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Reward Reinforcement Creates Enduring Facilitation of
Goal-directed Behavior

Ian C. Ballard1 , Michael Waskom2, Kerry C. Nix3, and Mark D’Esposito4

Abstract

■ Stimulus–response habits benefit behavior by automatizing
the selection of rewarding actions. However, this automa-
ticity can come at the cost of reduced flexibility to adapt
behavior when circumstances change. The goal-directed
system is thought to counteract the habit system by provid-
ing the flexibility to pursue context-appropriate behaviors.
The dichotomy between habitual action selection and flex-
ible goal-directed behavior has recently been challenged by
findings showing that rewards bias both action and goal
selection. Here, we test whether reward reinforcement can
give rise to habitual goal selection much as it gives rise to
habitual action selection. We designed a rewarded, context-
based perceptual discrimination task in which performance

on one rule was reinforced. Using drift-diffusion models and
psychometric analyses, we found that reward facilitates the ini-
tiation and execution of rules. Strikingly, we found that these
biases persisted in a test phase in which rewards were no lon-
ger available. Although this facilitation is consistent with the
habitual goal selection hypothesis, we did not find evidence
that reward reinforcement reduced cognitive flexibility to
implement alternative rules. Together, the findings suggest
that reward creates a lasting impact on the selection and exe-
cution of goals but may not lead to the inflexibility character-
istic of habits. Our findings demonstrate the role of the reward
learning system in influencing how the goal-directed system
selects and implements goals. ■

INTRODUCTION

Habits are powerful determinants of daily decisions and
contribute tomaladaptive behaviors in neurocognitive dis-
orders (Wood & Rünger, 2016; Lhermitte, 1983). Habitual
behavior is often characterized as a rote or automatic
behavioral response to a specific stimulus, such as stop-
ping at a red light (Knowlton, Mangels, & Squire, 1996;
Schneider & Shiffrin, 1977). However, many habits oper-
ate at the level of goals rather than specific actions. For
example, someone who has a habit of exercising will habit-
ually pursue exercise-related behaviors, such as navigating
to a gym or researching exercise-relevant information. In
both of these cases, the pursuit of a goal (stopping at a red
light or exercising) is beneficial; however, in the former
case, a specific action, pressing the brake pedal, achieves
the goal, whereas in the latter case, a variety of context-
dependent strategies are useful for goal pursuit. The con-
cept of a “goal habit” postulates that the selection of a goal
state is influenced by reward learning (Cushman &Morris,
2015), and flexible cognitive control strategies are
deployed to pursue these goals. Maladaptive compulsions
in clinical contexts often involve habitual activation of
goals. For example, a person suffering from drug addiction
may exhibit goal habits, such as exploring novel strategies
for attaining drugs, and stimulus–response habits, such as

drug-cue-induced approach behavior ( Vandaele &
Ahmed, 2021). Recent research has emphasized the role
of the habit system in driving stereotyped mental behav-
iors in anxiety (Brewer & Roy, 2021), anorexia nervosa
(Steinglass & Walsh, 2006), obsessive–compulsive disor-
ders (Voon et al., 2015; Gillan & Robbins, 2014), and in
Parkinson disease (Weintraub, 2008). However, the neural
and psychological mechanisms underlying goal habits
remain underspecified.

Habitual action selection is thought to arise in part from
the dopaminergic adjustment of corticostriatal synaptic
strength (Niv, 2009; Graybiel, 1998; DeLong, 1990). In
response to reward, dopamine release strengthens the
corticostriatal synapses of cortical pools representing a
chosen action. This corticostriatal plasticity favors the
future selection of actions that lead to rewards. Neurons
in the lateral pFC represent abstract rules and goals (Wallis,
Anderson, & Miller, 2001) rather than actions but share a
similar, overlapping corticostriatal architecture with
motor cortex (Haber, 2011; Alexander, DeLong, & Strick,
1986). It has been hypothesized that reward reinforces
abstract task representations analogously to cortical action
representations (Radulescu, Niv, & Ballard, 2019; Collins &
Frank, 2013; Badre & Frank, 2012; Frank & Badre, 2012;
Ribas-Fernandes et al., 2011). Recent research has con-
firmed key predictions of this model by showing that
reward history influences the selection of goal states
(Cushman & Morris, 2015) and hierarchically structured
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task sets (Rmus, McDougle, & Collins, 2021; Eckstein &
Collins, 2020; Collins & Frank, 2013). The present study
builds upon this work by testing whether reward rein-
forcement of abstract representations causes goal habits.

We designed a behavioral experiment to test three key
predictions of the goal habit model. First, execution of
habitual goals ought to be improved relative to other
goals. Second, the ability to adapt goals under changing
contexts should be reduced. Third, habitual goal selection
should persist even after the conditions that gave rise to
the habit have changed. A key feature of goals is that they
act in a context-dependent manner to influence behavior.
For example, the way in which a person responds to their
laptop will depend on the context of their goals. We oper-
ationalized the context-dependence of goal-directed
behavior using a rule-based perceptual discrimination
task. In this task, the way in which participants responded
to a perceptual stimulus depended on the rule context. We
found that reward reinforcement of rules influenced
behavior in a manner consistent with the first and third
predictions: Execution of the high-reward rule was
improved, and this effect persisted after the opportunity
to earn rewards was eliminated. However, we did not find
evidence supporting Prediction 2: The ability to adapt
behavior away from the high-reward rule was not reliably
influenced by reward reinforcement. These results show
that reward creates enduring impacts on the execution
of rule-guided behavior but does not impair cognitive
flexibility (de Wit et al., 2018).

METHODS

Participant Details

The study design and methods were approved by and
followed the ethical procedures of the University of
California, Berkeley Committee for the Protection of
Human Subjects. Eighty-six participants provided written
informed consent, 65 are female participants, median
age is 20 years, SD is 4.83 years, and range is 18–51 years.
Data from the test blocks are missing from one partici-
pant because of a computer error. The target sample size,
85 participants, was chosen to have 80% power to detect a
medium-sized correlation (r = .3) at an α of .05. Because
we did not identify any outlier participants in behavioral
performance (defined as 3 SDs below themean accuracy)
and all participants performed well-above chance, no par-
ticipants were excluded.

