, 69,198,152,122, 36,
248,166, 68, 26,153,199, 37,123, 58,100,134,216, 91, 5,231,185,
140,210, 48,110,237,179, 81, 15, 78, 16,242,172, 47,113,147,205,
17, 79,173,243,112, 46,204,146,211,141,111, 49,178,236, 14, 80,
175,241, 19, 77,206,144,114, 44,109, 51,209,143, 12, 82,176,238,
50,108,142,208, 83, 13,239,177,240,174, 76, 18,145,207, 45,115,
202,148,118, 40,171,245, 23, 73, 8, 86,180,234,105, 55,213,139,
87, 9,235,181, 54,104,138,212,149,203, 41,119,244,170, 72, 22,
233,183, 85, 11,136,214, 52,106, 43,117,151,201, 74, 20,246,168,
116, 42,200,150, 21, 75,169,247,182,232, 10, 84,215,137,107, 53};

uint8_t crc8(const uint8_t *addr, uint8_t len)
{
uint8_t crc = 0;
while (len--) {
crc = pgm_read_byte(dscrc_table + (crc ^ *addr++));

}
return crc;

}

void setup_serial() {
// set up serial connection
// initialize serial communication at specified baudrate
Serial.begin(SERIAL_BAUD);
#if DEBUG
Serial.println();
Serial.println();
Serial.println("Serial␣connection␣established!");

#endif
}

void setup_watchdog() {
// enable the watchdog timer
// if Arduino stops responding, auto-resets
// Watchdog Timeouts: WDTO_{1,2,4,8}s
// WDTO_{15,30,60,120,250,500}MS
// http://www.megunolink.com/articles/how-to-detect-lockups-using-the-arduino-watchdog/
#if DEBUG
Serial.println("enabling␣watchdog␣timer...");

#endif
wdt_enable(WDTO_500MS);

#if DEBUG
Serial.println("watchdog␣timer␣enabled!");
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#endif
}

////////////////////// READING FROM SERIAL ////////////////////////

////////////////////// GET STRING ////////////////////////

void get_serial() {
// gets manual input from the serial port
#if DEBUG
Serial.println("getting␣serial␣input...");

#endif

boolean stringComplete = false; // whether the string is complete
while (Serial.available() > 0) {

// get the new byte:
char inChar = (char)Serial.read();

#if DEBUG
Serial.println(String(inChar));

#endif

// add it to the inputString:
inputString += inChar;

// if the incoming character is a newline, set a flag
// so the main loop can do something about it:
if (inChar == ’\n’) {
stringComplete = true;
break;

}
}

if ( stringComplete == true && inputString.length() > 0 ) {
// if you have a non-blank input string and it’s complete...
#if DEBUG
Serial.print("got␣serial␣input:␣");
Serial.print(inputString);
Serial.println();

#endif
// process it with your manual_input function!
manual_input(inputString);
inputString = "";

}
}

//////////////////////// PARSE INPUTS ////////////////////////

void manual_input(String input) {
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// process the manual request received via serial
#if DEBUG
Serial.println("processing␣serial␣input!");

#endif

switch( input.charAt(0) ) {
case ’v’ :
// you sent v,###
if (input.substring(2).toFloat() > 10) {setpoint::voltage=10;}
else {
setpoint::voltage = input.substring(2).toFloat();}
#if DEBUG
Serial.println("voltage␣set!");

#endif
actuate_inputs();
break;

case ’f’ :
// you sent f,###
if (input.substring(2).toFloat() > 20) {setpoint::frequency=20;}
else if (input.substring(2).toFloat() < 10) {setpoint::frequency=10;}
else {
setpoint::frequency = input.substring(2).toFloat();};
#if DEBUG
Serial.println("frequency␣set!");

#endif
actuate_inputs();
break;

case ’q’ :
// you sent q,###
if (input.substring(2).toFloat() > 10) {setpoint::flowrate=10;}
else if (input.substring(2).toFloat() < 0) {setpoint::flowrate=0;}
else {
setpoint::flowrate = input.substring(2).toFloat();};
#if DEBUG
Serial.println("flowrate␣set!");wa

#endif
actuate_inputs();
break;

case ’o’ :
// you sent q,###
if (input.substring(2).toFloat() > 10) {setpoint::flowrate2=10;}
else if (input.substring(2).toFloat() < 0) {setpoint::flowrate2=0;}
else {
setpoint::flowrate2 = input.substring(2).toFloat();};
#if DEBUG
Serial.println("Second␣flowrate␣set!");
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#endif
actuate_inputs();
break;

case ’w’ :
// you sent w,###
if (input.substring(2).toFloat() > 12) {setpoint::power=12;}
else if (input.substring(2).toFloat() < 0) {setpoint::power=0;}
else {
setpoint::power = input.substring(2).toFloat();};
#if DEBUG
Serial.println("Second␣flowrate␣set!");

#endif
actuate_inputs();
break;

case ’d’ :
// you sent d,###
if (input.substring(2).toFloat() > 15) {setpoint::dist=1500;}
else if (input.substring(2).toFloat() < 0) {setpoint::dist=0;}
else {
setpoint::dist = input.substring(2).toFloat()*100;}
location::delta = -location::cur_loc + setpoint::dist;
//Serial.println(location::delta);
#if DEBUG
Serial.println("stepper␣distance␣set!");

#endif
actuate_inputs();
break;

case ’x’ :
// you sent x,###
if (input.substring(2).toFloat() > 1000) {setpoint::x_pos=10000;}
else if (input.substring(2).toFloat() < -1000) {setpoint::x_pos=-10000;}
else {
setpoint::x_pos = input.substring(2).toFloat()*10;}
location::delta_x = -location::cur_x + setpoint::x_pos;
//Serial.println(location::delta);
#if DEBUG
Serial.println("stepper␣distance␣set!");

#endif
actuate_inputs();
break;

case ’y’ :
// you sent x,###
if (input.substring(2).toFloat() > 1000) {setpoint::y_pos=10000;}
else if (input.substring(2).toFloat() < -1000) {setpoint::y_pos=-10000;}
else {
setpoint::y_pos = input.substring(2).toFloat()*10;}
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location::delta_y = -location::cur_y + setpoint::y_pos;
//Serial.println(location::delta);
#if DEBUG
Serial.println("stepper␣distance␣set!");

#endif
actuate_inputs();
break;

case ’p’ :
if (input.substring(2).toFloat() < 10) {setpoint::duty=10;}
else if (input.substring(2).toFloat() > 100) {setpoint::duty=100;}
else {
setpoint::duty = input.substring(2).toFloat();};
// you sent p,###
#if DEBUG
Serial.println("duty␣cycle␣set!");

#endif
actuate_inputs();
break;

}
}

////////////////////////////// STEPPER MOVEMENT //////////////////////////////////

int move_to_pos(float delt, Adafruit_StepperMotor *motor) {
//Serial.print(aaReal.x);
//Serial.print(’\n’);

if (delt < 0) {
motor->step(1, FORWARD, DOUBLE); //// STEP SIZE calibrated 12/08/2017
motor->release();
delt=delt + 4;
delay(2);
return delt;

} else if (delt > 0) {
motor->step(1, BACKWARD, DOUBLE);
motor->release();
delt=delt - 4;
delay(2);

return delt;
} else if (delt == 0) {
return delt;

}
}

int move_to_pos_x(float delt, Adafruit_StepperMotor *motor) {
//Serial.print(aaReal.x);
//Serial.print(’\n’);
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if (delt < 0) {
motor->step(1, FORWARD, SINGLE); //// STEP SIZE calibrated 02/07/2018
//motor->release();
delt=delt + 1;
delay(2);
return delt;

} else if (delt > 0) {
motor->step(1, BACKWARD,SINGLE); //// STEP SIZE calibrated 02/07/2018
//motor->release();
delt=delt - 1;
delay(2);

return delt;
} else if (delt == 0) {
return delt;

}
}

int move_to_pos_y(float delt, Adafruit_StepperMotor *motor) {
//Serial.print(aaReal.x);
//Serial.print(’\n’);

if (delt < 0) {
motor->step(1, FORWARD, SINGLE); //// STEP SIZE calibrated 02/07/2018
//motor->release();
delt=delt + 1;
delay(2);
return delt;

} else if (delt > 0) {
motor->step(1, BACKWARD, SINGLE); //// STEP SIZE calibrated 02/07/2018
//motor->release();
delt=delt - 1;
delay(2);

return delt;
} else if (delt == 0) {
return delt;

}
}

////////////////////////////////////// ACTUATION ///////////////////////////////////////

void actuate_inputs() {
// actuates the system inputs via the DACs
#if DEBUG
Serial.println("actuating␣inputs...");

