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Alternative definitions of the frozen energy in energy decomposition
analysis of density functional theory calculations

Paul R. Horn1, a) and Martin Head-Gordon1, b)

Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California,
Berkeley, CA 94720 and Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley, CA,
94720 Phone: 510-642-5957 Fax: 510-643-1255

In energy decomposition analysis (EDA) of intermolecular interactions calculated via density func-
tional theory, the initial supersystem wavefunction defines the so-called “frozen energy” including
contributions such as permanent electrostatics, steric repulsions and dispersion. This work explores
the consequences of the choices that must be made to define the frozen energy. The critical choice is
whether the energy should be minimized subject to the constraint of fixed density. Numerical results
for Ne2, (H2O)2, BH3-NH3, and ethane dissociation show that there can be a large energy lowering
associated with constant density orbital relaxation. By far the most important contribution is con-
stant density inter-fragment relaxation, corresponding to charge transfer (CT). This is unwanted in
an EDA that attempts to separate CT effects, but it may be useful in other contexts such as force
field development. An algorithm is presented for minimizing single determinant energies at constant
density both with and without CT by employing a penalty function that approximately enforces the
density constraint.

I. INTRODUCTION

In electronic structure theory, an energy decom-
position analysis (EDA) is a partition of the inter-
action energy of a system of fragments, an observ-
able, into a sum of energy terms that are not observ-
ables but carry chemical meaning1–5. Such terms
typically include polarization, charge transfer (CT),
permanent electrostatics, dispersion, and Pauli re-
pulsion. These decompositions are not uniquely de-
fined but can be useful in building intuition about
a given system. Because the total energy of inter-
est is the difference between that of the supersystem
and the non-interacting component subsystems, the
decompositions generally involve a progression from
many subsystem wavefunctions to a single, optimal
supersystem wavefunction.
The focus of this paper is the first intermediate

electronic wavefunction in this sequence which treats
all electrons in the system together. The associated
energy is usually called the “frozen energy” and its
meaning relative to the energies of the isolated sub-
systems is usually taken as a combination of perma-
nent electrostatics and Pauli repulsion.4 The con-
struction of the initial supersystem wavefunction for
the single Slater determinant case of Kohn-Sham
density functional theory (DFT) or Hartree-Fock
(HF) theory is the central concern of this work.

a)Electronic mail: prhorn@berkeley.edu
b)Electronic mail: mhg@cchem.berkeley.edu

A single Slater determinant wavefunction is com-
pletely defined by its one-particle density matrix
(1PDM)6, and thus 1PDMs and wavefunctions will
be used interchangeably throughout. EDA schemes
have also been defined for various post-HF wavefunc-
tion theories7–12, but these will not be considered
further here.

There are many EDA schemes but currently
only a handful of distinct ways used to construct
the initial supersystem wavefunction. The sim-
plest choice is to adopt the Hartree product of
monomer wavefunctions as the initial supersystem
electronic wavefunction despite its lack of proper
antisymmetry with respect to electron variables.
This approach is employed by methods such as
the polarization theory8, Kitaura-Morokuma EDA
(KM-EDA)13–15, pair interaction energy decomposi-
tion analysis (PIEDA)16,17, and configuration anal-
ysis for fragment interaction (CAFI)18, which are
older methods or are adapted from older methods.
These approaches, except for the polarization the-
ory, which is only valid for well-separated fragments,
eventually account for antisymmetry in the super-
system wavefunction but not until after a classical
polarization procedure has been performed.

A majority of EDAs employ the antisymmet-
ric product of isolated monomer wavefunctions
(i.e. “frozen” fragment orbitals), the Heitler-
London wavefunction, as the initial supersys-
tem wavefunction to define what is therefore
often called the frozen energy. Such EDAs
include symmetry adapted perturbation theory
(SAPT)8,19–22, Bickelhaupt-Baerends EDA (BB-



EDA)2,23,24, the natural orbitals for chemical va-
lence method combined with the extended tran-
sition state method (NOCV-ETS)25–28, general-
ized Kohn-Sham EDA (GKS-EDA)29–31, the con-
strained space orbital variation method (CSOV)32,
the reduced variational space method (RVS)15,33,
the configuration interaction (CI)-singles based
scheme of Reinhardt et al.34, the method of De
Silva and Korchowiec35, the method of Mandado
and Hermida-Ramón36, block-localized wavefunc-
tion EDA (BLW-EDA)3,37,38 (though not so ob-
viously in later works39), and absolutely localized
molecular orbital EDA (ALMO-EDA)40–43. An-
other method, natural EDA (NEDA)1,44–47, also
uses the antisymmetric product though not of the
isolated monomer wavefunctions but rather of the
natural bond orbital (NBO)-determined monomer
Lewis-like determinants.
A refreshingly different definition for the initial su-

persystem wavefunction is used in the density-based
EDA (DEDA) scheme of Wu et al.48,49 The DEDA
method uses constrained DFT to define the initial
wavefunction as the lowest energy single Slater de-
terminant that has a 3-space density equivalent to
the sum of isolated fragment densities. The DEDA
is the first EDA to add an energetic optimality con-
dition to the construction of the initial supersystem
wavefunction while still making a connection to the
properties of isolated fragments. Constant density
minimization can lower the DFT energy because it
depends on the 1PDM through at least the kinetic
energy, and the mapping between 1PDMs and den-
sities is many-to-one by virtue of linear dependence
in the products of basis functions used to construct
the density matrix50.
For the DEDA examples presented by Wu et

