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Modeling of Emittance Growth Due to Coulomb Collisions in

Plasma-based Accelerators
Y. Zhao,1, a) R. Lehe,1 A. Myers,1 M. Thévenet,1 A. Huebl,1 C. B. Schroeder,1, 2 and J.-L. Vay1

1)Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
2)Department of Nuclear Engineering, University of California, Berkeley, California 94720,

USA

(Dated: 21 October 2020)

Coulomb collisions with background plasma are one source of emittance degradation in plasma accelerators. This paper

shows that the emittance growth due to Coulomb collisions can be correctly captured in particle-in-cell simulations,

with a proper Monte Carlo binary collision module. The theory of the emittance growth due to Coulomb collisions

is extended from a monoenergetic matched beam to a mismatched beam with energy spread, and is compared with

simulation results.

I. INTRODUCTION

In many applications of plasma-based accelerators, the

beam quality is crucial. For example, future high-energy col-

liders based on laser-wakefield acceleration (LWFA)1 will re-

quire a small beam transverse size to obtain a high luminos-

ity. Similarly, prospective LWFA-based free-electron lasers

(FEL)2–4 require both a small beam transverse size to pre-

serve high current density and a low beam divergence to main-

tain coherence. These constraints could generally be obtained

by preserving the emittance of an initial high-quality beam,

throughout its acceleration.

However, the emittance is not guaranteed to be preserved

in a plasma-based accelerator. Potential sources of emittance

degradation include decoherence of a mismatched beam5,6 or

misaligned beam5,7, non-linear focusing fields (e.g. result-

ing from ion motion in the plasma wakefield)8–10, and beam-

hosing instability11–16. Another source of emittance degra-

dation, which is perhaps less commonly considered, is the

Coulomb collisions with the background plasma. Analytical

calculations of emittance growth due to Coulomb collisions in

plasma-based accelerators were first introduced by Montague

and Schnell in 198517, in which the calculation is based on,

and extended from, the well established formulas for angular

scatter in a neutral vapor. Later, the formalism was also ap-

plied to calculate quantitatively the emittance growth due to

Coulomb collisions in the blowout beam-driven regime18 and

the quasi-linear laser-driven regime1, including in near-hollow

plasma channels19.

These previous analytical derivations of emittance growth

due to Coulomb collisions1,18,19, are based on simplifying as-

sumptions, including matched and monoenergetic beam. In

order to study more complicated situations, appropriate nu-

merical tools are needed to carry out corresponding simula-

tions. In this paper, it is shown that emittance growth due to

Coulomb collisions can be correctly captured in particle-in-

cell (PIC) simulations, with a proper Monte Carlo binary col-

lision module. In addition, the module can help to extend the

theory to more complicated situations, such as mismatched

beams.

a)Electronic mail: yinjianzhao@lbl.gov

The paper is organized as follows. In Sec. II, we summa-

rize how Coulomb collisions are modeled theoretically and in

PIC simulations. In particular, we emphasize the similarities

and differences in the assumptions that underpin these two de-

scriptions. In Sec. III, we compare the analytical predictions

and the numerical simulations in several situations, including

a plasma-accelerator configuration. At last, conclusions are

drawn and possible future works are discussed in Sec. IV.

II. ANALYTICAL AND NUMERICAL DESCRIPTION OF
THE GROWTH OF EMITTANCE FROM COULOMB
COLLISIONS.

In this section, we summarize how Coulomb collisions

are modeled in the standard analytical theory1,18 and in PIC

simulations20, and how the corresponding growth of emit-

tance is computed.

A. Analytical description

Let us consider a relativistic beam of electrons, propagating

along the z axis, through a background of ion particles at rest

(having charge q = Ze and uniform density n). Each electron

of the beam undergoes multiple Coulomb collisions during

the propagation, which result in small, random deviations in

the angles θx and θy. As a result, a given electron will have a

probability distribution in θx, θy, which will widen with time

(i.e. 〈θ 2
x 〉 and 〈θ 2

y 〉 increase with time).

The growth rate of the width of this probability distribution

can be computed analytically21. (For the convenience of the

reader, we include a detailed derivation in Appendix A.) The

calculation results in d〈θ 2
x 〉/dt = d〈θ 2

y 〉/dt = (1/2)d〈θ 2〉/dt,

with:

d〈θ 2〉
dt

=
8πnr2

e c

γ2
Z2 lnΛ, (1)

where γ is the Lorentz factor of the electron, Ze and n are the

charge and density of the background ion particles, c is the

vacuum speed of light, t is the time, re ≈ 2.82 × 10−15 m is the

classical electron radius, and lnΛ is the Coulomb logarithm21,

which takes into account the typical distance over which
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2

Coulomb interactions are screened. The Coulomb logarithm

will be discussed in more detail in section II C.

