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Abstract 
Retrieval practice of information through testing has been 
shown to improve learning. So has studying examples. In this 
paper, we address inconsistencies in the literature concerning 
which of these two approaches is best. We test the hypothesis 
that learning depends on what is being learned; whereas 
practice emphasizes memorization, studying examples allows 
for selectivity of encoding, resulting in different information 
being learned. Accordingly, we predicted that practice will 
improve learning in situations that emphasize memorization 
(such as learning facts or simple associations), whereas 
studying examples will improve learning in situations where 
there are multiple pieces of information available and 
selectivity is necessary (such as when learning skills or 
procedures). We report evidence from a laboratory study using 
naturalistic materials showing results consistent with these 
predictions. 
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Introduction 
When repeated studying of the same materials is replaced 

by testing or retrieval practice, memory and learning are 
enhanced (Roediger & Karpicke, 2006; Roediger, Agarwal, 
McDaniel, & McDermott, 2011). For example, when 
learning Swahili-English translations, instead of repeatedly 
studying word pairs like “kazi - work”, learning would be 
improved by replacing some of the trials with testing: “kazi - 
???”.  This general finding of a retrieval practice effect has 
been consistently described in the literature using different 
materials such as word lists, text passages, novel facts, and 
language word pairs. 

Although there is currently no agreed-upon mechanism for 
this effect, it is thought to result from changes to the memory 
trace associated with practice not present when re-reading. 
Possible mechanisms include the elaboration of the original 
memory with additional information (e.g., Carpenter, 2009), 
increased retrieval cues (e.g., Lehman, Smith, & Karpicke, 
2014), increased retrieval strength (e.g., Bjork & Bjork, 
1992), or transfer-appropriate processing (e.g., Thomas & 
McDaniel, 2007). Importantly, prior theories of retrieval 
practice assume that the underlying learning mechanism 
applies to all content in the same way. What to do, then, with 
evidence that although retrieval practice improves learning in 

some situations, in others, further example study using 
worked examples is more beneficial (”Worked Example 
Effect;” Sweller & Cooper, 1985)?  

The literature on the worked-example effect has 
demonstrated that learning benefits from studying examples 
of how to solve problems instead of practice activities (van 
Gog, Paas, & van Merriënboer, 2006), or along with practice 
activities (Renkl, 2005). For example, students learning to 
calculate the area for the trapezoid would benefit from 
studying problems where the answer and the steps to solve 
the problem are worked out, compared to solving the same 
problem. 

Theoretical explanations of the worked-example effect 
center around two main ideas, potentially complementary: (1) 
that problem-solving practice puts a greater load on learners’ 
limited processing capabilities in a manner that is 
“extraneous” to the learning process (e.g., van Merrienboer 
& Sweller, 2005) rendering it less effective, and (2) that 
practice activities are less beneficial because they lack the 
necessary support to fill-in potential knowledge gaps (e.g., 
McNamara & Kintsch, 1996). Consistent with these ideas, 
learning from reading materials can be improved by 
including pre-questions about relevant parts of the text (e.g., 
Rickards, Anderson, & McCormick, 1976), or by eliminating 
unnecessary content and reducing text to its main topics (e.g., 
Reder, 1980; Reder & Anderson, 1982). 

Thus, current evidence suggests that more practice or 
retrieval can both improve or delay learning and that more 
study can both improve or delay learning. This apparent 
contradiction poses both theoretical and practical issues. 
Theoretically, to which degree do we have a complete 
understanding of the learning process if opposite mechanisms 
can yield similar results? Practically, when making 
suggestions for the application of cognitive science findings 
to educational contexts, practitioners are left wondering 
which approach to use and when. 