Task Design

Participants performed a context-based perceptual dis-
crimination task in which they could earn rewards for
accurate performance (Waskom, Okazawa, & Kiani,
2019; Waskom & Wagner, 2017). On each trial, partici-
pants responded based on one of three rules, color, shape,
or motion direction of a field of colored, moving shapes.

These rules capture the context-dependence of goal-
directed behavior by determining which dimension of
the stimulus must be attended to generate an appropriate
response. The dots could be primarily pink or green, pri-
marily circles or crosses, andmoving primarily up or down.
Dominant color, shape, and motion direction were bal-
anced across each run. Participants were given up to
2 sec to respond using the “1” and “2” keys on a standard
keyboard and could respond at any time during the stim-
ulus period. The stimulus remained on the screen for 2 sec
regardless of when the participant responded. All three
rules shared the same keys, that is, response “1” could sig-
nal “green” on a color trial and “up” on a motion trial. The
rule indicating which dimension to respond to was cued
simultaneously with stimulus onset by a three-to-five-
sided polygon drawn at the center of the stimulus array.
The assignment between shape cue and rule remained
consistent throughout the study for each participant and
was counterbalanced across participants.
Coherence varied pseudorandomly across trials and

independently across the three dimensions of each stimu-
lus. Coherence varied in four evenly spaced steps from
hardest (least coherent) to easiest (most coherent), with
color and shape coherence ranging from 0.52 to 0.64 (zero
coherent information is 0.50) andmotion coherence rang-
ing from 0.02 to 0.14 (zero coherent information is 0.0).
These levels were chosen based on piloting to provide a
range in performance from slightly above chance accuracy
to near-ceiling accuracy on all three rules. There were dif-
ferences in accuracy between the rules, F(1.73, 147) = 20,
η2g = .059, p < .001, shape M: 72.2%, motion M: 74.1%,
colorM: 77.1%; however, there were no differences in RT,
p> .2. Although this accuracy difference contributes noise
to our data, rule counterbalancing was designed to pre-
vent any systematic influence on the reported results.
The task was organized into a reward phase and a test

phase. Participants were instructed that, during the reward
phase, some trials carried the potential to earn rewards for
correct responses. Incorrect responses prevented the par-
ticipant from earning a reward. One rule was randomly
chosen for each participant to be the high-reward rule.
High-reward rule trials carried an 85% probability of
reward for correct responses. Low-reward rule trials car-
ried a 15% probability of reward for correct responses.
Because participants were only rewarded for correct trials,
and the lower coherence levels in the task were challeng-
ing, the effective reward rate was 64.9% for the high-
reward rule and 7.6% for the low-reward rules. We chose
to manipulate reward probability, rather than reward mag-
nitude, because of theoretical and empirical work suggest-
ing that probabilistic rewards optimally drive learning
(Wilson, Shenhav, Straccia, & Cohen, 2018). Participants
performed six blocks of 96 trials for 572 trials of the reward
task. Participants were told that one of the reward blocks
would be selected randomly to count for real, and rewards
from that block, each worth $0.50, would be paid as a
bonus.We chose tomake rewards contingent on accuracy,

2848 Journal of Cognitive Neuroscience Volume 36, Number 12



rather than speed and accuracy, because, due to the
difficulty of the task, incentivizing fast responses would
have resulted in lower reward rates and could have
reduced the salience of our reward manipulation.
Rewards were signaled by the color of the fixation cross

changing to gold for 500 msec. On correct, unrewarded
trials, there was no feedback. The fixation cross turned
red on error trials, but participants were not penalized
for incorrect responses. The task is very difficult on low
coherence trials, and we did not want to penalize partici-
pants for making incorrect responses that are expected in
the task. Otherwise, the task may have been much less
rewarding overall. However, we wanted participants to
stay on task, so we deducted rewards for missed
responses. The fixation cross flickered red on trials where
the participant failed to respond during the stimulus
window, indicating to participants that a reward was
deducted. Feedback was presented 300 msec after the
offset of the stimulus. The intertrial interval after the
feedback offset, or kinematogram offset on trials with
no feedback, was 1000 msec.
Immediately after the reward phase, participants took

an enforced 6-min break before beginning the test phase.
The participants were instructed verbally at the beginning
of the session that the test block was identical to the
reward blocks, but there was no opportunity for rewards.
We intended for the break to create a clear boundary
between the phases and to provide an opportunity to con-
solidate reward learning (Murty, Alexa Tompary, Adcock,
& Davachi, 2017). During the break, the task instructions
on the screen said: “These blocks will not have rewards,
but please try your hardest.” Participants performed two
blocks of 96 trials of extinction for 192 trials.
To measure the effect of rule habit on cognitive flexibil-

ity, rule order was presented in an unsignaled miniblock
structure. Within each miniblock, participants performed
only two out of the three rules. These miniblocks allowed
us to compare performance on the same rule when com-
peting against the high-reward rule versus not competing
against the high-reward rule. Each miniblock of 16 trials
contained an equal number of trials for each of the two
rules in a pseudorandom order. Each miniblock, and
hence the task, contained a full crossing of instructed rules
and coherence levels. Each run contained six miniblocks
comprising two instances of the three possible pairwise
combinations of rules. Miniblocks with the same two rules
were not repeated sequentially, and the first trial of each
miniblock was always the rule not included in the previous
miniblock. Participants were not instructed on the mini-
block structure.
Participants were trained on the behavioral task in a 2-hr

session 1–3 days before the main task. Participants first
practiced each rule one at a time in blocks of 40 trials for
840 trials. During this training, the difficulty was increased
by adjusting the coherence in a three-down-one-up stair-
case (i.e., the coherence was reduced after three consec-
utive correct responses and increased after every error).

Subsequently, participants were instructed on the cue-rule
assignments and performed two practice blocks of 96
trials. These blocks were identical to the main task
except that they had no rewards and trivially easy coher-
ence. The cue-rule assignments from training were con-
sistent for the rest of the study. Finally, participants
performed six practice blocks of the main experimental
task without rewards.