These collisions introduce disorder in the beam: instead

of forming a well-collimated beam, individual electrons scat-

ter in different directions, and, as a result, the emittance in-

creases. The growth of emittance can be calculated by consid-

ering the equations of motion of individual electrons (e.g., in a

focusing plasma bubble), and averaging them over the whole

beam to obtain a set of envelope equations. In this case, the

random change in angle due to Coulomb collisions [expressed

by Eq. (1)] is taken into account by adding a stochastic noise

term in the individual equations of motion. (In other words,

the equations of motion become Langevin equations.) This

procedure is detailed in Appendix B. The resulting expression

for the growth of emittance (e.g. in the x direction) is:

dε2
x

dz
= k2

preZ lnΛ〈x2〉+2

(

〈u2
x〉
〈

xux

γ

〉

−〈xux〉
〈

u2
x

γ

〉)

,

(2)

where k2
p = 4πZnre corresponds to the plasma wavenumber,

and the brackets 〈...〉 indicate an average over the whole beam,

with x the transverse position of an individual electron ux =
px/(mec) its dimensionless momentum, and the emittance is

defined as ε2
x ≡ 〈x2〉〈u2

x〉 − 〈xux〉2. Note that the right-hand

side of Eq. (2) contains two contributions to emittance growth:

a first term from the Coulomb collisions, and the second term

from the decoherence associated with energy spread5.

As expected, in the particular case of a matched, monoen-

ergetic beam, Eq. (2) reduces to previous results from the

literature1,18. More specifically, in the case of a monoener-

getic beam, the second term in the right-hand side of Eq. (2)

cancels. Moreover, for a matched beam in the bubble regime,

we have εx =
√

γ/2kp〈x2〉, and thus Eq. (2) can be written as:

dεx

dz
=

k2
preZ lnΛ〈x2〉

2εx

=
kpreZ lnΛ√

2γ
. (3)

For a mismatched beam, we can obtain 〈x2〉 from the envelope

equation under a linear focusing force,

〈x2〉= 1

2

(

x2
m +

ε2
x

γ2k2
β

x2
m

)

, (4)

where x2
m is the peak value of 〈x2〉, kβ = kp(2γ)−1/2 is the

betatron oscillation wave number. Detailed derivation is given

in Appendix B.

While the first term of Eq. (2) can be readily evaluated

through Eq. (4), the second term of Eq. (2) on the other hand

depends on 〈xux〉, 〈xux/γ〉, 〈u2
x〉, and 〈u2

x/γ〉 which require

additional information (e.g., an additional model) to be eval-

uated. In this paper, for simplicity, we obtain these values

numerically from simulations.

B. Numerical description in a PIC code

In this section, we summarize the PIC implementation of

Coulomb collisions described in Perez et al.20, and highlight

the similarities and differences in section II A. This implemen-

tation extends earlier work by Nanbu22,23, and is the one used

in the rest of this paper.

In this implementation, Coulomb collisions are considered

whenever two macroparticles are in the same cell. Concep-

tually, these macroparticles represent two fluxes of physical

particles that collide with each other, whereby each individ-

ual physical particle from one macroparticle undergoes mul-

tiple scatterings with the physical particles from the other

macroparticle. As a result of these collisions, the RMS di-

vergence associated with these groups of physical particles

should (conceptually) increase. If we label the two macropar-

ticles with the index 1 and 2 respectively, the increase in RMS

divergence associated with macroparticle 1 is:

d〈θ ∗
1

2〉
dt

=
γc p∗1

γ1γ2(γ1m1 + γ2m2)
8πn2r2

e

(q1q2

e2

)2
(

m2
e

m1m2

)

(

γ∗1 m1γ∗2 m2

p∗1
2

c2 +1

)2

lnΛ. (5)

(See Perez et al.20 for a derivation, which is based on the

relativistic Frankel cross-section24 ; note that, in the deriva-

tion from Perez et al., the quantity s12 corresponds to ∆t/2 ×
d〈θ ∗

1
2〉/dt here.) In the above expression, q1, m1, γ1 and q2,

m2, γ2 are the charge, mass and Lorentz factor of the indi-

vidual physical particles represented by the macroparticles 1

and 2 respectively, and n2 is the density associated with the

macroparticle 2 in the current cell (i.e., weight divided by

cell volume). Quantities denoted with a star are taken in the

center-of-mass frame of the collision, and γc is the Lorentz

factor associated with this frame. In particular, θ ∗
1 is the scat-

tering angle with respect to the initial propagation direction of

macroparticle 1, in the center-of-mass frame.

It is important to note, however, that in the standard PIC

scheme, macroparticles cannot carry an intrinsic RMS diver-

gence, since they have a unique, well-defined velocity vector.

Therefore, in the implementation by Perez et al. (as well as in

the earlier implementation by Nanbu), the scattering angle for

the whole macroparticle is sampled in a Monte Carlo fashion,

so as to reproduce Eq. 5 on average.