al.48,49, minimization with constant sum of frag-
ments density yielded very significant energy lower-
ing beyond the frozen orbital energy used in EDAs
such as Bickelhaupt-Baerends EDA, BLW-EDA, and
ALMO-EDA. For example, for the water dimer us-
ing B3LYP/aug-cc-pVQZ at Re, the frozen orbital
interaction energy is -7.6 kJ/mol, while the DEDA
approach yields a frozen energy of -14.3 kJ/mol, rel-
ative to the total interaction energy of -19.0 kJ/mol.
This means that the post-frozen contribution of po-
larization and charge transfer is reduced by more
than a factor of two in DEDA versus the conven-
tional EDA approaches, from 11.4 kJ/mol to 4.6
kJ/mol. Thus the choice of frozen energy has im-
portant consequences for the interpretative purposes
of the EDA, and the DEDA casts possible doubt on
the validity of the conventional EDAs.
Our goal is to understand the origin of the large

energetic differences between the DEDA frozen en-
ergy and that obtained using the frozen orbitals. Is
it primarily intra-fragment relaxation that relieves
steric repulsions, without changing the density? Or
is it instead dominated by inter-fragment relaxation,
corresponding to CT at constant density? For EDA
purposes, it is essential to distinguish these two
cases, since CT is separated from the electrostatic,
Pauli and dispersion interactions associated with the
frozen energy. On the other hand, there are other
applications of the frozen energy, such as parame-
terizing force field models51 that lack explicit CT
terms, where it may be desirable to include the con-
stant density CT in the frozen energy to minimize
the magnitude of the separate CT term. Thus the
merit of a particular frozen energy definition must
be assessed on the basis of the intended application.
To explore this issue, we shall consider four al-

ternative frozen energies, summarized in Table I
and outlined in detail in Sec. II below. The ba-
sic method, denoted as Pfrz, evaluates the energy
associated with the frozen orbitals of the isolated
fragments, without further optimization. This en-
ergy can be lowered variationally by performing a
constrained self-consistent field (SCF) minimization
at constant density, denoted as ρfrz-SCF if the den-
sity corresponding to Pfrz is used, or as ρsum-SCF
if the sum of fragment densities is used. The latter
is the DEDA frozen energy. In order to distinguish
the relaxation due to constant density polarization
from that due to constant density CT, we define the
ρfrz-SCFMI frozen energy, which excludes CT effects
from the constrained minimization using a recently
developed variant of the SCF for molecular interac-
tions (SCFMI)52. After validating our approach to
approximately satisfying the constant density con-
straint, we then compare the results from these four
models on the repulsive part of the neon dimer po-
tential curve, the water dimer, ammonia borane, and
ethane dissociation.

II. MODELS FOR THE INITIAL SUPERSYSTEM
WAVEFUNCTION

General notation in this work is as follows: sub-
space indices: capital Roman X,Y...; AO basis in-
dices: lower case Greek µ, ν...; virtual MO in-
dices: a, b...; occupied MO indices: i, j...; generic
MO indices: r, s..... This work considers non-
orthogonal subspaces and thus makes use of tensors
with both covariant (subscript) and contravariant
(superscript) indices.53 Further notation will be in-
troduced as needed.
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Method Energy Ptarget Optimization

Pfrz Efrz
initial Pfrz none

ρsum-SCF E
(sum,SCF)
initial

∑
A PA SCF (intra+inter)

ρfrz-SCF E
(frz,SCF)
initial Pfrz SCF (intra+inter)

ρfrz-SCFMI E
(frz,SCFMI)
initial Pfrz SCFMI (intra)

TABLE I: Four methods to compute the frozen
energy. Ptarget is the density matrix which defines
the 3-space density constraint, and optimization
indicates which orbital degrees of freedom are

varied during constant density minimization. The
energy is that of the initial supersystem

wavefunction, which, together with the common
isolated monomer energies, determines the frozen
energy. The frozen energy method labeled Pfrz is
used in the ALMO-EDA and most others and

involves no energy optimization. The frozen energy
method labeled ρsum-SCF is used in Wu’s

DEDA48,49.

A. The Frozen Orbital Model (Pfrz)

To guarantee a valid single Slater determinant
wavefunction from which a valid energy can be eval-
uated, the most basic model simply uses the frozen
orbitals of each fragment. They are non-orthogonal
from one fragment to the next, and therefore a valid
one-particle density matrix must include the appro-
priate metric:

Pfrz = Cocc
frz σ

−1(Cocc
frz )

†
(II.1)

σ = (Cocc
frz )

†
SCocc

frz (II.2)

The occupied MO coefficient matrices of the isolated
fragments, {Cocc

A }, comprise the diagonal blocks of
Cocc

frz , while off-diagonal blocks are zero:

Cocc
frz =

 Cocc
A 0 · · ·
0 Cocc

B
...

. . .

 (II.3)

The frozen orbital density matrix, Eq. II.1, is equiv-
alent to the density matrix for the single determinant
Heitler-London wavefunction built as the antisym-
metric product of subsystem Slater determinants.
The frozen orbital density matrix in turn yields a
frozen density as ρfrz (r) = Pfrz (r, r), as well as the
energy corresponding to the frozen orbital initial su-
persystem wavefunction: Efrz

initial = E (Pfrz). The

frozen energy is obtained (for all models) by sub-
tracting the sum of isolated monomer energies from
that of the initial supersystem wavefunction.

Efrz
FRZ = Efrz

initial −
∑
A

EA (II.4)

An equivalent derivation of the projector corre-
sponding to Eq. II.1 begins with the formation
of the sum of the occupied subspace projectors for
the isolated subsystems, Psum. Psum is not gener-
ally a valid projector, as the sum of non-orthogonal
projectors is not a projector (i.e. its eigenvalues
deviate from 0 and 1). The idempotent projector
that is closest to this simple sum may be found by
successive applications of the well-known McWeeny
purification54 beginning with P(0) = Psum:

P(i+1) = 3P(i)SP(i) − 2P(i)SP(i)SP(i) (II.5)

It has been proven that the final result of that se-
quence, P(∞), is geometrically optimal, in the sense
of being the closest valid projector to Psum in the
space of matrices55. It is moreover straightforward
to prove that under mild conditions Pfrz = P(∞).
The frozen orbital density matrix thus defines a

geometrically optimal initial supersystem wavefunc-
tion, and its corresponding ρ(r) will be in non-trivial
cases different from the sum of subsystem densities.
The distortion of this density relative to the simple
sum is a consequence of the requirement for an an-
tisymmetric electronic wavefunction, and its qual-
itative features been discussed in detail by other
authors23. Briefly, the distortions include a deple-
tion of electron density in the overlapping region and
an increase in electron density near nuclei, resulting
in higher electron kinetic energy and lower electron-
nuclear potential energy.

