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Recently, with the broad adoption of mobile devices, considerable research efforts have

concentrated on innovative dynamic optimization techniques to improve the performance

and energy efficiency of applications running on these resource-constrained devices, in or-

der to meet the needs for better user experience, more functionalities, and reduced costs.

In this dissertation, we explore the effectiveness, on performance and energy efficiency,

of optimizations that are made possible when a Just-In-Time compiler can directly com-

pile bytecodes to the internal, flexibly-designed, implementation ISA, rather than to the

external, architectural ISA of a microprocessor.

We discuss the challenges and present the design and implementation of a novel accel-

eration framework to improve the performance-per-watt of applications written in mod-

ern object oriented languages that execute on managed runtime environments of mobile

devices. Our acceleration framework allows the direct translation of bytecodes into the

implementation ISA of modern co-designed processors, by a JIT compiler, bypassing the

architectural ISA. We develop novel JIT speculative optimizations by leveraging both the

semantically rich bytecode and the hardware features at the microarchitecture level, such

as hardware support for: a) speculative execution, b) reduced indirect branches mispre-
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dictions, c) efficient call/return, and d) additional registers, which are not exposed by the

microprocessor’s architecture ISA for reasons of ISA compatibility.

We demonstrate the effectiveness of our acceleration interface in delivering increased

performance-per-watt on mobile processors by providing an in-depth evaluation of two

implementations: 1) first, using a real in-order co-designed processor; and 2) second, us-

ing a modern out-of-order co-designed research processor for the x86 architecture, running

on a cycle accurate state-of-art simulator. Our framework provides the building blocks for

the design of innovative hardware support and speculative optimizations to effectively de-

liver the stringent energy and performance requirements of applications running on mobile

processors.
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Chapter 1

Introduction

“High thoughts must have high language.”

Aristophanes

Modern mobile devices combine the functionality of a pocket-sized communication device

with PC-like capabilities. Almost all mobile devices have the ability to access a repository of

thousands of applications, making their functionality almost limitless. Since the majority of

these devices have a small form factor, the application performance and power consump-

tion are critical aspects for delivering the best user experience. With the broad adoption

of mobile devices, recent research has increasingly focused on techniques to provide rich

user experiences and functionality for applications running on these resource constrained

devices. This work focuses on improving the performance and energy efficiency of mobile

devices to meet the user demands for more processing power, longer battery lifetime, new

functionality, and reduced costs.

Improving battery life remains one of the biggest obstacles that mobile device makers

have to deal with. Battery capacity is severely restricted due to constraints on the size

and weight of these devices. Reducing power consumption has become one of the most
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critical design constraints for mobile devices. This makes the performance-per-watt - the

number of computations that can be performed for every watt of power consumed (perfor-

mance/power or power/performance) - a critical aspect since it directly correlates to the

overall power budget and the computational capabilities of these portable systems.

As the capabilities of mobile devices increase, so does their need for more computing

power. To help address these trends, recent research has focused on the design of energy

efficient processors for mobile platforms [HS97, HS00, BO11] which can deliver high gen-

eral purpose performance per watt of power consumed. This thesis focuses on improving

the performance-per-watt of mobile applications written in managed languages, designed

to enable platform-independent distribution of application software by execution on a Vir-

tual Machine (VM). We propose a transparent scheme for hardware-accelerated bytecode

execution to improve both the performance and energy efficiency of bytecode applications.

In the next two sections, we briefly highlight some characteristics of the bytecode applica-

tions that run on mobile devices and the challenges to running them on hardware (HW)

accelerators. This overview helps us to understand both the key features of managed run-

time environments and the feature-rich microarchitecture of codesigned processors. This

understanding reveals the opportunity to re-purpose existing (and to design new) hard-

ware features, at the microarchitecture level, for accelerating the runtime emulation en-

gine and delivering improved power/performance efficiency for mobile applications, thus

putting these ideas into context and motivating our work. We then introduce our approach

for bytecode acceleration and summarize the contributions of this thesis.
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1.1 Managed Programming Languages

For portability, mobile device applications are written in modern dynamic languages (e.g.,

Java, PHP, Python, JavaScript, C#, Perl, Ruby, etc.). These high level languages (HLL), also

called managed programming languages (or just managed languages), are designed to be

platform-independent by executing through a managed runtime environment. These high-

level languages are distinguished from their low-level counterparts by abstracting away

details of the underlying machine. That is why they provide portability, object-orientation,

reflection, security, heap management, performance, and required garbage collection, at

the cost of a small amount of overhead, freeing developers to concentrate on the business

logic specific to their application.

These features, in addition to others also found in unmanaged languages, such as array

bounds checking, null pointer checking and polymorphism, enable developers to create

more maintainable applications, thus reducing development time. These features also have

important security implications, since type-safe languages cannot be exploited through

memory corruption. The support of these runtime services imposes a performance cost

onto the managed language implementation. To compensate, high performance imple-

mentations of managed runtimes use just-in-time (JIT) compilation techniques to optimize

for common case behavior while still retaining the programmability features. Another ap-

proach to mitigate the overhead is to use hardware acceleration.

Hardware acceleration is the use of specialized computer hardware to perform some func-

tions faster than is possible using the general purpose architecture of a normal CPU. Hard-

ware accelerators are designed for computationally intensive software, like graphics or

video processing. It is challenging to run bytecode cost-efficiently on hardware (HW) ac-

celerators, however. First, bytecode is general purpose in nature rather than the domain-

specific code easily accelerated by a dedicated hardware accelerator (e.g., graphic code
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accelerated by a GPU). Second, for type safety and security, bytecode is mandated to

run indirectly through a managed runtime (e.g., Java Virtual Machine) [LY99] rather

than directly running on a hardware accelerator. Third, many features in bytecode are

designed for Just-In-Time [DS84, HCU91, HU96, GPM+99] compilation in managed run-

time, which is not efficient enough to directly run on a hardware accelerator.Furthermore,

it is generally challenging to design an accelerator interface for a HW accelerator due to

the complicated synchronization and communication between CPU and the accelerator.

Previous work [OT97, aS00] has attempted to implement a dedicated Java processor to

execute bytecodes natively in silicon. The most referenced design is picoJava [DPC+00,

OT97, Mic99], a Java processor specification released by Sun Microsystems. However,

due to the aforementioned challenges to running bytecode in hardware, this processor

was never released commercially. Prototype implementations [PS07, Got10], using FPGA,

show some of the implementation challenges. However, due to their system limitations,

they don’t provide a sound evaluation with significant real world and benchmark appli-

cations. There have also been some other embedded Java processor implementations

[aS00]; however, they are domain specific and have not become mainstream.

Since the bytecode was designed to run on a managed runtime, which relies on a dynamic

compiler (JIT) to deliver high performance execution, we argue that a JIT compiler can

benefit from the hardware features of a hardware/software codesigned processor to boost

the performance (we also call bytecode acceleration) and energy efficiency of modern

mobile processors, as we will show next.
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1.2 Hardware/Software Co-Designed CPUs

For flexibility, modern CPUs decouple the architectural Instruction Set Architecture (ISA)

from the internal ISA [Sla94] [Gwe95] in the micro-architecture design as shown in

Figure 1.1 on the next page. We refer to this low-level internal ISA as the implementa-

tion ISA (I-ISA) to emphasize its implementation dependence, since it is not an existing

ISA exposed to the user like the architectural ISA. For example, Intel CPUs implement an

internal-ISA called micro-operation (Uop), which is completely transparent to x86 OS and

applications. The architectural ISA code (i.e., x86 instructions) in the Operating System

(OS) and applications is decoded into internal-ISA code by a hardware decoder before

running on the CPU pipeline. Since the internal-ISA is transparent to the user, it can be

flexibly designed to reach the power performance requirements of the design.

Hardware/Software (HW/SW) co-design techniques allow customized processor designs

without concerning the backward compatibility of the architecture-ISA. The I-ISA of HW/SW

co-designed processors can be flexibly and innovatively designed, based on the workloads

and the power/performance budgets. Because the I-ISA is implementation dependent, the

hardware and software along this boundary can be co-designed, blurring the division be-

tween the two. The resulting flexibility enables the distribution of power performance fea-

tures between and across the hardware/software interface. This allows micro-architecture

innovations on the CPU pipeline and corresponding internal-ISA designs in new genera-

tions of CPUs without affecting ISA backward compatibility. Legacy binary can directly

run on new generations of CPUs even though the pipeline and internal-ISA designs are

dramatically changed.

Examples of micro-architecture innovations in co-designed systems include: hardware sup-

port to reduce indirect branch mispredictions during the interpretation of cold bytecode

[KN11], support for speculative execution [DGB+03, NRS+07, NDZ10], support for effi-
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cient execution of function calls and returns [KN11], support for efficient floating point

operations [LGM+14, Cor13], and the provision of large internal register files to perform

register promotion.

Figure 1.1: Modern CPU design

1.3 Problem Statement

The managed runtime of a HLL cannot take full advantage of the rich micro-architecture

features of modern co-designed processors to optimize the power consumption effectively,

for the following reasons: First, all the co-designed HW features at the micro-architecture

level are tightly coupled with the internal pipeline implementation and cannot be exposed

to the JIT compiler by architectural (x86) ISA for reasons of backward compatibility. There-

fore, the JIT compiler cannot apply optimizations targeting these micro-architectural fea-

tures because they are not exposed in the architectural ISA. Second, when the JIT compiler

translates the bytecodes into the architectural ISA, it loses all the rich semantics of byte-
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code, which could, if preserved, be used by the Dynamic Binary Translator (or the hard-

ware decoder for the architectural ISA) to perform more aggressive dynamic optimizations

to leverage the co-designed HW features, and thus generate more power-efficient code.

Lastly, the double translation of bytecodes: 1) first into architectural ISA by the JIT com-

piler, and 2) then from architectural ISA into the implementation ISA, by the Dynamic

Binary Translator (DBT), results in higher overhead, reducing the performance and in-

creasing the power consumption as the double translation requires more instructions to be

executed in the processor pipeline. The framework for direct translation of bytecode (man-

aged code in general) into the implementation ISA, proposed in this dissertation, aims at

solving this problem.

1.4 Thesis statement

My thesis can be summed up in one sentence:

This thesis explores the effects, on performance and energy efficiency, of optimizations that are

made possible when a JIT can directly compile bytecodes to the internal, flexibly-designed, ISA

rather than to the external, architectural ISA of a microprocessor.

This dissertation presents a framework for direct translation of bytecode into the internal

ISA of a microprocessor, which allows the development of JIT optimization techniques

that benefit from the rich micro-architecture features not exposed by the external ISA

for compatibility reasons. The proposed optimization techniques represent a significant

contribution to the state of the art dynamic compilation techniques, which has been an area

of intense research, to deliver the high demands for performance and energy efficiency of

applications running in managed runtime environments of resource constrained devices,

such as mobile devices.
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1.5 Our Approach

Figure 1.2: Bytecode Code Accelerator Design

Inspired by the transparent mechanism to translate architectural ISA into internal ISA

[SCF+03, PL99], employed by modern CPU designs, we present a novel bytecode accel-

erator design as shown in Figure 1.2. From the programmer point of view, there is no

difference between our bytecode accelerator and a regular hardware accelerator accessed

through a HW I/O interface. An OS I/O driver is provided to manage the accelerator fol-

lowing certain HW I/O standards (e.g., PCI standard). The virtual machine (VM) passes

the bytecode to the accelerator via the OS I/O driver. However, internally we do not ac-

tually implement a dedicated hardware accelerator to run the managed code. Instead, we

develop an internal embedded bytecode runtime written in internal-ISA to intercept the

I/O instructions from the OS I/O driver and emulate the accelerator execution of bytecode

on the CPU pipeline. In this way: 1) we allow the development of new JIT optimizations to

improve the bytecode efficiency through the embedded managed runtime, closely-coupled
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with the CPU pipeline, leveraging the internal micro-architecture extensions; 2) we allow

micro-architecture extension of the internal-ISA and CPU pipeline design for accelerat-

ing the general-purpose bytecode execution transparently without any architecture-ISA

change; 3) we avoid many issues in dedicated hardware accelerators such as long access

latency, large die area, high cost, etc.; and 4) we allow the direct translation of bytecodes

into the I-ISA, avoiding the double translation to architectural ISA and then to the I-ISA.