#endif
//DAC_FXN.Set(mapfloat(setpoint::voltage,0,10,0,DACSTEPS-1), mapfloat(setpoint::

↪→ frequency,0,10,DACSTEPS-1,0));
//DAC_FXN.Set(mapfloat(setpoint::voltage,0,10,((float) 6 / 10)*DACSTEPS,((float) 2 /

↪→ 10)*DACSTEPS), mapfloat(setpoint::frequency,0,10,DACSTEPS-1,0));
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// tuned for Brandon’s development setup on 24V supply:
//DAC_FXN.Set(mapfloat(setpoint::voltage,0,10,0.96*(DACSTEPS-1),0.55*(DACSTEPS-1)),
// mapfloat(setpoint::frequency,10,20,0.92*(DACSTEPS-1),0.1*(DACSTEPS-1)));

// tuned for the control jet setup on 24V supply:

////////////// EMBEDDED CONTROL //////////////////////////////////////////////////
v_calc=setpoint::vapp + PI_V::Kc*(PI_V::err+PI_V::I/PI_V::Tau_i);

\\\ Anti-wind-up
if(v_calc>=11 && PI_V::err>=0){
PI_V::I=PI_V::I;
setpoint::vapp=11;}

else if (v_calc>=11 && PI_V::err<0){
PI_V::I = PI_V::I + PI_V::err*(time_var::ts-time_var::t_prev)*1e-3;
setpoint::vapp=11;}

else if(v_calc<=0 && PI_V::err<=0){
PI_V::I=PI_V::I;
setpoint::vapp=0.;}

else if (v_calc<=0. && PI_V::err>0){
PI_V::I = PI_V::I + PI_V::err*(time_var::ts-time_var::t_prev)*1e-3;
setpoint::vapp=0.;}

else {
PI_V::I = PI_V::I + PI_V::err*(time_var::ts-time_var::t_prev)*1e-3;
setpoint::vapp=v_calc;
};

// tuned for the control jet setup on 24V supply:
DAC_FXN.Set(mapfloat(setpoint::vapp,0,12,0.96*(DACSTEPS-1),0.46*(DACSTEPS-1)),

mapfloat(setpoint::frequency,10,20,0.90*(DACSTEPS-1),0.085*(DACSTEPS-1)));

//voltage control off
// DAC_FXN.Set(mapfloat(setpoint::voltage,0,12,0.96*(DACSTEPS-1),0.46*(DACSTEPS-1)),
// mapfloat(setpoint::frequency,10,20,0.90*(DACSTEPS-1),0.085*(DACSTEPS-1)));

// MFC DAC
DAC_MFC.Set(mapfloat(setpoint::flowrate,0,10,0,4095),mapfloat(setpoint::flowrate2

↪→ ,0,20,0,4095));

location::delta=move_to_pos(location::delta, dMotor);
location::cur_loc = -location::delta + setpoint::dist;

location::delta_x=move_to_pos_x(location::delta_x, xMotor);
location::cur_x = - location::delta_x + setpoint::x_pos;

location::delta_y=move_to_pos_y(location::delta_y, yMotor);
location::cur_y = - location::delta_y + setpoint::y_pos;
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// set duty cycle
analogWrite(PIN_PWM, mapfloat(setpoint::duty,0,100,0,255));

}

float mapfloat(float x, long in_min, long in_max, long out_min, long out_max)
{
return (x - in_min) * ((float)out_max - out_min) / ((float)in_max - in_min) + out_min;
}

void addRead(int value)
{
read_total = read_total - read_data[read_index];
read_data[read_index] = value;
read_total = read_total + read_data[read_index];
read_average = ((float)read_total) / read_num;
read_index++;
if (read_index >= read_num)
{
read_index = 0;

}
}

/////////////////////////// SETUP /////////////////////////////

void setup()
{
setup_serial();
setup_watchdog();
SPI.begin();
Wire.begin();

AFMS.begin(); // create with the default frequency 1.6KHz
AFMS_bot.begin(); // create with the default frequency 1.6KHz

dMotor->setSpeed(40); // 10 rpm
xMotor->setSpeed(40); // 10 rpm
yMotor->setSpeed(40); // 10 rpm

// set up VL6180X sensor
proxsensor.init();
proxsensor.configureDefault();
proxsensor.setTimeout(PROXIMITY_TIMEOUT);

actuate_inputs();
}

/////////////////////////// LOOP ////////////////////////////
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void loop()
{
// reset the watchdog timer
// if this doesn’t occur within WDTO_X, system resets
wdt_reset();

if (Serial.available() > 0) {
#if DEBUG
Serial.println("bytes␣available:␣" + String(Serial.available()));

#endif
get_serial();

}

// get the timestamp
time_var::ts = millis();

// read and save data from sensors
data::dac_a = analogRead(PIN_DAC_A);
data::dac_b = analogRead(PIN_DAC_B);
data::photo_a = analogRead(PIN_PHOTO_A);
data::photo_b = analogRead(PIN_PHOTO_B);
data::v_rms = ((analogRead(PIN_V_RMS)*5.0/1024.0) -0.0029)/0.97;
data::i_rms = (analogRead(PIN_I_RMS)*5.0/1024.0);
data::dist = proxsensor.readRangeSingleMillimeters(); // read VL6180X distance
data::t_emb = mlx_5deg.readObjectTempC();
data::p_rms=0.85*((data::v_rms*data::i_rms)*1.3+0.29)+0.093; //calibrated

/// account for duty cycle in assigning power setpoint
if(setpoint::power*setpoint::duty/100. > 10){setpoint::pow_mod==10;}
else if (setpoint::power*setpoint::duty/100. < 0){setpoint::pow_mod==0;}
else { setpoint::pow_mod=setpoint::power*setpoint::duty/100;};

/// calculate PI error
PI_V::err = setpoint::pow_mod - data::p_rms;

actuate_inputs();

// build the string from the data
String mystring = "";
mystring += time_var::ts;
mystring += ’,’;
mystring += setpoint::vapp;
mystring += ’,’;
mystring += setpoint::frequency;
mystring += ’,’;
mystring += setpoint::flowrate;
mystring += ’,’;
mystring += location::cur_loc/100;
mystring += ’,’;
mystring += setpoint::duty;
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mystring += data::photo_a;
mystring += ’,’;
mystring += data::photo_b;
mystring += ’,’;
mystring += data::v_rms;
mystring += ’,’;
mystring += data::t_emb;
mystring += ’,’;
mystring += data::i_rms;
mystring += ’,’;
mystring += location::cur_x/10;
mystring += ’,’;
mystring += location::cur_y/10;
mystring += ’,’;
mystring += setpoint::flowrate2;
mystring += ’,’;
mystring += setpoint::power;
mystring += ’,’;
mystring += data::p_rms;

// calculate the CRC8 of the string
// first, convert string to array of chars (signed ints)
char mychars[mystring.length()+1];
mystring.toCharArray(mychars,sizeof(mychars));
// then, convert chars into unsigned ints
uint8_t myuints[sizeof(mychars)];
for (int i=0; i < sizeof(mychars); i++) {
myuints[i] = (uint8_t) mychars[i];

}
// finally, calculate the crc of the unsigned ints
int mycrc = crc8(myuints,sizeof(myuints));

// printing the data string
Serial.print(mystring);
Serial.print(’,’);
Serial.print(mycrc);
Serial.println();
delay(LOOPDELAY);
time_var::t_prev = time_var::ts;

}

B.2 Coordination Software

Listing B.2: Python script running on the single board computer to coordinate measurements
and actuation from the embedded layer and peripheral instruments.