To be clear, ours is not the first attempt at addressing this 
inconsistency. van Gog & Kester (2012, see also van Gog & 
Sweller, 2015), proposed that problem complexity was the 
critical dimension that defined whether retrieval practice or 
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worked examples would improve learning. They proposed 
that worked examples improve learning of complex problems 
by reducing cognitive load, whereas practice would improve 
learning of simpler materials that do not pose the same level 
of cognitive load. However, as Karpick and Aue (2015, see 
also Rawson, 2015) pointed out, this explanation does not 
capture all the evidence. For example, there is ample 
evidence that retrieval practice improves learning of complex 
texts (Rawson & Dunlosky, 2011). Ultimately, problem 
complexity is hard to operationalize, and a lot of the 
discussion has centered around what constitutes complexity 
(Karpick & Aue, 2015; Rawson, 2015). 

Here we take a different approach. We address this 
apparent contradiction by empirically testing a possible 
flexible mechanism that can yield best learning outcomes 
from retrieval practice in some situations, and from studying 
examples in others. Our proposal is that retrieval practice 
improves memory processes and strengths associations, 
whereas studying examples improves inference processes 
and information selection for encoding. Thus, when problems 
include information that must be inferred, combined, or 
selected from among a complex set of possible pieces of 
information, studying examples will improve learning. In 
other situations, retrieval practice will improve learning. This 
proposal is consistent with previous work showing that 
retrieval practice improves learning of associations, such as 
paired associates or text that learners should try to retrieve 
either verbatim or by putting together several pieces of 
information (e.g., Karpicke & Blunt, 2011). Conversely, 
studying examples improves learning of knowledge that 
requires learners to infer or provide answers to multi-step 
problems or applying procedures (e.g., learning to calculate 
the area of a geometric solid, Salden, Koedinger, Renkl, 
Aleven, & McLaren, 2010). 

Importantly, this proposal requires careful identification of 
which type of knowledge is being used. Associations can be 
complex and inference-based problems can be simple. 
Instead, we use the knowledge nomenclature and 
classification proposed by the Knowledge Learning 
Instruction framework (KLI; Koedinger, Corbett, & Perfetti, 
2012). The KLI framework proposes that learning depends 
on knowledge and includes a precise classification system for 
knowledge. Based on analyses from over 360 in vivo studies 
using different knowledge content, KLI relates knowledge, 
learning, and instructional events and presents a framework 
to organize empirical results and make predictions for future 
research. According to KLI, Instructional Events are 
activities designed to create learning. Textbooks, lectures and 
tests/quizzes are examples of commonly used Instructional 
Events in educational practice.  These Instructional Events in 
turn give rise to Learning Events -- changes in cognitive and 
brain states associated with Instructional Events. KLI 
identifies three types of Learning Events: Memory and 
fluency-building processes, induction and refinement 
processes, and understanding and sense-making processes. 
These changes in cognitive and brain states influence and are 
influenced by the Knowledge Components (KCs) being 

learned. A KC is a stable unit of cognitive function that is 
acquired and modifiable. In short, KCs are the pieces of 
cognition or knowledge and are domain-agnostic. Although 
Learning Events and Knowledge Components cannot be 
directly observed, they can be inferred from Assessment 
Events, or outcome measures, such as exams and discussions. 

KLI also offers a taxonomy for KCs based on how they 
function across Learning Events and relates differences in 
KCs with differences in Learning Events. In this way, KCs 
can be classified based on their application and response 
conditions. Some KCs are applied under unvarying, constant 
conditions (e.g., paired-associates), while others are applied 
under variable conditions (e.g., rules). Similarly, the response 
of the KC can be a single value or constant such as a category 
label, or it can vary as a function of the variable information 
extracted in the condition, such as calculating the area of a 
geometric solid. Thus, according to KLI, facts such as “the 
capital of France is Paris” are constant application and 
constant response KCs because there is only one single 
application of the KC and there is only one response. 
Moreover, facts require verbatim retrieval and application of 
studied information (e.g., write the word “Paris” when 
prompted for the capital of France). Conversely, skills such 
as equation solving are variable application and variable 
response KCs because there are multiple different problems 
that can elicit the same equation solving KC and there are 
multiple ways to apply this KC across different problems. In 
this sense, skills require creating generalizations beyond the 
studied information (e.g., solving an equation that one never 
saw, using a generalization extracted from studying many 
examples). 