B. Energy minimization with the sum of fragment
densities constraint (ρsum-SCF)

This approach is the basis of Wu’s Density-
based Energy Decomposition Analysis (DEDA)48,49.
Imagine translating the electron densities of the sub-
systems along with their respective nuclei from in-
finitely far away to the supersystem geometry, re-
sulting in a supersystem 3-space electron density,
ρsum (r), that is the sum of subsystem densities:

ρsum (r) =
∑
A

ρA (r) (II.6)

The correct number of electrons is obtained. This
method appears classical because it discounts elec-
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tronic wavefunction antisymmetry, and it is the clas-
sical electrostatic interaction between these trans-
lated nuclei and electron densities that is used to
define the permanent electrostatic interaction energy
component in some EDAs.
Is there, by extension, a valid supersystem oc-

cupied subspace projector that is a sum of subsys-
tem occupied subspace projectors? The sum of pro-
jectors is only a projector if the respective vectors
defining the spans are orthogonal from one span to
the next or equivalently if the metric for the col-
lection of these vectors is subspace-block-diagonal.
This is trivially true for non-overlapping (i.e. very
weakly interacting) fragments and can also be true
in the strongly interacting case. For example one
could re-partition ρsum(r) into non-overlapping spa-
tial domains corresponding to each fragment, with
each having its original number of electrons, as illus-
trated schematically for a symmetric helium-dimer-
like system in Figure 1. This will enable subsystem
projectors to be strongly orthogonal, and it is a fea-
sible point on the idempotent surface, at least in a
complete basis set. By contrast, in a minimal basis
for two overlapping He atoms, such a feasible point
does not exist. We believe the question of whether
or not feasible points strictly exist in larger finite
basis sets is open.
Wu employs constrained DFT to compute the low-

est energy single Slater determinant for the super-
system with the constraint that its corresponding
ρ(r) equals the sum of isolated fragment densities:

E
(sum,SCF)
initial = minimize

ρsum ← P
E [P] (II.7)

There are two interesting issues with this approach.
The first, already discussed above, is that if a feasible
solution does not exist, then the constrained DFT
algorithm does not impose a constraint, but instead
adds an energetic penalty that enforces similarity be-
tween the actual 3-space density of the wavefunction
and ρsum(r). The second interesting issue, already
discussed in the Introduction, is the question of the
interpretation of the energy lowering associated with
a wavefunction optimized in such a way. The next
two definitions will help to address this latter issue.

C. Energy minimization with the frozen orbital
density constraint (ρfrz-SCF)

The issue of existence or non-existence of valid
projectors yielding ρsum in Wu’s density matching
constraint can be circumvented by instead requiring

FIG. 1: Sum of densities, ρsum, for a helium dimer
system, showing a sharp division into two fragment
quantities in the overlapping regime. This sharp
division is a feasible point, in the sense that it can
be represented by two localized orthogonal orbitals,
in a complete basis set. It is not a feasible point in

a finite basis set, such as a minimal basis,
composed of smooth functions.

the density to match the frozen orbital density, ρfrz,
in a constrained minimization of the frozen energy:

E
(frz,SCF)
initial = minimize

ρfrz ← P
E [P] (II.8)

The result of this minimization is necessarily an en-
ergy lowering relative to the frozen orbital energy,
and various numerical tests of this energy difference
will be presented later. Relative to energy mini-
mization constrained to ρsum, the optimized energy,

E
(frz,SCF)
initial , could be either higher or lower, a fact

that will be confirmed with numerical examples. In
both cases, the constant density relaxation must be
viewed as including both intra-fragment and inter-
fragment contributions.

D. Energy minimization with constrained density and
without charge transfer (ρfrz-SCFMI)

The main issue with constant density minimiza-
tion of the frozen energy is the origin of the energy
lowering in the context of other EDA terms. We wish
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to distinguish contributions due to intra-fragment
relaxation from those due to inter-fragment relax-
ation, because the latter is CT in character. Con-
stant density minimization requires an additional
constraint to prohibit CT between fragments. The
SCFMI constraint of a fragment-blocked AO to
MO coefficient matrix40,56–60 has often been used
to describe polarization and exclude CT3,37,38,41–43.
Fragment-blocking retains the form of the MO co-
efficients, (II.3), associated with the frozen-orbital
density matrix, (II.1), which is thus the natural ini-
tial guess. Use of ρfrz for the density constraint is
also natural, since we are guaranteed the initial fea-
sible point, Pfrz.
However, SCFMI in the AO basis does not con-

verge to a useful complete basis set (CBS) limit
for polarization. SCFMI captures more and more
of the CT contribution as the AO basis set size
increases52,61. To address this problem, as well
as to generalize the SCFMI method to represen-
tations (such as plane waves) where the underly-
ing basis is not fragment-blocked, we recently de-
veloped a polarization basis composed of fragment
electric-field response functions (FERFs)52. The
FERFs that exactly describe the fragment linear re-
sponse to a uniform electric field comprise 3 dipo-
lar (D) functions per occupied fragment orbital.
Similarly, 5 additional quadrupolar (Q) FERFs de-
scribe the fragment linear response to an electric
field gradient. Numerical tests showed that the non-
orthogonal D+Q polarization model (nDQ) satisfac-
torily reproduced exact results for polarization in the
non-overlapping limit, while also maintaining a non-
trivial basis set limit in the overlapping regime.
Constant density minimization without CT can

thus be accomplished via density constrained mini-
mization within the SCFMI/nDQ model52:

E
(frz,SCFMI)
initial = minimize

ρfrz ← P; SCFMI/nDQ
E [P] (II.9)

The 3-space density constraint employed is for the
total spinless density. It is the simplest option and
allows the method to be defined for all single Slater
determinant methods. By virtue of the SCFMI con-
straint, (II.9) satisfies:

Efrz
initial ≥ E

(frz,SCFMI)
initial ≥ E

(frz,SCF)
initial (II.10)

Wu et al ’s results48,49 suggest that the difference

Efrz
initial − E

(frz,SCF)
initial is significant (technically they

evaluated Efrz
initial−E

(sum,SCF)
initial instead). E

(frz,SCFMI)
initial

partitions this difference into intrafragment and in-
terfragment contributions.