More specifically, for a collision between two macropar-

ticles occurring over one timestep ∆t, the RMS divergence

∆t × d〈θ ∗
1

2〉/dt is calculated from Eq. (5), and a specific

value θ ∗
1 is sampled from a probability distribution that re-

produces this RMS divergence. The momentum of the inci-

dent macroparticle 1 is then transformed to the center-of-mass

frame, rotated by the angle θ ∗
1 , and transformed back to the

frame of the simulation.
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There are important similarities between the collision

model used in the simulation [i.e., Eq. (5)] and in the ana-

lytical theory [i.e., Eq. (1)], and these will be discussed fur-

ther in section II C. However, one significant difference is that

the model used in the analytical theory [Eq. (1)] assumes the

background particles to be at rest, i.e, immobile ions, while

the model used in the simulation [Eq. (5)] is fully generic with

respect to the velocity of macroparticle 2. (Incidentally, it can

easily be verified that Eq. (5) reduces to Eq. (1), in the par-

ticular case where the macroparticle 2 is at rest and has large

mass m2 ≫ γ1m1, such that the center-of-frame mass is iden-

tical to the frame of the simulation.) Since Eq. (5) is fully

relativistic and fully generic with respect to velocities, we can

directly use the corresponding collision module in boosted-

frame simulations25 of plasma acceleration, where e.g. the

background ions are indeed not at rest in the frame of the sim-

ulation. This is important, because growth of emittance typ-

ically needs to be evaluated over long acceleration distances,

and the boosted-frame technique can then drastically reduce

the cost of these simulations.

C. Approximations and limitations

The collision models used in the analytical theory (section

II A) and the numerical simulation (section II B) both rely on

significant assumptions. It is important to be aware of these

assumptions when applying these models.

One of these assumptions is that there is an effective screen-

ing distance bmax beyond which Coulomb interactions be-

tween two particles are suppressed (as well as an effective

minimal impact parameter bmin).24 This effectively translates

into the presence of the Coulomb logarithm in Eq. (1) and

Eq. (5), with lnΛ = ln(bmax/bmin). In the context of general

plasma physics, bmax is usually taken to be the Debye length

λD (and bmin is given, e.g., in Perez et al.20). However, in the

context of plasma acceleration in the bubble regime, Kirby et

al.18 propose to use the bubble radius as bmax, and the effec-

tive Coulombic radius of the nucleus R ≈ 1.4A1/3 fm as bmin.

While more work is certainly needed in order to obtain a rig-

orous estimation of the Coulomb logarithm, in this paper, for

the purpose of comparing theory and simulation, we choose

lnΛ = ln(λD/R). Importantly, we use the same value both in

the theory and simulation.

Another important assumption of the collision models is

that the background plasma is uniform over the characteris-

tic screening distance bmax. For instance, in the model used

for the analytical theory Eq. (1), it is assumed that the plasma

density n is uniform over the screening distance bmax. Sim-

ilarly, when applying the collision module from section II B

in PIC simulations, it is assumed that the density and veloc-

ity distribution of the macroparticles of the current cell are

representative of the density and velocity distribution over

the screening distance bmax. Importantly, this assumption is

violated for instance in the case of hollow-channel plasma

acceleration19, where Coulomb collisions occur with the non-

uniform plasma in the walls of the channel. (It is worthwhile

to note that Eq. (1) can nonetheless be generalized19 to the

case of a transversely-varying plasma.) Finally, in the case of

the bubble regime, the assumption of uniformity is valid for

the background plasma ions, but not for the plasma electrons.

However, it is generally considered that Coulomb collisions

with the plasma electrons (e.g., in the bubble sheath) is neg-

ligible compared to Coulomb collisions with the plasma ions

(which fill the bubble), and in the rest of this paper, we only

consider collisions with the ions.

In the case of the numerical simulation, it is important to

note that the PIC algorithm itself also captures the Coulomb

interaction between macroparticles, as long as they are sep-

arated by more than a few cells. Therefore, for particles

that are separated by more than the cell size (but less than

bmax), Coulomb collisions are in principle doubled-counted,

since they are taken into account both by the PIC algorithm

itself, and by the collision module. A detailed study of this

double-counting effect would certainly be of utmost interest.

However, in this paper, we found no evidence that double-

counting had a significant effect, when comparing the analyt-

ical theory (which does not feature double-counting) and the

numerical simulations. This is because, for the parameters

used in this paper, λD < ∆x (cell size), and the impact of colli-

sions between particles separated by more than a cell size is in

fact negligible compared to the impact of collisions occurring

within a cell.

III. SIMULATION BENCHMARKS

In this section, PIC simulations of two setups are car-

ried out, and simulation results are compared with the an-

alytical solutions. All simulations in this work are done

using the open-source particle-in-cell code WarpX26. The

major modules of WarpX that are used in the simula-

tions of this work are Pérez’s Monte Carlo binary colli-

sion model20, Cole-Karkkainen Maxwell solver with Cowan

coefficients27, Boris’s particle pusher28, Berenger’s perfectly

matched layers29, and the Lorentz boosted frame technique30.

A. Simplified configuration: Beam propagating in a uniform
ion background

In order to perform a direct comparison between the theory

and simulations, a simple pure collision setup is first consid-

ered. No field solver is used in this setup (i.e., the fields on

the grids are zero), and only Coulomb collisions (using the

above-mentioned module) are considered. A 3D cubic sim-

ulation domain is used with size 300× 300× 300 µm, and

number of cells 8×8×8, in x, y, and z direction, respectively.