By providing a mechanism for direct translation of bytecode to the internal ISA, our tech-

nique allows the development of JIT compilation techniques to use the high level seman-

tics of bytecode to perform aggressive optimizations, leveraging the rich micro-architecture

features of a HW/SW co-designed processor as a means of hardware acceleration. Since

the hardware used for bytecode acceleration in our scheme is implemented in the CPU

pipeline (I-ISA), not in a separate unit from the CPU, we avoid the communication and

synchronization complexities and overheads of hardware accelerators external to the CPU.

This dissertation will demonstrate that our methodology can deliver high application per-

formance at a low power budget, and succeeds in dealing with challenges such as energy

efficiency, cost, reduced die area, and complexity, meeting the emerging mobile devices

needs for features and flexibility.

1.6 Contributions

This thesis makes the following contributions:

• The first contribution of this dissertation is a new interface to allow the direct trans-

lation of bytecode into the internal implementation ISA of a CPU, leveraging the

hardware support at the micro-architecture level for the acceleration of bytecode ef-

ficiently and transparently. We identify interesting system issues and provide novel
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techniques for handling them. We also present a an extension of our interface to con-

trol the execution, profiling, and the performance evaluation of bytecode execution

on a hardware simulator.

• We contribute novel JIT optimizations that leverage the HW/SW co-designed features

to efficiently translate Dalvik bytecode. These optimizations are not easily applied

by either the DVM or the existing DBT on co-designed systems.

• We demonstrate that our technique succeeds in delivering high performance-per-watt

on co-designed processors, by providing an in-depth evaluation of two implementa-

tions of our bytecode acceleration scheme: 1) the first using a real system using a

HW/SW co-designed processor, the Transmeta Efficeon; and 2) the second using a

modern Out-Of-Order co-designed research processor for the x86 architecture, run-

ning on a cycle accurate state of art simulator.

• We show that our hardware-based bytecode accelerator, which is embedded in the

CPU pipeline, does not require new architecture ISA instructions, separate co-processors,

or hardware extensions to allow efficient alternation of bytecode execution between

accelerated and non-accelerated modes. We leveraged existing hardware features

exposed by the internal ISA in the two systems we evaluated, and we show how

our scheme would benefit from additional hardware support designed specifically

for bytecode acceleration.

• Finally, we show that our bytecode accelerator greatly improves the programmability

compared to dedicated hardware accelerators with only minor changes to the user

level virtual machine implementation for accelerating the bytecode execution.

We argue that the bytecode accelerator mechanism proposed in this dissertation, coupled

with novel JIT optimization techniques, based on a HW/SW co-design methodology, is an
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effective approach for addressing the requirements of modern mobile CPU designs to de-

liver high performance and long battery life, while reducing die area, cost and complexity.

Our techniques provide an entirely new approach to mobile processor design, by allowing

innovations in the underlying microarchitecture to support the high level abstractions and

services of modern managed runtimes executing on mobile devices, and thus demonstrat-

ing the benefits of microprocessors implemented as hardware-software hybrids.

To the best of our knowledge, no previous work has proposed a power efficient mechanism

for bytecode acceleration that does not require complex hardware or new ISA instructions,

and that has a simple and efficient interface to alternate execution between accelerated

and non-accelerated bytecode execution mode, as in our approach.

1.7 Thesis Organization

This dissertation begins in Chapter 2 with an overview of virtual machines services pro-

vided by modern runtime environments, focusing on the opportunities for potential hard-

ware assisted dynamic optimizations. We also present an informal survey on related code-

signed mechanisms that: 1) allow co-designed processors to emulate full ISAs, and 2)

provide real advantages over a hardware-only ISA implementation. We limit our explana-

tion to the codesigned features that enable improved performance and power efficiency,

specifically the ones we leveraged to accelerate bytecode execution.

In Chapter 3, we present AccelDroid, the bytecode acceleration framework we imple-

mented in a state-of-art binary translation system, the Transmeta Efficeon. This chapter

presents the accelerator design, the novel JIT optimizations we developed to leverage the

co-designed features of Efficeon, and a comprehensive evaluation using the industry stan-

dard benchmark CaffeineMark 3.0.
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In Chapter 4, we present a novel interface to control the execution and the performance

evaluation of bytecodes on a hardware simulator. This scheme is based on the accelerator

interface presented in Chapter 3, and shows that the implications of our research extend

beyond bytecode acceleration, with direct application on simulation, performance mon-

itoring, profiling and debugging. The description of this simulation control mechanism

is provided as a secondary contribution of this dissertation, and it is used to evaluate the

implementation of our bytecode acceleration on a modern codesigned processor simulator,

which is the subject of Chapter 5.

Chapter 5 presents the implementation and evaluation of our bytecode acceleration on

top of a state-of-art Out-of-Order(OOO) x86 processor simulator. The chapter shows the

design of our acceleration scheme, and how it can deliver improved performance on a

modern OOO execution engine with minimal (to no) increases in energy consumption.

Chapter 6 presents a rich outlook on future research.

The dissertation ends with conclusions in Chapter 7.

In the Appendices we show A) an overview of the Dalvik Virtual Machine (DVM), B) an

overview of the Transmeta Codesigned Efficeon system, both used to implement the accel-

eration framework proposed in this dissertation, and C) and example of a direct translation

of a bytecode trace into the internal ISA of the Efficeon processor.
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Chapter 2

Related Work

“We are products of our past, but we don’t have to be prisoners of it. ”

Rick Warren

This chapter serves as a foundation for the topics discussed in subsequent chapters. This

thesis combines advances in dynamic compilation systems and microarchitecture support

to improve energy and performance efficiency of applications running on modern mobile

devices. The relevant existing work related to this dissertation falls into the following two

categories: 1) The dynamic compilation techniques used in the runtime of modern man-

aged languages, and 2) the rich microarchitecture features of modern CPUs. In the earlier

part of the chapter, we show an overview of the related research on dynamic compilation

techniques aimed at improving the efficiency of the emulation engine of virtual machines.

In the later part of the chapter, we show an overview of the design benefits of Hardware/-

Software Co-designed processors, as well as the closely related work on Dynamic Binary

Translation that either 1) made it possible the implementation of the acceleration tech-

niques, or 2) gave us insights to better design the acceleration framework proposed in this

dissertation.
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2.1 Virtual Machines

Every computer platform provides an instruction set architecture (ISA) as a consistent

interface to expose hardware functionalities to programmers, so that software can be used

across a wide range of different processors implementing that ISA. Criteria such as efficient

instruction decoding, code density, and backward compatibility with previous ISAs have

dictated the design choices [Pat89, PD80]. Only recently have we witnessed the emergence

of virtual ISAs (V-ISA) that have not been designed with direct hardware implementation

in mind, which are semantically much richer than previous hardware-directed ISAs and

require a managed runtime environment (a virtual machine) for execution.

For portability, modern languages such as Java and C# compile the application source into

a high-level, byte-encoded intermediate representation (IR), not to a machine-specific code

that could run directly on a computer. The IR is commonly called managed code, bytecode,

or simply IR. In this dissertation we call the IR bytecode. The bytecode is designed to ex-

ecute through a managed runtime environment, which enables the platform-independent

distribution of application software. The bytecode is kept in a file along with metadata that

describes its classes, methods, and attributes (such as security requirements). The seman-

tically rich bytecode is one example of a V-ISA, which is commonly the unity of deployment

of applications in mobile devices.

While frequently referred to as a language virtual machine, with the Java Virtual Machine

(JVM) [LY99] and the Common Language Runtime (CLR) [ECM10] being the most fa-

miliar examples, the actual virtual machine component is but one element of a modern

runtime environment. In addition to the virtual machine, which emulates the bytecodes

of a program, today’s runtime also provides a generalized way to handle the sophisticated

features of object-orientation, security, heap management, garbage collection, network-

ing, and performance, at the cost of a small amount of overhead, freeing developers to
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concentrate on the business logic specific to their application.

This dissertation aims at improving the energy and performance efficiency of the emulation

engine, which we introduce in Section 2.2.3 on the next page, by better utilizing the

hardware features only available at the micro-architecture level. Our framework can also

be extended to support other runtime services, but that is the subject of future research.

2.2 Virtual Machine Services

2.2.1 Mobile Code Security

The bytecode verifier is one of the key components of a virtual machine security system.

The verifier checks that the bytecode of downloaded applications is correct before execu-

tion. The verifier not only checks that bytecode is well formed, but it also ensures that

no execution can violate any of the language typing rules. Bytecode verification has been

studied extensively from a correctness perspective, and a large body of prior work exists

that discusses how to ensure that bytecode verification is actually safe [Ler01, Gal06].

The bytecode verifier performs a data flow analysis [Qia00], tracking the values and their

types along the edges of the Control Flow Graph (CFG), checking to ensure that no rules

of the type system are violated. Gal [Gal06] demonstrated the need, when dealing with

mobile code, for algorithms that are not only correct, but also efficient [GPF08]. Although

the acceleration scheme proposed in this dissertation focuses on improving the energy and

performance efficiency of bytecode execution, it can also be extended to improve the effi-

ciency of the bytecode verifier.
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2.2.2 Garbage Collection

Automatic dynamic memory management, also known as garbage collection, is indispens-

able in controlling software complexity since it increases programmer productivity and

software quality. Objects that are no longer accessible, i.e., “garbage”, can be collected

and then reused for new objects. The garbage collector provides automatic management

of the address space by seeking out inaccessible regions of that space (i.e., with no ref-

erences pointing to them), and returning them to the free memory pool. When the VM

is running low on memory resources or at periodic intervals, the garbage collector is in-

voked to find the inaccessible garbage objects in the global memory heap, collecting their

memory resources for later re-use. We believe there are untapped opportunities to use

hardware support to improve the garbage collection performance. Our mechanism can

easily be extended to be used by the garbage collector, and it is an interesting research

topic to be pursued in future research.

2.2.3 Bytecode Emulation

For more than 35 years, computer system researchers have been investigating dynamic

optimization techniques as an effective means of boosting application performance in

virtual machines. The techniques have spanned all aspects, including modifications on

source code, interpreter optimizations, just-in-time compilation, and replacing software

with hardware.

Interpretation

An interpreter is a computer program that directly executes, i.e., performs, instructions

written in a programming, scripting language or in a platform independent representa-
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tion, such as the Java bytecode, without previously compiling them into a machine lan-

guage program. The interpreter is usually implemented following one of these strategies

to execute the program:

• Parse the source code and perform its behavior directly.

• Translate the source code into some efficient intermediate representation which is

then executed (by interpretation).

• Explicitly jump to a stored pre-compiled code made by a compiler (also part of the

interpreter system), which will interpret the instruction/statement from the source

program (or bytecode).

