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Abstract

Autonomous driving is a challenging task given the variety and complexity of drive sce-

narios. Meta-learning, particularly few-shot learning, is a common approach to tackle a

classification task with limited number of training data for each classes. In this project, we

focus on a specific scenario of visually navigating vehicles along an unseen route through

recognizing the waypoints with only a few available waypoint images and no need to re-train

for a new course. To attack the targeted task, we proposed a hierarchical framework with

two deep models in which the highlight is the StampNet, a few-shot learning architecture

with a covariance estimator for recognizing waypoints. To train the models, we collected

an associated indoor dataset with images along the routes in various buildings on UC Davis

campus, and quantified the performance of the tests to explore the best hyperparameters.

Additionally, to demonstrate the effectiveness of the proposed approach, the framework was

implemented on a customized mini vehicle for an online test that run the models in real time

to navigate the vehicle in unseen courses.
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CHAPTER 1

Introduction

In this thesis, we focus on addressing an autonomous driving task using a visual naviga-

tion approach that requires minimal learning samples. Specifically, we consider a scenario in

which a vehicle must navigate an unseen route that can be segmented into sections connected

by waypoints, at which the vehicle should change its driving state. Prior to departure, only

15 images of each waypoint are available to populate the memory. Then, the vehicle will

determine if the next waypoint is reached by processing real-time images and make decisions

regarding maintaining the current driving state or switching to the next state.

Machine learning based algorithms have been widely applied in machine vision tasks in

the domains of classification [14,18,32], segmentation [13,22,28] and generation [11,16],

etc. However, such models often require to be trained with a large amount of data, and the

capability of the trained model is limited in solving a specific task covered by the training

set. In contrast, humans are able to learn to visually distinguish objects by seeing only a

few pictures. This requires the capability to capture the distinct features of an object to

recognize it in the future. The objective of meta-learning is to endow a machine learning

model with the ability to generalize features based on a small number of training examples,

thus enabling the model to adapt to novel tasks with minimal data. In this section, a facet

of meta-learning called few-shot learning is utilized in a hierarchical framework to help a

vehicle visually navigate throughout unseen paths based on only a few pictures of a set of

landmarks.

We tackle the few-shot learning problem under the assumption that there exists a non-

linear mapping from the input data to encoding in a latent space where data encodings in a

same class are close to the center of the corresponding cluster while the embedded negative

samples are relatively far away. In this work, we adopt StampNet, a variational few shot
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framework developed earlier in the Laboratory for AI, Robotics and Automation. We train

StampNet in a few-shot learning paradigm to generate the feature embedding and predict

the corresponding covariance for each landmark. We also explore various metrics to enhance

the classification performance. The result of this work is a two-level hierarchical framework

where the few-show learning model provides high-level navigation decision making to move

the vehicle towards the desired destination, while a lower-level navigation module keeps the

vehicle on a drivable path and avoids obstacles.
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CHAPTER 2

Related Work

2.1. Hierarchical Learning-Based Approach

The hierarchical control system is a widely used architecture employed in autonomous

vehicles, which systematically decomposes the intricate decision-making process into man-

ageable sub-tasks, each executed by specialized modules. Form the decision making aspect,

existing hierarchies applied in self-driving [35,39] are all constructed by a higher-level mod-

ule that plans the global path and a lower-level module that navigate the vehicle locally,

under the guidance of the higher-level system. By modularizing the pipeline, the self-driving

task is simplified and makes it possible to leverage the strength of different algorithms to

solve the corresponding sub-tasks. There have been various hierarchical structures applied

in the vision-based autonomous driving vehicles. Affordance learning method [4, 30] uses

a CNN as the lower-level module to map images to a set of predefined perception indica-

tors associate with the affordance of the driving states. On the other hand, reinforcement

learning has been adopted to planning the global course [5,15,31]. These approaches are

flexible with the different modules since they optimize the models separately, even combining

a learning-based model with a classical control algorithm [31] is possible. Inspired by these

works, our architecture is constructed based on a few-shot learning model and a regression

model. Benefited from the flexibility of a modular structure, the capabilities of the sub-

modules are maximized by training each with different training methods and different data

sampling strategies.

