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VHDL signals and wait statements provide great expressive power for behavioral descriptions. How

ever, due to their simulation semantics, most high-level synthesis tools do not handle these constructs 

and severely restrict their use, eliminating much of their power. In this report, we introduce a set of 

transformations to convert signals and wait statements to equivalent constructs that are easily handled 

by high-level synthesis tools. They greatly enlarge the synthesizable VHDL subset, thus increasing the 

usefulness and practicality of the language as an input to high-level synthesis. These transformations 

can also serve as a basis for converting a VHDL process to a form suitable for generation of software. 
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1 Introduction 

The adoption of VHD L [1, 2] as an IEEE standard has resulted in growing acceptability of the language 

as an input to high-level synthesis [3, 4]. First, as designer VHDL literacy continues to grow, behavioral 

descriptions become easier to write and become more useful for documentation purposes. Second, high 

quality simulation and debugging tools are widely available. Finally, a large number of synthesis tools 

accept VHDL as an input. 

However, process-level VHDL is complex with regard to the semantics of signal and wait state

ment constructs. The reason is that such constructs depart from traditional sequential programming 

language constructs. As a result, it is more difficult to synthesize hardware from VHDL than from 

other languages such as HardwareC [5], Verilog [6], or ISPS [7]. Therefore, synthesis tools place heavy 

restrictions on the allowable use of signal and wait constructs; such restrictions are often refered to as 

language subsetting. 

Such restrictions are unfortunate, since the signal and wait constructs have a high degree of expres

siveness. The VHDL wait statement can replace many lines of sequential code, as will be demonstrated 

later in this report. VHDL signals differ from variables in that they not only have a value, but they 

have that value at a particular time. Thus signals, unlike variables, can be shared by several con

current processes. Also, VHDL ports, through which all communication by an entity to the external 

environment takes place, are actually signals themselves. In addition, the experienced VHDL modeler 

soon discovers that the time aspect of signals provide a very elegant means for specifying parallelism 

in a sequential behavior. 

For example, Figure 1 shows a pipelined processor, where each concurrent stage is modeled as a 

procedure with sequential statements. The procedures are called from a main process. The description 

contains much concurrency even though the statements comprising the stages occur sequentially. For 

example, IRl in stagel and IR2 in stage2 are updated simultaneously, and the IRl used in stage2 

is the old value of IRl written by stagel. In the figure, the assignment to PC in the BRANCH 

instruction of stage2 supercedes the increment during instruction fetch in stagel, i.e. it does not use 

the incremented value of PC. A description where each stage is modeled as a process is not as simple. 

It will involve signal resolution along with a prioritizing of the concurrent assignments to the PC 
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STAGE 1 

STAGE2 

STAGE3 

signal. 

Stage 1 (Instruction fetch) 

~ure STAGE1 Is 

IA1 <• M(PC); 
PC<=PC+ 1; 

end STAGE1; 

Stage 3 (reault store) 

procedure STAGE3 Is 
begin 

opcode :. IR2(15 .. 12); 

cas~ 
dstaddr :.- IR2(3 •. 0); 
AF(dstaddr) <=result; 

end
0

Case; 
end STAGE3; 

• Slgm1I 0 Computation 

Stage 2 (execute) 

procedure STAGE2 Is 
begin 

opcode := IR1 (15 .. 12); 

case opcode 
ADD: 

src1 : .. RF( IR1(11 .. 8)); 
src2 :=AF( IA1 (7 . .4)); 
result <- arc1 + src2; 

BRANCH: 
addr := IR1 (11 • .4); 
PC <'" PC+ addr; 

arid case; 

IA2-c-IA1; 
end STAGE2; 

Main Proceaa 

signal IR1 ,IA2 ••.•. 
signal RF ••...•• 
signal PC, AESlA.. T ..... . 

meln : proceea 
boo In 

S"TAGE1 ; 
STAGE2; 
STAGE3; 
wait for ••• 

end process 

Figure 1: An example exploiting signal semantics 

Current synthesis tools impose restrictions on the VHDL constructs that can be used in an input 

specification, severly limiting the expressive power of signals and waits. For example, some tools 

require that a signal may not be both read and written by the same process while other tools ignore 

the on clauses of wait statements. To overcome these restrictions, we developed transformations 

to convert signals and waits into constructs easily handled by existing high-level synthesis (HLS) 

methodologies. In current HLS methodology, each process is converted to an graph-type representation 

containing control and datafl.ow operations; we shall refer to all such representations as CDFG's. 