The third approach has been widely used, and it is the one adopted by the Android Dalvik

Virtual Machine, which we used to implement the acceleration framework proposed in this

dissertation. The performance overhead of interpreters is largely due to the cost of opcode

dispatch, or fetching of the next instruction to execute, since it is commonly implemented

by an indirect jump instruction. In this dissertation we present a new technique to reduce

the interpreter’s dispatch overhead, which we will show in section 3.3.1 on page 39,

Just-in-Time Compilation

The performance of managed applications depends on the quality of the dynamic opti-

mizations and code generation performed by the dynamic compiler. Dynamic compilers,

or Just-in-time compilers (JIT), are thus a key component of a managed runtime. The JIT

compiler is responsible for compiling bytecodes into native code, and for providing infor-

mation about the execution stack that can be used to do root-set enumeration, exception

propagation, and security checks. Since the compilation happens at runtime, the JIT can

exploit the profile information from the current execution of a program, such as dynamic
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types, to find opportunities for better optimization, and thus is a significant advantage over

traditional static compilers.

To achieve high application performance, the runtime dynamically profiles bytecode ap-

plications and adapts them through aggressive dynamic optimizations and compilation to

the target CPU ISA. In the usual course of events, the runtime first loads the bytecode from

class files and verifies it to make sure the instructions are safe to execute. Then it starts the

emulation process either by directly compiling the bytecode to the target ISA, or by inter-

preting it. In either case, the runtime profiles the execution in order to detect hot regions

of execution for dynamic compilation to the target CPU ISA. Whenever a hot region of

code execution is detected, the JIT compiler is called to perform aggressive optimizations,

which produces a highly optimized machine code for the hot region. The runtime caches

this optimized machine code to be used the next time the emulation engine reaches the

start of the hot region just compiled.

The VM’s JIT compiler takes advantage of the fact that the program execution time is spent

in a very small part of the program, also known as the 90/10 law [HP03]. As such, the JIT

compiler focuses its optimization effort by emitting optimized machine code specialized

for the frequently executed regions of a program. The frequently executed regions form

the unit of compilation of a JIT compiler, which can be represented as a method, a region

[SYN03], or a trace.

Dynamo [BDB00] was the first trace-based optimizing compiler. A trace is a fragment of

hot execution paths that can span beyond a basic block [GPF06a, GF06, BCW+10, HM11].

The traces are formed out of dynamic instruction streams by a binary interpreter. Dy-

namo pioneered many early concepts of trace selection and trace runtime management. A

trace-based JIT works best over a wide range of memory and power-constrained portable

devices, as shown in [BB09]. Our acceleration framework was implemented using a trace-

based JIT compiler as we will see in Section 3.2.3 on page 37.
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Recently Wimmer et al. [WCB+09] used traces to perform phase detection in a Java. A

program phase is identified when the created traces are stable (i.e., there is a low trace exit

ratio). Whenever the program execution start to take side exits from a trace, the program

is said to be unstable ( i.e. between phases). In our acceleration framework, whenever

a program enters an unstable phase, the runtime discards the unstable translated traces,

and triggers the formation of a new trace once the program returns to a stable phase of

execution.

In this dissertation, we present new techniques for enhancing the performance of applica-

tion programs and the VM services related to the emulation engine, which are: dynamic

profiling, interpretation, and Just-In-Time (JIT) compilation of bytecode.

2.3 HW/SW Codesign Methodology

Hardware/Software co-design is the partitioning and design of an application in terms of

fixed (hardware) and flexible (software) components. The flexible components include

programs written in high-level languages, assembly languages or in bitstreams. The fixed

part consists of programmable components written using digital circuits created using

word level combinatorial logic and flip flops. These circuits are usually modeled with

building blocks such as registers, adders and multiplexers. A computer architecture de-

signer must decide which functions are to be performed strictly under hardware control

and which functions are to be performed by software [Man72, HJB+82].

The classic argument in favor of dedicated hardware design has been increased perfor-

mance, resulting in more work done per clock cycle. This is due to the fact that a spe-

cialized hardware implementation can execute many operations in parallel. However, the

increased performance is obtained by reducing the flexibility of an application. On the

19



other hand, software excels over hardware in the support of application flexibility, and in

reducing design complexity. A key observation is that there is a tradeoff between flexibility

and efficiency.

Henessy et al. [HJB+82] argues that that architecture/compiler/system tradeoffs are in-

evitable, and that by correctly making design choices in all three areas the designer can

obtain increased performance and reliability for lower cost. Lee et al. [LvDDM06] demon-

strate the benefit of additional hardware support on bytecode applications performance on

two computer architectures, the x86 IA32 and PowerIC. Their empirical results show better

speedup on PowerPCs than on IA32s, due to the smaller number of registers on the IA32

compared to the PowerPC.

Similarly, we argue that there are compelling reasons for using a co-designed approach for

mobile processor design, since the design of specialized hardware gives more opportunities

to achieve better performance, lower power consumption, lower design complexity, better

design customization, backward/forward ISA compatibility, or a combination of these. The

techniques proposed in this dissertation provide further possibilities for leveraging special-

ized hardware for improved energy efficiency and performance. A co-designed approach

has several advantages over a traditional hardware-only implementation, as we show in

the next section.

2.3.1 HW/SW Co-design Advantages

Today’s ISAs are valuable interfaces, ones in which huge software and infrastructure in-

vestments have been made. Compatibility has become the largest obstacle to implement-

ing new ISAs that are better suited to today’s technology, especially in mobile devices.

Fortunately, co-designed processors, also called co-designed virtual machines [SSHB98],

permit the development of new ISAs by enabling a different approach to general-purpose
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processor design, while still maintaining the compatibility of the architecture ISA that they

implement.

Traditionally, the control and functionality of the ISAs have been implemented with hard-

ware logic gates and memory. A hardware implementation of an ISA is often presumed

to provide higher performance than a software implementation, but it lacks the flexibility

that a software implementation has. HW/SW co-designed processors have emerged as an

alternative for a hardware-only ISA implementation that can: 1) be used in a whole line of

mobile devices aiming at different price/performance points, and 2) enable longer battery

life by dynamically adjusting operating frequency and voltage to match the performance

requirements of each device/application.

The co-design software layer comprises a virtualization machine monitor and a binary

translation and optimization system. The co-design hardware supports a new private ISA.

Both together are designed to meet the target power, performance and efficiency goals of

the system. The software layer translates implementation ISA (or other ISAs) to the target

private (internal) ISA. This design approach offers optimization headroom and flexibility

not possible in hardware alone, while yielding a smaller core with a reduced power profile.

The software layer requires memory for running as well as a place to put translated code

for execution. Recent processor designs incorporate memory controllers on-die and make

it relatively easy to reserve a sufficient amount of private memory to cache translated code.

Below, we list some important advantages of co-designed processors, and how they corre-

late to the bytecode acceleration techniques we propose in this dissertation:

• Performance. It allows for dynamic adaptation of the applications code to the un-

derlying hardware. Dynamic compilation can exploit run-time profiling information

and make traditional optimizations much more effective. This feature is probably the

central piece of all of the techniques we propose in this dissertation. Our acceleration
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framework allows the dynamic adaptation of bytecodes to the underlying hardware.

• Power and area. One of the goals of the co-design process is the flexibility to move

functionality to software, which can result in fewer logic transistors required to

achieve the same performance, resulting in lower power and lower die area. This

allows for a design that saves both die area and power. Our accelerator taps oppor-

tunities to better explore the available transistors in a co-designed processor so that

they can be used to deliver higher power/performance efficiency to bytecode appli-

cations, by moving the implementation of rarely used architectural ISA instructions

to software. We believe that this feature is of great value for embedded and wearable

systems.

• Custom Designs. The co-design approach gives more flexibility to design processors

for different markets, by making different trade-offs between what is implemented by

hardware and what is implemented by software. This flexibility allows quick custom

processor designs to the diverse ecosystem of mobile devices, making this approach

more attractive than in the past. The custom design is one of the key features that

enabled the implementation of our acceleration mechanism.

• Backward compatibility. New processor designs commonly have the requirement to

run the vast pre-existing legacy code. For a processor manufacturer, this allows eas-

ier entrance into new markets and richer experiences for users than the alternatives.

However, legacy code also imposes serious burdens for new designs. A co-designed

core can achieve full ISA compatibility with far less legacy burden on the hardware.

This is an important feature for mobile devices, since they have very short release

cycles. Our scheme does not affect the backward compatibility of co-designed pro-

cessors, as we will see in Chapter 3 on page 29.

• Forward compatibility. A co-designed processor can use new hardware capabilities

without the need to recompile the original binary. The runtime software will adap-
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t/optimize the binary to make use of these new features. In many situations, the

source code for legacy applications is not available to be recompiled to take advan-

tage of new ISA extensions. Since we compile bytecode, our bytecode accelerator

runtime can benefit from new ISA extensions by dynamically compiling bytecodes to

the internal ISA.

• Prototyping. The co-designed approach allows for the experimentation of new hard-

ware features before making them visible to the end-user. These features can also be

just made visible initially for internal experimentation, in order to evaluate and tune

them before incorporating into products distributed in the market. This capability

is highly desired and frequently used by mobile device manufacturers. For example,

when Google first released the Dalvik JIT compiler, it was disabled by default.

2.3.2 ISA Emulation

Instruction set emulation is the process of implementing one instruction set, the target

instruction set, to reproduce the behavior of software compiled to another instruction set,

the source instruction set [SN05]. For example, Apple Rosetta [App06, Tra06] is an

emulation platform for Mac OS that allows PowerPC applications to run on Intel-based

Macintosh computers without modification. Apple released Rosetta when it transitioned

the Macintosh platform from the PowerPC to Intel processor instruction set architecture,

back in 2006.

Instruction set emulation is the key aspect of a HW/SW co-designed processor implemen-

tation, since it supports a program binary compiled for an instruction set that is different

from the one implemented by the host processor. In this dissertation, we used the Trans-

meta Efficeon processor, which emulates 32-Bit x86 ISA on a very-long-instruction-work

(VLIW) ISA processor. VLIW processors are a particular type of superscalar processors,
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since they can process multiple instructions in all pipeline stages and therefore can achieve

a throughput higher than 1 instruction per cycle for some codes.

The instruction set emulation engine can be carried out using two emulation methods:

interpretation or dynamic binary translation [Die98, Pro01, EA97], each one requiring

different amounts of computing resources and offering different performance and porta-

bility characteristics. Since efficiency is a crucial aspect of an instruction set emulator, for

optimal performance the emulation engine typically performs dynamic binary translation,

on-the-fly, while the program is executing.

2.3.3 Dynamic Binary Translation

Binary translation is the process of translating machine code binaries from one instruction

set architecture to another. It can be done statically, by translating a whole binary to a new

binary for the target platform, or dynamically, by translating code on the fly. Most binary
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translation systems currently in use are migration tools which aid the transition from old

architectures to newer ones.

The Rosetta emulation platform uses a dynamic binary translator, which is directly inte-

grated into the Operating System, and transparently converts PowerPC instructions into

IA-32 instructions and optimizes them [App06, Tra06].