2.2. Visual Waypoint Identification

For a waypoint-based autonomous navigation plan, the driving task fails if the vehicle

misses a waypoint or changes the driving state at a wrong time. Thus, correctly identifying
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waypoints is a key problem in making high-level decisions. Many visual-based methods

have been explored to identify the waypoints. An approach to achieving this objective

involves detecting pre-designated visual markers at waypoints [9, 23]. These markers are

visually distinct from the environment, so they could be easily detected through simple

and generic image processing algorithms. Additionally, more information can be obtained

from the markers by scanning the QR code on them [23]. However, the application of

these methods are limited by aesthetic concerns because the task-specific markers are often

inharmonious with the environment. Furthermore, such markers are not available in unseen

route. Rather than relying on markers, learning-based image processing technique has also

been adopted to extract general waypoint-specific features including corner detection [38,41]

and path segmentation [6]. Benefiting from explicitly focusing on hand-engineered features

at waypoints, these models are robust to environmental changes, such as random pedestrians,

if the targeted features are not affected. What these methods have in common is that they all

need laborious preparation for a new path, which makes them hard to deploy to new tasks.

On the contrary, our approach can be implemented easily since our few-shot learning based

algorithm only need a few images of each waypoint, while featuring reasonable robustness.

2.3. Meta-Learning

Also known as “learning to learn”, meta-learning techniques are designed to enable

systems to quickly adapt to new tasks and environments, by learning general patterns

from a set of previously learned tasks in a data-driven way. Over the past few decades,

there has been a significant amount of research exploring meta-learning. Existing meta-

learning approaches can be divided into three categories: metric-based, model-based and

optimization-based methods. Metric-based techniques [17,33,37] focus on exploring an ef-

fective measure to quantify the similarity between data in a feature space. Model-based ap-

proaches [7,24,29,40] feature a memory component that maintains an adaptive internal state

to capture and store task-specific information. Optimization-based algorithms [1,10,25] try
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to achieve robust generalizability with an adaptive optimizer. The few-show learning archi-

tecture used for our high level navigation module is a variant of metric-based model that

leverages a covariance estimator to accomodate potential variations in the driving scenes and

hence better quantifying the distance between support and query sets for classification.
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CHAPTER 3

Proposed Hierarchical Learning-based Approach

In this chapter, we begin by outlining the mathematical formulation of the task we aim

to address in Chapter 3.1. We then present a detailed account of the critical modules in

the proposed approach in Chapters 3.2 and 3.3. Additionally, from the perspective of the

architecture’s hierarchy, we provide an illustration of the higher-level and lower-level models

in Chapters 3.4 and 3.5, respectively.

3.1. Problem Formulation

In our autonomous driving scenario, prior to the departure, we will populate the memory

slots with images of the waypoints along a predetermined unseen route with the actions to

take at the corresponding waypoints. Then the vehicle is expected to navigate through the

route based only on the RGB images collected by the stereo-camera system. Since a complex

set of driving actions are involved in a autonomous driving task, we break down the problem

into two sub-tasks and use two different modules to solve them accordingly. The higher-level

navigation module processes the environmental images and generates navigation commands

such as “go straight”, “turn left” or “turn right” for the subsequent module. The lower

level navigation module takes the command as one of the inputs and produce a appropriate

steering value based on the current environmental images to avoid obstacles and keep the

vehicle on a drivable path to complete the driving actions. Fig. 3.1 shows the overall

architecture of the hierarchical framework applied in this work.

The higher-level navigation module aims at identifying the waypoints with only a few

sample images, so this sub-task is formulated as a few-shot classification problem, in which

the C waypoints that we expect the vehicle to recognize are independent classes in our

datatset D = {(xi, yi)}Ni=1, in which N is the total number of samples and xi are the samples
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Figure 3.1. The Overall Architecture of the Hierarchical Framework

in the dataset and yi are their corresponding label. Because our goal as part of the higher level

control is to determine if the current scene belongs to the class of the upcoming waypoint,

this task can be defined as a 2-way n-shot problem, in which the model output can be

interpreted as a likelihood representing the presented query belonging to the positive class

(upcoming waypoint).

For a traditional supervised learning problem, D is separated into two subsets: Dtrain =

{(xi, yi)}Ntrain
i=1 , and Dtest = {(xi, yi)}Ntrain+Ntest

i=Ntrain+1
, the goal is to optimize parameter θ on Dtrain

and evaluate its generalization capability on Dtest. Thus, the problem can be formulated as

approximating function f with parameter θ as:

(3.1) y ≈ f(x; θ), where (x, y) ∈ Dtrain

and

(3.2) θ = argmin
θ

∑
(x,y)∈Dtrain

L(f(x, θ); y)

where L denotes the loss function that quantify the difference between the prediction of f

and the ground truth y.