APPENDIX B. CODE 187

# Do not write bytecode to maintain clean directories
import sys
sys.dont_write_bytecode = True

# Import required packages.
from casadi import *
import numpy as NP
import matplotlib.pyplot as plt
import scipy.io
from matplotlib.ticker import MaxNLocator
from scipy import linalg
from scipy import signal
from numpy import random
from scipy import io as sio
import matplotlib.pyplot as plt
import os
import datetime
import time
import cv2
import argparse
from pylepton import Lepton
import RPi.GPIO as gpio
gpio.setwarnings(False)
import subprocess
import select
import scipy.io as scio
from scipy.optimize import curve_fit
import serial
import crcmod
import visa
sys.path.append(’/python-seabreeze’)
import seabreeze.spectrometers as sb
import asyncio
import usbtmc
import socket
import pickle
import sklearn
from scipy.interpolate import interp1d
from scipy.interpolate import interp2d

## load linear regressor for rotational and vibrational temperature
f_reg=open(’linear_Trot.pkl’,’rb’)
cl=pickle.load(f_reg, encoding="latin1")

## load substrate classifier
f_reg=open(’knn_subs.pkl’,’rb’)
knn=pickle.load(f_reg, encoding="latin1")

crc8 = crcmod.predefined.mkCrcFun(’crc-8-maxim’)



APPENDIX B. CODE 188

## initialize oscilloscope
instr = usbtmc.Instrument(0x1ab1, 0x04ce)
instr.open()
while not (instr.timeout == 0.5 and instr.rigol_quirk == False):

instr.timeout = 0.5
instr.rigol_quirk = False

idg = ’’
while not idg:

try:
idg = instr.ask("*IDN?")

except Exception as e: # USBErrors
print("{}␣in␣get_oscilloscope".format(e))
time.sleep(0.4)

print("device␣info:␣{}".format(idg))
print("device␣timeout:␣{}".format(instr.timeout))
time.sleep(0.5)

## initialize spectrometer
devices = sb.list_devices()
t_int=12000*6
print("Available␣devices␣{}".format(devices))
spec = sb.Spectrometer(devices[0])
print("Using␣{}".format(devices[0]))
spec.integration_time_micros(t_int)
print("integratiopn␣time␣{}␣seconds.".format(t_int/1e6))
time.sleep(0.5)

class DummyFile(object):
def write(self, x): pass

def nostdout(func):
def wrapper(*args, **kwargs):

save_stdout = sys.stdout
sys.stdout = DummyFile()
func(*args, **kwargs)
sys.stdout = save_stdout

return wrapper

## get arguments to run the script with
def get_runopts():
"""g
Gets the arguments provided to the interpreter at runtime
"""
parser = argparse.ArgumentParser(description="runs␣MPC",

epilog="Example:␣python␣mpc_lin_test.py␣--quiet")
parser.add_argument("--faket", help="use␣fake␣temperature␣data", action="store_true")
parser.add_argument("--fakei", help="use␣fake␣intensity␣data", action="store_true")
parser.add_argument("--timeout", type=float, help="timout␣(seconds)␣on␣oscilloscope␣

↪→ operations",
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default=0.4)
parser.add_argument("--save_therm", help="save␣thermography␣photos", action="store_true

↪→ ")
parser.add_argument("--save_spec", help="save␣OES␣spectra", action="store_true")
parser.add_argument("--save_osc", help="save␣current␣waveform", action="store_true")
parser.add_argument("--dir", type=str, default="data",help="relative␣path␣to␣save␣the␣

↪→ data")
parser.add_argument("--tag", type=str, default="",help="tag␣the␣saved␣files␣for␣easy␣

↪→ recognition")
parser.add_argument("--auto",help="run␣the␣code␣without␣connection␣to␣laptop", action="

↪→ store_true")
runopts = parser.parse_args()
return runopts

runopts = get_runopts()

## record the time at which the script starts
curtime1 = datetime.datetime.now().strftime("%Y-%m-%d_%H%M%S.%f")

## generate directories to save peripheral measurements
SAVEDIR_therm = os.path.join(os.getcwd(),runopts.dir,"{}_thermography-{}".format(curtime1

↪→ ,runopts.tag)) # path to the directory to save thermography files
SAVEDIR_spec = os.path.join(os.getcwd(),runopts.dir,"{}_spectroscopy-{}".format(curtime1,

↪→ runopts.tag)) # path to the directory to save thermograph
SAVEDIR_osc = os.path.join(os.getcwd(),runopts.dir,"{}_oscilloscope-{}".format(curtime1,

↪→ runopts.tag)) # path to the directory to save oscilloscope wavefomr current

if runopts.save_therm and not os.path.exists(SAVEDIR_therm):
print("Creating␣directory:␣{}".format(SAVEDIR_therm))
os.makedirs(SAVEDIR_therm)

if runopts.save_spec and not os.path.exists(SAVEDIR_spec):
print("Creating␣directory:␣{}".format(SAVEDIR_spec))
os.makedirs(SAVEDIR_spec)

if runopts.save_osc and not os.path.exists(SAVEDIR_osc):
print("Creating␣directory:␣{}".format(SAVEDIR_osc))
os.makedirs(SAVEDIR_osc)

############ Define Functions ##############################
def save_data(SAVEDIR,data,fname):
"""
Save data from measurment stored in an array
"""
print("saving␣{}.csv".format(os.path.join(SAVEDIR,fname)))
np.savetxt(os.path.join(SAVEDIR,"{}.csv".format(fname)),data,delimiter=’,’,fmt=’%.4e’)

def send_inputs_direct(device,U):

Vn = U[0]
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Fn = U[1]
Qn = U[2]
Dn = U[3]
Xn = U[4]
Yn = U[5]
input_string=’echo␣"v,{:.2f}"␣>␣/dev/arduino␣&&␣echo␣"f,{:.2f}"␣>␣/dev/arduino␣&&␣echo␣

↪→ "q,{:.2f}"␣>␣/dev/arduino’.format(Vn, Fn, Qn)
device.reset_input_buffer()
device.write("v,{:.2f}\n".format(Vn).encode(’ascii’))
time.sleep(0.200)
device.write("f,{:.2f}\n".format(Fn).encode(’ascii’))
time.sleep(0.200)
device.write("q,{:.2f}\n".format(Qn).encode(’ascii’))
time.sleep(0.200)
device.write("d,{:.2f}\n".format(Dn).encode(’ascii’))
time.sleep(0.400)
device.write("x,{:.2f}\n".format(Xn).encode(’ascii’))
time.sleep(0.200)
device.write("y,{:.2f}\n".format(Yn).encode(’ascii’))
time.sleep(0.200)

print("input␣values:␣{:.2f},{:.2f},{:.2f},{:.2f},{:.2f},{:.2f}".format(Vn,Fn,Qn,Dn,Xn,
↪→ Yn))

def send_inputs(device,U):
"""
Sends input values to the microcontroller to actuate them using the subprocess package

↪→ via the UNIX terminal
"""
Vn = U[0]
Fn = U[1]
Qn = U[2]
Dn = U[3]
Xn = U[4]
Yn = U[5]
Pn = U[6]
input_string=’echo␣"v,{:.2f}"␣>␣/dev/arduino␣&&␣echo␣"f,{:.2f}"␣>␣/dev/arduino␣&&␣echo␣

↪→ "q,{:.2f}"␣>␣/dev/arduino’.format(Vn, Fn, Qn)
device.reset_input_buffer()

subprocess.run(’echo␣""␣>␣/dev/arduino’, shell=True)
time.sleep(0.0500)

subprocess.run(’echo␣"v,{:.2f}"␣>␣/dev/arduino’.format(Vn), shell=True)
time.sleep(0.0500)

subprocess.run(’echo␣"f,{:.2f}"␣>␣/dev/arduino’.format(Fn), shell=True)
time.sleep(0.0500)

subprocess.run(’echo␣"q,{:.2f}"␣>␣/dev/arduino’.format(Qn), shell=True)
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time.sleep(0.0500)

subprocess.run(’echo␣"d,{:.2f}"␣>␣/dev/arduino’.format(Dn), shell=True)
time.sleep(0.0500)

subprocess.run(’echo␣"x,{:.2f}"␣>␣/dev/arduino’.format(Xn), shell=True)
time.sleep(0.0500)

subprocess.run(’echo␣"y,{:.2f}"␣>␣/dev/arduino’.format(Yn), shell=True)
time.sleep(0.0500)

subprocess.run(’echo␣"p,{:.2f}"␣>␣/dev/arduino’.format(Pn), shell=True)
time.sleep(0.0500)

print("input␣values:␣{:.2f},{:.2f},{:.2f},{:.2f},{:.2f},{:.2f},{:.2f}".format(Vn,Fn,Qn,
↪→ Dn,Xn,Yn,Pn))

def send_inputs_all(device,device2,Vn,Fn,Qn,Yn,Xn,Pn,Dn,On):
"""
Sends input values to the microcontrollers to actuate them usig the serial pacakge
"""
device.reset_input_buffer() #master arduino
device2.reset_input_buffer() #complementary arduino