By virtue of the constant density constraint, (II.9)
also satisfies:

Efrz
initial ≥ E

(frz,SCFMI)
initial ≥ ESCFMI (II.11)

The fact that E
(frz,SCFMI)
initial ≥ ESCFMI ensures a neg-

ative semi-definite value for the polarization energy
(EPOL = ESCFMI − Einitial) when using the ρfrz-
SCFMI model for the frozen energy. (II.9) differs
from the usual initial supersystem energy, Efrz

initial,
typically used in EDAs, because it prevents con-
stant density intrafragment relaxation from later be-
ing counted toward the polarization term. Polariza-
tion that does not change the density is by definition
not polarization at all. Instead it is an indicator of
an energetic inadequacy in the initial supersystem

wavefunction. E
(frz,SCFMI)
initial − Efrz

initial measures this
inadequacy.

III. IMPLEMENTATION

A. Methodology for Computing the Initial
Supersystem Wavefunction

The nonlinear problem defined by (II.9) is a mini-
mization of the single determinant electronic energy
of a system with both SCFMI and constant density
constraints. Methods for SCFMI optimization are
well known40,52,56,59,62,63. However, the proper pa-
rameters for optimization on the surface of constant
ρ(r) let alone those for the surface defined by the
intersection of the SCFMI constraint and constant
ρ(r) are not known.
We therefore resort to the use of Lagrange multi-

pliers and define the following penalty function:

Epenalty [δP] =
1

2
δPµν (µν|λσ) δPλσ (III.1)

(µν|λσ) =
∫∫

ωµ(1)ων(1)r
−1
12 ωλ(2)ωσ(2)dr1dr2

(III.2)
The deviation in the density matrix, P, is defined as
δP = P − Ptarget, where Ptarget produces the tar-
get density, ρtarget (r) = Ptarget (r, r). The energy
penalty is the coulomb interaction of the density er-
ror, δρ(r), with itself, and it will be zero when the
densities are identical.
We can write a Lagrangian for this constrained

optimization problem with a single Lagrange multi-
plier, λ, as:

L [P, λ] = E [P] + λEpenalty [δP] (III.3)
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where E is the usual electronic energy as defined
by Hartree-Fock or some Kohn-Sham density func-
tional with at most 1PDM dependence. Stationarity
with respect to λ requires that (III.1) be zero. We
can solve this optimization problem using an outer
loop that monotonically increases λ, which is ideally
infinite but is in practice chosen to be sufficiently
large such that the penalty function (III.1) is zero
to within tolerance. An inner loop solves for the
optimal P by (III.3) at fixed λ and of course fixed
Ptarget.

The relevant partial derivatives for the optimiza-
tion at fixed λ are:

(Fλ)µν ≡
∂L

∂Pµν
= Fµν + λ(Fpenalty)µν (III.4)

(Fpenalty)µν = (µν|λσ) δPλσ (III.5)

The above expression for Fλ, (III.4), can be used
in place of the normal density derivative of the elec-
tronic energy, F, in standard gradient- or eigenvalue-
based nonlinear solvers to obtain the optimal P
at fixed λ where P has either full SCF64,65 or
SCFMI52,56,59 degrees of freedom.

Because of the difficulty in converging the con-
stant λ problem for λ large, the protocol employed
in this work consists of a combination of two algo-
rithms. The first is preconditioned limited-memory
Broyden-Fletcher-Goldfarb-Shanno (L-BFGS)66 us-
ing orbital rotation parameters52,64,67 and employ-
ing a robust line search68. The preconditioner used
for both surfaces considered is all of Fλ · P∆∆,
which in the case of SCF can be written in terms
of Fλ occupied-virtual eigenvalue differences after
pseudocanonical transformation and in the case of
SCFMI involves a series of nested preconditioned lin-
ear equations that have been described previously52.
The second algorithm, used ideally for only a sin-
gle step after the first algorithm has converged to
a modest tolerance, is Newton-Raphson. The linear
equation for the solution of the Newton step by con-
jugate gradient is generally poorly conditioned, but
it can be adequately solved if λ is not too large.

The Hessian-vector-product needed in the conju-
gate gradient iterations for the solution of the New-
ton step (as well as for the determination of the
FERF subspaces52) can either be computed analyt-
ically or by finite difference69 (with an orbital dis-
placement of order 1.0 × 10−4) when second func-
tional derivatives are not available. In the former
case, the second density derivative of the Lagrangian

(III.3) with respect to the density matrix is needed.