CD FG optimizations and transformations are performed with the goal of enabling more efficient 

hardware to be synthesized. HLS tasks such as scheduling, allocation, and binding are applied to the 

CDFG, and a structural module is output that implements the process. The modules for the multiple 

processes that comprise the entire behavioral description are then connected. 

Techniques are well-known for obtaining a CDFG for traditional sequential program constructs 

found in each process, such as variable assignments, branches, and procedure calls. There are many 

HLS approaches which incorporate these techniques (4, 5, 8, 9, 10]. However, to the best of our 

knowledge, no published techniques exist for synthesizing VHDL signal and wait statement semantics. 

Handling these constructs is not a trivial task, either. 
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signal 81 ; 
signal 82; 
signal 83; 

process P1; 

process P2; 

pr0Ce55"'p3; 

•......•......... 
(a) VHDL Behavioral Description 

with several processes 

Procen 1 Procen2 

Process3 
__ ..... 

..............................• 
(b) Synthesized Hardware 

.............•...............•••.......••.....•......••... , 

VHDL Process 
Description 

( signals & variables, 
general wait statements ) 

CDFG 
parser 

I .------· 
High-level : RT-level 
Synthesis ...a.... structural 

net// st 

Assembly 
Software •------~ .... code for 
Compiler existing 

processor 

~--···················-··············-···················· 

(c) Wait I Signal Transformations 

Figure 2: W /S transformations in an overall synthesis methodology 

In this paper, we propose the Wait/Signal (W /S) transformations to convert VHDL processes 

into equivalent processes containing only variable assignments and trivial wait statements which are 

sensitive only to a clock. Such variable assignments and trivial wait statements are easily handled 

by existing HLS tools. Thus, W /S transformations provide a major step forward in enlarging the 

synthesizable VHDL subset. 

In addition, the W /S transformations serve as a basis for providing a path from a VHDL process 

behavior to a software implementation on an existing processor. The VHDL process with signal and 

wait statements is transformed into a description with only sequential constructs, which can be easily 

mapped to the instruction set of a processor. It is therefore possible to perform hardware/software 

tradeoffs from the same input VHDL specification. 

In this report, we present the transformations as a front-end to existing synthesis tools, as shown in 

Figure 2, merely for the purpose of ease of presentation; an implementation will more likely incorporate 

them with an existing tool such as a CDFG creation tool. 

This report is organized as follows. In Section 2 we summarize the relevant aspects of signal and 

wait semantics. We would like to mention that we discuss signal semantics in the context of processes 
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only. VHDL concurrent signal assignments can be modeled using an equivalent process statement, so 

are not covered separately in this paper. In Section 3, we formulate the specific problem we wish to 

solve. In Section 4, we introduce the W /S transformations for converting signals and wait statements 

to a form handled by existing synthesis tools. These transformations have been developed with a view 

to synthesize synchronous hardware. On the surface, it would appear that the transformed VHDL will 

be implemented using complex hardware. Section 5 describes why this is not so; that in fact standard 

CDFG optimizations already found in most synthesis tools will yield efficient and practical hardware. 

2 VHDL Simulation Semantics 

2.1 Signal Assignment Statements 

The syntax for a VHDL signal declaration is: 

signal identifier : [resolution-function-name] type [signal-kind] [:= expression] ; 

signal-kind ::= register I bus 

Each process which writes to a signal is called a driver for that signal. If a signal is written to 

by more than one process, a resolution function is required to combine the multiple driver values 

into one resolved value for the signal. VHDL allows resolution functions to be arbitrarily complex. 

However, to be able to synthesize feasible hardware, we limit resolution functions to represent the 

signal S : integer ; 

P: process 
variable V : integer ; 

begin 
v := 1; 
S<=V; 
wait for 50 ns ; 
v :=2; 

end process P ; 

(a) Code showing change In 
the source of signal S 

Process P 

v 

• 
I 'I 
I 
I 

latch 

(b) Latching signal S 

Figure 3: Latching signal values driven by each process 
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technology-specific wire characteristics. For example, in some technologies, multiple drivers on the 

same wire result in a wired-or value, which can be modeled by a resolution function using a look-up 

table. This enables the synthesis tool to synthesize each process independently as a module, and then 

connect the wires representing the signal driven by each module. 