By connecting the type of Learning Event and the 
associated learning processes with the type of KC being 
learned, the KLI framework further suggests causal links 
between instructional principles (e.g., “retrieval practice”, 
“worked-example study”), and changes in learner 
knowledge. For simple constant KCs such as facts, memory 
and fluency processes are more relevant. Conversely, for 
variable KCs such as skills, induction and refinement 
processes are more relevant. Different learning processes will 
be optimized by different types of instructional principles, 
e.g., retrieval practice for facts and studying examples for 
skills. Thus, different types of KCs will interact with different 
types of Instructional Principles to create different learning. 

Following KLI’s framework and nomenclature 
convention, our proposal is that retrieval practice will be 
particularly beneficial when learning facts (”Paris is the 
capital of France”), whereas studying worked examples will 
be particularly beneficial when learning skills such as 
equation solving. 

In the context of facts (“What is the capital of France?”), 
learners need to successfully encode all of the information 
presented and be able to retrieve it later. Learning facts only 
requires learning the specific pieces of single practice items 
but does not require any synthesis across practice items. 
Conversely, in the context of skills (“Calculate the area of a 
rectangle with the following measurements”), learners need 
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to generalize their knowledge across a series of studied 
instances. In this sense, learning skills requires identifying 
which pieces of the information are relevant for encoding and 
which are not. Put another way, when learning facts all 
presented information is critical and should be encoded, 
whereas when learning skills, only a subset of the presented 
information is relevant to forming an effective generalized 
skill. Finally, this theoretical proposal is also consistent with 
procedural differences between research on retrieval practice 
and example study. Research on retrieval practice generally 
tests learners’ memory on the information presented in 
repeated trials, whereas research on worked examples 

generally uses different examples of the same concept in each 
trial. 

To test this hypothesis, in this paper we compare learning 
outcomes following training of facts and skills, using 
retrieval practice (Practice-Only) or examples (Study-
Practice). For this purpose, we use an equivalent domain and 
topic (geometry learning), but vary whether learning focuses 
on fact acquisition (e.g,, “what is the formula to calculate the 
area of a triangle?”), or skill acquisition (e.g. “what is the area 
of the triangle below?”). 

The Experiment 

Method 
Participants A total of 103 participants volunteered to 

participate in this study through Mechanical Turk. The whole 
study took approximately 20 minutes and participants were 
paid $3.00. No demographic information was collected. 

Participants were randomly assigned to one of four 
conditions: Practice-Only Training of Facts (N = 32), 
Study+Practice Training of Facts (N = 23), Practice-Only 
Training of Skills (N = 20), and Study+Practice of Skills (N 
= 28). 

Data from 8 participants were excluded due to failure to 
complete the entire experiment (5 from the Practice-only 
Training of Facts condition, 1 from the Study+Practice 
Training of Facts condition, and 2 from the Practice-Only 
Training of Skills condition). The final sample included 95 
participants. 

Apparatus and stimuli Participants learned how to 

calculate the area of geometrical shapes (rectangle, triangle, 
circle, and trapezoid). 

We created two multiple-choice tests to be used as 
pre/posttest. In each test, there were 4 questions about each 
geometrical shape for a total of 16 questions. For each shape, 
two questions focused on fact-based knowledge (e.g., ”What 
is the formula to calculate the area of the rectangle?”), and 
two focused on skill-based knowledge (e.g., ”What is the area 
of a rectangle that is 9 ft wide and 15 ft long?”). Some 
problems included images and others only text. The problems 
in the two tests were created to be equivalent. 