Data Analysis

Data were analyzed using custom code written in Python.
For continuous dependent variables (e.g., RT), mixed-
effects models were implemented using the lmer package
in R 4.2.0 (Bates, Mächler, Bolker, & Walker, 2015).
Because RTs are positive and non-Gaussian, RTs were
log-transformed before being entered as dependent
variables. For binary dependent variables (accuracy),
mixed-effects models were implemented using the glmer
package and a binomial link function. All mixed-effects
models contained random intercepts for each participant
and random slopes for rule coherence. We chose this ran-
dom effects approach because theoretical and modeling
work shows that mixed-effects models generalize most
effectively when they use the maximal random effects
structure that is justified by the design and does not create
convergence issues (Barr, Levy, Scheepers, & Tily, 2013).
Mixed-effects models with random slopes for rule type
failed to converge and were therefore removed in our
model. Data plots were created using Seaborn 0.11.2
(Waskom, 2021).

Drift-diffusion Modeling

The underlying decision-making processes in our task
were assessed using a drift-diffusion model (DDM). The
DDM characterizes decision-making as noisy evidence
accumulation over time. In our DDM models, there is a
variable period before evidence initiation begins (initia-
tion time), after which evidence noisily accumulates
toward the correct response with an average rate deter-
mined by the drift rate. Once evidence for a response
passes a threshold, determined by the decision boundary,
a response is made. Drift-diffusion modeling was per-
formed using HDDM 9.2 (hierarchical drift-diffusion
model) (Wiecki, Sofer, & Frank, 2013). This hierarchical
Bayesian model allows simultaneous estimation of model
parameters for the entire group of participants while con-
straining parameter estimates for individual participants.
Models were fit independently for the reward reinforce-
ment and extinction test phases using Markov-chain
Monte Carlo with five chains of 20,000 samples. We dis-
carded the first 10,000 samples as burn-in and thinned
the chains by retaining only every fifth sample, which
resulted in 10,000 samples from the posterior distribu-
tion. The Gelman–Rubin statistic was less than 1.1 (max
r-hat<1.01) for all parameters, indicating that the five chains
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converged to the same stationary distribution. Our models
assumed that each participant’s parameters were fixed
across trials, as the more complex trial-by-trial variability
models failed to converge. Models assumed a 5% outlier
rate. Posterior predictive checks averaged across 500 sim-
ulations of the task for all participants to derive predicted
accuracy and RTs.

To test different hypotheses about the impact of reward
in our task, we fit six different models that varied in which
parameters of the drift-diffusion process were affected by
rule type. We modeled the effects of experimental condi-
tions on drift-rate, decision threshold, and initiation time
parameters using a within-subject regression model,
which allowed us to account for individual differences in
overall task performance by estimating individual partici-
pant intercepts for each DDM parameter. Our winning
model, which includes the effect of experimental condi-
tion on drift rate, decision threshold, and initiation time,
is specified as:

Drift rate: 1 + θc coherence + θdrift_rulerule_type.
Decision Threshold: 1 + θthreshold_rulerule_type.
Initiation time: 1 + θinitiation_rulerule_type.
Rule type (rewarded, competing, and noncompeting)

was modeled using contrast coding with noncompeting
rules set as the baseline. The slope parameters of the
regression model, θ, were fixed effects whereas the inter-
cepts were random effects. The regression model param-
eters were fit jointly with the default parameters of the
hierarchical DDMmodel. The other five models we tested
varied in whether rule type influenced drift rate, decision
threshold, or threshold (1: drift rate only, 2: decision
threshold only, 3: initiation time only, 4: drift rate and deci-
sion threshold, 5: drift rate and initiation time). In all
models, the coherence of the kinematogram influenced
the drift-rate parameter (θc).

RESULTS

The participants performed a rewarded, context-based
perceptual discrimination task (see Figure 1). One of the
rules was selected as the high-reward rule, and correct per-
formance on that rule yielded a higher reward probability
than the other rules. The task is well suited to detect
habitual rule selection, as opposed to stimulus–response
or feature learning, because all three stimulus features
are present on every trial and have no statistical relation-
ship to behavioral responses or rewards. We first assessed
whether performance on the high-reward rule differed
from the low-reward rules. Although participants were
not instructed on reward contingencies, they were more
accurate, z = 6.9, p < .001, odds ratio = 1.19 (Figure 2A),
and faster, t(48840)=2.01,p=.044,ΔRT= .41% (Figure 2B),
on high-reward relative to low-reward rules. This result is
consistent with findings showing that reward motivation
facilitates the execution of demanding tasks (Chiew &
Braver, 2014; Krawczyk & D’Esposito, 2013; Locke &
Braver, 2008).

To determine whether reward reinforcement of a rule
leads to the development of a rule habit, we included a
post-learning test phase identical to the learning task,
except that participants were instructed that there was
no possibility of reward.We predicted that reward learning
during the reward phase would lead to enduring facilita-
tion of high-reward-rule execution, even when there is
no longer any incentive to improve performance on the
high-reward rule. During the test period, we found that
accuracy was higher, z = 3.6, p < .001, odds ratio =
1.15 (Figure 2A), and RTs were faster, t(15800) = 4.12,
p < .001, ΔRT = 1.73% (Figure 2B), for the previously
high-reward rule. This finding shows that reward rein-
forcement creates enduring facilitation of rule-based
behavior, consistent with a cognitive habit facilitating
the implementation of high-value goals.
An alternative account of the improved performance of

the high-reward rule is that reward biased perceptual
learning of the discrimination task (i.e., the determination
of the dominant color, shape, or motion direction),
leading to improved perceptual discrimination in the
high-reward-rule dimension (Roelfsema, van Ooyen, &
Watanabe, 2010; Law & Gold, 2008; Solley & Murphy,
1960). We sought to minimize the influence of perceptual
learning by training participants on the perceptual dis-
crimination task on a previous training day. We asked
whether there was evidence of continued perceptual
learning during the reward phase in spite of this training.
We modeled potentially nonlinear learning effects by
examining the linear and quadratic effect of trial number
on accuracy, as well as the interaction between these lin-
ear and quadratic trial number effects with rule type. We
found trending evidence for both a linear, Z = 1.82, p =
.068, odds ratio = 1.03, and quadratic, Z = −1.85, p =
.064, odds ratio = 1.03, effect of trial number on accuracy.
However, perceptual learning was not different for the
high-reward rule versus low-reward rule during learning,
ps > .1 for linear and quadratic interactions. Therefore,
although perceptual learning may have continued during
the task, it did not differ between rule types and therefore
does not account for improved performance on the high-
reward rule during the test phase.
We varied the coherence of the information in each trial