∂2L
∂Pµν

α ∂Pπσ
β

= (Παβ)µνπσ + λ (µν|πσ) (III.6)

(Παβ)µνλσ ≡
∂2E

∂Pµν
α ∂Pλσ

β

(III.7)

The tensor Π involves the two electron integrals and
second functional derivatives of the exchange corre-
lation energy in the case of DFT. In practice, the
Lagrangian first (III.4) and second (III.6) density
derivatives are simply used in place of F and Π re-
spectively in the usual expressions for the Hessian
with respect to electronic degrees of freedom.52,70

We use this method based on the coulomb inter-
action of the density error with itself instead of the
constrained DFT approach48 to the constant ρ(r)
constraint for two reasons. It is straightforward to
implement, and it has a single parameter, λ, which
can be used to increase the fidelity of the 3-space
density matching as opposed to the many param-
eters present in the additional basis expansion of
the constraint potential that are necessary in DEDA.
In principle either approach can exactly enforce the
constraint, but in practice, due to computational
limitations, neither will, and so some validation will
be necessary.
There are several measures of the deviation of the

optimized density from the constant ρ(r) surface.
One possibility is the penalty function itself (III.1)
though this has little physical relevance. Another
with the meaning of displaced electrons49 is the in-
tegral of the absolute value of the deviation in the
density:

ϵρ =

∫
r

|ρ(r)− ρtarget(r)| (III.8)

However, what is perhaps most meaningful in as-
sessing constant ρ(r) relaxation is a measure with
units of energy. Both the electron-nuclear attrac-
tion and electron-electron repulsion (coulomb) en-
ergies should remain constant during constant ρ(r)
density relaxation. Thus, the changes in these con-
tributions give an estimate of the portion of the en-
ergy change upon relaxation that is illegitimate, de-
riving from (small) changes in ρ(r) that violate the
constant density constraint due to finite λ etc.

B. Computational Details

Calculations in this work were performed with a
development version of QChem71,72. The SCFMI
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subspaces used to compute the ρfrz-SCFMI model
are non-orthogonal FERF DQ subspaces, which have
been described previously52. The FERF models do
not have the weakness of a trivial basis set limit
that simple fragment-AO-blocked SCFMI schemes
possess. The aug-cc-pVQZ basis of Dunning73,74 is
used for all single point calculations both because
it allows direct comparison with previously reported
results of Wu in some cases and because this basis
has been shown to be adequate for the construction
of FERF DQ subspaces52. All single point calcula-
tions employ the B3LYP75–77 functional likewise for
direct comparison but also because it is in common
use with deficiencies mainly in its description of dis-
persive intermolecular interactions, which are not of
primary interest in this work. No corrections for ba-
sis set superposition error were performed because
aug-cc-pVQZ is sufficiently large that BSSE effects
are negligible. If a much smaller basis set were used,
constant density relaxation would be diminished due
to the decreased number of linearly dependent basis
function products, and it would also become more
difficult to find a density matrix that collapses to
ρsum. Using FERFs (rather than AOs) to define
the SCFMI subspaces would also become less nec-
essary. For calculations involving constant density
constraints, the energy values reported are for λ =
2000 a.u. unless otherwise indicated.

IV. VALIDATION OF CONSTANT DENSITY
CONSTRAINT ALGORITHM

The purpose of this section is to validate our
method of optimizing single Slater determinant
wavefunctions with approximate enforcement of the
constraint of a fixed ρ(r). We aim to establish the
size of the errors due to inexact constraint satisfac-
tion so that we can later be sure that such errors are
smaller than the differences between the four dif-
ferent initial supersystem wavefunction definitions
compared in Section V.
We begin with the neon dimer because DEDA

results are available49 using both a large (aug-cc-
pVQZ) potential basis set (PBS) as well as a com-
plete (potential) basis set (CBS) limit extrapola-
tion procedure. The difference between Wu’s aug-
cc-pVQZ PBS result for the frozen energy (273.76
kJ/mol) and that obtained using the finite Lagrange
multiplier coulomb penalty method with identical
constraints, ρsum-SCF, for λ=2000 is 0.53 kJ/mol
at R = 1.59Å (3.0 Bohr) with our computed frozen
energy slightly higher. This suggests that we have
done a slightly better job of enforcing the constant

density constraint in this case. The difference be-
tween the results of the two algorithms at 2.12 Å (4.0
Bohr) separation is reduced to 0.13 kJ/mol with con-
strained DFT producing the higher energy. Because
the difference between the algorithms and the mag-

nitude of E
(frz,SCF)
FRZ are both considerably smaller at

this larger separation, further analysis for the neon
dimer will focus on the internuclear separation of
1.59 Å.

The Lagrange multiplier of λ=2000 is used
throughout this work (with a few noted exceptions)
as it is a fairly large value for which the optimization
problem at fixed λ could be reliably converged for all
methods for most of the systems investigated . We
now consider convergence of the ρsum-SCF frozen en-
ergy with respect to λ at a single point (RNe−Ne =
1.59 Å= 3.0 Bohr) on the neon dimer potential en-
ergy surface to place this computational limitation
into perspective. Figure 2 shows both integrated
absolute density errors, ϵρ, (Figure 2a) and relative
frozen energies (Figure 2b) for a range of λ values
between 500 and 3000.

Figure 2a shows slow convergence of the inte-
grated density error with respect to λ, with a poly-
nomial decay of roughly λ−0.5. However, the ϵρ er-
ror measure that we compute for our finite λ=2000
calculation of the ρsum-SCF model is more than five
times smaller than the same value reported by Wu49

based on his constrained DFT method with an aug-
cc-pVQZ PBS. Based on these results and the ener-
gies discussed above, we conclude that our method-
ology for performing constrained optimizations with
fixed ρ(r) is capable of at least the same accuracy
as Wu’s scheme with the largest potential basis set
that he has employed.

Figure 2b shows the ρsum-SCF frozen energy as
computed using the coulomb penalty algorithm for
λ ≥ 500 relative to the λ=500 value. This figure
shows that, like ϵρ, the initial wavefunction energy
also converges quite slowly with respect to λ. In-
cluded as well are the finite and complete potential
basis set results from Wu49 using constrained DFT.
Our ρsum-SCF value with λ=3000 has already passed
Wu’s CBS extrapolated value for the same model,
and we can be sure that the energy will rise further
still for larger values of λ.