The value which a process writes to a signal may need to be stored. To see this, consider the VHDL 

code segment in Figure 3. According to VHDL signal semantics, process P should continue to drive 

S with the value "1" even after 50 ns, at which time V is set to "2". Since the source of the value 

written to signal Smay change, a storage for the signal's value is implied. However, if only constants 

are assigned to the signal in the process, or if the signal is updated in the same control step whenever 

any source in the previous assignment is updated, a storage for the signal is not required. 

Signals can be of three kinds: simple (or no-kind), bus, or register. Their semantics are examined 

separately and are explained with the help of the hardware templates of Figure 4. Signal semantics 

and synthesis are discussed in detail in [11). 

Simple signals can have multiple drivers as shown in Figure 4(a). However, the drivers of a simple 

signal cannot be turned off (i.e., a null assignment "S <= null;" is not permitted in the process). 

Consequently, a simple signal has all of its drivers active at all times. Signals of bus kind are different 

from simple signals in that the drivers can be turned off by a null assignment. This results in a tristate 

driver being placed after the latch in Figure 4(b ). In addition to resolving the values written by the 

different drivers, the resolution function must specify a value for the case when all the drivers are 

turned off. Register kind signals are identical to bus signals except that in the event that all the 

drivers are turned off, the signal retains its last resolved value. This is achieved by using an additional 

latch which stores the last resolved value of the signal, as in Figure 4( c). 

Having introduced signal semantics external to processes, we now discuss the semantics of signals 

associated with updating a process' driver using sequential process statements. 

The VHDL signal assignment statement syntax is: 

signal_target <= expression [after time_expression] ; 

I null [ after time_expression ] ; 

5 



process P 

signal S : [resfun] sometype; 

I 
I 
I 

I 

\ 
I 
I 
I 

signal S : resfun sometype bus; 

s 

process a process P ~}J!,ts process Q 

~les by process p io s 
am actiialy writ66 to this latch 

I 
I 

I 
I 

A f960/utlon function~ 
mu/tjJIB valu# Into single value for S 

..._ ____ __, ttii::::'iW ..._ _____ .... 
s <-nuH wll 
shut-off lhB drlwK 

00, It muet st/I 
provide a value. 

(a) Simple signal (no kind) 

process P 

signal S : resfun sometype register; 

Level Sensitive 
Latch 

s 

(c) Register-kind signal 

(b) Bus-kind signal 

process Q 

Figure 4: Hardware templates for three kinds of signals 

Evaluating the expression determines the next value of the signal driven by the process. We 

currently do not permit after clauses in signal assignments, which specify the time when the signal 

will be updated. Therefore, the value driven by the process is updated with the next value when 

the next wait statement is encountered. This is distinct from variable assignments (whose syntax is 

"variable_target := expression"), where an assignment causes an immediate change in the value of 

the target variable. We illustrate this difference with the help of the following VHDL code segment 

involving signal assignments: 

A <= B; 

B <= A; 

wait for 10 ns; 

The values of A and B are not updated until the wait statement is encountered. Hence the above 

statements have the same effect as a swap of the values of A and B. However, if the statements are 
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incorrectly interpreted as variable assignments, both A and B will get the same value (i.e. value B). 

For a more detailed description of signal semantics, refer to [1]. 

2.2 Wait Statements 

The syntax of the VHDL wait statement is: 

wait...statement 

sensitivity _clause 

condition_clause 

timeout_clause 

wait [sensitivity _clause] [condition_clause] [timeout_clause] ; 

on signalJlame {,signalJlame} 

until condition 

for time_expression 

The sensitivity list specifies the signals to which the wait statement is sensitive. When an event 

occurs on a signal in the sensitivity list, the condition clause specifies a condition that must be met 

for the process to resume execution. The timeout clause specifies the maximum time that the process 

will be suspended at the current wait statement. 

The semantics of the wait statement is explained with the help of the :fiowgraph of Figure 5( a). The 

function current_time provides the current simulation time, while advance_time advances simulation 

time to the point when the next event occurs. These two functions are used to determine when the 

timeout interval has expired. 

A process suspended at a wait statement can resume in two ways: either an event occurs on a 

signal in the sensitivity list and the condition in the condition clause evaluates to true, or the timeout 

interval in the timeout clause expires. 