2.4 HW/SW Co-Designed Processors

HW/SW co-designed processors such as the DAISY processor [EA97], the Binary-translation

Optimized Architecture (BOA) [GAS+00], the UQDBT [UC00], and the Transmeta Ef-

ficeon [Kre03, DGB+03] use Dynamic Binary Translation [SCK+93] technology to translate

the code of the architectural ISA into the code of the internal customized ISA implementa-

tion in order to achieve increased power/performance efficiency. However, such processors

cannot directly translate bytecode in dynamic languages into the internal ISA or leverage

unique co-designed HW features, which are not supported in the architectural ISA. Archi-

tectural ISA extension for bytecode raises concerns related to ISA backward compatibil-

ity because the bytecode standard may change independent of the ISA. Our acceleration

scheme provides the benefits of HW/SW co-design for bytecode without any architectural

ISA modifications. Modern x86 implementations decode instructions into one or more

micro-operations in order to deal with the complexity of the ISA [SCF+03, PL99], but still

preserves the architectural ISA for backward compatibility.

Existing JIT compilation techniques [Fra94, DS84, SYK+01, SYK+05] translate portable

bytecode into the code of the architectural ISA to allow it to run on various platforms.

However, when the unique features of HW/SW co-design are not properly exploited, the

runtime translation/emulation overhead reduces the performance of bytecode execution
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to below that of the execution of the native code. Most dynamic binary translation/opti-

mization systems, including Dynamo [BDB00], IA32-EL [BDE+03], DynamoRIO [BGA03],

Pin [LCM+05] and HDTrans [SSNB06], operate on the level of the architectural ISA and

do not utilize the specialized features of HW/SW co-design, and thus suffer a slowdown

similar to that of the JIT compilation. Our scheme allows for the translation of bytecode

directly into the code of the internal ISA implementation and leverages both the high-level

bytecode information and the unique features of HW/SW co-design in order to reduce the

translation/emulation overheads and improve the performance of the emulated execution.

Our scheme can also be extended to leverage annotation-based information embedded in

the bytecode [ANH99, KC01], which can be produced by static analysis or by profile-

based information available at the virtual machine runtime. Our framework also leverages

the rich dynamic profiling information provided by the Efficeon processor, and performs

continuous program re-optimizations [KF01] for power performance improvements.

Jazelle DBX (Direct Bytecode eXecution) [ARM14] uses hardware to directly execute Java

bytecode. The hardware execution of bytecode requires additional die area and is inflexi-

ble with respect to modifications. For example, Jazelle DBX is designed for Java bytecode,

and unless the hardware is redesigned, it cannot execute Dalvik bytecode. AccelDroid

can be easily adapted to accelerate both Java bytecode and Dalvik bytecode without any

hardware changes on the Efficeon machine. Jazelle RCT (Runtime Compiler Target) adds

new ISA extensions for JIT compilation, in which the change in the ISA is visible to the

OS/applications. Our HW/SW co-designed accelerator transparently explores the internal

co-designed HW support without exposing any new ISA support to the OS/applications.

This allows for efficient hardware and internal ISA design without affecting the ISA back-

ward compatibility, which is important for x86 processors. Furthermore, the co-designed

HW features that we leverage to accelerate Dalvik bytecode, e.g., LINKPIPE, FLOOK, and

SPECULATION, are very different from the new instructions used in Jazelle RCT.
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2.4.1 Hardware Support in Co-Designed Processors

This dissertation relates to several previous research studies on specialized hardware sup-

port for the purpose of enabling efficient execution of the translated code on hardware/-

software co-designed systems.

Previous work explored the use of atomic regions [PTBC00, DGB+03, NRS+07, NDZ10]

as a means of increasing the dynamic length of branch-less regions of instructions for the

purposes of dynamic speculative optimizations. The region is considered atomic because

if one instruction in the region is committed to an architectural state, then all instructions

are committed. Branch-less regions are formed by replacing original branch instructions

with assertions. When an assertion fires (or an exception such as a TLB miss occurs) dur-

ing the atomic region execution, the hardware must roll the architectural state back to

the beginning of the atomic region, and redirects the control flow to the original address

for the instruction at the beginning of the atomic region [FBC+01]. This recovery mech-

anism enables the optimizer to make speculative optimizations without the necessity of

generating recovery code, potentially increasing the aggressiveness of the optimizations.

Similarly, our acceleration scheme leverages the hardware recovery mechanism to recover

the architectural state in the event that assumptions made during bytecode optimization

- such as an assumption that a pointer is non-null or that an array is in-bounds - become

invalid during execution.

In TAO [BWW+10], larger regions of code for compilation can be formed by using a

two-level atomicity support. The system performs speculative checkpoints for each loop

iteration and executes until it runs out of resources. Whenever the system runs out of

resources, the execution performs a short rollback to the last speculative checkpoint (e.g.,

discarding the data produced by the last loop iteration) and commits the state. The related

work presented in LAR-CC [BWBW11] prevents the overhead caused by these short roll-
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backs by predicting if the system will run out of resources while dispensing the two-level

hardware atomicity support.

The hardware recovery mechanisms of the Transmeta Efficeon [Kre03] included a 64KB

L1 speculative data cache and a 32 entry victim cache, capable of holding a larger amount

of speculative data. Efficeon’s DBT translator conservatively inserts commit operations

in the middle of a translated region (e.g., loop headers) to prevent the execution from

running out of resources, reducing the size of the atomic regions. Efficeon also has the

link pipe support necessary to reduce indirect branches mispredictions [KN11], and a fast

lookup (flook) [KN11] feature for the efficient translation of function calls and returns.

Other examples of hardware support to enable efficient execution of translated code in-

clude: self-modifying code detection [DGB+03], indirect branch execution [KS03], and

memory alias detection [Kla00a], which are all examples of mechanisms that rely on

hardware support to enable the efficient execution of translated code.

This dissertation explores the effects, on performance and energy efficiency, of optimiza-

tions that are made possible when a JIT can directly compile bytecodes to the internal,

flexibly-designed, ISA of co-designed processors. We develop new JIT optimizations to

take advantage of the aforementioned microarchitectural hardware support in co-designed

processors to improve the performance-per-watt of mobile applications, as we will show

in the next chapters.
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Chapter 3

Bytecode Acceleration Techniques

“An ounce of performance is worth pounds of promises.”

Mae West

In this chapter we present AccelDroid: a framework for bytecode acceleration of Dalvik

bytecodes on a real system. We used the Android software stack running on top of a

HW/SW codesigned machine, the Transmeta Efficeon. We highlight key design choices as

well as the changes to both the Dalvik virtual machine and the Code Morphing Software

in order to implement AccelDroid. At the end of the chapter we present the evaluation of

our scheme.

3.1 Bytecode Acceleration with AccelDroid

In this section, we present AccelDroid [WCW13], which is an acceleration interface for the

execution of Android Dalvik bytecode on an HW/SW co-designed processor through direct

bytecode translation in the DBT without the need for any change in the architectural ISA.
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Figure 3.4(b) illustrates the execution of bytecode through AccelDroid, in which a virtual

accelerator interface is designed to pass the bytecode directly to the internal DBT, bypass-

ing the Dalvik Virtual Machine (DVM) runtime. From a programmer’s point of view, there

is no difference between our managed code accelerator and a regular hardware accelera-

tor accessed through an HW I/O interface. The OS I/O driver for managing the bytecode

accelerator is implemented following certain HW I/O standards (e.g., the PCI standard).

To accelerate bytecode execution, the DVM passes the bytecode to the accelerator via the

OS I/O driver. To the DVM and the OS, AccelDroid operates in the same manner as a byte-

code accelerator that is controlled through standard I/O instructions. However, internally,

we do not implement a dedicated hardware accelerator to run the bytecode. Instead, the

accelerator is implemented virtually by a bytecode-aware DBT, which virtualizes the I/O

instructions and directly translates the bytecode into the code of the internal ISA imple-

mentation for efficient execution.

(a) Native 
Code

Execution

(c) Bytecode execution
through DVM/DBT

Co-design
Benefit

(d) Bytecode execution
through DVM/DBT with 

existing HW/SW co-design

(b) Bytecode 
execution

through DVM

(e) Bytecode execution
through AccelDroid

AccelDroid
Benefit

Power
Performance 

Efficiency

high

low

Figure 3.1: The Benefit of Using AccelDroid for Bytecode Execution

Figure 3.1 illustrates the advantages of AccelDroid. On normal processors (i.e., proces-

sors without HW/SW co-design), the energy/performance efficiency of bytecode execu-

tion through the DVM (see Figure 3.1 (b)) is typically worse than that of execution of

the native code (see Figure 3.1 (a)) because of the translation and emulation overheads

incurred in the DVM. On HW/SW co-designed processors, the efficiency of bytecode exe-

cution through the DVM and, subsequently the DBT, is even further degraded because of
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the further translation and emulation overheads incurred in the DBT (see Figure 3.1 (c)).

However, HW/SW co-design techniques can improve the energy/performance efficiency

with respect to normal processors (see the co-designed benefit noted between Figure 3.1

(d) and Figure 3.1 (b)).

The efficiency of bytecode execution through AccelDroid (see Figure 3.1 (e)) is further

improved for two reasons. First, the bytecode is translated only once, by the DBT, instead

of twice, once by the DVM and once by the DBT. Moreover, AccelDroid enables close

co-design of the DBT SW and the internal HW, allows bytecode-specific translation and

optimization to be performed while leveraging the higher-level semantics of the bytecode,

and improves the efficiency of bytecode execution even with respect to the execution of

the native code (see Figure 3.1 (a)). As a result, the benefit achieved through AccelDroid

(i.e., the difference between Figures 3.1 (e) and (b)) can be significantly greater than the

co-design benefit (i.e., the difference between Figures 3.1 (d) and (b)).

To demonstrate the advantages of AccelDroid, we implemented AccelDroid on the Trans-

meta Efficeon [Kre03], an HW/SW co-designed processor that translates x86 code into the

internal Efficeon code. We developed several novel optimizations of AccelDroid to effi-

ciently translate the bytecode directly into the internal Efficeon code, thereby leveraging

the existing internal co-designed HW features in the Efficeon. First, we leverage the in-

ternal LINKPIPE feature [KN11] in the Efficeon to reduce indirect branch mispredictions

during the interpretation of cold bytecode. Second, we leverage the internal SPECULA-

TION feature [DGB+03, NDZ10] in the Efficeon to enable efficient bytecode null-pointer

and array-bound checks. Third, we leverage the internal FLOOK [KN11] feature in the Ef-

ficeon for the efficient translation of bytecode function calls and returns. Finally, we lever-

age the large internal register file in the Efficeon for efficient bytecode register promotion.

All these co-designed HW features are tightly coupled with the internal pipeline imple-

mentation in the Efficeon and cannot be exposed to the JIT compiler at the x86 ISA level
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for reasons of backward compatibility. Therefore, the DVM cannot apply our optimizations

because of the lack of these co-designed HW features in the x86 ISA. The existing DBT

on the Efficeon machine (also called CMS, or Code Morphing Software [DGB+03]) also

cannot apply these optimizations because of the loss of bytecode-specific information that

occurs once the DVM has translated the bytecode into x86 code.

3.2 AccelDroid Infrastructure

Figure 3.2 on the following page depicts the overall Android software stack. Android

applications are developed in the JavaTM language, whose source code is first compiled into

Java bytecode and then converted into Dalvik bytecode through the Android SDK. These

applications can invoke the bytecode in the Application Framework for system services

such as input and display. All bytecode in Applications and the Application Framework

must run through the Dalvik Virtual Machine (DVM) in the Android Runtime. The bytecode

can also invoke the native x86 code in the Libraries through Java Native Interface (JNI)

calls.