A beam of electrons with total charge -5 pC, represented by

105 macro-particles, is initially placed at the center of the do-

main. The beam has a relativistic velocity in z, with a Lorentz

factor 〈γ〉= 200. Plasma ions are uniformly distributed in the

domain, with a number density ni = 1018 cm−3, charge num-

ber Z = 1, and mass number A = 1. One macro-particle per

cell is used for ions. Assuming a constant plasma tempera-

ture Ti = Te = 10 eV, we can obtain kp ≈ 1.88× 105 rad/m,
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FIG. 1. Emittance ε as a function of z, for a monoenergetic matched beam with σx,y = 0.1 µm (left), a monoenergetic mismatched beam

with σx,y = 0.2 µm (middle), a mismatched beam with σx,y = 0.2 µm and energy spread σuz = 0.002 (right). Dashed curves are analytical

predictions.

kβ ≈ 9410 rad/m, λD ≈ 23.5 nm, thus the Coulomb logarithm

lnΛ ≈ 16.6. Ions are set to be fixed during the whole simula-

tion. Plasma electrons are not simulated. To focus the beam,

an external focusing electric field that emulates the fields of a

plasma bubble is added,

Ex = E0x, Ey = E0y, (6)

where E0 =mec2k2
p/(2e)≈ 9.05×1015 V/m2. A moving win-

dow is applied along z with the speed of light. Only the

collisions between beam electrons and plasma ions are con-

sidered, with the above-mentioned fixed Coulomb logarithm.

The Boris algorithm31, a second-order leapfrog integrator of

the equations of motion, is used to push particles. The simu-

lation time step is set to ∆t ≈ 1.56×10−14 s.

In the simulations, the electron beam has a Gaussian dis-

tribution in phase space. In order to test the code and theory

in different regimes, we varied the RMS sizes of this distribu-

tion, so as to consider three different cases:

• a monoenergetic matched beam, with σx = σy = σz =
0.1 µm, σux = σuy = γkβ σx, and σuz = 0.

• a monoenergetic mismatched beam, with the same mo-

mentum distribution as the matched beam, but a larger

transverse size: σx = σy = 0.2 µm,

• a mismatched beam with σx = σy = 0.2 µm as in the

previous case and an energy spread: σuz = 0.002.

The three different cases are represented by the three panels

in Fig. 1.

For each of these three different cases, the simulated growth

of the mean emittance (εx+εy)/2 is shown in Fig. 1 (red line).

Since the beam is axisymmetric about z, we plot (εx + εy)/2,

for the purpose of reducing the statistical particle noise. For

comparison, we also ran the same simulations with the colli-

sion module turned off (blue lines). As expected, these curve

show no growth of emittance in the cases with monoenergetic

beams.

The simulated growth of emittance with collisions (red

lines) is also compared with the analytical predictions Eq. (2)

and Eq. (3). More specifically, in order to plot the black lines

in Fig. 1, we use the following discretization

εx(z+∆z) = εx(z)+
kpreZ lnΛ√

2γ
∆z (7)

for the monoenergetic matched beam,

εx(z+∆z) = εx(z)+
k2

preZ lnΛ

4εx(z)

(

x2
m +

ε2
x (z)

γ2k2
β

x2
m

)

∆z (8)

for monoenergetic mismatched beam [from Eq. (2) without

energy spread], and

εx(z+∆z) = εx(z)+
k2

preZ lnΛ〈x2〉
4εx(z)

(

x2
m +

ε2
x (z)

γ2k2
β

x2
m

)

∆z

+
〈u2

x〉〈xux/γ〉−〈xux〉〈u2
x/γ〉

εx(z)
∆z (9)

for the mismatched beam with energy spread [from Eq. (2)],

where γ , 〈u2
x〉, 〈xux〉, 〈xux/γ〉, and 〈u2

x/γ〉 are all functions of

z, obtained from the simulation, and xm = σx = 0.2 µm.

Each of the three cases display excellent agreement with the

corresponding theoretical curve in Fig. 1, thereby validating

the implementation of the collision module.

B. Plasma accelerator

We now consider a simulation of beam-driven plasma ac-

celerator. The simulation is run in a boosted frame25 with

Lorentz factor γb = 10. A 3D cubic simulation domain is used,

with 64× 64× 256 cells in x, y, and z, respectively, and the

physical domain size corresponds to a 200 µm× 200 µm×
256 µm box in the lab-frame.

The boundary condition is periodic in x and y, and open

in z. A driver electron beam is initialized with a charge of

−1 nC, represented by 1000 macro-particles, and a Gaussian

distribution with σx = σy ≈ 6.32 µm, σz ≈ 12.65 µm, σux =

σuy = 2, σuz = 2× 104, 〈ux〉 = 〈uy〉 = 0, 〈uz〉 = 2× 107. We

set an artificially high mass of 1010 kg and high 〈uz〉 for the

particles of the driver beam, to impose rigidity.

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
0
2
3
7
7
6



5

Ez (TV/m)
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FIG. 2. Plots of Ez with beam (green dots) and driver (blue dots) at

t ≈ 33 fs.
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FIG. 3. Emittance growth ∆ε versus propagation distance z.