VHDL defines default values for all the clauses in the wait statement, shown in Figure 5(b ). Thus, 

if some of the clauses are omitted in the wait statement, the resulting flowgraph can be simplified 

greatly. For example, in the absence of a condition clause, the default value is true and we can thus 

eliminate the branch-node D from the flowgraph of Figure 5. Similarly, in the absence of a timeout 

clause, the branch node labeled B can be eliminated along with the statement block A. 
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start 

A 

start time - current time ; 
mwCtime • evaluate time_ expression; 

advance_time 

done 

wait on 
until 
for 

sensitivity list 
condition 
time_expression; 

timeoutQ: 
return ( (current_time • start_time) >= maxtlme ) 

signal change() : 
<retilrns true 1f any signal In the sensitivity list 
has a different v!llue than the previous time> 

Welt Statement Default Value ClaUM 

sensitivity clause all the signals In the 
condition clause 

condition clause TRUE 

timeout clause Infinity 

Figure 5: Wait statement flowgraph 

3 Problem Formulation 

Having introduced the simulation semantics of signals assignments and wait statements, we now ex

amine synthesis approaches to obtain hardware from VHDL descriptions containing these constructs. 

Two approaches are shown in Figure 6. We may synthesize hardware directly from the VHDL de

scription (box A) specified by the designer. However, due to the complex signal and wait statement 

semantics, such a direct synthesis from input VHDL descriptions is difficult to implement. 

However, if we could somehow transform these constructs into an equivalent description (box B) 

containing only variables and simple wait statements, we could invoke traditional high-level synthesis 

tools to obtain hardware from the transformed specification. These W /S (wait/signal) transforma-

tions, which would enable us to eliminate all signals and complex wait statements, provide the main 

motivation for the research presented in this paper. 

It must be mentioned at this point that the semantic preserving W /S transformations may add 

extra variables for each signal. However, the resulting implementation (box D) will not have any 
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Designer 

i INPORT 

signal PC, INSTR : Integer ; A W/S 
Transformations 

process 
~ariable MEM : MEM_ARRAY; 

betj~STR <= MEM(PC) ; 
PC<• PC+1; 
welt on INPORT ; 

end
0

pr~; 

VHDL Spec. with Wails/Signals 

INPOAT 

CONTROL LOGIC 

Possible Path 
to Hardware 
( difficult to 

Implement) 

c 

data 

~ 

process B 
variable MEM : MEM ARRAY; 
variable INPORT _okl - : bit ; 
variable PC driver : Integer 
variable PC-driver next : integer 
variable INSTR_drlVer : Integer 
variable INSTR_driver_next : integer 

tietSTR driver next := MEM(PC driver) ; 
PC_dnver_next := PC_driver + 1 ; 

INPORT_old :• INPORT; 

INSTR driver := INSTR driver next ; 
PC_driVer :- PC_driveCnext ;-

loop 
wait until CCLI<= 11 and not (CLK'stable) ; 
if (~POAT_old = fNPORn then 

exit; 
else 

INPOAT old • INPORT ; 
end if; -

end loop; 
end process ; 

VHDL Spec. with trivial Waits, without Signals 

INPORT 

CONTROL LOGIC 

High-Level 
Synthesis 
Tools 

data 

- INSTR_driver 

D 

Figure 6: Obtaining hardware from VHDL specifications with signal assignments and general wait statements 

excess hardware than would otherwise be required if we had attempted to synthesize hardware (box 

C) directly from the VHDL description with signal and wait statements. The transformations are 

presented in the next section. Techniques for generating efficient hardware from the transformed 

VHDL description are presented in Section 5. 

4 W /S Transformations 

We assume that the subsequent high-level synthesis tool uses the signal driver template shown in 

Figure 7. S_driver represents the value of the signal S driven by the process. Since several processes 

could be driving the signal, S_resolved represents its resolved value. This is also the value that is used 
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process module 

S_resolved 

S_on 

--------------------' 

S_resolved 

Figure 7: Basic signal hardware template 

in the right-hand side of all assignments to S. As explained in the previous section, a tristate buffer 

may be required in case the driver is turned off in the process by a null assignment. S_on represents 

the control signal for this tristate buffer. S_driver and S.resolved are of the same type as the signal 

S while S.on is of type boolean. In addition, we assume that the subsequent synthesis tool recognizes 

these three variables in that they represent the various sub-components of the template shown in the 

figure. 

Figure 8 shows the W /S transformations applied to the VHDL signal assignment and wait state-

ments. We now discuss these transformations in detail. 