to be sensitive to behavioral effects that depend on the
difficulty of rule implementation (Waskom et al., 2019).
As expected, coherence strongly affected rule accuracy,
z = 24, p < .001, odds ratio = 1.74, and RT, t(48840) =
−19.5, p < .001, ΔRT per unit coherence = 4.56%, during
the reward phase. We predicted that reward would have
the largest effect on the more difficult trials because
these trials benefit the most from improved rule selection
and maintenance. Although we found an interaction
between rule type (high-reward or low-reward) and coher-
ence in the reward phase, accuracy Z = −4.3, p < .001,
odds ratio = 1.10; RT, t(48840) = 6.0, p < .001, ΔRT =
1.18%, it was opposite to the predicted direction: We
found that reward had the largest impact on easier trials.
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One account of this finding is that participants stood
to gain the most reward with the least cognitive effort
by improving performance on easy trials (Shenhav,
Botvinick, & Cohen, 2013). Such an adaptive cognitive
control account would not predict improved performance
during the test period because no rewards are at stake.
Contrary to this prediction, we found a similar interaction
in the test phase for rule accuracy, z = 2.46, p = .014,
odds ratio = 1.09, and a trending interaction for RTs,
t(15800) = 1.65, p = .092, ΔRT = 0.63%. In the following
section, we use a DDM approach to provide an alternative
account of this behavioral effect.
Habits improve the execution of rewarding behaviors at

the cost of reduced flexibility to adapt behavior when goals
change. Importantly, this reduction in flexibility should
only occur when habits compete against alternative behav-
iors for control of behavior. For example, a habit of exercis-
ing after work will specifically influence decisions about
after-work plans, while not influencing decisions about
themorning commute. To test for the context-dependence

of the influence of goal habits on cognitive flexibility, we
embedded a miniblock structure in the task (Figure 1C).
Within each miniblock, participants performed only two
out of the three rules. These miniblocks created epochs
where rule execution competed with a high-reward rule
and epochs without this competition. We tested whether
competitionwith a rewarded rule impaired rule execution.
During the reward phase, accuracy varied as a function of
Rule Coherence, F(2.5, 210) = 709, η2g = .62, p < .001;
Rule Type (high-reward, competing, noncompeting),
F(1.4, 121) = 6.4, η2g = .016, p = .006; and a trend
toward an interaction between Rule Type (high-reward,
competing, noncompeting) and Coherence, F(5.3, 452) =
2.1, η2g = .006, p = .061 (Figure 3A). These relationships
persisted into the test phase, where we found a main effect
of Rule Coherence, F(2.5, 210) = 215, η2g= .34, p< .001;
Rule Type (high-reward, competing, noncompeting),
F(1.9, 157) = 3.6, η2g = .006, p = .033; and an interac-
tion between Rule Type and Coherence, F(5.3, 448) =
2.8, η2g = .011, p = .015. However, contrary to our

Figure 1. Task design. (A) Participants (n = 86) performed a rewarded, context-dependent, perceptual decision-making task. On each
trial, a central cue (a triangle in the above example) indicated whether participants responded based on the shape, color, or motion of a
shape kinematogram. Accurate responses on one of the rules were rewarded at a higher rate (85%) than the other two rules (15%).
Feedback indicated whether the participant earned a reward on a rewarded trial (gold cross), was correct but unrewarded (no
feedback), or made an incorrect response on any trial (red cross). (B) After the reward period, participants took an enforced break
before commencing the test phase. This phase did not carry the possibility of reward but was otherwise identical to the reward phase.
(C) Each block consisted of miniblocks containing only two of the three rules. These miniblocks allowed us to compare performance on
the same rule when competing against the high-reward rule versus not competing against the high-reward rule. In the above example, if
motion is the rewarded rule, then color is a competing rule in a (motion, color) miniblock, and it is a noncompeting rule in a (shape,
color) miniblock.
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predictions, there was no difference in accuracy between
competing and noncompeting rules in the reward nor
the test phases, ps > .2. Consistent with impaired flex-
ibility, we found that RTs were faster for the noncom-
peting, relative to the competing rule during the
reward phase, t(48840) = 6.17, p < .001, ΔRT =
1.45% (Figure 3C). However, this effect was not pres-
ent in the test phase, p > .2.

Given that this analysis compares performance on the
same rules in different miniblock contexts, we may have
lacked the sensitivity to detect small differences in perfor-
mance. As an alternative method of testing whether
reward created a rule habit, we assessed whether switch
costs in RT varied as a function of reward. Because a habit
should facilitate the selection of high-reward rules, we pre-
dicted that switching to a high-reward rule should be faster
than switching between low-reward rules. In addition,
because habits can impair the flexibility to adapt behavior
when goals change, we predicted that switching away from
a high-reward rule ought to be slower than switching

between low-reward rules. We constructed a model with
switch type (switching away from a high-reward rule,
switching to a high reward rule, staying with the same rule,
and switching between low reward rules) and trial-type
(high-reward, competing, noncompeting) as regressors.
The trial-type regressor ensures that any differential switch
costs are not simply because of performance differences
between the rules. We found that during the reward
phase, participants were faster at switching to the high-
reward rule, relative to switching between low-reward
rules, t(48840) =−5.4, p< .001, ΔRT = 2.45%. However,
in contrast to the predictions of the rule habit hypothesis,
switching away from a high-reward rule was not slower
than switching between low-reward rules, p > .2. These
results suggest that the selection of a high-reward rule is
facilitated during reward learning, whereas the flexibility
to adapt behavior is unaffected by reward. Similarly to
the previous results, the switch cost analysis showed that
reward reinforcement improves rule selection without
affecting cognitive flexibility.