A witness beam of electrons with total charge −5 pC, rep-

resented by 106 macro-particles, is placed 77 µm behind the

driver. The witness beam has a Gaussian distribution in phase-

space, with σx = σy = σz ≈ 0.316 µm, σux = σuy ≈ 0.188,

σuz = 0, 〈ux〉= 〈uy〉= 0, and 〈uz〉= 200.

Plasma ions and electrons have a density profile

ne,i =

{

(1− cos
πz

L
)

n0

2
, if z < L

n0, if z ≥ L

where n0 = 1017 cm−3, L = 1 mm. Ion charge number is

Z = 1 and mass number is A = 1. Both electrons and ions

have a Gaussian velocity distribution with temperature Te =
Ti = 10 eV. One macro-particle per cell is used for electrons

and ions. Under these parameters, the Coulomb logarithm

is lnΛ ≈ 17.8. The electromagnetic fields are solved by the

Cole-Karkkainen solver with Cowan coefficients32. A mov-

ing window is applied along z with the speed of light. Again,

only the collisions between beam electrons and plasma ions

are considered, with the above-mentioned fixed Coulomb log-

arithm. The simulation time step is set to ∆t ≈ 0.165 fs (3.3 fs

in the boosted frame). Collisions are computed at every time

step.

The simulation setup is illustrated in Fig. 2, which displays

a snapshot of the electric field at t ≈ 33 fs (in the lab frame).

For this setup, γ of the beam increases linearly during the sim-

ulation and reaches about 33×103 at the end when the beam

reaches z ≈ 0.96 m. The emittance growth due to collisions

∆ε is shown in Fig. 3. We can see that, again the simulation

result matches with the theory for a matched beam.

IV. CONCLUSIONS AND FUTURE WORK

This paper shows that the emittance growth due to Coulomb

collisions in plasma-based accelerators can be correctly cap-

tured in particle-in-cell (PIC) simulations, with a proper

Monte Carlo binary collision module implemented. In addi-

tion, the theory of the emittance growth due to Coulomb col-

lisions is generalized to describe a mismatched beam with en-

ergy spread, and simulation results match the corresponding

theory. In the future, the emittance growth due to Coulomb

collisions in the linear regime of plasma-based accelerators

will be explored theoretically and numerically.
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Appendix A: Derivation of Coulomb scattering for a
monoenergetic matched beam in the blown-out regime

Consider a binary collision between an electron and a fixed

ion in the x-z plane, as shown in Fig. 4. The impact parameter

is b, the scattering angle is θ , electron’s initial momentum is

p1 = (0, p) = γmev. And the electron’s final momentum after

the collision is p2 = (psinθ , pcosθ).
Thus, we can find the momentum change

|∆p|2 = |p2 −p1|2 = 4p2 sin2 θ

2
, (A1)

where 1− cosθ = 2sin2(θ/2) is used.
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6

FIG. 4. Binary collision plane.

FIG. 5. Symmetric binary collision plane.

If we change the coordinate system to be as the one shown

in Fig. 5, we have

lim
α→0

φ = π − (
π

2
− θ

2
) =

π

2
+

θ

2
.

The j component of the Coulomb force is

Fj = ke

Ze2 cosφ

r2
=

d p

dt
, (A2)

where φ and r are functions of time, also notice that p does

not change along i, ke = 1/(4πε0) is the Coulomb constant.

Thus, we can find again the momentum change,

∆p =
∫

∞

−∞

ke

Ze2 cosφ

r2
dt. (A3)

From the conservation of angular momentum, we have

|L|= |r×p|= pb = rγmrφ̇ = r2γm
dφ

dt

i.e.,

dt

r2
=

mγ

pb
dφ . (A4)

Substituting Eq.(A4) into Eq.(A3), we can obtain

∆p = ke

Ze2mγ

pb

∫ π+θ
2

− π+θ
2

cosφdφ = ke

Ze2mγ

pb
(2cos

θ

2
), (A5)

where φ is negative when the electron is on the left and pos-

itive when it is on the right in Fig. 5, and we may approx-

imate γ as a constant because the particle kinetic energy is

much greater than the potential energy during the collision,

γ ≫ re/bmin.

Assuming θ is small, such that cos(θ/2) ≈ 1, sin(θ/2) ≈
θ/2, and also the velocity of electron is close to the speed of

light, p = mγv ≈ mγc, Eq. (A1) and Eq. (A5) yield

θ =
2Zre

γb
. (A6)

From θx = θ cosϕ , where ϕ is the angle between x-axis and

the transverse momentum p⊥,

〈θ 2
x 〉= 〈θ 2〉〈cos2 ϕ〉= 1

2
〈θ 2〉. (A7)

Then, we integrate over a cylindrical volume of ions with

density ni, to obtain

〈θ 2
x 〉=

∫ ∫

θ 2
x ni(2πb)dbdz. (A8)

And with Eq.(A7) and Eq.(A6)

d〈θ 2
x 〉

dz
=
∫

θ 2
x ni(2πb)db =

1

2

∫

θ 2ni(2πb)db

=
4πniZ

2r2
e

γ2

∫

db

b
=

4πniZ
2r2

e

γ2
lnΛ, (A9)

where lnΛ =
∫

db/b is the Coulomb logarithm.