3.2.1 OS Acceleration Driver

We designed AccelDroid to directly access and update the CPU architecture states, includ-

ing general-purpose registers, process virtual memory, etc. In order to flexibly support the

Dalvik Virtual Machine, we have defined an Acceleration Control Block (ACB) data struc-

ture that specifies the mappings from all of the bytecode states to the CPU architecture

states such that the accelerated bytecode execution can access and update the correspond-

ing CPU architecture states. For example, if the ACB maps the bytecode register r0 to the

x86 register EAX, then the bytecode instructions that update r0 will update EAX in the
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Figure 3.2: Android Software Stack

accelerated bytecode execution. The precise CPU architecture states controlled by ACB

are maintained only at the moment of switching between architecture ISA code execution

and accelerated bytecode execution. So the DBT can still freely run the bytecode with its

internal microarchitecture states independent of ACB by just copying-in/copying-out the

precise CPU architecture states according to ACB during the switching between architec-

ture ISA code execution and accelerated bytecode execution.

We implement the OS acceleration driver as shown in the flow chart in Figure 3.3 on the

next page. The acceleration driver interacts with the DBT runtime with privileged architec-

ture I/O instructions, which trigger an internal microarchitecture trap to the DBT runtime

execution (see details in Section 5.4.1 on page 93). During the OS boot time, the accel-

eration support is probed using architecture I/O instructions following standard interfaces

(e.g., PCI interface) and the acceleration driver is loaded and initialized accordingly. The

acceleration driver initialization reserves I/O address space and MMIO address space from

OS/BIOS and sends them to the DBT runtime. After that, the acceleration driver can in-
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teract with the DBT runtime with architecture instructions accessing the reserved I/O or

MMIO address according to our acceleration interface.

Figure 3.3: Flow Chart for the Acceleration Driver

When a virtual machine instance is attached to the acceleration interface with ioctl calls

(see virtual machine implementation in Section 5.3.1 on page 91), the acceleration driver
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will request a MMIO page address from OS and send an ACB to the DBT runtime through

an architecture I/O instruction. The DBT runtime will respond with a MMIO page ad-

dress from the available MMIO address space, using a different page for a different virtual

machine instance attached to it. Since the user-level virtual machine has no privilege to

directly access the physical MMIO page, the acceleration driver needs to map the physical

MMIO page to a process virtual page and then return the virtual page address mmio to the

virtual machine. This mechanism prevents different virtual machine instances from inter-

fering with each other because a virtual machine can only access the MMIO page mapped

to its process virtual space. The detachment from the acceleration interface will lead to

release of the MMIO page for reuse.

3.2.2 Modifications to the Android DVM

We slightly modify the existing DVM implementation to accelerate the execution of byte-

code through AccelDroid. Listing 3.1 shows the pseudocode for the existing DVM im-

plementation. The bytecode is executed by DVM_run, through either interpretation or

translation, until the end of the bytecode is reached. For AccelDroid, we implement an OS

device driver to control the AccelDroid accelerator and modify the DVM implementation to

run bytecode through the AccelDroid accelerator, as shown in Figure 3.2 on the following

page. DVM first checks the availability of the AccelDroid accelerator by opening the corre-

sponding OS device (i.e., /dev/dalvik) implemented by the device driver. If the AccelDroid

accelerator is not available (i.e., the processor does not feature HW/SW co-design or Ac-

celDroid support), it will run all bytecode in the same manner defined in the existing DVM

implementation. Otherwise, the bytecode will be passed to the accelerator and executed

through AccelDroid (see AccelDroid_run ).

To avoid expensive OS calls to the device driver when accessing the accelerator, Accel-
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DVM() {
I n i t i a l i z e the Dalv ik V i r t u a l Machine s t a t e DVM_state
DVM_run( DVM_state )

}

DVM_run() {
Execute bytecode in DVM_state through

i n t e r p r e t a t i o n / t r a n s l a t i o n unt i l the end of the bytecode
}

Listing 3.1: Existing DVM Implementation

DVM() {
I n i t i a l i z e the Dalv ik V i r t u a l Machine s t a t e DVM_state
// check AccelDroid a c c e l e r a t o r
i f ( Acce lDro id_fd = open ( ' /dev/ da l v i k ' , . . . ) ) {

AccelDroid_run ( AccelDroid_fd , DVM_state ) ;
close ( Acce lDro id_fd ) ;

} else { // no AccelDroid a c c e l e r a t o r
DVM_run( DVM_state ) ;

}
}

AccelDroid_run ( Acce lDro id_fd , DVM_state ) {
// obta in memory−mapped I /O address for AccelDroid
AccelDroid_mem = i o c t l ( AccelDroid_fd , GET_MEM_IO, . . . ) ;
while ( not end of bytecode ) {

// bytecode execut ion through AccelDroid
(* AccelDroid_mem ) ( DVM_state ) ;
// handle OS−dependent bytecode , HW f a u l t s / i n t e r r u p t s
I n t e r p r e t a t i o n of one bytecode in DVM_state

}
}

Listing 3.2: AccelDroid DVM Implementation

Droid_run establishes a memory-mapped I/O address AccelDroid_mem through an ioctl

(input/output control) call to the device driver. The bytecode in DVM_state can subse-

quently be executed simply through an indirect function call to the memory-mapped I/O

address AccelDroid_mem. Internally, the DBT virtualizes the accelerator and intercepts the

function call to the memory-mapped I/O address for bytecode translation/emulation.
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3.2.3 Bytecode Acceleration in the DBT

The acceleration runtime is closely integrated with the DBT on the Efficeon, as shown in

3.4(b); this allows it to leverage the existing DBT facilities. Among them are the run-

time profiler, translation cache management, the translation lookup and dispatch facility,

chaining facilities, memory management, and exceptions and interrupts handling.

The existing DVM relies on OS support to execute several OS-dependent bytecode instruc-

tions. For example, the “new-instance” bytecode instruction may require OS calls to allo-

cate new memory. Because the DBT in an HW/SW co-designed system runs below the OS

and is independent of the OS (see Figure 3.4 (b)), it cannot rely on OS support for byte-

code execution. Thus, AccelDroid can only execute OS-independent bytecode instructions.

For OS-dependent bytecode instructions, AccelDroid execution stops and returns to the

DVM. Then, the OS-dependent bytecode instructions will run through interpretation in the

DVM (see “Interpretation of one bytecode” after the AccelDroid_mem call in Listing 3.2).

Our experiments on a suite of CaffeineMark 3.0 benchmarks indicate that more than 99%

of bytecode instructions are independent of the OS.

For OS-independent bytecode, AccelDroid follows the typical 2-phase translation and op-

timization technique [BDB00]. In the first phase, the bytecode is interpreted and profiled

to identify the most frequently executed bytecode traces. As in most regular VM runtimes,

our embedded bytecode runtime just-in-time compiles the hot bytecode traces into the

internal VLIW ISA code (producing what we call translations) and stores them into the

DBT translation cache so that future executions of the same bytecode do not require re-

compilation. In Section 3.3 on page 39, we present the new optimizations implemented

in our acceleration JIT compiler.

The execution of bytecode through the DBT may encounter HW interrupts or trigger HW

faults, which will require OS interrupt/fault handling. For OS transparency, we designed
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Figure 3.4: Bytecode Execution through a regular VM and through AccelDroid

AccelDroid such that it never raises exceptions. All HW interrupts/faults that are related to

bytecode execution are caught along with the precise virtual machine state at the bytecode

instruction boundaries by the DBT runtime. When the DBT runtime catches an interrupt or

fault, it stops the bytecode execution in the precise state that existed before the bytecode

instruction that raised it. The execution is then switched to the DVM in the architectural

(x86) ISA, which will then re-execute the bytecode that raised the interrupt or fault. Thus,

HW interrupts/faults will be handled by OS interrupt/fault handlers during the interpre-

tation of the bytecode in the DVM.
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I n t e r p r e t e r :
f e t c h a bytecode b
jump to handlerTable [b . opcode ]

OP1_handler :
. . . // i n t e r p r e t OP1
f e t c h next bytecode nb
jump to handlerTable [nb . opcode ]

OP2_handler :
. . . // i n t e r p r e t OP2
f e t c h next bytecode nb
jump to handlerTable [nb . opcode ]

. . .

Listing 3.3: DVM Interpreter

3.3 Bytecode Optimizations

AccelDroid implements a set of novel bytecode optimizations. All of the proposed op-

timizations leverage both bytecode-specific information and the unique co-designed HW

features of the Efficeon machine and thus cannot be readily applied by either the DVM or

the existing DBT on the Efficeon, as demonstrated below.

3.3.1 Bytecode Interpretation with LINKPIPE

AccelDroid begins bytecode execution via interpretation in the DBT. Listing 3.3 illustrates

the existing bytecode interpreter implementation in the DVM. Different handlers (e.g.,

OP1_handler and OP2_handler) are stored in a handler table and are used to interpret

different bytecodes indexed by the opcode (e.g., OP1 and OP2). At runtime, the bytecode

is fetched and executed by jumping to the corresponding handlers based on the opcode.

Because an indirect jump to a handler is difficult for an HW branch predictor to predict,

the existing interpreter implementation suffers from a high branch mispredictions penalty.

The Efficeon allows the DBT to manage an internal HW queue called LINKPIPE [KN11] to
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I n t e r p r e t e r :
f e t c h a byte code b
jump to handlerTable [b . opcode ]

OP1_handler :
f e t c h next bytecode nb
enqueue handlerTable [nb . opcode ] in to LINKPIPE
. . . // i n t e r p r e t OP1
dequeue LINKPIPE and jump

OP2_handler :
f e t c h next bytecode nb
enqueue handlerTable [nb . opcode ] in to LINKPIPE
. . . // i n t e r p r e t OP2
dequeue LINKPIPE and jump

Listing 3.4: DVM Interpreter with LINKPIPE

reduce the number of indirect branch mispredictions. An earlier instruction can enqueue

a branch target into the LINKPIPE, and a later instruction can dequeue the branch target

from the LINKPIPE and jump to the branch target without any branch prediction. To

tolerate pipeline latency, the branch target must be enqueued into the LINKPIPE sufficiently

prior to when it is dequeued, which will prevent pipeline stalls.

AccelDroid leverages the HW LINKPIPE feature to reduce indirect branch misprediction

in the interpretation of bytecode. We modified the bytecode interpreter to enqueue the

handler for the next instruction before the interpretation of the current instruction and

to jump to the target dequeued from the LINKPIPE after the interpretation of the current

instruction, as shown in Listing 3.4. The interpretation latency is typically more than

sufficient to obscure the pipeline latency between the enqueuing and dequeuing of the

LINKPIPE.

3.3.2 Bytecode Check with SPECULATION

During Dalvik bytecode execution, it is necessary to frequently perform null-pointer and

array-bound checks. As an example, Listing 3.5 shows the most frequently executed byte-
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i g e t v4 , v10 , . . . // null−po in te r check
i g e t v5 , v10 , . . . // null−po in te r check
add−i n t /2addr v4 , v5
add−i n t /2addr v1 , v4
add−i n t / l i t 8 v0 , v0 , #i n t 2 // #02
ige t−o b j e c t v4 , v10 , . . . // null−po in te r check
sub−i n t v5 , v3 , v8
aget v4 , v4 , v5 // null−po in te r and array−bounds check
ige t−o b j e c t v5 , v10 , . . . // null−po in te r check
aget v5 , v5 , v3 // null−po in te r and array−bounds check
i f−ge v4 , v5 , 0059

Listing 3.5: Bytecode Example

code block in the LOOP benchmark in CaffeineMark. The iget instruction retrieves an

instance field from an object, which requires a null-pointer check on the pointer to the

object. The aget instruction retrieves an array element from an array object with an ar-

ray index, which requires a null-pointer check on the pointer to the array object and an

array-bound check on the array index. Therefore, overall, we must perform 3 null-pointer

checks and 2 array-bound checks for these 11 bytecode instructions (note that redundant-

check elimination has already been applied to the code, e.g., the four iget instructions that

contain v10 require only one null-pointer check on v10). As a result, a single basic block

will be translated into 6 basic blocks on the Efficeon with 5 conditional branches for the

checks, as shown in Listing 3.6. The conditional branches for the null-pointer and array-

bound checks severely impact the program optimization and instruction scheduling across

the branches.