4.1 Signal Assignment Statements 

Figure 8(a) shows how signal assignment statements are represented only using variables. In a signal 

assignment "S <= expression ; ",the driver for Sis only updated with the value of the expression at 

the next wait statement. We need to store this next value of Sin a new variable called S.driver _next. 

Thus, all assignments to Sare replaced by "S.driver.next := expression ;". 

In case the driver for signal S is turned off in the process, then each non-null assignment to S 

must turn on the driver. This can be achieved by adding "S.on..next : = true" after the assignment 

statement, where the variable S.on.next represents the next value of S...on; S...on will be updated when 

the next wait statement is reached. A null assignment to S in the process should turn off the driver. 

This is achieved by replacing "S <= null ; " by "S_on.next : = false ; ". 
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B <• expr; I B <•null; ~ 
s_driver_next :. expr; I a on next ·-false· 
a on next :- truei' - - · • 

s_update :- true;" 

wait on a,b, .. 
until cond 
for texpt 

4.2 Wait Statements 

x 

y 

ff s update then" <in drivBr update block of tlHa 
s:::diiver :- s_driver_next; falowing wait slatem9flts> 
a on :- s on next·• 
s:::l.lpdate :- falsi;" ' 

endif;U 

•statement required only if s <• nul exists 
"statement r9q1.1ired onft if signal is assignsd lo on somo 

paths to a wait slatBm11rt, /Jut not on other paths {very rare) 

(a) Signal Assignment Statement 

a_old :- a_resolved; 
b_old :- b_resolved; 

<drivBr upda/9 block; 
see above> 

wait until clock_rislng; 

a_old :- a_reaolved; 
b_old :- b_reaolved; 

a_old :- a_resolved; 
b_old :- b_resotved; 

:.;driver update&> 

waitloop : loop 
wait until clOck_rislng; 
ff (timer_o~ >- ceiling(texprlclk_period)) 
thiln 

exit waltloop; 
end H; 
H (a_resolved /. a_old or 

b_resolved /. b_old or ... ) then 
H (cond) then 

exit wa~loop; 
end H; 
~old :- a_resolved; 
b_old :- b_r860lved; 

end H; 
~loop; 
t1mer_start; 

(b) Walt Statement (wait_tamplate_1 flowgraph) 

Figure 8: The Wait/Signal Transformations 

We will :first define some of the terminology used in this section. A statement block is defined as the 

set of statements between any two successive wait statements. The term preceding_paths refers to all 

paths leading from any preceding wait statement to the current one, while following_paths represents 

all paths from the current wait statement to the next wait statement. 

Before we present the transformations associated with wait statements, we briefly discuss how they 

are interpreted with a view to synthesize hardware. A wait statement indicates that all targets of signal 

assignment statements in the statement block preceding it have been updated with their new values. 
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Thus, a wait statement implies an explicit clock boundary for synthesis. However, the synthesis tool 

is free to add more clock boundaries to implement the computations in the statement block, as we 

shall see later in Section 5. 

In VHDL, all signals assigned a value in a statement block are updated at the next wait, and these 

updated values are available to statements following the wait statement. Thus, all computations that 

are performed in the statement block must have completed before the process can resume execution due 

to the expiry of the timeout interval. Consequently, a timeout clause represents a timing constraint 

on the synthesis of the statement block preceding the wait. It also implies that the process, when 

synthesized, is suspended at the wait statement for an amount of time equal to the difference between 

the timeout interval and the time required to perform the computations. For example, if the statement 

block requires 200 ns to compute the new values for all the signals, the next wait statement "wait for 

300 ns" will effectively wait for 100 ns after the computations have been completed. On the other 

hand, a sensitivity list or a condition clause will be evaluated only after all the computations in the 

preceding statement block have been completed. 

The flowchart representing the wait statement implemented using only "wait until clock...rising" 

is shown in Figure 8(b ). The equivalent VHDL code generated for this template is also shown in the 

figure. This code is used by the W /S transformations as a template for replacing wait statements. 

We would like to mention that the clock boundary can be specified in any manner acceptable to the 

synthesis tool. For example, a rising clock can be represented as: 

wait until (CLK = 1 1 1 ) and not(CLK'stable) 

To be able to monitor a change on the signals in the sensitivity list we need to store the current 

value (S_resolved) of each sensitivity list signal Sin the variable S_o/d. This is shown for signals in 

box X in the flowchart of Figure 8(b ). The value S_o/d can then be compared with S_resolved after 

each rising edge of the clock to detect a change on S. 