However, as a meta-learning task, because the model is trained to generalize on Dtest

with unseen classes, C is divided into Ctrain and Ctest with no intersection. And the dataset

will be composed of a group of mini-datasets [26] each only contains positive and negative

samples denoted as (xpos
k , yposk ) and (xneg

k , ynegk ), k ∈ C for a single class. These samples could
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be used to form a support set Ssup
k or a query set Sqry

k used in an episode [37]. In this way,

the training and testing datasets are denoted as:

(3.3) Dtrain = {D1,D2, . . .DCtrain}

(3.4) Dtest = {DCtrain+1,DCtrain+2, . . .DCtrain+Ctest}

where Dk = (Ssup
k ,Sqry

k ), k ∈ C.

Having the dataset definition for the meta-learning task, the problem can be formulated

as approximating function f with parameter θ as:

(3.5) y ≈ f(Ssup
k , x; θ), where (x, y) ∈ Sqry

k

and

(3.6) θ = argmin
θ

∑
Di∈Dtrain

∑
(x,y)∈Dtest

k

L(f(Dtrain
k , x; θ), y), where k ∈ C

In contrary to the higher-level navigation module that makes the decision on whether to

change the current driving state, the lower-level system works on maintaining the current

driving state e.g. as going straight or turning while avoiding obstacles and keeping the vehicle

on a drivable route. For the low level control module, incoming camera images are presented

to the lower level model which is also conditioned on the driving command to regress the

steering value in order to maintain the current driving state. The condition to the lower

lever control is provided by the few-shot driven high level controller. This is similar to how

a human driver keeps a car driving in the center of the lane, while paying attention to the

landmarks in the environment (e.g. distinct buildings, gas stations, etc.) to make navigation

decisions like turn right, go straight, etc. The the lower-level module is trained through a

classical supervised classification scheme, with the same separation of dataset as is used in

training the higher-level model.
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3.2. Feature Extractor

Three-channel RGB images are a typical kind of high-dimensional data that requires

excessive computational resource to be directly processed in tasks including image classifi-

cation, object detection and segmentation. Therefore, in high-level digital image processing

pipelines, feature extractors are normally used as the first module to reduce the data di-

mensionality and convert the raw image to lower-dimensional features. These features can

be divided into spectral, geometric and texture features [19], containing the concentrated

knowledge that could represent information in the image. The output of an optimal feature

could be in a low dimension but contain sufficient information for the downstream algorithm,

while eliminating redundant and irrelevant information.

Popular feature extractors can be categorized into statistical methods such as princi-

pal component analysis (PCA) and Fisher discriminant analysis [8] and machine learning

methods such as support vector machine [36] and neural network [20, 21]. The choice of

feature extractor largely depends on the specific task and the type of data being processed.

In recent years, with the development of parallel computing architectures and extensive re-

search in neural networks, CNN has been widely adopted as the feature extractor in varies

machine vision tasks for its high accuracy and generalizability. In our pipeline, two CNNs

(ResNet-50 [14] and EfficientNet [34]) with different parameter values are applied.

ResNet-50 is a variant of ResNet model proposed by Kaiming, et al. [14], the ResNet

family is a landmark in the history of CNN because it solves the notorious gradients vanish-

ing/exploding problem brought by increasing the depth of neural networks and the training

of deep CNNs. Rather than increasing the number of network parameters by simply stacking

convolutional layers, the structure is separated into blocks each has a few layers, and a short-

cut connection across a block that acts as identity mapping. Such a short connection is able

to solve the model degradation issue by pushing the block to fit a better identity mapping.

Compared with its counterpart in plain architecture, ResNets are easier to optimize while

adding no extra trainable parameters.
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EfficientNet is known for its high efficiency and various options on the parameter scales.

Rather than arbitrarily scaling models by their depth, width, or resolution, an effective

compound scaling method is introduced to uniformly scale up or down the architecture with

a set of fixed scaling coefficients, while achieving a balance between accuracy and efficiency.