Figure 2. Reward reinforcement creates rule habits. (A) Accuracy was higher for the high-reward rule than the low-reward rules in both the reward and
test phases. In addition, accuracy was higher for high-coherence (easy) trials than for low-coherence (hard) trials. (B) RTs were faster for the previously
high-reward rule in the test phase. During the reward phase, there was an interaction between coherence and rule type on accuracy and RTs.
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Figure 3. Qualitative model comparison. Models are labeled by parameters that were influenced by rule condition: a = decision threshold, t =
initiation time, and v = drift rate. (A) Participant accuracy by rule coherence and experimental condition for the reward phase. Participants are more
accurate for the rewarded rule. (B) Simulated accuracy data for each model. Only models in which the task condition influenced the drift rate could
explain the increased accuracy for the high-reward rule. (C) Participant RTs by rule coherence and experimental condition for the reward phase.
Participants are faster for the noncompeting relative to the competing rule. In addition, RTs for the rewarded rule are faster on easy relative to hard
trials. (D) Simulated RT data for each model. Most models could capture the RT difference between competing and noncompeting rules. However,
only the models in which both drift rate and decision threshold are influenced by reward could capture the interaction between reward condition and
coherence on RT. (E) Model fits for four randomly chosen participants. Empirical RT distributions are shown in blue; simulated RT distributions are
traced in red. (F) Model fits for the entire cohort. Empirical RT distributions are shown in blue; simulated RT distributions are traced in red. The
model predicts RTs that are slower than our response threshold of 2 sec.
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Drift Diffusion Models of Choice

Reward Influences Multiple Components of
Rule-guided Behavior

We found evidence that reward reinforcement influenced
the speed and accuracy of rule execution even after
rewards were eliminated. This influence of reward on rule
performance could arise from multiple different mecha-
nisms. For example, reward could facilitate the initial
selection of the rule while not influencing the execution
of the rule. Alternatively, reward could influence the exe-
cution of the rule by influencing the fidelity of sensory
representations of the relevant stimulus dimension
(Goltstein, Meijer, & Pennartz, 2018; Hickey, Kaiser, &
Peelen, 2015) or by shifting the speed-accuracy tradeoff
in favor of accuracy (Tajima, Drugowitsch, & Pouget,
2016; Bogacz, Brown, Moehlis, Holmes, & Cohen,
2006). We fit a DDM to our data to discover how reward
influences rule-guided behavior. DDMs conceptualize
decision-making as an evidence-accumulation process
that commits to a decision when the threshold of evi-
dence for an option is crossed. This framework decon-
structs complex rule-guided behavior into distinct
behavioral components, which allows for precise hypothe-
sis testing about the influence of reward and the formation
of high-level habits.

We sought to establish whether rule type (i.e.,
rewarded, competing, noncompeting) influenced three
independent aspects of the decision-making process:

1) The drift rate captures the efficiency of the evidence
integration process. Conditions with higher drift
rates will have higher accuracy and faster RTs. This
parameter can capture variability in rule execution
between rule types.

2) The decision threshold captures the level of evi-
dence needed to commit to a decision. Conditions
with higher thresholds will have higher accuracy
and slower RTs. This parameter can capture variabil-
ity in response caution between rule types.

3) The nondecision time captures the time needed to
initiate the drift-diffusion process. Conditions with
higher nondecision time will have slower RTs with-
out necessarily having higher accuracy. This param-
eter can capture variability in the time it takes to
select a rule.

We first sought to establish whether rule type influ-
enced each of these parameters. Our model selection
strategy employed a balanced consideration of both the
goodness-of-fit, the deviance information criterion
(DIC), and posterior predictive checks, which compare
models by asking whether they explain qualitative features
of interest in the data (Wilson & Collins, 2019). We wanted
our models to explain three prominent effects in the
reward phase data: (1) higher accuracy for the high-reward
rule (Figure 3A); (2) the interaction between coherence
and rule type on accuracy (Figure 3B) and RT (Figure 3C);

and (3) the slower RTs for the competing, relative to the
noncompeting rule (Figure 3C).
We first examined three models in which rule type

(high-reward, competing, or noncompeting) influenced
only a single parameter: either drift rate, decision thresh-
old, or nondecision time. Of these models, only the drift-
rate model could accurately capture the higher accuracy
for the high-reward rule trials (Figure 3B). However, this
model failed to capture the other two behavioral effects
(Figure 3D), indicating that a more complex model was
needed to explain our behavioral data.
We next asked whether including additional effects of

rule type on decision threshold or nondecision time to
the drift-rate model could capture all three behavioral
effects of interest. We found that both the (drift-rate,
threshold) models and the full (drift-rate, threshold, non-
decision time) models could capture all three qualitative
behavioral effects (Figure 3B and D). We decided to use
the (drift-rate, threshold, nondecision time) model as
the final model for our data for three reasons:

1. The posterior predictive checks show a small but sig-
nificant improvement in the model’s ability to
account for the data (Figure 3D).

2. It had the lowest DIC (Figure 4D), indicating that it
provided the best balance between explanatory
power and complexity of the models we compared.

3. An effect of the task condition on each of these
three parameters has distinct interpretations, and
the full model avoids the risk of misinterpreting
results (e.g., by attributing an effect to the decision
threshold that would have been better captured by
nondecision time).

To test the robustness of the model, we performed a
parameter recovery study. We simulated a data set from
the HDDM model using the average posteriors of the
group-level parameters and fit a newmodel to that simulated
data set. The recovered and ground truth parameters were
highly correlated, r= .99, p< .001, and model fitting intro-
duced an average squared error of only .051% of the ground-
truth parameters. These positive model recovery results
conform with other results showing that the HDDM toolbox
gives meaningful parameter estimates (Wiecki et al., 2013).
Our final model explains key qualitative features of our

data; however, the model overestimates the mean accu-
racy and RTs in our data (Figure 3D, E, and F). The over-
estimation of RTs occurs because participants were forced
to respond within 2000 msec, whereas the DDM is a con-
tinuous model that predicts some RTs slower than this
threshold. In addition, there was an underestimation of
RTs on error trials. This arises because drift diffusion
models predict symmetric correct and error RT distribu-
tions, whereas humans tend to respond more slowly on
error trials in difficult tasks (Ratcliff & Rouder, 1998).
HDDM models with trial-by-trial variability in parameters
estimates can theoretically account for this pattern; how-
ever, we were unable to reliably fit these highly complex
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models to our data. Critically, the observed distributions of
participants’ accuracy and RTs are within the credible
intervals (CIs) predicted by the model, indicating that
the model considers the empirical data likely under its
parameterization. Moreover, our model accounts for,
and can reproduce in simulation, the prominent

behavioral effects in our data described above. Therefore,
although the model did not fully account for the shape of
the empirical RT distribution, the quantitative and qualita-
tive evaluation of themodel described above establish that
the model explains important features of our data and has
stable parameter estimates (Wilson & Collins, 2019). We