Appendix B: Derivation of the emittance growth from
Coulomb scattering

Let us consider a relativistic electron beam propagating

along the z direction and undergoing transverse x-y focusing

in a plasma bubble. The equations of motion for individual

electrons, e.g. in the x direction, can be written as:

dx

dz
=

ux

γ
, (B1)

dux

dz
=−

k2
p

2
x+
√

k2
preZ lnΛ η(z), (B2)

where ux = px/(mec) is the dimensionless momentum, and

where derivatives with respect to t were replaced by deriva-

tives with respect to z since the beam is propagating rela-

tivisticly along z (z ≈ ct). Note that we added a stochastic

term in the second equation, so as to capture the effect of

Coulomb collisions. More specifically, in the second equa-

tion η(z) is a Gaussian white noise term, so that 〈η(z)〉 = 0,

〈η(z)η(z′)〉 = δ (z− z′), where δ is the Dirac delta function.

The amplitude of this second term was chosen so that it re-

produces d〈θ 2
x 〉/dt = (1/γ2)d〈u2

x〉/dt from Eq. (1), in the ab-

sence of the focusing force.

Let us now derive the envelope equations of the beam, by

combining the equations of motion and averaging them over

all particles.

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
0
2
3
7
7
6



7

Multiplying Eq. (B1) by 2x and averaging, we obtain

d〈x2〉
dz

= 2

〈

xux

γ

〉

. (B3)

where 〈〉 denotes an ensemble average over all particles. Mul-

tiplying Eq. (B1) by ux and multiplying Eq. (B2) by x, then

adding them together and averaging, we obtain

d〈xux〉
dz

=

〈

u2
x

γ

〉

−
k2

p

2
〈x2〉. (B4)

To obtain d〈u2
x〉/dz, we consider the focusing force and the

collisional force separately. (Note that a mathematically more

rigorous derivation can also be carried out by applying Itô’s

lemma.) Considering the focusing force term only in Eq. (B2),

multiplying both sides of the equation by 2ux and averaging,

we can obtain

(d〈u2
x〉

dz

)

f ocusing
=−k2

p〈xux〉.

Considering the collisional force term only in Eq. (B2), we

can integrate between z and z+∆z,

ux(z+∆z) = ux(z)+
√

k2
preZ lnΛ

∫ z+∆z

z
η(z′)dz′,

yielding,

〈u2
x(z+∆z)〉

= 〈u2
x(z)〉+ k2

preZ lnΛ

∫ z+∆z

z

∫ z+∆z

z
〈η(z′)η(z′′)〉dz′dz′′

= 〈u2
x(z)〉+ k2

preZ lnΛ∆z.

Therefore, we have

(d〈u2
x〉

dz

)

collisional
= k2

preZ lnΛ,

and

d〈u2
x〉

dz
=
(d〈u2

x〉
dz

)

f ocusing
+
(d〈u2

x〉
dz

)

collisional

=−k2
p〈xux〉+ k2

preZ lnΛ. (B5)

Now, we can combine Eq. (B3), Eq. (B4), and Eq. (B5) into

dε2
x

dz
= 2εx

dεx

dz
= 〈x2〉d〈u2

x〉
dz

+ 〈u2
x〉

d〈x2〉
dz

−2〈xux〉
d〈xux〉

dz
(B6)

to obtain the analytical solution of the emittance growth rate

along z due to Coulomb collisions, including the effect of de-

coherence via energy spread,

dε2
x

dz
= 2εx

dεx

dz
= k2

preZ lnΛ〈x2〉+2
(

〈u2
x〉〈

xux

γ
〉−〈xux〉〈

u2
x

γ
〉
)

.

(B7)

The term 〈x2〉 can be evaluated analytically. Denote 〈x2〉 by

σ2
x . From the envelope equation under a linear focusing force,

d2σx

dz2
=

ε2
x

γ2σ3
x

− k2
β σx, (B8)

we can obtain its first integral,

(

dσx

dkβ z

)2

+

(

εx

γkβ

)2

σ−2
x +σ2

x = const. (B9)

With initial conditions x0 = σx(0) and x′0 = dσx(0)/dz, the

general solution can be obtained as

σ2
x = x2

m

{

1+M2

2
+

1−M2

2
cos[2(kβ z+φ)]

}

, (B10)

where

M =
εx

γkβ x2
m

, (B11)

φ = tan−1

[

(x2
0 − x2

m)
1/2

(x2
mM2 − x0)1/2

]

, (B12)

and xm is the peak RMS beam size (such that σx = xm when

dσx/dz = 0).

This solution indicates that the beam size oscillates be-

tween xm and xmM at half the betatron period. Note that for a

matched beam, M = 1, and σx = xm = constant.

Typically, the propagation distance z will span many beta-

tron periods such that kβ z ≫ 1. Thus, one may average over

the betatron oscillations, yielding

〈x2〉= x2
m

1+M2

2
. (B13)

1C. B. Schroeder, E. Esarey, C. G. R. Geddes, C. Benedetti, and W. P. Lee-

mans, “Physics considerations for laser-plasma linear colliders,” Phys. Rev.