With the scaling strategy, a series of models from EfficientNet-B0 to EfficientNet-B7 with

different scale are presented, and they all outperformed the state-of-the-art counterparts

at the time. Fine-tuned on the EfficientNet weights pre-trained on ImageNet, the transfer

learning accuracy on common datasets is also impressive. Rather than using a larger model,

running inference with a more compact one with fewer parameters can result in a higher frame

rate on the test platform with limited computing power. Thus, EfficientNet-B0, which is in

the most compact architecture in the EfficientNet family, is chosen as the feature extractor

of our lower-level navigation module.

Technically a single feature extractor can be trained with multi-task learning [3] tech-

niques to serve for multiple purposes. However, in order to train the few-show learning model

more efficiently, the images used to train the model are limited in a small range before the

waypoints, which is only a selected portion of the recorded lap (details described in Section

4.4). The limited training data does not cover the entire range where the steering value

regression model works in, thus, we utilize an additional CNN in the lower-level navigation

system and train this model with a standard supervised training approach that makes use

of the entire training set.

3.3. Covariance Estimation

The biggest restriction of few-shot learning tasks is the limited number of samples for

each class. A naive end-to-end classification model trained with this kind of data would lead

to severer overfitting. So mainstream few-shot learning frameworks aim at embedding data

to a latent space and improving the classification result of encoded features. There have been

approaches that achieved decent performance: Matching Networks [37] proposed an encoder

based on bidirectional Long-Short Term Memory (LSTM) [12], and used neural attention
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mechanism [17] for feature weighting to enable rapid learning. However, these methods

focus solely on the inter-class knowledge instead of also considering the potential distribution

variation of different classes. In order to overcome this limitation and improve the model’s

feature representation capability, an additional covariance module is incorporated into the

model to provide an estimate of the encoding covariance for better generalization and to

improve model robustness. This approach was developed in the Laboratory for AI, Robotics

and Automation at UC Davis and is adopted in this work to handle potential variations of

the landmark scenery e.g. lighting changes, perspective changes, presence of pedestrians and

other vehicles to name a few.

Similar recognition patterns in human behavior can help explain the idea behind covari-

ance estimation. Given a task of learning to recognize a new breed of cats with only a few

pictures of them, humans are able to perform class-level feature extraction of summarizing

key features including the pattern, tail length, ear shape, etc. However, in addition to such

capability, humans are also capable of going beyond the provided information and visualize

potential variations of the given class, such as imagining their appearances in unseen pos-

tures, their dynamic movements, and even how their offsprings possibly look like. These

higher-order statistics inferences are based on the biological and physical knowledge learned

from the past experiences, that could improve the generalization of the classification model

to a large extent, especially in a few-shot scenario.

The covariance estimator in our architecture is expected to learn the generation of possible

non-linear variations and produce the covariance encoding based on the original feature

encoding. These two encodings are both involved in the subsequent distance measuring

algorithm.

3.4. Higher-Level Navigation Model Architecture

At inference time of the few-shot learning model, the input data is a sequence of frames

captured by our dual-camera system, and the classification is based on the mapped features of

the query images and the support images in a latent space, called stamps. We propose to use
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a network architecture developed earlier in the Laboratory for AI, Robotics and Automation

at UC Davis, named StampNet and optimized based on it (pipeline shown in Fig. 3.2) to

generate the encoding and the corresponding covariance, forming the aforementioned stamps.

In our AV application, each stamp contains the information of the last 10 consecutive frames

captured by the vehicle camera.

The process of producing the stamps is explained in the following:

First, to process a single frame, we adopt ResNet-50 as the feature extractor followed by

a dense layer to convert the high-dimensional 3-channel images to one-dimensional feature

encodings in the latent space. In order to represent the environmental features of both the

left and right images in the same frame, we encode the two images separately using the the

CNN, then concatenate the two feature vectors to form a joint vector of twice the length.

The generated encoding of the current frame will be added to the end of a queue of the

10 most recent encodings, and the stamp of the current frame is obtained by averaging the

feature embeddings in the queue.

Then, in addition to the average encoding, a trained covariance module is used to es-

timates the covariance encoding of the average feature encoding, which represents the co-

variance distribution of the class that the set of presented images belongs to in the latent

space. We interpret the covariance encoding as an unbiased estimation of the diagonal co-

variance matrix, so it can be simplified as a 1-dimensional vector. The stamp is formed by

an encoding and the associated covariance.