Figure 4. Reward reinforcement facilitates rule initiation and execution. (A) Drift rates were higher for the high-reward rule during both reward
reinforcement and the test phase, indicating persistent enhancement of rule implementation by reward. (B) Initiation times, which reflect the time it
takes to begin evidence integration, were slower for the competing rule during the reward phase only. Initiation times were faster for the high-reward
rule relative to other rules in the test phase only. (C) Decision thresholds, which control the speed-accuracy tradeoff, were increased for the high-
reward rule during the reward-phase only. (D) Bayesian model comparison favors a model in which rule condition influences drift rate, initiation
times, and decision thresholds. Lower DIC scores indicate more model evidence, and scores are defined relative to a baseline model without
condition effects. Models are labeled by parameters that were influenced by rule condition: a = decision threshold, t = initiation time, and v = drift
rate. (E) Participant accuracy and (F) RTs for each rule condition are well matched by simulated data (G–H) from the model. * Indicates evidence or
strong evidence; ∼ indicates trending evidence. Error bars depict standard error (E–G).
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next examined which latent processes in the model
accounted for our observed behavioral effects.

Impacts of Reward on Rule Execution

We hypothesized that reward reinforcement creates
habits that facilitate rule execution. The drift-rate param-
eter of a DDM reflects the sensitivity of the evidence
integration process, with higher drift rates correspond-
ing to improved rule execution. We first asked whether
drift rates were increased for the high-reward rule.
Unlike null hypothesis significance testing, which tries
to reject a null hypothesis, Bayesian probabilities of
direction (pd) indicate the model’s evidence that an
effect exists, given the data. We considered strong evi-
dence to be a pd of 99.9% or higher, evidence to be pd
was greater than 99%, and trending evidence to be a pd
of 95% or higher. We additionally report 89% CIs for
parameter estimates (Kruschke, 2014). We found strong
evidence that the drift rates were higher for the high-
reward rule relative to the noncompeting rule, pd =
100%, CI [.065, .12], and the competing rule, pd =
100%, CI [.08, .13]. If improved execution of the
rewarded rule was entirely driven by reward motivation,
we would not expect this facilitation to persist. However,
we found that facilitation of the high-reward rule per-
sisted into the test phase, pd of reward > noncompete =
99.6%, CI [.027, .12], reward > compete = 100%, CI [.051,
.14] (Figure 4A). Moreover, there was no statistical differ-
ence between drift rates between the reward and test
phases. These results show that reward creates an endur-
ing facilitation of rule execution.

Because habits can impair the flexibility to change
behavior, we next examined whether execution of rules
that compete against high-reward rules was impaired.
However, we again did not find evidence that drift rates
were lower for competing rules than noncompeting
rules in the reward phase, pd = 86.9%, nor the test
phase, pd= 83.3% (Figure 4A). Similarly to the behavioral
effects, we did not find evidence that reward reinforce-
ment influences the flexibility to implement alternative,
less-rewarding rules.

An important question posed by our findings is how
reward reinforcement improves execution of the high-
reward rule. One possibility is that strengthening the rule
representation reduces interference from alternative
rules. Dopamine release in pFCmay helpmaintain the cur-
rent rule in working memory and gate information from
the irrelevant stimulus dimensions (Cools & D’Esposito,
2011; O’Reilly & Frank, 2006). According to this view, drift
rates are lower for the low-reward rules because partici-
pants are less adept at filtering irrelevant stimulus informa-
tion. We asked whether response information from the
other dimensions influenced behavior (e.g., the motion
direction on a color rule trial). Consistent with reward pro-
tecting rules from interference, the impact of response
incongruency (when the dimensions of the kinematogram

indicated conflicting button responses) was reduced for
the high-reward rule, relative to the other rules, t(48890) =
−2.0, p = .049, ΔRT = .94%. This result suggests that
reward improves rule execution by reducing interference
from lower reward rules.

Impacts of Reward on Rule Selection

We theorized that a habit would facilitate the selection of
the high-reward rule because dopaminergicmodulation of
corticostriatal circuitry ought to facilitate gating of high-
reward representations (O’Reilly & Frank, 2006). Variation
in the initiation time parameter of the DDM provides a
proxy for the time it takes to internally select a rule
because rule selection likely occurs before rule execution
in this task. We found strong evidence that the initiation
time was reduced for the reward rule relative to the non-
competing rule during the test phase, pd = 99.6%, pd =
[−.02,−.005], but not the reward phase. A direct compar-
ison of the task phases revealed that initiation times were
faster for the rewarded rule in the test phase than the
reward phase, pd= 99.1%, pd= [.004, .023]. It is possible
that the development of faster rule selection occurs slowly
and is only detectable after training.
We also predicted that habits would interfere with the

selection of alternative behaviors. We tested whether par-
ticipants were slower to initiate low-reward rules that were
competing in a context with high-reward rules. During the
reward phase, we found strong evidence that the initia-
tion time of the competing rule was increased relative
to the noncompeting rule, pd = 100%, pd = [.005, .014]
(Figure 4B). This result suggests that reward reduces the
flexibility to select competing, nonreward rules. However,
during the test phase, the initiation time of the competing
rule was not slower than the noncompeting rule, pd =
75.2% (Figure 4B) and were reduced relative to the reward
phase, pd= 99.4%, pd= [.004, .022]. These findings sug-
gest that competing rules are harder to select when
rewards are available, but this reduced flexibility does
not persist after reward learning.