Next, we consider an extrapolation of the ρsum-
SCF frozen energy to the ϵρ=0 limit for the purpose
of assessing errors in our finite λ=2000 calculations.
The result of applying linear regression to the rela-
tive EFRZ vs ϵρ curve based on the data presented in
Figures 2a and 2b is displayed in Figure 2c. The cor-
responding ϵρ=0 extrapolated value relative to the
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FIG. 2: Convergence of the ρsum-SCF model as a
function of the Lagrange multiplier, λ, in the

coulomb penalty algorithm for the
B3LYP/aug-cc-pVQZ neon dimer at R = 1.59 Å.

energy offset is given by the intercept, and it is dis-
played as a dashed line in Figure 2b for perspective.
Choosing λ=2000 roughly halves the difference be-
tween the fairly easily obtained λ=500 value and our
estimate for the λ → ∞ limit. λ=2000 thus seems
like a reasonable compromise as the returns on ac-
curacy for increasing λ diminish quite rapidly, and
converging the calculations becomes increasingly dif-
ficult. These energy errors with λ=2000 are on the
order of 1 kJ/mol, which is fairly small compared
both to the absolute frozen energies and to the differ-
ences in the frozen energies produced by the various
models that we will present in Section V.

Wu et al.48 have also applied the ρsum-SCF
model for the frozen energy to the water dimer us-
ing B3LYP/aug-cc-pVQZ single points and a cc-
pVTZ expansion of the constraint potential. Fig-
ure 3a shows the relative values of the ρsum-SCF
frozen energies computed for the water dimer using
the coulomb penalty and constrained DFT48 algo-
rithms . The constrained DFT result lies below the
coulomb penalty result for compressed intermolec-
ular distances, and, as was seen in the case of the
neon dimer, this order is reversed at larger sepa-
rations. Both algorithms produce fairly similar re-
sults throughout the coordinate, illustrating again
that the two algorithms for enforcing the constant
density constraint, the finite λ coulomb penalty and
finite potential basis constrained DFT, are of com-
parable accuracy.

Figure 3b shows, based on integrated density er-
ror, ϵρ, the degree to which the constant density
constraint is violated by our coulomb penalty al-
gorithm calculation of the ρsum-SCF initial super-
system wavefunction. These errors are considerably
smaller than those for the neon dimer shown in Fig-
ure 2a, and the errors are also smaller for greater
inter-monomer separations. This shows the compa-
rably greater ease of enforcing the constant density
constraint when interactions and thus the driving
forces for density rearrangements are diminished.

Energetic consequences of not exactly enforcing
constant ρ(r) during constrained density optimiza-
tion include any changes in the Coulomb repulsion
and electron-nuclear attractionenergies. Changes
in these quantities between pairs of feasible points,
such as Pfrz and ρfrz-SCF, are entirely due to vi-
olations of the constant density constraint since
these energies depend on on the electron density
alone. Figure 4 shows the energy difference between

E
(frz,SCF)
initial and Efrz

initial for the neon dimer along with
a simple decomposition of the energy change based
on electronic Hamiltonian terms. The unwanted en-
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FIG. 3: Assessment of the B3LYP/aug-cc-pVQZ
ρsum-SCF frozen energy computed by the λ=2000

coulomb penalty algorithm (J penalty) and
previously reported cc-pVTZ potential basis set
constrained DFT results from Wu et al.48 (Wu
TZ). The system is the MP2/aug-cc-pVQZ

optimized and rigidly displaced water dimer at
various H-bond (RO−H) distances.
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FIG. 4: Changes in B3LYP/aug-cc-pVQZ neon
dimer energy components for ρfrz-SCF optimized

with λ = 2000, relative to Pfrz. Changes in
coulomb and electron-nuclear contributions to the
interaction energy are zero at constant density, so
deviations from zero are measures of constant

density constraint violation. The kinetic energy is
expected to change at constant density. Changes in
the exchange-correlation contribution to binding

are not shown but can be inferred as the remaining
contribution to the total relaxation.

ergy lowering in the electron-nuclear and electron-
electron coulomb interactions from incomplete con-
straint satisfaction is typically fairly small: < 5
kJ/mol for the internuclear distances examined here.
The change in the coulomb interaction is consider-
ably smaller than the change in the electron-nuclear
attraction, likely because the penalty term is in fact
the coulomb interaction of density deviations. The
total relaxation is generally well described by the
change in the kinetic energy, which does have density
matrix dependence. The remaining relaxation not
displayed here is relatively small and corresponds to
changes in the exchange-correlation energy.

In conclusion, the accuracy of our coulomb-based
method for constant ρ(r) energy minimization is at
least comparable to that of Wu’s constrained-DFT-
based method. Inexact constraint satisfaction dur-
ing constant density energy minimization lowers the
frozen energy by on the order of 1 kJ/mol for Ne2.
Figures similar to Figure 4 appear in the SI for differ-
ent systems, and they indicate that this single digit
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kJ/mol error is typical in the strongly overlapping
regime.

V. RESULTS

In what follows, the numerical values given for
all frozen energy models employing constant density
constraints, ρsum-SCF, ρfrz-SCF, and ρfrz-SCFMI,
were computed using the coulomb penalty algorithm
with λ=2000 as validated above. We will see that
differences in the frozen energy computed by the four
different definitions (Table I) are often considerably
larger than the energetic errors due to inexact con-
straint satisfaction (which we have shown to be on
the order of 1 kJ/mol). Thus, we will be able to
draw meaningful conclusions from our numerical re-
sults about the qualitative differences between the
various definitions (or the lack thereof). The Sup-
plemental Material78 contains data (Figures S1-S4)
for each of the following examples, confirming this
assertion.