ST Accel. Beams 13, 101301 (2010).
2Z. Huang, Y. Ding, and C. B. Schroeder, “Compact x-ray free-electron

laser from a laser-plasma accelerator using a transverse-gradient undulator,”

Phys. Rev. Lett. 109, 204801 (2012).
3A. R. Maier, A. Meseck, S. Reiche, C. B. Schroeder, T. Seggebrock, and

F. Grüner, “Demonstration scheme for a laser-plasma-driven free-electron

laser,” Phys. Rev. X 2, 031019 (2012).
4K. Nakajima, “Towards a table-top free-electron laser.” Nature Phys 4, 92–

93 (2008).
5P. Michel, C. B. Schroeder, B. A. Shadwick, E. Esarey, and W. P. Leemans,

“Radiative damping and electron beam dynamics in plasma-based acceler-

ators,” Phys. Rev. E 74, 026501 (2006).
6T. Mehrling, J. Grebenyuk, F. S. Tsung, K. Floettmann, and J. Osterhoff,

“Transverse emittance growth in staged laser-wakefield acceleration,” Phys.

Rev. ST Accel. Beams 15, 111303 (2012).
7M. Thévenet, R. Lehe, C. B. Schroeder, C. Benedetti, J.-L. Vay, E. Esarey,

and W. P. Leemans, “Emittance growth due to misalignment in multistage

laser-plasma accelerators,” Phys. Rev. Accel. Beams 22, 051302 (2019).
8J. B. Rosenzweig, A. M. Cook, A. Scott, M. C. Thompson, and R. B. Yoder,

“Effects of ion motion in intense beam-driven plasma wakefield accelera-

tors,” Phys. Rev. Lett. 95, 195002 (2005).
9W. An, W. Lu, C. Huang, X. Xu, M. J. Hogan, C. Joshi, and W. B.

Mori, “Ion motion induced emittance growth of matched electron beams

in plasma wakefields,” Phys. Rev. Lett. 118, 244801 (2017).
10C. Benedetti, C. B. Schroeder, E. Esarey, and W. P. Leemans, “Emittance

preservation in plasma-based accelerators with ion motion,” Phys. Rev. Ac-

cel. Beams 20, 111301 (2017).
11Y. Y. Lau, “Classification of beam breakup instabilities in linear accelera-

tors,” Phys. Rev. Lett. 63, 1141–1144 (1989).
12A. W. Chao, B. Richter, and C.-Y. Yao, “Beam emittance growth caused

by transverse deflecting fields in a linear accelerator,” Nuclear Instruments

and Methods 178, 1 – 8 (1980).

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
0
2
3
7
7
6



8

13A. A. Geraci and D. H. Whittum, “Transverse dynamics of a relativistic

electron beam in an underdense plasma channel,” Physics of Plasmas 7,

3431–3440 (2000).
14E. S. Dodd, R. G. Hemker, C.-K. Huang, S. Wang, C. Ren, W. B. Mori,

S. Lee, and T. Katsouleas, “Hosing and sloshing of short-pulse gev-class

wakefield drivers,” Phys. Rev. Lett. 88, 125001 (2002).
15C. B. Schroeder, D. H. Whittum, and J. S. Wurtele, “Multimode Analysis

of the Hollow Plasma Channel Wakefield Accelerator,” Physical Review

Letters 82, 1177–1180 (1999).
16C. Huang, W. Lu, M. Zhou, C. E. Clayton, C. Joshi, W. B. Mori, P. Muggli,

S. Deng, E. Oz, T. Katsouleas, M. J. Hogan, I. Blumenfeld, F. J. Decker,

R. Ischebeck, R. H. Iverson, N. A. Kirby, and D. Walz, “Hosing Instabil-

ity in the Blow-Out Regime for Plasma-Wakefield Acceleration,” Physical

Review Letters 99, 255001 (2007).
17B. W. Montague and W. Schnell, “Multiple scattering and synchrotron ra-

diation in the plasma beat-wave accelerator,” AIP Conference Proceedings

130, 146–155 (1985).
18N. Kirby, M. Berry, I. Blumenfeld, M. J. Hogan, R. Ischebeck, and

R. Siemann, “Emittance growth from multiple Coulomb scattering in a

plasma wakefield accelerator,” in 2007 IEEE Particle Accelerator Confer-

ence (PAC) (2007) pp. 3097–3099.
19C. B. Schroeder, E. Esarey, C. Benedetti, and W. P. Leemans, “Con-

trol of focusing forces and emittances in plasma-based accelerators us-

ing near-hollow plasma channels,” Physics of Plasmas 20, 080701 (2013),

https://doi.org/10.1063/1.4817799.
20F. Pérez, L. Gremillet, A. Decoster, M. Drouin, and E. Lefebvre, “Improved

modeling of relativistic collisions and collisional ionization in particle-in-

cell codes,” Physics of Plasmas 19, 083104 (2012).
21D. Nicholson, Introduction to Plasma Theory (Krieger, 1992).
22K. Nanbu, “Theory of cumulative small-angle collisions in plasmas,” Phys.