If the signal S was assigned a value in the preceding statement block, the driver value S_driver 

needs to be updated, as shown in box Y of in the flowchart of Figure 8(b ). Since there could be several 

preceding paths leading up to the wait statement under consideration, it might be the case that the 

signal S is updated on only some of those paths. Thus, an additional boolean variable is set to true 
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whenever the signal is assigned to in any of the paths. At the wait statement, if S_update is true, we 

can update S_driver with the variable S..driver_next (computed at the previous signal assignment). 

To implement timeout clauses, we can use a counter which is incremented on every clock. In pure 

VHDL behavior, the statements between two wait statements take zero time to execute. In synthesized 

hardware, these statements may require one or more clock cycles to execute. To maintain the same 

timing with respect to any external interface, the counter is started when we leave a wait statement so 

that it can be used by the next wait statement to determine the time elapsed since the previous wait. 

A timeout is detected whenever the counter value, count_out, is greater than or equal to the timeout 

expression expressed in terms of clock cycles (i.e. ftimeout_expression/clock_perio<f]). As explained 

earlier, this also ensures that the time spent at the wait statement includes the time required to 

perform the computations in the preceding statement block. The function count_start initializes the 

counter. We assume that the functions counLstart and count_out are recognized by the subsequent 

synthesis tool. 

VARIABLE TYPE DESCRIPTION WHEN CREATED 

S_driver same ass Value of S driven by process. Always created if process writes to S. 

s_resolved same ass S~nal value resolved from multiple process If S is a resolved signal. 
drrvers. This is the value used in all 
expressions involving S. 

S_driver_next same ass Value with which the driver, S_driver, will be If S is assigned a value AND occurs 
updated at the next wait statement. rars in an expression, in the same statement 
as the target for all assignments to . block between two wait statements. 

S_okl same ass Old value of the stal, which is used to If S occurs in the sensitivity list 
detect a change in signal. of a wait statement. 

S_update boolean Indicates whether S is to be 'fLjated at the If S is assigned a value on some 
next wait statement. Set to T UE everytime paths (but not all) between two 
S is assigned a value. Set to FALSE at wait. wait statements. 

s_on boolean Control Input of the driver's tristate buffer. If signal is assigned a NULL value 

S_on_next boolean Value with which the S on will be updated at 
the next wait statement. 

If signal is assigned a NULL value 

Figure 9: Variables created by the Wait/Signal Transformations for a signal S written to in a process 

4.3 Common Simplifications 

Figure 9 summarizes all the seven variables that may be required to implement a signal Sin the most 

general case. However, we will rarely need all of these variables. in this section we present some 
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simplifications that are part of the W /S transformations that reduce the number of variables used for 

any given signal. 

First, for a signal S, we can eliminate the variable S_update if it is updated on all paths between 

every two successive wait statements, which is usually the case. Second, in case Sis an unresolved signal 

written by the process under consideration, S_resolved always equals S..driver. Thus all occurrences 

of S_resolved in the transformed VHDL can be replaced by S_driver. Third, if the driver for S is 

never turned off using a null assignment, the boolean variables S_on and S_on_next will not be needed. 

Another simplification can be invoked with wait statements whenever all the signals in the condition 

clause and sensitivity list are identical. This is very common in VHDL descriptions, especially since 

it is the the default when no sensitivity list is explicitly specified. In such cases, checking for a change 

on the signals and then evaluating the condition is redundant, because a change in condition value 

implies a signal in the sensitivity list has changed. If the condition is false before the wait statement, 

we only need to wait until it becomes true, which also implies that some sensitivity list signal must 

have changed. If the condition was true before the wait statement, we must first wait until it becomes 

becomes false, then wait until it becomes true. The template shown in Figure 10 can be applied to 

avoid using the S_old variables. 