Finally, a distance measure is required to produce the similarity score for the given sup-

port and query data. The most straightforward measure is the Euclidean distance, however,

the calculation of Euclidean distance treats each feature equally under the assumption that

the features are isotropically Gaussian. For example, given data x and y, the Euclidean

distance is calculated as:

(3.7) dE(x, y) =
√
(x− y)T (x− y)

12



Figure 3.2. StampNet Pipeline

Calculating Euclidean distance is easy and efficient, but Euclidean distance does not

benefit from the information about the second order statistics (covariance) which is available

in our case. There are other distance measures that utilize second order statistics. As an

example, Mahalanobis distance first re-scales the data by normalizing each feature to make

sure they all have unit variance before calculating the Euclidean distance in the transformed

space. For measuring the distance between x and y, the formula is given below:

(3.8) dM(x, y) =
√

(x− y)TΣ−1(x− y)

Where Σ denotes the covariance.

Therefore, the Mahalanobis distance is scale-invariant, and is also capable of representing

the correlations among the features. Having these advantages, we use Mahalanobis distance

to take both the feature encoding and the covariance vector into account to quantify the

similarity between the query and the support data. Given the distance, the classification

result is obtained with a three-layer classification network followd by a softmax layer.

3.5. Lower-Level Navigation Model Architecture

The objective of this model is to generate a steering value to keep the vehicle in the

desired driving state while maintaining it in the same high level navigation e.g. keep going
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straight. The input to the low level controller is stereo images captured by the cameras along

with the the naviation command from the higher-level navigation module as a condition. We

split the low level driving behavior into three states: go straight, turn left and turn right,

driven by a condition input provided by the high level control module.

The architecture of the lower-level-navigation model is depicted in Fig. 3.3 The stereo

image is first encoded by EfficientNet-b0, to process the feature encoding and obtain the

regression value, the last fully connected layer that comes with the EfficientNet is replaced

by a MLP with three layers, that takes the flattened 1280 dimensional vector output of the

EfficientNet as the input and generates a single output. Notably, in order to let the model

respond differently to different navigation command, we transform the categorical command

index into a One-Hot numerical encoding, and concatenate it with the output of the second

layer of the MLP. In this way, the navigation command is not introduced until the last MLP

module, so the EfficientNet structure does not need to be modified, making it possible to

make use of the pre-trained weights, and the feature extractor can focus on generating the

features. The MLP is followed by a sigmoid function to map the output to the range from 0

to 1, in which 0 represents the maximum steering to the left and 1 represents the maximum

steering to the right. Then, a PWM digital signal with corresponding duty cycle is generated

to reflect the steering value in the servo angle to control the actual steering behavior of the

vehicle.
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Figure 3.3. Lower-Level Navigation Model Architecture
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CHAPTER 4

Experiment

In this section, we are going to describe the hardware platform we use for data acquisition

and testing, as well as the dataset we created for this project. Then, ablation test results

are presented to compare the classification performance under different settings. Finally, an

online test is presented to demonstrate the effectiveness of the proposed approach.

4.1. Experimental Setup

The vehicle platform we use is a mini autonomous vehicle (miniAV) whose chasis is based

on a 1/6 scale remote controlled 6x6 vehicle that hosts all the other modules. The camera

system consists of two ELP 180-degree fisheye cameras that point at the left front and

right front respectively in a symmetrical layout with a 120 degrees intersection angle. The

computing unit is a mini PC with an Intel i7-10750H and an NVIDIA RTX 2070 graphics

card with 8 GB of memory. An Arduino Mega 2560 Rev3 microcontroller board is used to

process and pass the control signals from the computing unit or the remote controller to

the steering actuator on the mini-AV. A rechargeable battery pack of six 3.7V Li-Fe cells

connected in series is included to power the entire system for approximately an hour or

operation without an external power source.

A software with user interface (shown in Fig. 4.1) is developed by our collaborator at

Ford Motor Company to control the mini-AV, it supports three driving modes: manual,

recording and autonomous. In manual mode, the vehicle is fully under manual control. The

recording mode is designed for data acquisition, during which the throttle would be set to a

preset value to make sure the mini-AV moves at a fixed speed to collect frames with uniform

intervals, and the operator only needs to control the steering amplitude to finish the planned
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Figure 4.1. User Interface of the MiniAV Software

lap. In autonomous mode, the mini-AV is free of any external controls and the driving

decisions will all be determined by the two models (high and low level control networks).