The Efficeon allows the DBT to manage an internal HW SPECULATION feature [NRS+07,

PTBC00]. The rarely used conditional branches in a region can be converted into asserts,

and speculative optimization and scheduling can be performed across these asserts. In the

case of an assert failure, a fault is raised to roll back the execution to the beginning of

the optimized region. Then, the non-optimized or less optimized code without the failed

assert will be re-executed.
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The null-pointer and array-bound checks in bytecode are ideal for asserts because these

checks are known to fail only rarely. AccelDroid converts all conditional branches for the

null-pointer and array-bound checks into asserts, as shown in Figure 3.7 on page 45. As a

result, the bytecode shown in Figure 3.5 on the previous page is translated into a single ba-

sic block for aggressive optimization and scheduling across the asserts. The existing DBT

in the Efficeon cannot achieve a similar task because after the DVM translates the byte-

code into x86 code, all null-pointer and array-bound checks become normal conditional

branches, and the high-level information, which consists of extremely biased branches, is

lost. Therefore, the DBT will not be able to leverage this information to convert the checks

into asserts. Neelakantam et al. [NDZ10] tested a dynamic feedback-based technique to

identify biased branches and convert them into asserts, but the reported benefit of this

technique is much smaller than that of ours because our approach leverages the high-level

bytecode information.

3.3.3 Bytecode Call and Return with FLOOK

The DVM’s interpreter and translator operate on a stack that is different from the stack that

is used in the execution of interpreted and translated bytecode. The x86 stack pointer ESP

is reserved for DVM execution in order to maintain the correct x86 state in the presence of

interrupts and exceptions, whereas the execution of translated bytecode uses a different

register as its stack pointer (e.g., EDI). Because x86 call and ret instructions implicitly use

an ESP register as the stack pointer, the DVM does not translate bytecode function call

and return instructions into x86 call and ret instructions, which would incur additional

overhead when swapping the DVM runtime stack pointer and the bytecode stack pointer

before and after the calls and returns. Instead, the bytecode function call and return

instructions shown in Figure 3.5 (a) are emulated through regular memory accesses and

jmp instructions, as shown in Figure 3.5 (b).
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Specifically, the translated code for the bytecode function call (i.e., invoke-virtual) must

store the bytecode return address L into the callee function frame (i.e., address [edi-52]

). If the bytecode at the return address L has been translated, then the translated code

address L’ is also stored in the callee function frame (i.e., address [edi-12] ). Otherwise,

an invalid NULL address will be stored there. Then, the translated code for the byte-

code function return (i.e., return-void) will obtain the translated code address L’ from the

callee function frame (i.e., address [edi-12] ) and jump to it if it is valid (i.e., eax !=

NULL). Otherwise, it jumps to the bytecode interpreter with the bytecode return address

L loaded from the callee function frame (i.e., at address [edi- 52] ). When the existing

DBT in the Efficeon sees the jmp instructions in Figure 3.5 (b), it will treat them as regular

branches and will not be able to generate internal instructions using the return address

stack (RAS) [SAMC98] that is available in the processor to predict the function returns.

Our experiment and previous work [KS03] both indicate that this translation of the func-

tion call and return instructions to regular branches can significantly degrade performance.

Figure 3.5: Translation of Call/Return Instructions with FLOOK

The Efficeon allows the DBT to manage an internal HW FLOOK stack [KN11] for the
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[ bas i c_b lock_1 ]
. . .
// v10 nul l check
i f ( r10 == 0) // v10 in r e g i s t e r r10

branch to . . // s ide e x i t

[ bas i c_b lock_2 ]
. . .
// v4 nul l check
i f ( r4 == 0)

branch to . . .

[ bas i c_b lock_3 ]
. . .
// v5 bound check
i f ( r5 >= r35 ) // bound s t a y s in r35

branch to . . .

[ bas i c_b lock_4 ]
. . .
// v5 nul l check
i f ( r5 == 0)

branch to . . .

[ bas i c_b lock_5 ]
. . .
// v3 bound check
i f ( r3 >= r35 ) // bound s t a y s in r35

branch to . . .

bas i c_b lock_6 :
. . .

Listing 3.6: Checks without SPECULATION
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[ bas i c_b lock_1 ]
. . .
// v10 nul l check
r a i s e f a u l t on r10 == 0
. . .
// v4 nul l check
r a i s e f a u l t on r4 == 0
. . .
// v5 bound check
r a i s e f a u l t on r5 >= r35
. . .
// v5 nul l check
r a i s e f a u l t on r5 == 0
. . .
// v3 bound check
r a i s e f a u l t on r3 >= r35
. . .

Listing 3.7: Checks with SPECULATION

efficient translation of function calls and returns, exploiting the HW return address stack

(RAS). AccelDroid leverages FLOOK to translate bytecode function calls and returns, as

shown in Figure 3.5 (c). Specifically, AccelDroid translates a bytecode function call to

Func2 (i.e., invoke-virtual) into a store of the return address L in the callee function frame

(i.e., address [r7-52] ) and a jump to Func2’. In addition, AccelDroid pushes a pair <L,

L’> onto the FLOOK stack. Then, AccelDroid translates the bytecode return instruction

(i.e., return-void) into a load of the bytecode return address (i.e., L, if the function is called

from Func1) from the function frame (i.e., address [r7-52] ) into fl_eip followed by a ret

instruction. The ret instruction will pull <L, L’> from the FLOOK stack and compare L with

the value in fl_eip. In the case of a match, the code will jump to L’, which is the translated

code corresponding to the bytecode at return address L. In the case of a mismatch, a FLOOK

fault is raised, and the DBT runtime will catch the fault and look up the translated code

that corresponds to the bytecode return address in fl_eip (and may enter interpretation

mode if the translated code does not exist). The Efficeon HW implements RAS-based

branch prediction [SAMC98] for an ret instruction using the FLOOK stack. This scheme is

similar to the “dual-address return stack” technique proposed in [KS03].
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3.3.4 Bytecode Register Promotion

Dalvik bytecode is register-based and can address up to 65,536 virtual (integer or floating-

point) registers in each function frame. The large number of available registers allows the

DVM to flexibly promote frame memory locations to the architecture registers on the target

machine during bytecode translation. In its internal ISA implementation, the Efficeon

allows the DBT to manage 128 physical registers - 64 for integers and 64 for floating-

point values - which can be used to efficiently promote registers from frame locations.

Unfortunately, after the DVM translates the bytecode into x86 code, the majority of the

bytecode registers are spilled into bytecode stack memory locations because of the small

number of architecture registers available on the x86. Then, in the translation from x86

code to the internal Efficeon code, the DBT must observe all restrictions on x86 binary

translation, and it encounters difficulty in promoting the stack memory locations to the

Efficeon registers for several reasons.

First, it is expensive and difficult for the DBT to perform accurate runtime binary-level

alias analysis among the stack memory locations [GWW+06]. Second, it may be unsafe

for the DBT to promote memory to registers because of memory model issues [WW11].

Third, the DBT must preserve the same memory image in the translated execution as in

the original x86 binary execution, meaning that the last store to each memory location

cannot be removed.

In our AccelDroid implementation, we directly promote the bytecode registers to the Ef-

ficeon registers within the optimized region. Across region boundaries, we maintain the

live bytecode register values in the frame memory to allow the virtual machine to correctly

interface with the DVM. As an example, Listing 3.8 shows the bytecode for the innermost

loop of the LOOP benchmark in CaffeineMark. After unrolling the loop once, the DVM

sees a single-entry multi-exit region with a total of 118 bytecode register accesses (i.e.,

46



[ bas i c_b lock_1 ]
002a : i g e t v4 , v10 , LLoopAtom ; . FIBCOUNT: I
002c : i f−l t v3 , v4 , 0031 // p o s s i b l e loop e x i t

[ bas i c_b lock_2 ]
0031: i g e t v4 , v10 , LLoopAtom ; . FIBCOUNT: I
0033: i g e t v5 , v10 , LLoopAtom ; . dummy: I
0035: add−i n t /2addr v4 , v5
0036: add−i n t /2addr v1 , v4
0037: add−i n t / l i t 8 v0 , v0 , #i n t 2
0039: ige t−o b j e c t v4 , v10 , LLoopAtom ; . f i b s : [ I
003b : sub−i n t v5 , v3 , v8
003d : aget v4 , v4 , v5
003 f : i ge t−o b j e c t v5 , v10 , LLoopAtom ; . f i b s : [ I
0041: aget v5 , v5 , v3
0043: i f−ge v4 , v5 , 0059 // p o s s i b l e loop e x i t

[ bas i c_b lock_3 ]
0045: ige t−o b j e c t v4 , v10 , LLoopAtom ; . f i b s : [ I
0047: sub−i n t v5 , v3 , v8
0049: aget v4 , v4 , v5
004b : ige t−o b j e c t v5 , v10 , LLoopAtom ; . f i b s : [ I
004d : sub−i n t v6 , v3 , v8
004 f : i ge t−o b j e c t v7 , v10 , LLoopAtom ; . f i b s : [ I
0051: aget v7 , v7 , v3
0053: aput v7 , v5 , v6
0055: ige t−o b j e c t v5 , v10 , LLoopAtom ; . f i b s : [ I
0057: aput v4 , v5 , v3
0059: add−i n t / l i t 8 v3 , v3 , #i n t 1
005b : goto 002a // branch to 002a

Listing 3.8: Register Promotion Example
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v3, v4, etc.). Without AccelDroid register promotion, the translated internal Efficeon code

contains a total of 281 instructions, with 57 frame memory location accesses. With Ac-

celDroid register promotion, the translated code contains only 121 instructions, with 24

frame memory location accesses.

3.3.5 Optimizing 64-Bit Loads and Stores

In our performance analysis, we noticed an increased number of misaligned exceptions

[LWH11b] in the bytecode instructions aget-wide and aput-wide, which load and store 64-

bit values from and to memory, respectively. These exceptions do not occur if the bytecode

is translated into x86-ISA and then retranslated into the internal ISA by the DBT. The DBT

prevents unaligned 64-bit load/store operations by leveraging the dynamic profile infor-

mation [CHH+98a, CHH+98b] at the DBT runtime. Because AccelDroid is also translating

at the DBT level, we added one optimization to check whether the aput-wide and aget-

wide operations contained in the profile data being compiled have previously caused an

unaligned load/store exception. If the profile indicates that an instruction caused an excep-

tion, then instead of only one 64-bit load (store), two 32-bit loads (stores) and one shift

operation are generated to load (store) the 64-bit value. By applying this optimization,

we eliminate the unaligned exceptions caused by the aget-wide and aput-wide bytecode

instructions.