subprocess.run(’echo␣""␣>␣/dev/arduino_m’, shell=True)
time.sleep(0.0100)
#subprocess.run(’echo "v,{:.2f}" > /dev/arduino_m’.format(Vn), shell=True) #for voltage
subprocess.run(’echo␣"w,{:.2f}"␣>␣/dev/arduino_m’.format(Vn), shell=True) #for power
time.sleep(0.0100)
subprocess.run(’echo␣"y,{:.2f}"␣>␣/dev/arduino_c’.format(Yn), shell=True)
time.sleep(0.0500)
subprocess.run(’echo␣"x,{:.2f}"␣>␣/dev/arduino_c’.format(Xn), shell=True)
time.sleep(0.0500)
subprocess.run(’echo␣"d,{:.2f}"␣>␣/dev/arduino_c’.format(Dn), shell=True)
time.sleep(0.100)
subprocess.run(’echo␣"p,{:.2f}"␣>␣/dev/arduino_m’.format(Pn), shell=True)
time.sleep(0.0100)
subprocess.run(’echo␣"f,{:.2f}"␣>␣/dev/arduino_m’.format(Fn), shell=True)
time.sleep(0.0100)
subprocess.run(’echo␣"q,{:.2f}"␣>␣/dev/arduino_m’.format(Qn), shell=True)
time.sleep(0.0100)
subprocess.run(’echo␣"o,{:.2f}"␣>␣/dev/arduino_m’.format(On), shell=True)
time.sleep(0.0100)
print("input␣values:␣V:{:.2f},F:{:.2f},Q:{:.2f},Y:{:.2f}".format(Vn,Fn,Qn,Yn))

def is_valid(line):
"""
Verify that the line is complete and correct
"""
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l = line.split(’,’)
crc = int(l[-1])
data = ’,’.join(l[:-1])
return crc_check(data,crc)

def crc_check(data,crc):
"""
Cyclic redundancy check
"""
crc_from_data = crc8("{}\x00".format(data).encode(’ascii’))
print("crc:{}␣calculated:␣{}␣data:␣{}".format(crc,crc_from_data,data))
return crc == crc_from_data

def gaus(x,a,x0,sig):
"""
Gaussian distribution
"""
return a*NP.exp(-(x-x0)**2/(sig**2))

def get_temp_max(runopts):
"""
Gets x and y position of the maximum temperature
"""
if runopts.faket:
return 24

run = True
for rr in range(8):
try:
with Lepton("/dev/spidev0.1") as l:
data,_ = l.capture(retry_limit = 3)

if l is not None:
Ts = NP.amax(data[6:50,:,0]) / 100 - 273;
mm= NP.where( data == NP.amax(data[6:50,:,0]) )
print(’max␣point␣at␣{},{}’.format(*mm))
for line in data:

l = len(line)
if (l != 80):

print("error:␣should␣be␣80␣columns,␣but␣we␣got␣{}".format(l))
elif Ts > 150:

print("Measured␣temperature␣is␣too␣high:␣{}".format(Ts))
time.sleep(0.070)
run = False

except Exception as e:
print(e)
## restart fail-check for hang-ups
print("\nHardware␣error␣on␣the␣thermal␣camera.␣Lepton␣restarting...")
gpio.output(35, gpio.HIGH)
time.sleep(0.5)
gpio.output(35, gpio.LOW)
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print("Lepton␣restart␣completed!\n\n")

return [int(mm[0]), int(mm[1])]

####### Asynchronous function definitions ############

async def get_temp_a(runopts,a):
"""
Gets treatment temperatures with the Lepton thermal camera
"""
if runopts.faket:
return 24

run = True
while run:
try:
with Lepton("/dev/spidev0.1") as l:
data,_ = l.capture(retry_limit = 3)

if l is not None:
mm=a ### This may need calibration #############
Ts = NP.amax(data[int(mm[0]),int(mm[1]),0]) / 100 - 273;

for line in data:
l = len(line)
if (l != 80):
print("error:␣should␣be␣80␣columns,␣but␣we␣got␣{}".format(l))

elif Ts > 150:
print("Measured␣temperature␣is␣too␣high:␣{}".format(Ts))

Tt = NP.amax(data[0:5,:,0]) / 100 - 273 #tube temeprature

Ts_lin=data[int(mm[0]),:,0] /100 - 273 #crossection of substrate temperature
yy=Ts_lin-Ts_lin[0]

Ts2 = (Ts_lin[int(mm[1])+2]+Ts_lin[int(mm[1])-2])/2 #adjacent T1
Ts3 = (Ts_lin[int(mm[1])+12]+Ts_lin[int(mm[1])-12])/2 #adjacent T2
Ts_lin_out=Ts_lin[int(mm[1])-13:int(mm[1])+13] #1D temperature distribution in x

Ts_2d_out=NP.array(data[int(mm[0])-13:int(mm[0])+13,int(mm[1])-13:int(mm[1])
↪→ +13:,0])/100 - 273 #2D temperature distribution

sig2=2.88/(NP.sqrt(-NP.log((Ts2-Ts3)/(Ts-Ts3)))) ## manual calculation for sigma

Ts_fit=Ts_lin_out-Ts3 ## use curve fitting for sigma
x_fit=NP.arange(-13*1.43,13*1.43,1.43)

popt,pcov=curve_fit(gaus, x_fit, Ts_fit, p0=[10,0,3])
sig=popt[2]

#check options and save data
if runopts.save_therm:
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curtime = datetime.datetime.now().strftime("%Y-%m-%d_%H%M%S.%f")
fname = "{}".format(curtime)
save_data(SAVEDIR_therm,data[:,:,0]/100.0 - 273 ,fname)

if runopts.save_spec:
wv=spec.wavelengths()
sp_int=spec.intensities()
sp_data=[wv,sp_int]
curtime = datetime.datetime.now().strftime("%Y-%m-%d_%H%M%S.%f")
fname = "{}".format(curtime)
save_data(SAVEDIR_spec,sp_data,fname)

time.sleep(0.070)
run = False

except Exception as e:
print(e)
print("\nHardware␣error␣on␣the␣thermal␣camera.␣Lepton␣restarting...")
gpio.output(35, gpio.HIGH)
time.sleep(0.5)
gpio.output(35, gpio.LOW)
print("Lepton␣restart␣completed!\n\n")

return [Ts, Ts2, Ts3, Ts_lin_out, Tt, sig, sig2, Ts_2d_out, data]

async def get_intensity_a(f,f2,runopts):
"""
Get information from the two microcontollers
"""

if runopts.fakei:
Is = 5

else:
run1 = True #initialize measurements to prevent errors
run2 = True
v_rms=0
Is=0
U=[0,0,0]
x_pos=0
y_pos=0
dsep=0
P_emb=0
I_emb=0
T_emb=0
Dc=0
q_o=0
while run1:
try:
f.reset_input_buffer()
f.readline()
line = f.readline().decode(’ascii’)
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if is_valid(line):
run1 = False
Is = int(line.split(’,’)[6])
V_emb = float(line.split(’,’)[7])
V = float(line.split(’,’)[1])
f = float(line.split(’,’)[2])
q = float(line.split(’,’)[3])
Dc = float(line.split(’,’)[5])
T_emb=float(line.split(’,’)[8])
I_emb=float(line.split(’,’)[9])
P_emb=float(line.split(’,’)[-2])
q_o=float(line.split(’,’)[12])

else:
print("CRC8␣failed.␣Invalid␣line!")

U=[V,f,q,dsep]
except:
pass

while run2:
try:
f2.reset_input_buffer()
f2.readline()
line = f2.readline().decode(’ascii’)
if is_valid(line):
run2 = False
dsep=float(line.split(’,’)[4])
x_pos=float(line.split(’,’)[10])
y_pos=float(line.split(’,’)[11])

else:
print("CRC8␣failed.␣Invalid␣line!")

U=[V,f,q,dsep]
except:
pass

return [Is,v_rms,U,x_pos,y_pos,dsep,T_emb,P_emb,Dc,q_o]

def gpio_setup():
"""
Hardware-restart for thermal camera hang-ups
"""

gpio.setmode(gpio.BOARD)
gpio.setup(35, gpio.OUT)
gpio.output(35, gpio.HIGH)

async def get_oscilloscope_a(instr,runopts):
’’’
Get measurements from the oscilloscope
’’’
try:

instr.write(":MEAS:SOUR␣CHAN2")
Imax=float(instr.ask("MEAS:VMAX?"))*1000
Ip2p=float(instr.ask("MEAS:VPP?"))*1000
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rdel=float(instr.ask("MEAS:ITEM?␣RDEL"))
y_raw=instr.ask(’:WAV:DATA?’)
y_data=np.fromstring(y_raw[11:],dtype=float,sep=’,’)

if runopts.save_osc:
curtime = datetime.datetime.now().strftime("%Y-%m-%d_%H%M%S.%f")
fname = "{}".format(curtime)
save_data(SAVEDIR_osc,y_data,fname)

instr.write(":MEAS:SOUR␣MATH")
P=float(instr.ask("MEAS:VAVG?"))
Prms=float(instr.ask("MEAS:ITEM?␣PVRMS"))

if P>1e3:
print(’WARNING:␣Measured␣power␣is␣too␣large’)
time.sleep(0.8)
instr.write(":MEAS:SOUR␣MATH")
P=float(instr.ask("MEAS:VAVG?"))