Impacts of Reward on Response Caution

Although our model selection indicated that rule type
influenced decision threshold, we did not have a priori
predictions about the influence of habit on response cau-
tion. However, during the reward phase, participants were
incentivized to respond accurately. We predicted that
reward reinforcement would increase the decision thresh-
olds for the high-reward rule because this strategy
optimizes reward in a context where accuracy is more
important than RT (Tajima et al., 2016; Bogacz et al.,
2006). Consistent with this prediction, we found evidence
that the decision thresholds were higher for the high-reward
rule relative to the noncompeting rule, pd = 98.8%, CI
[.006, .04], and trending evidence relative to the competing
rule, pd= 95.7%, CI [.001, .036] (Figure 4C). Because this

2856 Journal of Cognitive Neuroscience Volume 36, Number 12



adjustment of the decision threshold is adaptive for earn-
ing rewards, we did not expect it to persist into the test
phase. Although rule condition did not influence decision
thresholds in the test phase, pds < 70%, decision thresh-
olds did not significantly differ between reward and test
phases for the rewarded nor the competing rule (Figure 4C).
In addition, there were no differences between the
competing and noncompeting rules in either task phase,
pds < 70%. In summary, participants adjusted their
response caution adaptively, responding more care-
fully only on trials where rewards were likely (Grahek,
Schettino, Koster, & Andersen, 2021). This suggests that
different components of rule-guided decision-making
are differentially sensitive to the effects of reward rein-
forcement, with persistent biases emerging in rule execu-
tion (drift rate) and rule selection (initiation time) but not
in the selection of an appropriate speed-accuracy tradeoff
(decision threshold). We speculate that this distinction
occurs because setting a decision threshold is a superordi-
nate control process for determining a decision strategy and
may be more sensitive to changing reward values (Frank,
2006; Son & Sethi, 2006).
Because our DDM disentangles the effects of rule type

on distinct components of rule-guided behavior, it can
provide a mechanistic account of surprising behavioral
effects. We observed that reward led to faster RTs only
on easier trials (Figure 4F, left). The DDM shows that this
effect arises because reward influences both drift rates and
decision thresholds. Increased drift rates lead to overall
faster RTs for high-reward rules. However, increased deci-
sion thresholds cause slower RTs for harder, high-reward
rules. Together, these factors predict that the reward will
cause the fastest RTs on easy trials, the effect found in our
data (Figure 4H). However, the model also predicts
improved accuracy on themost difficult high-reward trials,
an effect that is not present in our data. The most difficult
trials may engage maximal cognitive resources (Kool,
Shenhav, & Botvinick, 2017), and reward may have no
additive benefit above and beyond intrinsic motivation.
Future work is needed to disentangle the influence of
extrinsic and intrinsic motivation on cognitive control
(Dobryakova, Jessup, & Tricomi, 2017; Sullivan-Toole,
Richey, & Tricomi, 2017).

DISCUSSION

We found evidence that reward reinforcement leads to
enduring facilitation of the selection and execution of
rules. Our findings are consistent with the theory that
dopamine release adjusts corticostriatal synaptic plasticity
to favor the selection of rewarding rules. However, there
are several potential mechanisms by which reward could
influence the performance of the high-reward rule. We
argue that abstract rule representations in pFC are rein-
forced by reward, which facilitates activation and imple-
mentation of the rule. Our findings that initiation times
are reduced and drift rates are enhanced for the high-

reward rule are consistent with this finding. A related
mechanism is that participants learn to attribute value to
the rule cues (i.e., the central shapes; Figure 1) rather than
internal rule representations. According to this model,
valuable cues trigger motivation to use cognitive control
without being linked to a specific rule (Shenhav et al.,
2013; Ballard et al., 2011; Niv, Daw, Joel, & Dayan, 2007).
Another potential mechanism is that reward strengthens
the associative link between the cue and its associated rule
representation (Miller, Freedman, & Wallis, 2002). This
strengthened association could facilitate activation of the
rule representation, which would account for the finding
that participants showed reduced initiation times for the
high-reward rule. However, this model does not explain
why drift rates are increased for the high-reward rule.
Nonetheless, these different mechanisms may co-occur,
and future work is warranted to identify how reward rein-
forces internal cue and goal representations.

Rewards likely influenced rule execution by biasing the
allocation of attention to the rule-relevant dimension
(Etzel, Cole, Zacks, Kay, & Braver, 2016; Waskom,
Kumaran, Gordon, Rissman, & Wagner, 2014). This inter-
pretation is supported by the finding that response incon-
gruency across the dimensions of the stimulus (e.g., color
and motion dimensions indicating opposite button
responses) had a smaller effect on RTs for the rewarded
rule. We posit that reward influences the deployment of
top–down attention to facilitate sensory evidence integra-
tion (Frömer, Lin, Dean Wolf, Inzlicht, & Shenhav, 2021;
Krebs & Woldorff, 2017; Botvinick & Braver, 2015). How-
ever, it is also possible that reward increases the salience of
the high-reward-dimension features (e.g., color), which
captures attention in a bottom–up manner (Failing &
Theeuwes, 2014; Anderson, Laurent, & Yantis, 2011; Della
Libera & Chelazzi, 2009). It is plausible that both top–
down and bottom–up attentional mechanisms could con-
tribute to improved performance on the high-reward rule
(Grahek et al., 2021). Importantly, both top–down and
bottom–up attentional mechanisms likely contribute to
habitual goal selection. For example, images of cigarettes
in the media can capture the attention of smokers, which
could then activate the goal of purchasing cigarettes
(Wood & Rünger, 2016; Versace et al., 2010).

Our drift-diffusion modeling approach revealed that
reward reinforcement differentially influenced different
components of rule-guided behavior. Reward had a strong
influence on drift rates, which captures rule execution,
during both reward learning and the test phase. In addi-
tion, reward reduced nondecision times, which may cap-
ture rule selection time, in the test phase. Although the
nondecision time effect was not found in the reward
phase, nondecision times for the rewarded rule did not dif-
fer meaningfully between the phases. In contrast, reward
influenced decision threshold, which reflects response
caution, during the reward, but not the test phase. We
interpret the decision threshold effect as a strategic adjust-
ment of the speed-accuracy tradeoff to earn rewards in a
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task that incentivizes accuracy. Unlike the influence of
reward on drift rate, which also improves task perfor-
mance, this decision threshold effect was reduced when
rewards were eliminated. This suggests that the mecha-
nisms by which reward influences these processes differ:
Whereas the adjustment of response caution may be stra-
tegic and context-dependent (Frank, 2006; Son & Sethi,
2006), the enhancement of rule execution may arise
because of reward reinforcement of prefrontal rule rep-
resentations (O’Reilly & Frank, 2006). A prediction aris-
ing from this interpretation is that in designs where
speed, rather than accuracy, is incentivized, then reward
will reduce response caution while also improving rule
execution.