4.2. Dataset

The dataset consists of a total of about 268,000 images of 188 laps recorded in 18 different

routes located in 12 buildings on UC Davis campus. The predetermined courses are loops

with 4 turns, and multiple clockwise and counterclockwise laps along the routes are performed

to ensure the number of right turns and left turns are balanced. All environments are indoor

dominated by artificial lighting while a few locations have the presence of natural light hence,

influenced by time and weather conditions (sunny vs cloudy, etc). Since the environment was

in its natural state during data collection, some visual noise such as passing pedestrians and

suddenly opened doors were also recorded, that provided natural variations across different

laps.

The data is recorded at a frame rate of 25 fps, each including an image in PNG format

with the resolution of 320 × 240 from each of the two cameras, as well as the simultaneous

steering value. In order to properly store the collected large and hetergeneous data, the
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Figure 4.2. A Original Stereo Image from the Dusl-Fisheye Camera System

file format of Hierarchical Data Format version 5 (HDF5) was selected for organizing the

structured data in a single file.

To segment the recorded full laps into images for different classes, the steering value is

used as the reference to identify the moment when a turn was initiated or completed, and the

frames within the range of 15 frames before that point are considered the positive samples

for the waypoint, and the frames prior to the positive range are considered negative.

4.3. Data Pre-Processing

Different from the picture we take with a normal camera, the fisheye lens cause severe

distortion due to the coverage of a wide viewing angle, thus the valid pixels that contain

environmental information are located in a disc-shaped area in the middle of the image,

leading to two black zones with invalid pixels on the left and right sides of the image (see

Fig. 4.2). In order to remove the black zone as much as possible, we crop out the most left

30 columns and the most right 30 columns of pixels and the valid image after cropping is in

the resolution of 260× 240.

For the higher-level navigation model, since each side of the images from stereo-camera

system is encoded separately, the left and right images are resized from 260×240 to 224×224

to meet the required input resolution of the feature extractor. In contrast, to simplify the

process and speed up the inference of the lower-level navigation model, the stereo image is
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directly resized without splitting the left and right images before being fed to the feature

extractor.

Then, the resized images are passed to the data augmentation function to mimic the

potential image variation caused by factors including horizontal body tilt, lighting condition

and camera white balance change. It is noted that this data augmentation helps the covari-

ance network and takes place during the training as well as test time. This is different from

conventional augmentation techniques which only take place during training. In order to

improve the model robustness in the case when random objects appear in the query images

but not in support images, or vice versa, we apply random erasing to randomly replace one

or more rectangle areas in the field of view with black pixels, in order to intentionally guide

the model to focus on features outside the erased areas when a portion of features are miss-

ing or covered by objects appeared occasionally. Furthermore, considering the frame rate

of 30 during data collecting, the 10 images in the same support or query set are collected

in around 0.33 seconds, the variation factors do not apparently change, we apply the same

randomly picked augmentation parameter to the images in a same set to match this rule.

4.4. Training

The dataset is separated into training, validation and test sets without overlap. Out of

the 18 recorded routes in the dataset, 12 of them with at least 4 laps for each direction

are randomly selected for training, 3 of the rest are included in the validation set, and the

remaining 3 courses are only used in testing. In validation and testing, the laps are selected

to mimic the process and data in online tests: pick a lap to populate the memory with

waypoint information, and run inference by traversing all the images from another random

lap in the order they were collected. For each validation/testing courses, the process is

repeated with all the possible two-lap combinations to cover all the differences between the

two selected, avoiding the coincidence of using two laps that are too-similar or too-different.

The high-level navigation model is trained in a few-shot meta-learning learning scheme

[27], in which the optimization is based on the subsampled dataset named episodes [37].
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The key technique of training a few-shot learning is mimicking the conditions encountered

at test time [37], therefore, in each episode, a class k is randomly picked in Ctrain, then s

samples of class k are selected from Dk to form the support sets Ssup
k = {(xk

i , y
k
i )}si=1 and

the query sets Sqry
k = {(xk

i , y
k
i )}

q
i=1 with q samples. After data pre-processing4.3, the feature

extractor performs a dimensionality reduction on each Ssup to map the data to a latent space

in the form of 1-dimensional encodings (vectors), denoted as f(xi; θ). The samples in Ssup

are combined by calculating the mean of their encodings:

(4.1) µsup =
1

s

s∑
i=0

f(xi; θ)

Additionally, based on µsup, the covariance estimator generates the associate covariance

estimation for set Ssup, as
∑sup = g(µsup;ϕ). So far, a stamp of a support set can be

constructed as Ssup = (µsup,
∑sup). With multiple stamps, a better representation of class

k can be combined by stacking the stamps, written as Sk = (µk,
∑

k).