rdel=rdel*1.e6
fdel=0

except Exception as e:
print(’oscilloscope␣error!’)
print(e)
P=0
Ip2p=0
Prms=0
rdel=0
Imax=0
pass

return [P,Ip2p,Prms,rdel,Imax]

async def get_spec_a(spec):
’’’
Get measurements from the spectrometer
’’’
wv=spec.wavelengths()
sp_int=spec.intensities()

int_N2CB=sp_int[63:114]-NP.mean(sp_int[-10:-1])
int_full=sp_int[10:]-NP.mean(sp_int[-10:-1])
int_n=int_N2CB/max(int_N2CB)

int_full_n=int_full/max(int_full)

r2=knn.predict(int_full_n.reshape(1,-1)) #classifier prediction
Tspec=cl.predict(int_n.reshape(1,-1)) #regressor prediction
print(’Trot’,Tspec[0][0]*550)
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if r[0]==0:
print(’Capacitative␣Substrate!’)

elif r[0]==1:
print(’Conductive␣Substrate!’)

else:
print(’Classifier␣Error’)

sp_int=sp_int-NP.mean(sp_int[-20:-1])
sum_int=NP.sum(sp_int[20:])

O777=max(sp_int[1200:1250]) #varios important spectrum lines
O844=max(sp_int[1405:1455])
N391=max(sp_int[126:146])
He706=max(sp_int[990:1100])

return [O777,O844,N391,He706,sum_int,r,r2,Tspec[0]]

async def asynchronous_measure(f,instr,runopts,max_pt):
’’’
Define series of asynchronous tasks for measurement from the different sources
’’’

tasks=[asyncio.ensure_future(get_temp_a(runopts,max_pt)),
asyncio.ensure_future(get_intensity_a(f,f_move,runopts)),
asyncio.ensure_future(get_oscilloscope_a(instr,runopts)),
asyncio.ensure_future(get_spec_a(spec))]

await asyncio.wait(tasks)
return tasks

################# SET AND TEST MEASUREMENTS ########################

## initialize measurements
Ts_old=37
Ts2_old=32
Ts3_old=25
Tslin_old=[37]*26
Pold=2

runopts = get_runopts()
gpio_setup()

## connect to the microcontollers
f = serial.Serial(’/dev/arduino_m’, baudrate=38400,timeout=1) #master
f_move = serial.Serial(’/dev/arduino_c’, baudrate=38400,timeout=1) #complementary
max_pt=get_temp_max(runopts) ##get maximum point

if os.name == ’nt’:
ioloop = asyncio.ProactorEventLoop() # for subprocess’ pipes on Windows
asyncio.set_event_loop(ioloop)

else:
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ioloop = asyncio.get_event_loop()

print(instr)

# run the measurement tasks once and extract values
a=ioloop.run_until_complete(asynchronous_measure(f,instr,runopts,max_pt))

Temps=a[0].result()
Ts=Temps[0]
Ts2=Temps[1]
Ts3=Temps[2]
Ts_lin=Temps[3]
Tt=Temps[4]
sig=Temps[5]
sig2=Temps[6]
Ts_2d_out=Temps[7]
sig0=sig
Zm0=8.3

Ard_out=a[1].result()
Is=Ard_out[0]
v_rms=Ard_out[1]
x_pos=Ard_out[3]
y_pos=Ard_out[4]
d_sep=Ard_out[5]
T_emb=Ard_out[6]

Osc_out=a[2].result()
Vrms=Osc_out[0]
P=Osc_out[0]

delta=3.0
Ts_lin_old=Ts_lin

# print measured temperature and power confirm measurement working
msg="Temperature:␣{:.2f}␣Power:␣{:.2f}".format(Ts,P)
print(’Measurment␣working...’)
CEM=np.zeros(np.shape(Ts_lin)) #initialize CEM measurement
CEM2D=np.zeros([9,9]) #initialize 2D CEM measurement
print(msg)

## check if the script requires connection from external client, if so start a websocket
↪→ client

if not runopts.auto:
s=socket.socket(socket.SO_REUSEADDR,1)
host=’pi3.dyn.berkeley.edu’
port=2223
s.bind((host,port))
s.listen(5)
print(’\n’)
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print(’Server␣is␣listening␣on␣port’ ,port)
print(’Waiting␣for␣connection...’)

c, addr = s.accept()
c.settimeout(0.2)

print(’Got␣connection␣from’, addr)

## set upper and lower bounds for inputs
# for voltage
#u_ub=[10.,20,4.,100.]
#u_lb=[6.,10.,1.2,100.]

#for power
u_ub=[5.3,20,4.,100.]
u_lb=[1.5,10.,1.2,10.]

########### INITIAL INPUT PARAMETERS #####################
V=4. #initial applied power/voltage
O=0 # initial oxygen admixture flowrate
Dc=100. #initial duty cycle
F=20. #initial frequency
Q=1.5 #initial flow
q=1.5

x0_ff=NP.array([[0],[0],[0]]) #feedforward states
u0_fb=V

############################### setpoints #####################
Tset=41. #initial setpoint
sigset=8.5 #initial setpoint
Pset=3. #initial setpoint

ind_i=1
#################### set timers ####################

t_el=0 #seconds sup. control timer
tm_el=0
move=0
e1=0.
e10=0.

Delta_y=11. #mm movement disturbance

t_mel=0 #PI control timer
I1=0
I2=0
Dsep=4.0
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Y_dir=-1 #movement direction

t_dis=100.0 #period of disturbances, step tests and movement
t_step=60.
t_move=60.*2.

int_flag=0 #flags
calib_flag=0
r_old=0

############ initialize jet position #########################
Y_pos=0.
X_pos=0.

if runopts.auto:
send_inputs_all(f,f_move,V,F,Q,Y_pos,X_pos,Dc,Dsep,O)
print(’initializing␣jet␣position...’)
time.sleep(5.)

############ initialize save document ################################

sv_fname = os.path.join(runopts.dir,"PI_Server_Out_{}-{}".format(curtime1,runopts.tag))
save_fl=open(sv_fname,’a+’)
save_fl.write(’time,Tset,Ts,Ts2,Ts3,P,Imax,Ip2p,O777,O845,N391,He706,sum_int,*U_m,q_o,D_c

↪→ ,x_pos,y_pos,T_emb,V,P_emb,Prms,Rdel,Is,sig,subs_type,Rot,tm_el\n’)

################## MAIN LOOP ###################

t_move_now=time.time() ##movement_start
t_move_dis=time.time() ##disturbance_start
t_move_step=time.time() #step_start

while True:
try:

t0=time.time()

######### Disturbance MOVE BACK AND FORTH ##########

print(’time␣remaining␣{:6.2f}’.format(t_move-time.time()+t_move_now))

# if X_pos==0: #for case I and II
# X_dir=-1
# if X_pos==-11: #for case I and II
# X_dir=1
# if X_dir==1 and (time.time()-t_move_now)>=t_move: #for case I and II
# print(’Moving’)
# X_pos=X_pos+Delta_y
# t_move_now=time.time()
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# elif X_dir==-1 and (time.time()-t_move_now)>=t_move: #for case I and II
# print(’Moving’)
# X_pos=X_pos-Delta_y

############# MOVE TO AND STAY #################

# if (time.time()-t_move_now)>=t_move:
# move=1

# if Y_dir==1 and Y_pos<=44 and move==1: #for case I and II
# print(’Moving’)
# Y_pos=Y_pos+Delta_y

# elif Y_dir==-1 and Y_pos>=8 and move==1: #for case I and II
# print(’Moving’)
# Y_pos=Y_pos-Delta_y

# if round(Y_pos)<=8 and move==1:
# Y_dir=1
# move=0
# t_move_now=time.time()
# if round(Y_pos)==28 and move==1:
# move=0
# t_move_now=time.time()
# if round(Y_pos)>=44 and move==1: #for case I and II
# Y_dir=-1
# move=0
# t_move_now=time.time()

##### STEP AND DISTURBANCE TESTS ###########
print(’time␣remaining␣{:6.2f}’.format(t_step-time.time()+t_move_step))

# if (time.time()-t_move_step)>=t_step:
#Tset=Tset+1.5

# Tset=Tset_list[ind_i]
# Q=Q_list[ind_i]
# ind_i=ind_i+1

# t_move_step=time.time()

########## RECEIVE FROM CLIENT ############
try:

data=c.recv(512).decode()
data_str=data.split(’,’)
data_flt=[float(i) for i in data_str]
Tset=data_flt[0]
#Vover=data_flt[0]
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X_pos=data_flt[1]
Y_pos=data_flt[2]
int_flag=data_flt[3]
t_el=data_flt[4]

print(’Optimal␣Reference␣Recieved!’)
print(’Tref:␣{:6.2f},␣t_el:{:6.2f}’.format(Tset,t_el))

except:
print(’no␣#####data␣yet’)