A. Neon Dimer

We begin by examining the compressed neon
dimer to compare the four different frozen energy
models summarized in Table I. Figure 5 shows the
B3LYP/aug-cc-pVQZ frozen energies computed for
the neon dimer at repulsive inter-atomic distances,
both in absolute terms (Figure 5a) and relative to
the basic frozen orbital model, Pfrz, for clearer illus-
tration of differences (Figure 5b).
The total interaction energy for the neon dimer is

also included in Figure 5 to highlight the consider-
able range in the computed non-frozen contributions
to the interaction energy. At the most compressed
geometry considered, the non-frozen contribution,
the difference between the total interaction energy
and the frozen energy component as determined by
a given method, varies by more than a factor of five
depending on which constraints are chosen for the
initial wavefunction optimization!
The main conclusion that can be drawn from Fig-

ure 5b is that the restriction of the density matrix
to the SCFMI surface even with a constant density
constraint already in place is significant. Compar-
ing the ρfrz-SCF and ρfrz-SCFMI curves shows that
the inclusion of interfragment degrees of freedom in
the density matrix optimization at constant ρ = ρfrz
results in more than four times the energy lowering
relative to the energy of Pfrz, which has the same
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ρfrz. Thus 80% of the energy lowering in ρfrz-SCF
can be identified as constant density charge trans-
fer (CT) which dominates the much smaller energy
lowering due to intrafragment relaxation.
From Figure 5b one can also see that despite the

energetic optimality criterion present in the ρsum-
SCF method, the corresponding energy is still con-
siderably higher than that of the unoptimized frozen
orbital density matrix, Pfrz, for the most repulsive
coordinate values considered. ρsum-SCF does not
have a meaningful unrelaxed analog and thus can be
either higher or lower than Pfrz in the overlapping
regime. Indeed, the energetic ordering of the Pfrz

and ρsum-SCF methods is reversed at greater sepa-
rations where the difference between the computed
frozen energies drops below 0.5 kJ/mol.

B. Water Dimer

The water dimer is a fairly weakly interacting sys-
tem for the displacements considered. Since charge
transfer is known to contribute to the hydrogen
bond79–81, it is very interesting to see the extent
to which constant density CT can help to lower the
frozen energy during initial wavefunction optimiza-
tion. Figure 6 shows results for the 4 frozen energy
models (Figure 6a) as well as results offset relative
to that of Pfrz (Figure 6b). In this case, there is
relatively little difference between the ρsum-SCF and
ρfrz-SCF results, suggesting that the target densities
are roughly the same.
There is a clear distinction between the ρfrz-SCF

and ρfrz-SCFMI schemes, indicating that the choice
of orbital degrees of freedom is crucial. The ρfrz-
SCFMI scheme permits almost no relaxation rela-
tive to Pfrz, but the relaxation when all SCF orbital
degrees of freedom are included is substantial on the
scale of the interaction energy, approximately halv-
ing the non-frozen contribution to the interaction
out to a separation of 2.6 Å. For example, at RO−H

= 2.0 Å, constant density interfragment relaxation
decreases the non-frozen contribution from 11.16 to
5.76 kJ/mol.
The water dimer example demonstrates the im-

portance of the SCFMI constraint during initial
wavefunction optimization as it eliminates the sub-
stantial energy lowering associated with electron de-
localization that is allowed in the ρfrz-SCF and ρsum-
SCF methods and thus the DEDA scheme. This
contribution is properly part of CT in an EDA. This
example also illustrates that for weakly interacting
systems near or beyond the equilibrium separation,
the energy lowering from constant density polariza-
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FIG. 6: Comparison of the B3LYP/aug-cc-pVQZ
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tion, the difference between the frozen energy as
computed by the Pfrz and ρfrz-SCFMI schemes, is
negligible. It thus seems unnecessary to perform the
ρfrz-SCFMI initial wavefunction optimization to re-
move constant density polarization in the case of the
water dimer.

C. Ammonia Borane Complex

The ammonia borane complex is included to as-
sess whether systems more strongly interacting than
the water dimer can display significant constant den-
sity relaxation even with the SCFMI orbital rotation
constraint in place. The ammonia borane structures
considered were obtained by a B3LYP/aug-cc-pVTZ
relaxed scan of the RN−B coordinate (equilibrium
RN−B = 1.66 Å at this level of theory).
Figure 7 shows absolute (Figure 7a) and relative

(Figure 7b) frozen energies as computed by the var-
ious initial wavefunction methods. The relaxation
relative to the energy of the frozen orbitals, Pfrz,
is considerably larger for the methods that allow
all orbital rotations (ρfrz-SCF and ρsum-SCF) than
for ρfrz-SCFMI, showing again the importance of
the SCFMI orbital rotation constraint even past the
equilibrium separation. This strengthens the claim
that most of the difference between the frozen en-
ergy of Pfrz and that of ρsum-SCF used in DEDA
is due to what SCFMI-based EDA schemes would
consider charge transfer.
Due to constant density CT, the computed frozen

interaction is attractive by a separation of 1.55 Å
for ρsum-SCF and by a separation of 1.70 Å for ρfrz-
SCF. On the other hand, by the Pfrz and ρfrz-SCFMI
models, the frozen energy is repulsive until a sepa-
ration of more than 2.20 Å is reached. The effect
of constant density polarization (the energy differ-
ence between the Pfrz and ρfrz-SCFMI models) is a
quite substantial 50 kJ/mol for the most compressed
coordinate values. However this value is still small
compared to the magnitude of both the frozen and
non-frozen EDA contributions and thus has little ef-
fect on the qualitative interpretation of the interac-
tion.
Inclusion of relaxation due to constant density po-

larization in the frozen energy (i.e. ρfrz-SCFMI) is
worthwhile in principle for generating quantitative
results, with the caveat of the presence of energetic
errors associated with inexact constraint satisfac-
tion. The ρfrz-SCF and ρsum-SCF methods on the
other hand produce both quantitatively and qual-
itatively different results from Pfrz, approximately
halving the non-frozen contribution in the equilib-
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rium region. From the SCFMI-based EDA view-
point, this change is unwanted, because it originates
largely from constant density CT (i.e. the difference
between ρfrz-SCFMI and ρfrz-SCF), which physically
does not belong in the frozen energy.