Similarly, we can also obtain the stamps of Sqry
k , which can be either positive or negative

stamps, from the same lap or other laps of that route in the same direction. In our practice,

training strategies are applied to mimic the actual support/query sets presented in the test

as much as possible. The s samples in both the support and query sets are consecutive

frames, and the negative query sets are selected within the range of 150 images before the

waypoints, which are challenging to the model because they are more similar to the positive

samples. According to Eq. 3.8, the similarity between the stamps of the support set of class

k and the query stamp xj is quantified by calculating the Mahalanobis distance:

(4.2) dM(Sj,Sk) =

√
(µj − µk)T (Σ

j
k)

−1(µj − µk)

where

(4.3) Σj
k =

Σj + Σk

2
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With the equation above, if there are a total of n classes, the distance between query

stamp Sj and all the stamps of all the classes can be obtained respectively. The probability

of Sj belong to class k can be derived through a softmax function over negative distances:

(4.4) p(yj = k|xj) =
exp

(
− d(Sj,Sk)

)∑n
k′=1 exp

(
− d(Sj,Sk′)

)
Note that negative log probabilities of query sets to positive classes are accumulated for

the loss for each episode.

The model was trained with a graphics card of NVIDIA RTX A6000 that features 48GB

of memory. To maximize the memory utilization, we used the batch size of 3 and construct

the support and query size with 10 frames. The training process is composed of two stages:

pre-training and fine-tuning, during which the learning rate is initialized as 1e−4 and reduced

by a factor of 0.5 every 10 epochs. In pre-training, only the covariance module is trained

while the parameters within the feature extractor are frozen. After pre-training for 15 epochs,

the model is then fine-tuned for 40 epochs with all the parameters released. The model is

trained for 16 episodes every epoch, and validated every other epochs.

4.5. Performance Metric

In our offline test, we designed a customized metric to quantify the few-shot learning

model. Since the autonomous driving task is separated into sub-tasks (turn left, turn right,

go straight), we segment the test laps into positive and negative sections. Each positive

section consists of 15 positive frames of a waypoint and a negative section of a waypoint

includes all the negative frames between the end of the last positive section and the beginning

of the positive region of this waypoint(Fig. 4.3). Rather than taking every output probability

as the smallest unit, we consider an entire section as a unit in our metric to better reflect if a

navigation command is issued properly. A section would be counted as positive if at least one

peaks happen in the section, otherwise it would be a considered as a negative recognition.

Note that the threshold for identifying peaks is 0.5.
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Figure 4.3. Moving Average Probabilities along a 16-Waypoints Route

In practice, to reduce the operation error during data collection, we expand the positive

section by including 15 frames before and 9 frames after as the buffer region, thus each

positive section has 39 frames. Additionally, before calculating the score, the raw output is

smoothed by a moving average with window size of 10.

Having the criteria, the testing result is obtained by calculating the F1 score, which is

the harmonic mean of the precision and recall:

(4.5) F1 =
2

recall−1 + precision−1
=

2TP

2TP + FP + FN

4.6. Ablation Study

In the ablation study, we evaluate few-shot learning models trained under different set-

tings and compare their performance on the test set. We compared the performance of mod-

els trained based on 3 different ResNet-50 weights including: 1.Weights pre-trained with
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Weights Covariance Module F1 Score

Unsupervised Trained
√

0.868
- 0.857

Supervised Trained
√

0.823
- 0.813

From scratch
√

0.667

Table 4.1. Ablation test result.

a classical supervised learning scheme; 2.Weights pre-trained with an unsupervised train-

ing method of SwAV (Swapping Assignments between Views) [2]; 3.Randomly initialized

weights. To prove the superiority of the covariance module, we also evaluated the models

trained with/without the covariance module in the architecture.