################ SEND INPUTS ###############
print("Sending␣inputs...")

send_inputs_all(f,f_move,V,F,Q,Y_pos,X_pos,Dc,Dsep,O)

print("Inputs␣sent!")

if int_flag==1 and calib_flag==0:
max_pt=get_temp_max(runopts) ##get maximum point
calib_flag=1

## run measurement tasks and extract measurments
a=ioloop.run_until_complete(asynchronous_measure(f,instr,runopts,max_pt))

Temps=a[0].result()
Ts_k=Temps[0]
Ts2=Temps[1]
Ts3=Temps[2]
Ts_lin_k=Temps[3]
Tt=Temps[4]
sig_k=Temps[5]
sig2=Temps[6]
Ts_2d_out_k=Temps[7]

sig=sig_k #no filter

Ard_out=a[1].result()
Is=Ard_out[0]
v_rms=Ard_out[1]
U_m=Ard_out[2]
x_pos=Ard_out[3]
y_pos=Ard_out[4]
d_sep=Ard_out[5]
T_emb=Ard_out[6]
P_emb=Ard_out[7]
D_c=Ard_out[8]
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q_o=Ard_out[9]

Osc_out=a[2].result()
P=Osc_out[0]
Ip2p=Osc_out[1]
Prms=Osc_out[2]
Rdel=Osc_out[3]
Imax=Osc_out[4]

Spec_out=a[3].result()
O777=Spec_out[0]
O845=Spec_out[1]
N391=Spec_out[2]
He706=Spec_out[3]
sum_int=Spec_out[4]
r=Spec_out[5]
r2=Spec_out[6]
if r2[0]>1.:

r2[0]=1.
Tspec=Spec_out[7]

if Ip2p==0:
P=P_old
Ip2p=Ip2p_old
Prms=Prms_old
Rdel=Rdel_old
Imax=Imax_old

else:
P_old=P
Ip2p_old=Ip2p
Prms_old=Prms
Rdel_old=Rdel
Imax_old=Imax

Zmeas=float(U_m[0]/Ip2p/4)

print("Temperature:␣{:.2f},␣Sigma:␣{:.2f},␣Power:␣{:.2f}".format(Ts,sig,P))
print("Inputs:{:.2f},{:.2f},{:.2f},{:.2f}".format(*U_m))
if abs(Ts)>60:

Ts_k=Ts_old
Ts2=Ts2_old
Ts3=Ts3_old
Ts_lin_k=Ts_lin_old
Ts_2d_out_k=Ts_2d_old
print(’WARNING:␣Old␣value␣of␣Ts␣is␣used’)

else:
Ts_old=Ts_k
Ts2_old=Ts2
Ts3_old=Ts3
Ts_lin_old=Ts_lin_k
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Ts_2d_old=Ts_2d_out
if abs(P)>10:

P=Pold
print(’WARNING:␣Old␣value␣of␣Ts␣is␣used’)

else:
Pold=P

## filter for temperature
Ts=Ts*0.7+Ts_k*0.3
Ts_lin=Ts_lin*0.7+Ts_lin_k*0.3
Ts_2d_out=0.7*Ts_2d_out+Ts_2d_out_k*0.3

## shift 2D temperature measurements based on position of the jet
x_gen=NP.linspace(0,16,9) #range of points controlled [0-11mm]
y_gen=NP.linspace(0,16,9) #range of points controlled [0-11mm]

x_now=NP.linspace(-13*1.44,13*1.44,26)+y_pos-0.5 #positions corresponding to
↪→ current measurement

y_now=NP.linspace(13*2,-13*2,26)+x_pos+0.0 #positions corresponding to current
↪→ measurement

Tshift=interp1d(x_now,Ts_lin,bounds_error=False,fill_value=min(Ts_lin))(x_gen)
Tshift2D=interp2d(x_now,y_now,Ts_2d_out,bounds_error=False,fill_value=18,kind=’

↪→ cubic’)(x_gen,y_gen)

# integrate the dose metric
if int_flag==1:

CEM2D=CEM2D+1.3*(9.74e-14/60.0)*np.exp(np.multiply(0.6964,Tshift2D))

############### FEED FORWARD ####################################

ff_a=NP.array([[2.471,-1.009, 0.5438],[2, 0.0, 0.0],[0.0, 0.5, 0.0]])
ff_b=NP.array([[2.0],[0.0],[0.0]])
ff_c=NP.array([[0.7591,-0.6911,0.629]])
ff_d=NP.array([-2.899])

xk_ff=ff_a.dot(x0_ff)+ff_b.dot(r2[0])

yk_ff=ff_c.dot(xk_ff)+ff_d.dot(r2[0])

uk_ff=0*float(yk_ff[0])
x0_ff=xk_ff

########### PI CONTROLS P=>T ###################
## tuning
Kp=3.2##glass lambda 1.5
Ki=0.12
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#### Un-comment for power control ###############
uk_fb=u0_fb+Kp*e1+(-Kp+Ki*1.3)*e10

u1=uk_fb-uk_ff #add feedforward

if round(u1,2)>=u_ub[0] and Tset>=Ts:
I1 = I1
V=u_ub[0]
u0_fb=u0_fb+Kp*e1+(-Kp+0*Ki*1.3)*e10
print(’*’)

elif round(u1,2)>=u_ub[0] and Tset<Ts:
I1 = I1 + e1*t_mel
V=u_ub[0]
u0_fb=uk_fb
print(’*’)

elif round(u1,2)<=u_lb[0] and Tset<=Ts:
I1 = I1
V=u_lb[0]
u0_fb=u0_fb+Kp*e1+(-Kp+0*Ki*1.3)*e10
print(’*’)

elif round(u1,2)<=u_lb[0] and Tset>Ts:
I1 = I1 + e1*t_mel
V=u_lb[0]
u0_fb=uk_fb
print(’*’)

else:
I1=I1+e1*t_mel
u0_fb=uk_fb
V=round(u1,2)

e10=e1
#########################################################

################ Send measurement to client ################

## for 2D temperature measurement
#print(*CEM2D.flatten().shape)
#CEM=CEM+tm_el*(9.74e-14/60.0)*np.exp(np.multiply(0.6964,Tshift))

#msg=’{:6.2f},{:6.2f},{:6.2f},{:6.2f},{:6.2f},{:6.2f},{:6.2f},{:6.2f},{:6.2f
↪→ },{:6.2f},{:6.2f},{:6.2f},{:6.2f},{:6.2f},{:6.2f},{:6.2f},{:6.2f},{:6.2f
↪→ },{:6.2f},{:6.2f},{:6.2f},{:6.2f},{:6.2f},{:6.2f},{:6.2f},{:6.2f} \n’.
↪→ format(*CEM)

msg_form=’{:6.2f},’
msg_str=msg_form*(1+len(Tshift2D.flatten()))
msg_str=msg_str[:-1]+’\n’
msg=msg_str.format(*CEM2D .flatten(),Ts)
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msg2=’{:6.2f}\n’.format(Ts)
#print(msg2)

if not runopts.auto:
c.send(msg.encode())
time.sleep(0.05)
print(’Measured␣outputs␣sent’)

tm_el=time.time()-t0

if tm_el<1.3:
time.sleep(1.3-tm_el)
tm_el=1.3

save_fl.write(’{:6.2f},{:6.2f},{:6.2f},{:6.2f},{:6.2f},{:6.2f},{:6.2f},{:6.2f
↪→ },{:6.2f},{:6.2f},{:6.2f},{:6.2f},{:6.2f},{:6.2f},{:6.2f},{:6.2f},{:6.2f
↪→ },{:6.2f},{:6.2f},{:6.2f},{:6.2f},{:6.2f},{:6.2f},{:6.2f},{:6.2f},{:6.2f
↪→ },{:6.2f},{:6.2f},{:6.2f},{:6.2f},{:6.2f},{:6.2f},{:6.2f},{:6.2f}\n’.format
↪→ (time.time(),Tset,Ts,Ts2,Ts3,P,Imax,Ip2p,O777,O845,N391,He706,sum_int,*U_m,
↪→ q_o,D_c,x_pos,y_pos,T_emb,V,P_emb,Prms,Rdel,Is,sig,sig2,r[0],r2[0],Tspec
↪→ [0]*550,uk_ff,tm_el))

save_fl.flush()

if KeyboardInterrupt==1:
sys.exit(1)

except Exception as e:
if not runopts.auto:

c.close()
print(’There␣was␣an␣error␣!’)
print(e)
sys.exit(1)
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Appendix C