Figure 10: Template for wait statement where signals in sensitivity clause and condition clause are identical 
(waiUemplate-2) 
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for each signal S do 
Replace all reads of S by reads of S_resolved 

if there is a null assignment to S in process then 
Modify every non-null assignment to S, replacing 

else 

S <= expression ; by S..driver..next := expression 
s_on..next := true 

Modify every null assignment to S, replacing 
S <= null ; by S..on..next := false ; 

Modify every assignment to S, replacing 
S <= expression ; by S..driver..next .- expression 

endif 
endfor 

for each wait statement do 
if sensitivity-list signals are the same as the condition-clause signals then 

Replace with wait-template-2, leave section Y empty (Figure 10) 
else 

Replace with wait-template-I, leave section Y empty (Figure 8) 
endif 

for each signal S in preceding paths do 
if all preceding paths assign to S then 

else 

endif 

Add to section Y of template : S..dri ver : = S..dri ver .next 
if there is a null assignment to S in process then 

Add to Section Y of template : s_on : = S..on..next ; 
endif 

After each write to Sin a preceding path, add : S_update : = true 
Add to section Y of template : if S..update then 

S_driver .- S..driver..next 
s_update : = false ; 

end if ; 
if there is a null assignment to S in process then 

Add to Section Y of template : s_on : = s_onJlext 
endif 

endfor 
endfor 

for each signal S do 
if (process assigns to S) AND (Sis unresolved) then 

Replace all reads of S_resolved by reads of S..driver 
endif 

endfor 

Figure 11: Wait/Signal Transformation Algorithm 
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Even after the above-mentioned simplifications are performed, the transformations performed by 

the high-level synthesis tool would further optimize these variables and very few of them will actually 

be implemented as storage. The next section discusses these optimizations. 

The Wait/Signal transformations are summarized in Figure 11. 

5 Synthesizing efficient hardware 

The many variables and complex templates introduced by W /S transformations might appear to lead 

to a complex hardware implementation. In general, this is not the case since the datafl.ow representa

tion in a CDFG eliminates many intermediate variables, and CDFG transformations eliminate many 

branches and statements. It is not our purpose here to discuss CDFG representations and transfor

mations in detail. Details of these can be found in [5, 8, 12]. Instead, we shall illustrate that efficient 

hardware is obtainable by applying some of the common transformations. 

5.1 Avoiding excess registers 

A common misconception of synthesis from VHDL is that variables correspond to registers. In fact, 

a variable may be implemented as a register or as a wire. A register is required only when the value 

of variable is updated in one control-step and read in a subsequent control-step (or when explicitly 

annotated as a register in the behavioral description). 

For example, consider the following functionally equivalent VHDL processes: 

P: process(B,C) 

variable temp : integer 

variable A : integer ; 

begin 

temp := B + C ; 

A := temp + D 

end process; 
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Q: process(B, C) 

variable A : integer 

begin 

A := B + C + D 

end process 



A 

Figure 12: Additional variable does not change dataflow graph 

Although one description uses an intermediate variable, both descriptions result in the dataflow 

graph shown in Figure 12. If two adders are available and the delay of two successive additions does 

not exceed the clock period, then no intermediate registers are needed; otherwise, a register is needed 

between the two addition operations. The temp variable has no role in this decision; it merely serves 

to enhance readability of the behavioral description. 

Now recall that wait statements in the description denote explicit clock boundaries. Much of 

the behavior between such boundaries can be represented using a datafl.ow graph. Therefore, the 

sig_driver ..:next, sig..on_next, and sig_update variables will usually be mapped to dataflow arcs, as 

was temp in the above example, and will thus rarely require a register. Recall the swap example of 

Section 2. The A_driver ..:next and B_driver ..:next variables will be mapped to wires. 

5.2 Branch-path elimination 

If a particular path of a branch can never be reached due to the condition for that path always being 

false, then the condition leading to that path, along with the path's operations, can be deleted. While 

such code is rarely written by the modeler, it occurs quite often after the W /S transformations. For 

example, consider wait-template-2. If it can be determined that the until-condition is initially false, 

as it often can be, the flowchart reduces to that shown in Figure 13. 

As another example, consider the simple code portion shown in Figure 14( a). The code after 

transformations is shown in flowchart form in Figure 14(b ). After CDFG creation, simple data:flow 

analysis of the branch condition results in determination that the condition is always true, as shown in 

Figure 14( c ). Hence we can eliminate the branch condition and the false path. After doing so, pc..old 

is written but not read, so it too can be eliminated. Although these optimizations are performed on 
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b1_drjver := b1_drjver_next; 
b2_dnver := b2_dnver_next; 

wait until clock_rising; 

Figure 13: A wait statement simplification 

pc<= pc+ 1; 
wait on pc; 

(a) 

pc_clriver_next :=pc_ driver+ 1; 

pc_old := pc_driver; 
pc_driver := pc_driver_next; 

wait until clk_rising 

(b) 

.Pc driver state 1 

·---;--~=,~~~--
or. Old DC cfrirpc_ State2 

:::g----·--------
con~ 

branch condition : 
(pc drfver_state1 + 1 /= pc_driver_state1) 
-> atways true 

(c) 

Figure 14: Eliminating false branches 

pc_driver := pc_driver + 1; 

wait until clk_rising 

(d) 

the CDFG, for illustrative purposes we show the equivalent code in Figure 14( d). Note its simplicity. 