One potential weakness of our modeling results is that
the DDM overestimated mean accuracy and RTs, primarily
because of the fact that the HDDM predicted RTs slower
than our response threshold. Importantly, the empirical
accuracy and RTs were within the CIs of the model, indi-
cating that the model considered the observed data likely.
In addition, the model was robust in a parameter recovery
study and explained several important qualitative features
of our data (Wilson & Collins, 2019; Box, 1976). Nonethe-
less, it will be important to develop adapted DDMs in
future work that can incorporate response thresholds
and more accurately capture the shape of the RT distribu-
tions in our data.

We did not find consistent evidence that reward rein-
forcement reduced the flexibility to adapt behavior.
Although we observed that RTs were reduced for the non-
competing relative to the competing rule during the
reward phase of the experiment, this effect did not persist
into the test phase. One possible explanation is that
reward does reduce cognitive flexibility, but this effect
does not persist once rewards are removed. However,
an alternative interpretation is that participants allocate
cognitive effort according to the relative value of each rule
within a miniblock. This scaling of reward value relative to
the context is termed range adaption (Hunter & Daw,
2021; Tversky & Kahneman, 1986). In our task, the higher
overall reward rate during the reward rule miniblocks
could render the small reward possibility associated with
the competing rule comparatively less valuable. In the
noncompeting miniblocks, the lower reward rate could
render the small reward probability of the noncompeting
rules relatively more valuable. This account is consistent
with our finding that there was no difference in initiation
time between the competing and noncompeting rules in
the test phase, when the reward rates of the two condi-
tions were matched. Future work will be needed to disen-
tangle the range adaptation account from the cognitive
flexibility account of these competition effects.

Our study may have failed to find reduced flexibility
associated with reward reinforcement for several reasons.
First, it is important to note that the competition analyses
compare performance on the same rule in different con-
texts. It is possible that our study was not sufficiently

powerful to detect small effects of competition on rule
execution. However, our study is also consistent with
the dearth of evidence for experimental induction of
inflexible stimulus–response habits. DeWit and colleagues
presented five studies that fail to show that overtraining
instrumental behavior results in inflexible motor habits
(de Wit et al., 2018). These studies used variants of out-
come devaluation paradigms, in which the outcome asso-
ciated with a previously valuable stimulus is rendered less
valuable and behavior is tested. Although rodents that are
overtrained in outcome devaluation paradigms persist in
selecting the stimulus associated with the devalued out-
come (Tricomi, Balleine, & O’Doherty, 2009; Dickinson,
Balleine, Watt, Gonzalez, & Boakes, 1995), humans failed
to show such effects across five studies (de Wit et al. 2018,
but see Tricomi et al., 2009).
Why are inflexible habits so difficult to detect in labora-

tory settings? One possible explanation is that much more
extensive training across months is needed to establish a
habit (Lally, van Jaarsveld, Potts, & Wardle, 2010). Another
possibility is that habits trigger preparation of responses,
but the cognitive control abilities of humans enable effec-
tive suppression of habitual behavior in laboratory condi-
tions. Hardwick and colleagues asked participants to learn
a visuomotor association over 4 days of training and then
asked whether that association would interfere with
implementation of alternative behaviors. They found that
expression of the habit occurred only when participants
were forced to respond rapidly (300–600 sec), presumably
before cognitive control could inhibit the habitual response
(Hardwick, Forrence, Krakauer, & Haith, 2019). Similarly,
Sternberg and colleagues found that blocking, a prominent
reward conditioning effect observed in rodents, only
occurs in humans when they are forced to respond rapidly
(Sternberg & McClelland, 2012). Given these findings in
the stimulus–response domain, it will be important for
future work to test the theory that reward reinforcement
can cause inflexible cognitive habits by employing para-
digms that either extend training over much longer time-
scales or involve rapid probes that can assess prepotent
goal selection.
Our measures showed persistent facilitation of the

rewarded rule in a test period that occurred several
minutes after reward learning. However, it is unclear
the timescale over which this facilitation lasts. Our
experiment was not designed to create or assess long-
lasting habits. The long-term resiliency of habits likely
relies on additional neural mechanisms, such as increas-
ing dorsal striatal involvement in decision-making (Yin
& Knowlton, 2006). Future work is needed to explore
the interacting psychological conditions, including
temporally extended learning and reward anticipation
(Ballard, Hennigan, & McClure, 2017; Yin & Knowlton,
2006), as well as factors such as stress (Schwabe &Wolf,
2009) and social motivation (Wood, 2017), underlying
the development of long-lasting effects of reward on
goal-directed behavior.
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Our results show that reward reinforcement creates per-
sistent facilitation of rule-guided behavior. However, sig-
nificant differences exist between the constructs in our
task and real-world goals. Most significantly, whereas goals
can involve flexible pursuit of different strategies (e.g., an
exercise goal may involve swimming, running, and weight
training), in our rule task, the rules that participants could
follow are fixed. Reward likely influences both the selection
of goals and the strategies that people employ to pursue
them, and future research is needed to examine how
rewards influence strategy selection. A critical question for
psychological research concerns the nature of reinforce-
ment in ecological situations (Brewer & Roy, 2021). Primary
reinforcers, such as money or food, likely act alongside
abstract reinforcers, such as goal attainment (McDougle,
Ballard, Baribault, Bishop, & Collins, 2021; Swanson &
Tricomi, 2014) in forming cognitive habits. The brain’s
reward system is involved in a variety of disorders, includ-
ing anxiety (Lago, Davis, Grillon, & Ernst, 2017; Packard,
2009), obsessive-compulsive disorder (Gillan et al., 2014;
Gillan & Robbins, 2014), anorexia nervosa (Foerde et al.,
2021; Steinglass & Walsh, 2006), and Parkinson disease
(Cools, 2011; Dubois & Pillon, 1997). Understanding the
role of reward learning in these disorders will require an
account of whether and why the dopaminergic system
reinforces maladaptive goals.
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