Modeling

C.1 Material Properties

Table C.1: Material properties for helium and air used for physics-based modeling of kHz-
excited APPJ in He

Parameter Value
Helium
ρHe 0.156 kgm−3

Cp,He 5.191×103 Jkg−1K−1

k 0.153 Wm−1K−1

DHe,Air 71×10−6 m2s−1

Air
ρAir 1.165 kgm−3

Cp,Air 1×103 Jkg−1K−1

k 0.026 Wm−1K−1
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Table C.2: Material properties of experimental setup components used for physics-based
modeling of kHz-excited APPJ in He

Parameter Value
Borosilicate Substrate
ρ 2800 kgm−3

k 1.2 Wm−1K−1

Cp 795 Jkg−1K−1

ts 0.2 mm
Quartz Tube
ρ 2200 kgm−3

k 1.1 Wm−1K−1

Cp 480 Jkg−1K−1

Aluminum Ground Plate
ρ 2700 kgm−3

k 238 Wm−1K−1

Cp 900 Jkg−1K−1

C.2 Lumped Parameter Model of an RF-APPJ in Ar
This section presents the lumped-parameter control-oriented model of an RF-APPJ 1. This
APPJ configuration is used commonly in plasma medical applications popularized by the
commercially available kINPen device [79]. The modeling strategy utilized for this device is
similar to that presented in Chapter 4.

A schematic representation of the APPJ under study is shown in Figure C.1. The APPJ
is RF-excited pure argon (Ar) plasma, with no additional gas admixing in the inlet. The RF-
APPJ is used for direct treatment — there is no separate ground electrode on the dielectric
tube. Thus, the plasma extends as a free jet, electrically coupled to surroundings and the
target substrate (i.e., plasma current reaches the target substrate). The characteristics of the
model jet are consistent with devices used in clinical applications of APPJs (e.g., kINPen,
INP Greifswald [79]). The considered APPJ configuration has been extensively investigated
for biomedical applications [106], [110], and has been the subject of several modeling studies
[126], [157]. A key challenge in using APPJs for direct treatment applications (as in Figure
C.1) arises from the strong dependence of the electrical and thermal characteristics of the
plasma jet on variations in the separation distance between the substrate and device [256]
as well as variations in the electrical properties of the substrate [25], [106].

1This section is previously published in [197]
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Figure C.1: Schematic of the RF-APPJ in pure argon. Ar flows through a dielectric tube,
entering the tube at velocity vin and is excited to form a plasma by an RF voltage VA
applied via a matching network to an external electrode ring at frequency ω. Current ip
passes through the plasma plume to the substrate. The substrate, in general, has a complex
electrical impedance Zs, coupling the plasma current in the jet to ground. The tube tip is
within a distance dsep from the grounded, cooled substrate. Air components and heat are
exchanged radially between the Ar jet and the surrounding air.

C.2.1 Power Deposition and Gas Heating in the Dielectric Tube

Figure C.2: Equivalent circuit for the RF-APPJ [106]. See text for details.

Figure C.2 shows an equivalent circuit for the RF-APPJ, where R is the external circuit
resistance, L is the matching inductance, C0 is the parasitic capacitance, Zp is the plasma
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complex impedance consisting of the bulk plasma resistance Rp and plasma capacitance Cp,
and Zs is the surface impedance with the resistive and capacitative components Cs and Rs,
respectively. At steady state, the equivalent circuit can be modeled by Kirchhoff’s second
law

VA − |Zip|ip = 0, (C.1)

where the overall impedance Zip relates the plasma current ip to the applied voltage VA. The
expression for Zip can be derived from the circuit structure

Complex plasma impedance in terms of plasma current, developed through analogy with
a 1D RF parallel-plate discharge model, associated with the α-γ mode transition [112].
The plasma impedance Zp can be a function of the plasma current ip, gas temperature
Tg0, and separation distance dsep. For an RF APPJ the following plasma resistance-current
parameterization is adopted:

Rp(ip) = (−αip + β)
dsep
Tg0

, (C.2)

where the parameters α and β are estimated using predictions of a 1D model of a parallel-
plate RF discharge in argon [112]. The characteristic V-I behavior of the parameteriza-
tion (C.2) is shown in Figure C.3. The peak in the V-I characteristic curve can be related
to plasma stability. The differential plasma conductivity (dI/dV) becomes negative when
plasma current surpasses the peak value. This can result in a mode transition in the plasma
[257]. Needle and ring-electrode APPJs can also exhibit similar characteristic V-I behavior
as shown in [47], [110].

Figure C.3 shows the resulting voltage-current (V-I) characteristic curve, which ade-
quately describes the V-I behavior obtained from a 1D fluid model of an RF parallel-plate
discharge in argon [112].

To determine the gas temperature Tg0 in (C.2), a volume-averaged, steady-state energy
balance is formulated for the gas in the dielectric tube region

ρinvincpArAc(Tin − Tg0) + ηP = 0, (C.3)

where Tin, ρin, and vin are the inlet gas temperature, density, and velocity, respectively,
cpAr is the specific heat capacity of argon, Ac is the cross-sectional area of the tube, η is an
efficiency factor for the gas heating through power deposition into the neutral gas, and P is
the total electrical power deposited in the plasma. The total power P is given by

P =
1

2
|ip|2|Zp|cos(φ), (C.4)

where φ is the angle between the sinusoidal plasma current and applied potential. In the
energy balance (C.3), the heat loss to the dielectric tube is neglected. Note that the total
mass flow through the tube is equal to the product of gas density and velocity. Even though
ρ and v vary with the gas temperature, the mass flow is constant and is equal to ρinvin.
Equations (C.1)-(C.4) constitute the equivalent circuit model in the dielectric tube.
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Figure C.3: The voltage-current behavior predicted by the adopted linear plasma resistance-
current parameterization (C.2) and a 1D fluid model of an RF parallel-plate discharge in
argon reported in [112].

C.2.2 Heat and mass transfer in the separation distance

The transport processes between the tip of the tube and substrate are described by a set of
steady-state 1D mass and energy balances for a two-species system consisting of Ar and air.
The steady-state energy balance along the gas flow axis is given by

dTg
dz

= − 1

ρvcp

(U
r

(Tg − Tinf )
)
, Tg(0) = Tg0, (C.5)

where Tg(z) is the gas temperature along the flow axis z, U is the lumped (radial) heat
transfer coefficient across the plume radius r, Tinf is the ambient air temperature, and ρ, v,
and cp are the density, velocity, and heat capacity of the gas plume, respectively. Since it
is assumed that no mass transfer occurs along the flow axis, the continuity equation yields
ρv = ρinvin. The gas temperature in the dielectric tube is used as the boundary condition
at z = 0 for (C.5).

The gas density ρ is a function of gas composition, which in turn depends on the average
molecular weight of the gas as it flows between the tip of the tube and the substrate. This
is obtained from a steady-state mass balance for Ar

dmAr

dz
= − Patm

Rρinvin

1

Tg

(
MwArmAr + MwAir(1−mAr)

)k
r

(mAr −minf ), mAr(0) = 1, (C.6)

where mAr(z) is the Ar mass fraction along the flow axis z, Patm is atmospheric pressure, R is
the ideal gas constant, MwAr and MwAir are the molecular weights of Ar and air, respectively,
k is the lumped (radial) mass transfer coefficient, and minf = 0 is the argon mass fraction
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in ambient air. For the separation distance between the tip of the dielectric tube and the
substrate, the continuity equation can be written as

d(ρv)

dz
= 0, ρv|z=0 = ρinvin, (C.7)

which implies that ρv is constant in the gas plume. The ideal gas law is used to obtain the
average gas density ρ as a function of the gas temperature along the flow axis

ρ(z) =
Patm
R

1

Tg(z)

(
MwArmAr + MwAir(1−mAr)

)
. (C.8)

From (C.7) and (C.8), the velocity of the plume gas is given by

v(z) = ρinvin
R

Patm

Tg(z)(
MwArmAr + MwAir(1−mAr)

) . (C.9)

Expression (C.6) is obtained by inserting (C.9) into the 1D continuity equation for Ar. The
lumped transport coefficients U and k in (C.5)-(C.6) are assumed to scale with the square
root of the inlet argon velocity

√
vin since the gas flow is in laminar or near-laminar regime.

The spatial integration bounds for (C.5)-(C.6) are set to z = 0 and z = dsep. Thus, the
heat and mass transfer in the gas plume is dependent on the separation distance between
the tip of the dielectric tube and substrate. When the in-mixing of air along the gas plume
is neglected, (C.5) can be solved analytically [258].