3.4 Experiments

We tested AccelDroid using an x86-based Android system, version 2.3, codenamed Gin-

gerbread, which was the most recent official Android system to be installed on an Intel

smartphone when the experiment was performed. We implemented a new AccelDroid PCI
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device driver in the Android Linux Kernel and modified the DVM to leverage AccelDroid

for bytecode acceleration, as discussed in Section 3.2.2 on page 35.

We modified the existing DBT (which is called CMS, or Code Morphing Software [DGB+03])

in the Efficeon machine to implement a virtual AccelDroid PCI device, which supports di-

rect Dalvik bytecode execution by translating bytecode into internal Efficeon code.

3.4.1 Programmability

Because our acceleration interface uses the standard hardware I/O interface and is de-

signed to accelerate bytecode execution on the CPU pipeline and not on a separate hard-

ware accelerator, it considerably simplifies the VM implementation in order to enable byte-

code acceleration, thereby avoiding the complicated handling of synchronization and com-

munication between the CPU and the accelerator. In addition, the accelerated bytecode

execution directly accesses and updates the CPU architecture states without the need for

explicit data communication between the x86 ISA code execution and the accelerated

bytecode execution. Furthermore, our design avoids many common issues of dedicated

hardware accelerators, such as long access latency, large die area, data marshaling and

unmarshaling, and high costs.

We implemented an acceleration driver and plugged it into the Android OS. We modified

the DVM to accelerate Dalvik bytecode execution using the acceleration driver. Overall,

we added ∼150 lines of code for the acceleration driver and modified ∼30 lines of code in

the DVM.
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3.4.2 Porting the Dalvik Runtime into the Efficeon DBT

For performance reasons, only the hand-optimized assembly version of the Dalvik inter-

preter is integrated with the JIT compiler in the Gingerbread version of the Android OS.

This distribution also contains a portable version of the interpreter, written in C, which

is commonly used as a reference implementation and for debugging. We ported the C

interpreter to our AccelDroid runtime and integrated it with the DBT profiling and JIT

compilation/dispatch. We also ported the trace selection module from the DVM JIT com-

piler to our accelerator. The DVM JIT compiler is a trace-based compiler [GPF06a, GF06],

and the trace selection module is needed for the selection of hot bytecode regions for

translation because the original Efficeon DBT is only capable of selecting hot x86 regions.

Whenever a new bytecode trace is formed, the bytecode-aware DBT JIT compiler trans-

lates it into the DBT low-level IR and performs all of the bytecode-specific optimizations in

the DBT, as discussed in Section 3.3 on page 39. After the bytecode-specific optimizations

are performed, the low-level IR is passed to the DBT JIT backend, which will schedule,

assemble and install the translation into the internal DBT code cache.

3.4.3 ISA Compatibility and Transparency

Our acceleration interface is provided by an OS acceleration driver via privileged archi-

tecture I/O instructions (e.g., x86 in/out instructions) without the need to extend the x86

(architectural) ISA. Bytecode-specific information is passed through the accelerator inter-

face to the DBT for bytecode-specific translation and optimization. In this manner, 1) we

enable the microarchitectural extension of the internal ISA and the CPU pipeline design to

transparently accelerate the general-purpose managed code execution without any change

in the architectural ISA, and 2) we become able to run the bytecode code transparently and

efficiently through the embedded DVM runtime, closely coupled with the CPU pipeline. We

50



make no assumptions about or changes to the OS code, except for the addition of a new

OS kernel accelerator driver.

3.4.4 CaffeineMark 3.0 Benchmark

We collected performance data using the CaffeineMark 3.0 benchmark, which is a com-

monly used benchmark for measuring the performance of Android systems and has been

widely used to assess DVM performance on more than 600 Android phones. CaffeineMark

3.0 contains a series of tests that are designed to evaluate various modules of the DVM

runtime. The following provides a brief description of each test:

• Sieve. The classic sieve of Eratosthenes identifies prime numbers. This test primarily

evaluates integer division operations.

• Loop. The loop test uses sorting and sequence generation to measure compiler opti-

mization of loops.

• Logic. This test evaluates the speed with which the virtual machine executes decision-

making instructions and branch execution.

• Method. The Method test executes recursive function calls to observe how well the

VM handles method calls.

• Float. This test simulates the 3D rotation of objects around a point.

• String. This test involves basic string operations. This test also evaluates garbage

collection performance. More than 90% of the time is spent on native execution, and

only approximately 10% is spent on bytecode execution.

CaffeineMark produces, for each test, a score that represents the number of Java instruc-

tions executed per second. In our experiments, the final score included the just-in-time
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compilation overhead in the AccelDroid runtime.

3.4.5 Overall Performance Benefits

Figure 3.6 on the following page shows the overall performance benefit achieved using

AccelDroid measured in terms of speedup with respect to the baseline. The left-most bar

represents the baseline performance on the Efficeon machine when running through the

existing Android DVM and Efficeon DBT. The right-most bar represents the performance

achieved when running through AccelDroid. Overall, AccelDroid achieves an 83% speedup

on the Efficeon over the baseline. This speedup is 5% higher than that reported in our

previous work [WCW13] because of the new optimization technique applied in the 64-bit

load and store bytecodes, as described in Section 3.3.5 on page 48. The existing DVM

implementation on the Android platform translates bytecode into x86 code only in basic

block units. The underlying DBT can translate x86 code in large “superblock” regions across

these basic blocks [HMC+93]. AccelDroid directly translates large regions of bytecode

into the internal Efficeon code. Considering that a future Android DVM may implement

large-region-level bytecode translations, we modified the DVM to also address the same

bytecode regions as AccelDroid for a fair comparison. The corresponding performance

is represented by the middle bar. Even with large-region translation in the DVM (i.e.,

DVM_LR/DBT), AccelDroid can still improve the performance by 68%.

Figure 3.7 on page 54 shows the performance benefit of AccelDroid on some popular

algorithms. Acceldroid achieves great speedups for the two heavily recursive applications

Ackerman and Fibo(Fibonacci). For the loop intensive Matrix Multiplication (Matrix Mult)

algorithm, AccelDroid achieves a 2x speedup. Overall, AccelDroid achieve 81% speedup

for this set of applications.

To compare the performance of AccelDroid on the HW/SW co-designed Efficeon machine
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Figure 3.6: Speedup on CaffeineMark

with its performance on normal x86 processors without HW/SW co-design, we also mea-

sured its performance on two normal x86 processors: an early version of the Intel Atom

processor [Int08], which can be found in many netbooks and performs similarly to the

Efficeon processor, and a recent Intel Ivy Bridge (IVB) processor [Int12]. Both the Atom

N270 and the Efficeon are in-order processors and contain significantly fewer transistors

than does the high-end Ivy Bridge system, which is a superscalar processor for high-end

PCs and operates at higher power levels (77 watts). Table 3.1 on the next page shows the

specifications of these three processors.

Because the different processors have different power/performance budgets, for a fair com-

parison we used the SPEC CPU2000 benchmarking software to calibrate the performances

of the different processors, as shown in Figure 3.8 on page 55. The figure shows that

the Efficeon exhibits a performance that is similar to that of the Atom and approximately

1/8 the performance of the IVB. Note that SPEC programs are not bytecode programs, and
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Figure 3.7: Acceldroid speedup on some popular algorithms

Processor Atom N270 Efficeon IVB i7-3770K
Frequency 1.6 GHz 1.6 GHz 3.5 GHz
Cores 1 1 4
Launch Date 2008 2004 2012
Transistors 45 million 85 million 1.6 billion
Process Scale 45 nm 90 nm 22 nm 3-D
Thermal Design Power 2.5 watts 4.3 watts 77 watts
Die Area 26 mm2 65 mm2 160 mm2

L1 D-Cache 6-way 24 KB 8-way 64 KB 8-way 4x32 KB
L1 I-Cache 8-way 32 KB 4-way 128 KB 8-way 4x32 KB
L2 Cache 8-way 512 KB 4-way 1 MB 8-way 4x256 KB
L3 Cache None None 16-way 8 MB
Memory 1 GB 1 GB 8 GB

Table 3.1: Processor Specifications

thus they cannot benefit from AccelDroid.

Figure 3.9 on the next page shows the CaffeineMark performance on the various proces-

sors. With AccelDroid, the Efficeon can achieve approximately twice the performance of

the Atom and half the performance of the IVB. If SPEC CPU2000 were to be run as Dalvik

bytecode, we would expect that AccelDroid would greatly improve its performance on the

Efficeon machine, as well.
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Figure 3.8: SPEC CPU 2000 Performance Comparison

Figure 3.9: CaffeineMark Performance Comparison

3.4.6 Bytecode-Specific Optimization Benefits

To illustrate the benefits of the bytecode-specific optimizations in detail, we assessed the

individual performance benefits, as shown in Figure 3.10 on the following page. The first

bar (AccelDroid) represents the overall AccelDroid speedup. The remaining bars repre-

sent the performances achieved by disabling the optimizations one by one. The second

bar (NO_REG_PMT) represents the AccelDroid speedup without the register promotion

optimization (see Section 3.3.4 on page 46).

The third bar (NO_REG_PMT + NO_FLOOK) represents the speedup achieved when the

FLOOK optimization (see Section 3.3.3 on page 42) was also disabled. The final bar

(NO_REG_PMT + NO_FLOOK + NO_SPEC) represents the speedup obtained upon fur-

ther disabling the SPECULATION optimization (see Section 3.3.2 on page 40). Overall,
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more than 50% of the 83% speedup originates from these three bytecode-specific opti-

mizations. The remaining speedup originates from overcoming other inefficiencies in the

execution through DVM/DBT, such as the slower code cache warm-up and the double

translation overhead, although these benefits cannot be easily separated out individually.

The frame register promotion considerably improves the performance on Loop, Logic and

Float, which use many registers for their computations. The FLOOK optimization is es-

pecially beneficial for Method because of the frequent function calls and returns in this

benchmark. The SPECULATION optimization is most beneficial to Sieve and Loop, which

contain numerous null-pointer and array-bound checks. String does not gain much ben-

efit from these optimizations because the majority of its execution is performed in the

native x86 library code (invoked through JNI calls), and only the small percentage that is

performed through bytecode execution benefits from the bytecode-specific optimizations.

Figure 3.10: Optimization Benefits

3.4.7 Direct Interpretation and LINKPIPE Benefits

One common concern regarding dynamic languages, especially on mobile platforms, is the

cold code execution performance. When an application first starts up, it is run as cold

56



code, which runs through slow interpretation. The cold code performance affects much

of the user experience because most interactive operations are performed in this manner.

CaffeineMark contains mostly hot code, which is ideal for measuring the performance in

bytecode translation but incurs little bytecode interpretation overhead.

To measure the interpretation performance, we used interpretation only (i.e., translations

were disabled) in the DVM, the DBT and AccelDroid; the resulting performances are de-

picted in Figure 3.11. Overall, AccelDroid achieved a speedup by more than a factor of 20

compared with the DVM/DBT implementations. This is reasonable because interpretation

typically results in slowing the program execution by more than a factor of 20 compared

with native execution.

Figure 3.11: Interpretation Performance

Figure 3.12 on the next page shows the benefits of the LINKPIPE optimization in bytecode

interpretation. The left-hand bar represents the performance of AccelDroid in interpretation-

only mode without the use of LINKPIPE, and the right-hand bar represents the perfor-

mance with LINKPIPE. Overall, through LINKPIPE optimization, we obtained performance

improvements of approximately 25% by avoiding the indirect branch miss overhead that

typically arises during the interpretation process.
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Figure 3.12: LINKPIPE Benefit

3.4.8 Energy Benefits

Brooks et al. [BBS+00] showed that the Power-Delay Product (PDP) is an appropriate

formula for determining the energy efficiency of low-power, portable systems, in which

the battery life is the primary concern. Our experience indicates that the PDP of a program

is closely correlated with the number of dynamic instructions executed on the Efficeon

machine; therefore, we used the dynamic instruction count to model the energy efficiency.