D. Ethane Dissociation

Finally, we consider the frozen interaction energy
of two methyl radicals, one of net α and one of net β
spin as the first step in forming the covalent bond in
the ethane molecule. Figure 8 shows both absolute
(Figure 8a) and relative (Figure 8b) frozen energies
computed for the four different models.
There is a dramatic difference between the frozen

energy computed by schemes that include constant
density CT degrees of freedom, ρfrz-SCF and ρsum-
SCF, and those that do not. The methods includ-
ing the full SCF degrees of freedom during con-
stant density optimization both suggest that bond-
ing in ethane can be described almost entirely by
the frozen interaction term with minimal contribu-
tions from non-frozen interactions, polarization and
charge transfer. On the other hand, both the Pfrz

and ρfrz-SCFMI schemes suggest that the frozen con-
tribution at this separation is destabilizing and that
bonding is attained only after considering the collec-
tively much larger non-frozen contributions.
We constrain the total spinless density instead of

the separate spin densities in our constant 3-space
density models, so it is possible for spin polariza-
tion to occur. To characterize the spin polarization,
Figure 9 shows

⟨
S2

⟩
for each of the initial super-

system wavefunctions for ethane along the carbon-
carbon bond breaking coordinate. Both the ρfrz-
SCF and ρsum-SCF initial wavefunctions show con-
siderable spin depolarization (i.e. reduction of

⟨
S2

⟩
from its frozen orbital value ) at short C-C distances.
By contrast, the spin depolarization is much smaller
in the ρfrz-SCFMI model.
As ρfrz-SCF and ρsum-SCF permit constant den-

sity CT, we conclude that spin recoupling at con-
stant density is responsible for the spin depolariza-
tion in Figure 9 as well as the substantial energy
lowering shown in Figure 8. For EDA purposes, it
is essential that this constant density CT should be
excluded from the frozen energy, as is the case in
the ρfrz-SCFMI and Pfrz models. Chemical bonding
should not arise from the electrostatic, Pauli and dis-
persion interactions contained in a well-posed frozen
energy. On the other hand, it is very interesting that
density changes are a secondary contribution to the
CC bond, relative to relaxation at constant density.
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FIG. 8: B3LYP/aug-cc-pVQZ frozen energy models
for the rigidly RC−C dissociated net α and net β
spin methyl fragments of B3LYP aug-cc-pVTZ

optimized D3d (staggered) ethane.
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FIG. 9: B3LYP/aug-cc-pVQZ calculations of
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for initial supersystem wavefunctions of the rigidly
dissociated B3LYP/aug-cc-pVTZ optimized D3d

staggered ethane molecule built from net alpha and
net beta spin methyl fragments. Deviations from
the
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value for Pfrz signify orbital relaxation

that changes the extent of spin polarization.

This is perhaps an encouraging conclusion from the
perspective of reactive force fields.
The energy lowering associated with constant den-

sity polarization (i.e. E
(frz,SCFMI)
initial -Efrz

initial), is about
100 kJ/mol at Re, and it becomes more substan-
tial for shorter carbon-carbon distances. As for am-
monia borane, this changes the shape of the polar-
ization contribution in SCFMI-based EDA schemes,
particularly in the repulsive portion of the potential.
It is thus in principle desirable to incorporate con-
stant density relaxation using the ρfrz-SCFMI initial
wavefunction optimization, provided that the errors
stemming from the violation of the constant ρ(r)
constraint are sufficiently small.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we have addressed the question of
how the initial supersystem wavefunction should be
defined for energy decomposition analysis (EDA) of
Kohn-Sham density functional theory calculations.
The four different models defined in Table I were
implemented and compared. To do so, we devel-
oped an algorithm based on the coulomb interaction

of a density deviation with itself to solve orbital op-
timization problems subject to the constraint of con-
stant electron density. We presented tests to show
that the approximately constrained results are accu-
rate enough to permit useful conclusions to be drawn
about the relative energies obtained with the four
candidate frozen energy models.
The main question we have explored is the nature

of the sometimes large energy lowering relative to
the frozen orbital energy (computed via the Pfrz ap-
proach) that can be obtained by performing constant
density minimization (via the ρsum-SCF or ρfrz-SCF
methods). Our principal conclusions are as follows:

1. The large majority of the energy lowering is
associated with charge transfer (CT) relax-
ation. This is made quantitative by the dra-
matic energy difference observed between the
ρfrz-SCFMI and ρfrz-SCF methods which use
the same target density, but where CT relax-
ation is excluded by design in the former. Our
view is that this constant ρ CT should not be
a part of the frozen energy in an EDA com-
posed of physically well-defined terms. It may
be valuable for the development of force fields
that have no explicit CT terms.

2. There is a much smaller effect from the choice
between using ρfrz or ρsum in the overlapping
regime where they do differ. However, the lat-
ter does not necessarily admit feasible points
in finite basis sets.

3. Including constant ρ polarization in the initial
supersystem wavefunction, via the ρfrz-SCFMI
method, is an advance over the simple unre-
laxed Pfrz approach in an EDA, at least in
principle. After all, intramonomer relaxation
that does not change monomer charge distri-
butions is not electrical polarization. However,
our results show that this relaxation does not
typically affect the qualitative interpretation
of intermolecular interactions of weak to mod-
erate strength. Our results therefore support
the validity of existing EDAs which employ the
frozen orbital model.

4. The merits of permitting orbital relaxation
at constant density must be weighed against
some illegitimate energy lowering introduced
by imperfect constraint satisfaction. With our
present methods, tests suggested this is not a
serious problem when the relaxation is itself
large, such as in the case of the SCF methods
or in the case of the SCFMI approach in the
strongly overlapping regime.
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Regarding future work, it may be worthwhile,
though it is clearly difficult, to further develop algo-
rithms for more accurately enforcing constant den-
sity constraints. After all, the primary argument
against the removal of constant density polariza-
tion from the initial supersystem wavefunction is
the computational effort that must currently be ex-
pended for modest improvements.
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