Rev. E 55, 4642–4652 (1997).
23K. Nanbu and S. Yonemura, “Weighted particles in Coulomb collision sim-

ulations based on the theory of a cumulative scattering angle,” Journal of

Computational Physics 145, 639 – 654 (1998).
24N. E. Frankel, K. C. Hines, and R. L. Dewar, “Energy loss due to binary

collisions in a relativistic plasma,” Phys. Rev. A 20, 2120–2129 (1979).

25J.-L. Vay, “Noninvariance of space- and time-scale ranges under a Lorentz

transformation and the implications for the study of relativistic interac-

tions,” Phys. Rev. Lett. 98, 130405 (2007).
26J.-L. Vay, A. Almgren, J. Bell, L. Ge, D. P. Grote, M. Hogan,

O. Kononenko, R. Lehe, A. Myers, C. Ng, J. Park, R. Ryne, O. Shapoval,

M. Thévenet, and W. Zhang, “Warp-x: a new exascale computing plat-

form for beam-plasma simulations,” (2018), 10.1016/j.nima.2018.01.035,

arXiv:1801.02568.
27B. M. Cowan, D. L. Bruhwiler, J. R. Cary, E. Cormier-Michel, and C. G. R.

Geddes, “Generalized algorithm for control of numerical dispersion in

explicit time-domain electromagnetic simulations,” Phys. Rev. ST Accel.

Beams 16, 041303 (2013).
28C.K. Birdsall and A.B. Langdon, Plasma Physics via Computer Simulation

(IOP, 1991).
29J.-P. Berenger, “A perfectly matched layer for the absorption of electromag-

netic waves,” Journal of Computational Physics 114, 185 – 200 (1994).
30J.-L. Vay, “Noninvariance of space- and time-scale ranges under a Lorentz

transformation and the implications for the study of relativistic interac-

tions,” Phys. Rev. Lett. 98, 130405 (2007).
31J. P. Boris, “Relativistic plasma simulation-optimization of a hybrid code,”

Proceeding of Fourth Conference on Numerical Simulations of Plasmas

(1970).
32B. M. Cowan, D. L. Bruhwiler, J. R. Cary, E. Cormier-Michel, and C. G. R.

Geddes, “Generalized algorithm for control of numerical dispersion in

explicit time-domain electromagnetic simulations,” Phys. Rev. ST Accel.

Beams 16, 041303 (2013).
33Y. Zhao, R. Lehe, A. Myers, M. Thévenet, A. Huebl, C. B. Schroeder,

and J.-L. Vay, “Modeling of emittance growth due to coulomb collisions

in plasma-based accelerators,” Zenodo (2020), 10.5281/zenodo.4097055.
34D. H. Whittum, W. M. Sharp, S. S. Yu, M. Lampe, and G. Joyce, “Electron-

hose instability in the ion-focused regime,” Phys. Rev. Lett. 67, 991–994

(1991).
35J.-L. Vay, J.-C. Adam, and A. Héron, “Asymmetric pml for the absorption

of waves. application to mesh refinement in electromagnetic particle-in-cell

plasma simulations,” Computer Physics Communications 164, 171 – 177

(2004).

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
0
2
3
7
7
6



18.5

18.6

18.7

18.8

18.9

19

19.1

19.2

0 0.2 0.4 0.6 0.8 1 1.2

(ε
x
+
ε y
)/
2

(n
m

)

z (m)

simulation
no collision

Eq. (7)

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
0
2
3
7
7
6



37

37.2

37.4

37.6

37.8

38

0 0.2 0.4 0.6 0.8 1 1.2

(ε
x
+
ε y
)/
2

(n
m

)

z (m)

simulation
no collision

Eq. (8)

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
0
2
3
7
7
6



37

37.2

37.4

37.6

37.8

38

0 0.2 0.4 0.6 0.8 1 1.2

(ε
x
+
ε y
)/
2

(n
m

)

z (m)

simulation
no collision

Eq. (9)

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
0
2
3
7
7
6



Ez (TV/m)

−250 −200 −150 −100 −50 0

z − ct (µm)

−100

−50

0

50

100

x
(µ

m
)

-0.04

-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03

0.04

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
0
2
3
7
7
6



0

0.005

0.01

0.015

0.02

0 0.2 0.4 0.6 0.8 1

(∆
ε x

+
∆
ε y
)/
2

(n
m

)

z (m)

simulation
Eq. (7)

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
0
2
3
7
7
6



T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
0
2
3
7
7
6



T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
0
2
3
7
7
6


	 Modeling of Emittance Growth Due to Coulomb Collisions in Plasma-based Accelerators
	Abstract
	 Introduction
	 Analytical and numerical description of the growth of emittance from Coulomb collisions.
	 Analytical description
	 Numerical description in a PIC code
	 Approximations and limitations

	 Simulation benchmarks
	 Simplified configuration: Beam propagating in a uniform ion background
	 Plasma accelerator

	 Conclusions and future work
	Acknowledgments
	DATA AVAILABILITY
	Derivation of Coulomb scattering for a monoenergetic matched beam in the blown-out regime
	Derivation of the emittance growth from Coulomb scattering 

	Manuscript File
	1a
	1b
	1c
	2
	3
	4
	5