In this test, models are evaluated offline on the testing set that consists of 3 unseen

courses in training. The scores are summarized in Table. 4.1. As evident from the results,

compared to the case where training initiated with the model trained from scratch with

randomly initialized weights, loading each of the two pre-trained weights and performing

transfer-learning with our own data brought a significant improvement of at least 0.15 on

F1 score. In the scope of pre-trained weights, the SwAV version trained with unsupervised

learning approach has an F1 score 0.04 higher than the classical supervised trained weights.

This shows that the performance of our few-shot learning model is also affected by the

method with which the pre-trained weights were trained, although they are both fine-tuned

by our meta-learning approach on the same new data. Supervised trained feature extractor is

shown to be more capable of extracting meaningful features with limited number of training

samples. With the same initialization of weights, the score of the architecture with the

covariance estimation module is higher than the version without the module, which supports

the fact that the proposed covariance estimator is boosting the performance of the few-shot

learning model and achieves the best performance with the SwAV weights..

4.7. Online Test

In addition to the offline test, we implemented the proposed framework on the MiniAV

and performed an online test in an unseen building. The tested course is also a loop with
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4 turns in an indoor environment. To prepare for the requirements of the algorithm, we

first manually manipulated the MiniAV along the planned course for once, and populate the

memory with waypoint stamps and the corresponding navigation commands before depar-

ture. Then, in testing time, the stereo images captured by the camera system were fed to the

models for real-time inference. Notably, unlike the training set in which the environmental

features are similar in different laps since they were recorded continuously in a short period

time, the online test was performed two hours after the collection of the memory lap that

used to populate the memory. As the comparison in Fig. 4.4, the lighting condition has

significantly changed. Fig. 4.4(a) shows a frame in the memory lap recorded at dusk when

the sunlight was visible through the glass door, as well as causing a strong reflection on the

tiles. However, the online test was done at night when all the natural light had gone, when

the overall brightness of the field of view was lower, the sample frame at the same point

is shown in Fig. 4.4(b). Even though the environmental features varied at test time, our

approach was still capable of navigating the MiniAV to complete the course, a video of the

online test can be found online at Appendix 1. The higher-level navigation model recignized

the waypoints in time and produced the correct commands to the subsequent module, and

the lower-level navigation model produced proper steering values to complete the desired

driving action. During the sections where the MiniAV was supposed to go straight, the

lower-level navigation module could output a steering value instantly to shift the car back

to the middle of the hallway when the vehicle was approaching to the wall. Furthermore,

the decision was not interfered by a random passerby appeared in the course.
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Figure 4.4. Comparison of the Environment of Memory Lap and Testing
Lap
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CHAPTER 5

Conclusion

In this work, we demonstrate the proposed few-shot learning model is capable of navi-

gating an autonomous vehicle by recognizing waypoints with only a few available positive

images, and it can be embedded in the hierarchical framework with a regression model to

achieve a fully autonomous navigation through an unseen course with minimal preparation.

The online testing result shows that our approach can be deployed quickly and easily in an

autonomous driving task which only relys on RGB cameras, without any complicated sensors

such as GPS, LiDAR, radar, etc.

Through ablation study, the covariance estimator in our few-shot learning architecture

shows satisfying performance in achieving higher scores by utilizing the model’s general-

ization ability to propose feature variance. It is also potential in being adopted in other

meta-learning approaches to tackle tasks in other domains.

Although our approach performed reasonably in the defined autonomous navigation task,

it has explicit assumption that the images for the incoming waypoint are collected by the

same vehicle with the same camera system, which limits the application scenarios of our

approach. Furthermore, the navigation would fail if the waypoint images differ dramatically

from the testing environment, such as from sunny to rainy weather, from summer to winter,

etc. We also noticed that although the lower-level navigation model is capable of keeping the

vehicle driving in the middle of hallways, it is clumsy in avoiding random obstacles in the

way. In the future, we are planning to incorporating algorithms such as generative models

to further improve the robustness of the few-shot learning model, as well as developing a

more complicated mechanism to plan the path smartly during the autonomous navigation.
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CHAPTER 6

Appendix A

Online Videos

(1) Title: ”Online Test at the First Floor of Academic Surge at UC Davis”

Creator: Debo Shi

Description: This third-person view video shows the how the hierarchical framework

runs in real time on the MiniAV to autonomously navigate it through a complete

loop.

Link: https://ucdavis.box.com/s/oanhriklqc1xzhdb25mrje70e6o32kq7 (Box)
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