The training phase involved study of examples and practice 
memorizing the formulas (Fig 1A) or calculating the area (Fig 
1C), depending on the condition (see below for details). In 
each trial, participants were presented with either a problem 
to complete or an example to study. For facts the examples 
were simply the response to the question (see Fig 1A), 
whereas for skills the examples included the worked out steps 
to complete answer the problem (see Fig 1D). We created a 

Figure 1: Examples of training trials for trapezoid area. (A) Fact practice trial, (B) Fact-based study trials, (C) Skill practice 
trial, and (D) Skill study trial. 
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total of 24 problems (6 per geometrical shape) for each 
condition. During training, participants were asked to input 
their answers and no feedback was provided. 

To fill the time between training and test, participants 
completed a series of trivia questions retrieved from the 
updated and expanded Nelson and Narens (Nelson & Narens, 
1980) norms developed by Tauber et al. (2013). Questions of 
all difficulties were randomly selected to be presented. 

 
Design and Procedure Participants started by completing 

one of the multiple-choice tests as the pretest. Immediately 
following the pretest participants started the training phase. 
During the training phase participants were told that their task 
was to study the examples and complete the activities in order 
to learn about the area of these geometrical shapes. For all 
conditions, problems were presented blocked by geometrical 
shape, order randomized. The first trial for each geometrical 
shape was always a study trial in which participants studied 
an example of a question along with the correct response. In 
the practice-only conditions participants then completed 3 
practice trials for the same geometrical shape before moving 
to the next geometrical shape. In the study-practice 
conditions participants then completed a practice test, 
followed by another study trial, and a final practice test before 
moving on to the next geometrical shape. When learning facts 
participants were asked to type the correct formula, when 
learning skills participants were asked to type the area after 

calculations. No feedback was presented. Which problems 
were used was randomized for each participant. 

Following the 16 training trials (4 per geometrical shape), 
participants completed 30 trivia questions randomly selected 
from a sample of 299 questions. Because we kept the number 
of questions and not time constant, the duration of this 
retention interval varied across participants depending on 
how fast they answered the questions. Immediately following 
the trivia questions participants completed the other multiple-
choice test as the posttest. Which of the two tests was used as 
the pretest and which was used as the posttest was 
counterbalanced across participants. 

Results and Discussion 
Pretest Overall, participants’ pretest performance was 

moderate (M = 0.59 and 0.60, for facts and skills, 
respectively) and did not differ for facts vs. skills t (188) = 
1.26, p = .208. 

Pre-Post Change We analyzed posttest performance 
controlling for pretest performance for each type of trained 
concept (skills vs. facts), training type (Practice-only vs. 
Study-Practice), and type of test questions (skills vs. facts). 
Data were analyzed by fitting a linear mixed-effects model 
predicting posttest score, using pretest score and duration of 
retention interval as continuous predictors and type of 
concept, type of question, and study condition as categorical 
predictors, as well as their interaction terms. We included 

Figure 2: Pre-post change results for different types of concepts and training tasks. Error bars represent the standard error 
of the mean. 
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retention interval as a predictor because we did not control its 
duration and previous research has suggested that the benefit 
of practice study is moderated by duration of the retention 
interval (Pan, Gopal, & Rickard, 2016). Although we did not 
find any difference in pretest scores, including the pretest as 
a covariate controls for potential differences in previous 
knowledge between the groups, despite random assignment. 
For simplicity, we plot pre-post change instead of posttest 
and pretest values. 

As it can be seen in Figure 2, we saw a significant 
interaction between the type of concept studied and the type 
of training, β = 0.41, t(124.53) = 2.09, p = .038, d = 0.38. 
Thus, whether more practice or study led to better learning 
depended on the type of concept being learned (skills vs. 
facts). 

However, we found no 3-way interaction with type of test 
question β = 0.03, t(68.73) = 0.133, p = .894, d =  0.03, 
suggesting that this effect is not specific to the type of 
question being asked and there is some transfer from best 
learning of skills to fact questions and vice-versa. 
Interestingly, although fact questions were slightly easier 
than skill questions β = 0.20, t (70.33) = 2.05, p = .044, d = 
0.49, overall performance after learning facts was not 
different from overall performance after learning skills, β = 
0.24, t (124.86) = 1.88, p = .063, d = 0.34. 