C.2.3 Substrate Temperature

The thermal dose metric is defined in terms of the substrate temperature. The substrate is
considered to be continuously cooled from below. In a biomedical context, this cooling would
be provided by blood flow. Assuming that there exists no temperature gradients within the
substrate, the dynamics of the maximum substrate temperature Ts,max(t) can be described
by the Pennes’ bioheat equation [259]

dT s,max

dt
= − λbcb

ρscps

(
Ts,max−Tb

)
+

h

ρscpsds

(
Tg(dsep)−Ts,max

)
+

0.5i2pRs

Acρscpsds
, Ts,max(0) = 311K,

(C.10)
where ds is the thickness of the substrate, λb, Tb, and cb are the perfusion rate, temperature,
and specific heat capacity of the coolant, respectively, ρs and cps are the density and specific
heat capacity of the substrate, respectively, h is the heat transfer coefficient between the
gas plume and the substrate, and Tg(dsep) is the gas plume temperature adjacent to the
substrate. The last term in the right-hand side of (C.10) accounts for ohmic heating of the
substrate due to the plasma current ip.
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C.2.4 Model Parameters

Table C.3: Parameter values of the equivalent circuit model for the RF-APPJ in Ar.

Parameter Value
ω 13.56 MHz
R 50 Ω
L 1.04×105 H
C0 0.1 µF
Cp 0.14 nF
α -6×109 Ω K A−1 mm−1

β 6.42×107 Ω K mm−1

Cs 11.7 nF
Rs 100 Ω
η 0.5
cpAr 521.5 J/kg K
ρin 1.63 kg m−3

Table C.4: Parameter values of the heat and mass transfer model for the RF-APPJ in Ar.

Parameter Value
U 100

√
vin W m−2 K−1

k 0.1
√
vin m2 s−1

Tinf 298 K
r 1 mm
MwAr 40 gmol−1

MwAir 29 gmol−1
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Table C.5: Parameter values of the substrate temperature model for the RF-APPJ in Ar.

Parameter Value
ds 5 mm
λb 1 kg m−3 s−1

Tb 310 K
cb 3650 J kg−1 K−1

cps 3680 J kg−1 K−1

ρs 1020 kg m−3

h 36
√
vin W m−2 K−1

C.3 Parameters for the kHz-APPJ model in He

Table C.6: Parameters for the circuit model of kHz-APPJ in He.

Parameter Value
R 50 Ω
C0 8.07 pF
Cs 28.67 nF
Cp 9.40 pF
Rp,0 1.87 MΩ
dsep 4 mm

Table C.7: Parameters for transport model of kHz-APPJ in He.

Parameter Value
η 0.47
UI 1.6 Wm−2K−1

UII 1.8
√
v Wm−2K−1

UIII 50v0.8 Wm−2K−1

UIV 10
√
v Wm−2K−1

K 0.017
√
vm2s−1

rr 5 mm
r 1.5 mm
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C.4 Transfer function models
Fitted transfer functions between the Laplace transform of the maximum substrate temper-
ature T (s) and and applied voltage V (s),

T (s)

V (s)
=

0.09274

s+ 0.03442
, (C.11)

and between the Laplace transform of the maximum substrate temperature T (s) and sub-
strate type M(s),

T (s)

M(s)
=

1.374s2 − 1.586s+ 0.09325

s3 + 1.278s2 + 0.4847s+ 0.0194
. (C.12)

The mathematical function describing the change in substrate type in (C.12) between glass
and metal is represented by a unit step function,

m(t) =

{
0 APPJ is on glass
1 APPJ is on metal.

(C.13)

C.5 Subspace identification model matrices
The A, B and C matrices in (4.27) determined as a result of subspace identification are as
follows,

A =



2.59 −7.40 5.85 0.15 −4.46 −2.92 7.25
2.68 −7.68 6.04 0.16 −4.63 −2.99 7.49
2.76 −7.90 6.18 0.17 −4.77 −3.11 7.75
−0.47 1.10 −0.65 −0.03 0.78 0.97 −0.73
−0.37 0.85 −0.50 −0.02 0.63 0.72 −0.34
−0.48 1.13 −0.68 −0.03 0.81 0.89 −0.68
−0.45 1.05 −0.64 −0.03 0.76 0.86 −0.60


(C.14)

B =



4.46 2.25 −13.68
3.71 2.18 −9.47
2.63 1.41 −5.20
6.83 3.34 35.4
0.91 −0.01 2.55
−0.56 −0.23 −0.41
0.30 0.14 −0.001


(C.15)

C =

[
1 0 0 0 0 0 0
0 0 0 1 0 0 0

]
(C.16)

D = 0 (C.17)
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C.6 Subspace-identified closed-loop model
The closed-loop system (9.3), determined as a result of subspace identification is presented
in Figure C.4. The A, B and C matrices are as follows,

A =

[
0.6553 0.1823
−0.09884 0.6771

]
(C.18)

B =

[
0.02282 −0.03575
0.01151 0.0669

]
(C.19)

C =

[
13.69 −0.6244
−1.225 6.085

]
(C.20)

(a) Inputs (b) Outputs

Figure C.4: Multi-step excitation of the closed-loop with cascaded control strategy in Section
9.3.2. (a) Inputs and (b) outputs compared against the second-order subspace identification
model.
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Appendix D

Controller Tunings

D.1 Single Loop PI Controllers

Table D.1: Tuning parameters of the single loop maximum substrate temperature PI con-
trollers.

Vp2p paired with Ts,max
kp τI
0.133 ◦C/kV 28.8 s
q paired with Ts,max
kp τI
-0.025 ◦C/slm 12.0 s

Table D.2: Tuning parameters of the embedded PI controllers for electrical characteristics
of the APPJ.

Embedded Voltage Controller
kp τI
0.47 kV/kV 20 ms
Embedded Power Controller
kp τI
0.268 W/kV 30 ms
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Table D.4: Tuning parameters of the PI controllers in the multi-loop control strategy com-
pared against the linear MPC.

kp τ
PI1 1.36×10−4 slm/a.u. 4 s
PI2 2.96×10−2 ◦C/kV 0.1 s

D.2 Cascade PI Controllers

Table D.3: Tuning parameters of the cascade maximum substrate temperature PI controllers.

Cascade Ts,max controller
kp τI
3.2 ◦C/W 0.12 s
Cascade Ts,max controller for O2 addition
kp τI
0.346 ◦C/W 0.02 s

D.3 Multi Loop PI Controllers

Table D.5: Tuning parameters of the PI controllers in the multi-loop control strategy used
in the simulation studies on the RF APPJ.

Proportional controller (P paired with VA)
Parameter Value
kP -20 V W−1

Proportional integral controller (Ts paired with vin)
Parameter Value
kp 158 m s−1 K−1

τi 96 s

Table D.6: Tuning parameters of the PI controllers in the multi-loop control strategy com-
pared against the NMPC in experimental investigation.

kp τ
PI1 0.27 W/kV 1 s
PI2 -0.025 ◦C/slm 12.0 s
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D.4 Linear MPC

Table D.7: Parameters of the Linear MPC controller used in experimental investigation.

N 10
Q diag(1,0.5)
R diag(1,1)
Bd 0
Cd I

D.5 Nonlinear MPC

Table D.8: Parameters of NMPC controller used in experimental investigation.

N 7
wp 3.3×10−4

Qk diag(8.3×10−3, 0, 8.8×10−3, 8.4×10−3, 8.0×10−3, 8.0×10−3)
Rk diag(0.044, 0.021, 0.0129)
P0 diag(0.01, 0, 0.011, 0.011, 0.01, 0.01, 0.0255, 0.0129, 0.169, 0.01)
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Appendix E

Training Data Sets

(a) (b)

Figure E.1: Training data set collected from the APPJ set-up, used in linear regression and
k-means classification. (a) Trot and Tvib estimates from Massive OES and (b) corresponding
operating conditions.

The OES signal is collected over varying power, flow rate and over two substrate types
(dielectric and metal). Synthetic spectra is fitted using Massive OES [213] to obtain corre-
sponding values of the outputs Trot and Tvib for each condition. The operating conditions as
well as the output variables used for training are shown in Figure E.1. This training data is
used for both determination of temperature Trot and Tvib and substrate discrimination.

For the separation distance estimation, electro-acoustic emission from the Plasma Flash-
light is collected over a range of separation distances for which the discharge remains coupled
to the ground plate. The conditions over which the training data are collected is presented
in Figure E.2.
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Figure E.2: Training data set collected from the Plasma Flashlight set-up used in GP re-
gression.
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