Also note that as discussed above, no register will be needed for pc_driver .Jiext. 

5.3 External timer elimination 

After scheduling the CDFG, all the control-steps are known. Therefore, it is always possible for the 

synthesis tool to eliminate the need for the external timer-counter that was assumed before we knew 

all the control-steps in the CDFG. A counter variable can be created that is incremented on each clock, 

and incorporated into the scheduled CD FG. Often this variable itself will then be eliminated, especially 

after loop unrolling transformations. Such an external-timer elimination should be incorporated into 

any HLS tool interfacing with the W /S transformed VHDL. 
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wait ... 
J>C<=pc+1; 
wait for 150 ns; 

(a) 

pc_driver_next := pc_driver + 1; 

pc_driver := pc_driver_next; 

(b) 

<Wait template> 

pc_driver := pc_driver + 1; 

I wait until clock_rising; 

wait until clock_rising; 

(C) 

Figure 15: Eliminating the external timer for timeouts in wait statements. 

For example, consider the code in Figure 15(a). Assume a clock period of 100 ns. W /S transforma

tions would use the timer portions of the wait-template in Figure 8. Figure 15(b) illustrates a simple 

CDFG transformation in which a variable called count is declared; all occurrences of counLstart are 

replaced by count := O, all clocks are followed by count := count+ 1, and all occurrences of counLout 

are replaced by count. Complete independence from an external timer is thus achieved. The design 

can be further improved by loop unrolling, as shown in Figure 15( c). The variable count becomes 

useless and is therefore eliminated. 

5.4 Mapping processes to combinational logic 

Many current tools assume that a process with a sensitivity list represents combinational logic. There-

fore, several restrictions must be imposed on the allowable' sequential statements in such a process, 

such as allowing only fixed-bound loops, and requiring that all read signals appear in the sensitivity 

list. We now demonstrate that such an assumption and its subsequent restrictions are unnecessary. 

A process with a sensitivity list is equivalent to a process with a single wait statement with the same 

sensitivity list. Hence, W /S transformations can be applied and the traditional HLS methodology 

employed. If all signals that are read appear in a sole wait statement's sensitivity list, and if the 

schedule results in a one state controller, then the state-register serves no purpose so can be eliminated, 

resulting in combinational logic. 
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Note that the former restrictions are eliminated. If the behavior can be implemented as combina

tional logic, it will be. Otherwise, registers and a controller will be used. 

The synthesis-tool optimizations presented in this section, ensure that no additional hardware is 

generated from the W /S transformed description, than would anyway be necessary to preserve the 

semantics of the signal and wait statement semantics in the original VHDL description. 

6 Conclusions 

We have implemented the W /S transformations. The implementation includes a VHDL parser and 

internal representation manipulation routines (approximately 7,500 lines of C code). The input to the 

W /S transformations is any general VHDL process, and the output is another VHDL process without 

any signal assignments and containing only wait statements sensitive to the clock. The transformations 

themselves require under one second of CPU time for a 1000 line VHDL process. 

Among the design descriptions that were used to test our W /S transformations were the three-stage 

processor of Figure 1, the Rockwell I/O backplane custom integrated circuit and an industrial RISC 

signal processor chip. We are currently integrating the W /S transformations with the VHDL synthesis 

tool that is under development. 

In this paper we have presented a technique to incorporate VHDL signal and wait semantics into 

high-level synthesis. The W /S transformations increase the expressive power of VHDL specifications 

that are synthesizable by enlarging the synthesizable subset of VHDL. This reduces the restrictions 

which are placed on designers writing VHDL behavioral descriptions intended as input to high-level 

synthesis tools. The W /S transformations are easy to incorporate into existing synthesis methodolo

gies. In addition they can provide a path from VHDL to software which can be mapped to a processor, 

thus enabling the designer to perform hardware/software tradeoffs from the same input description. 
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