Finally, contrary to some theoretical predictions, we found 
no interaction between type of training and retention interval, 
β = 0.01, t(124.52) = 0.834, p = .410, d = 0.15, and 
participants’ accuracy responding to fact vs. skill test 
questions did not vary with retention interval duration, β = 
0.02, t(70.79) = 1.38, p = .173, d = 0.33. Overall, performance 
following learning facts was slightly worse after longer 
delays than short delays with no effect of delay for learning 
skills, β = 0.03, t (124.74) = 2.20, p = .030, d = 0.35. There 
were no other effects of retention interval or interactions. 

Discussion 
In this paper we demonstrate that learning is flexible and 

depending on what is being learned, performance in the same 
task can vary substantially. 

We proposed that, contrary to some theoretical and 
empirical investigations (Roediger & Karpicke, 2006), 
learning from practice does not always yield the best 
outcomes. In fact, learning by alternating study and practice 
yields better outcomes in some situations. However, our 
investigation goes beyond this demonstration. We proposed 
a mechanism through which this flexibility takes place. 

We build on the empirical and theoretical understanding 
proposed by KLI (Koedinger et al., 2012) to identify the 
specific ways in which the knowledge content changes how 
the learning processes involved in the effect of testing 
practice operate. The general proposal is that increased 
information presented during encoding requires increased 
selectivity (identifying relevant elements for encoding) for 
successful induction and refinement. Increased selectivity in 
turn requires encoding processes that successfully direct the 
learner (either intrinsically or extrinsically) towards the 

relevant information. Studying examples -- as opposed to 
further retrieval practice -- can play a key role in this aspect. 
Mechanistically, our proposal is that studying examples 
guides attention and selectivity towards a subset of the 
presented information. Subsequent retrieval practice will 
improve memory and consolidation of this selected 
information. In this context, when learning facts, no 
selectivity is required and thus studying examples will not 
contribute to better learning outcomes, and might even delay 
it. Conversely, when learning skills, retrieval practice without 
substantial time dedicated to studying examples could lead to 
strengthening encoding and consolidation of irrelevant 
information that does not allow for successful induction and 
generalization, thus resulting in worse learning outcomes.  

In sum, the hypothesis put forward here is that studying 
examples changes the learning process by introducing 
selectivity about what is relevant and should be encoded. This 
change, however, is only going to be beneficial if the learning 
context requires it. That is, increased selectivity of encoding 
introduced with further study of worked examples will not 
positively influence learning when the information presented 
is reduced or no generalization is required. Finally, this 
proposal is also consistent with procedural differences 
between research on retrieval practice and example study; 
whereas research on retrieval practice has used mostly 
repeated information across trials and tested learners' 
memory for that information, the research on worked 
examples has used mostly different examples of the same 
concept in each trial. 

Conclusion 
A distinctive characteristic of human learning is our 

capability to flexibly acquire a wide range of rich and 
complex forms of knowledge (e.g., first and second 
languages, chess and golf, math and science, collaboration 
and learning strategies, etc.) and get better at acquiring new 
knowledge as we accumulate knowledge (e.g., learning 
physics is much easier after having learned how to read and 
do algebra). What flexible learning mechanism makes human 
learning this smartly nuanced? Here we started to approach 
this question by investigating how the same mechanism can 
improve learning outcomes in one situation but not in others. 

Finally, by highlighting the adaptive nature of learning, we 
hope to not only address outstanding apparent inconsistencies 
in the literature, but also provide a mechanistic view of 
learning across multiple situations beyond describing what 
works (Dunlosky, Rawson, Marsh, Nathan, & Willingham, 
2013). Only by moving beyond demonstrations of what 
works, towards demonstrations of what works when along 
with the precise mechanisms of learning yielding such 
interactions will we be able to understand human learning and 
improve it where needed. 
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