Figure 3.13 on the following page shows the energy savings of AccelDroid with respect to

the baseline measured in terms of the dynamic instruction count. On average, AccelDroid

exhibits an energy savings of 41%, as measured on the CaffeineMark benchmark suite.

String demonstrates the lowest energy savings because the majority of its execution is

performed in the native x86 library code (invoked through JNI calls) instead of bytecode.

The energy analysis shown in Figure 3.13 on the next page is performed after the Caf-

feineMark core tests have warmed up from JIT compilation for 1 second. We also exe-

cuted each core benchmark for a fixed number of iterations such that both AccelDroid and

DVM_LR/DBT ran the same amount of bytecode including JIT warmup. Figure 3.14 shows

that the energy savings of AccelDroid including JIT warmup are 58%, an increase of 17%

in energy savings compared to the stable execution after warmup. These increased energy
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Figure 3.13: Energy Savings without warmup overhead

savings are due to the fact that AccelDroid is performing direct translation of bytecode

into the internal VLIW ISA, which incurs less JIT compilation overhead compared to the

double translation of bytecode: first to x86, then to the internal VLIW ISA. AccelDroid

also leverages the Efficeon’s hardware support to reduce the program startup overhead,

such as runtime profiling and fast interpretation suports. Figure 3.15 on page 61 shows

some performance counters for the energy analysis of Figure 3.14 on the next page. Ac-

celDroid significantly reduces the amount of translation and interpretation cycles due to

the direct translation of bytecode into the VLIW ISA. We noticed a 44% increase of in-

terpretation cycles for String due to garbage collection(GC) execution in the DVM, which

executes as native x86 code. The overall cycle reduction for String is lower compared to

the other benchmarks, due to GC, but AccelDroid still produces a 40% execution speedup.

We also observed lower Load Miss and Write Queue (WQ) Full exceptions in AccelDroid

due to the register promotion optimization. Lastly, AccelDroid reduces the translation code

size, since it leverages both the bytecode semantics and the hardware speculation support
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we described in Section 3.3.2 on page 40, resulting in reduced instruction cache misses

(Icache miss bubbles) during execution.

Figure 3.14: Energy Savings including JIT warmup

3.5 Conclusions

In this Chapter, we present AccelDroid, an HW/SW co-designed system that translates

Android Dalvik bytecode into the code of the internal customized ISA implementation,

thereby achieving more efficient execution. Our experimental results show that AccelDroid

can significantly improve the bytecode execution performance on HW/SW co-designed

systems such as the Transmeta Efficeon.

AccelDroid offers several advantages that can be used in innovative mobile processor de-

signs. This work can be expanded in three directions. First, Java/Dalvik bytecode is only

one of the dynamic languages that are used in application development for mobile systems.

AccelDroid can be extended to accelerate other dynamic languages such as PHP, Python,

and JavaScript, by using a common application programming interface (API) that each

dynamic language runtime could use to interface with the HW/SW co-designed virtual
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Figure 3.15: Performance Counters for the Energy Analysis of Figure 3.14 on the
preceding page

machine, so that a single internal compiler could accelerate all major dynamic languages

[Wu13].

Second, AccelDroid enables customized internal ISA implementations and microarchitec-

tural extensions in the underlying hardware for efficient bytecode execution without af-

fecting the ISA backward compatibility. In this work, we primarily leveraged the existing

co-designed HW features in the Efficeon, which was originally designed to support trans-

lation for x86 instructions. We believe that new co-designed HW features specifically de-

signed for accelerating dynamic languages can further increase the energy/performance

efficiency of AccelDroid.

Third, we believe our framework provides the groundwork for future research on innova-

tive co-designed security schemes to leverage our acceleration interface to further reduce

the overhead of strong security policies enforcement, during program execution, with little

or no increase in energy consumption on mobile devices.
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Chapter 4

Evaluating Bytecode Performance and

Energy Efficiency on Processor

Simulators

“Simplicity is prerequisite for reliability.”

Edsger Dijkstra

In this chapter we present a novel technique to evaluate the performance of bytecode exe-

cution based on the acceleration interface used to implement AccelDroid, introduced in the

previous chapter, which shows that our transparent and efficient acceleration interface has

applications other than those of merely achieving higher performance-per-watt. The simu-

lation control technique presented in this chapter is used to create simulation checkpoints

for the workloads used to evaluate the implementation of AccelDroid on a Out-of-Order

processor using a cycle accurate simulator, which is the subject of Chapter 5 on page 85.
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4.1 Difficulties for Bytecode Energy/Performance Evalua-

tion on Processor Simulators

Driven by a motivation to increase developer productivity, managed runtime environments

(Virtual Machines) emerged in the mid-1990s and provided a generalized way to support

the sophisticated features of modern high level languages, such as object-orientation, se-

curity, robustness (automatic memory management), networking, and performance. A

managed runtime environment is a platform that abstracts away the specifics of the op-

erating system and the computer architecture running beneath it. To do so, it executes a

platform independent ISA that has not been designed with direct hardware implementa-

tion in mind. The Java [LY99], Microsoft Common Language Runtime (CLR) [MWG00],

JavaScript [ecm], and PHP [Php] are the most popular virtual machines in production

systems today.

With the massive shift to mobile technologies, high level languages that run on top of a

Virtual Machine have become a very popular method of implementing the applications

that execute on the software stack of these mobile systems, offering a foundation for quick

mobile software development and deployment on different hardware architectures.

As these virtual machines execute on top of different hardware platforms, it has become

increasingly challenging to evaluate the energy/performance efficiency of bytecode appli-

cations on different architecture designs, as the bytecode is translated into different forms

of intermediate representations and binaries, across the software stack, before it is ex-

ecuted by the native architectural ISA. Since different processors may support different

architectural ISAs, or support the same architectural ISA but have different implementa-

tion ISAs (I-ISA) - the actual ISAs executed on the CPU pipeline - it becomes challenging

to evaluate the performance and energy efficiency of bytecode applications on these pro-
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cessors.

An essential task in designing a new computer architecture is the careful examination of

different design options. Different architecture designs are usually compared by running

the same workload on each architecture and comparing the performance. Architectural

simulation is an indispensable tool for architecture design exploration, as it enables the

designers to predict the performance, energy efficiency and reliability of a new architec-

ture before a working prototype of the processor is available. Architectural design space

exploration becomes more difficult when different binaries must be used to represent the

same program. For example, the same source program can be statically compiled to a 32

bit native binary of CPU X, or to a 64 bit binary of a CPU Y, as illustrated in Figure 4.1 on

the following page.

Given that different binaries are used for the same program source, it is challenging to

evaluate the performance-per-watt of the same region of application code on different

architecture simulators, unless there are indicators for the beginning and ending of the

code regions. This could be achieved by executing the program from beginning to the end,

but that’s not feasible to perform in an architecture simulator due to the long execution

time. So the performance is traditionally only collected on hot regions of code. This

is usually achieved by either using special escape instructions, special opcodes, or rarely

used instructions in order to delimit the regions of code that are representative of the

current program behavior. However, it is not always safe to use rarely used instructions,

since they may still be used by an old library, or an OS service, which may prevent their

use for performance analysis, or produce misleading results if not carefully inspected.

The same complication exists when the application is compiled into an architecture inde-

pendent Intermediate Representation (IR), for example the bytecode, for execution in a

Virtual Machine (VM), as Figure 4.5 on page 76 illustrates. In this case, the same byte-

code is dynamically compiled, by a Just-in-Time (JIT) compiler, into the native code of the
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architecture ISA where the VM is running. Given that the same bytecode is compiled into

different ISAs (CPU X or CPU Y in Figure 4.5 on page 76), a mechanism must exist in order

to precisely evaluate the performance of a bytecode region of interest.

Figure 4.1: Application source being compiled into different binaries for execution

When multiple binaries are used to evaluate a program, one approach is to create a sepa-

rate set of simulation points (also called simulation checkpoints) for each workload used

for energy and performance evaluation. Selecting a single set of simulation checkpoints

to represent a program execution across multiple binaries/IRs is a challenging task for the

simulator developer, since it may require modifications to the tools and to the applica-

tion runtime. This problem domain is the focus of this chapter. To tackle this problem,

we present a novel technique that simplifies this process by reducing the implementation

effort necessary to enable precise energy and performance evaluation of bytecode appli-

cations on different processors, expediting the processor design exploration, and reducing

time to market and costs. To the best of our knowledge, our scheme is the first solution
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to this problem that minimizes the implementation effort to enable precise performance

evaluation of different architecture design implementations.

This chapter makes the following contributions to the state of art of performance evalu-

ation of bytecode applications on CPU simulators, which we will describe in detail in the

next sections:

• It presents the design of a novel scheme to allow the performance evaluation of byte-

code applications in architecture simulators by providing APIs to delimit a region of

bytecode over which energy/performance metrics are to be gathered in the simula-

tor. Our scheme does not require changes to the compiler/JIT in the virtual machine,

nor the use of unsafe escape/rarely used/new instructions;

• It shows evidence of the value of our scheme by providing an implementation on

top of a research state-of-art x86 processor simulator to evaluate the performance

of bytecode applications running on the Android Dalvik Virtual Machine, with low

execution overhead; Our technique also enables the generation of simulation check-

points for easy and fast processor designs evaluation;

• It demonstrates that our technique reduces the implementation effort to modify the

application software stack and the cycle accurate architecture simulator to control

the bytecode execution, allowing computer architects and system software develop-

ers to have an efficient means for estimating the impact of various design options on

the overall machine;

We claim that our efficient instrumentation control scheme can also be applied for the

purposes of debugging, profiling, and performance monitoring of an application running

on a real machine.
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4.2 Motivation for a Virtualized Interface for Simulation

Control

In this section we show the technical challenges of benchmarking bytecode applications

on top of architecture simulators for different processor architectures.

4.2.1 Cross-platform Benchmarking

Cross-platform energy-performance analysis is commonly achieved by modifying the ap-

plication source and adding special compilation directives to delimit regions of interest.

The compiler for each architecture is modified to produce special instructions / opcodes

when the compilation directives are parsed; for example, the IA-32 instruction aaa (adjust

after addition) instruction. If the application is written using a language that requires a

managed runtime for execution, the portable intermediate representation also needs to be

extended with new instructions, which will also require modifications in the VM runtime

(interpreter and JIT compiler). Finally, each architecture simulator has to be modified,

adding special handling for the new instructions/opcodes, so that it can control the simu-

lation execution.

Current state-of-the-art simulators use special escape instructions in the binaries/IR to

mark the beginning and the end of a given region of interest for performance evaluation.

The escape instructions have a major drawback, since all of the interpreters and dynam-

ic/static compilers must be modified in order to support them. Also, the simulator must be

modified in order to handle the special escape instructions, which complicates simulator

design and implementation. Our technique, in contrast, requires only that the simulator

control unit watches the special bytecode marker (implemented using a simulation control

counter (scc), as we will see), controlling the simulation execution according to the values
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Figure 4.2: Simulation Control Interface on A HS/SW co-designed System

of the marker during the program execution. This results in fast simulator development, as

the developer does not need to worry about ISA extensions. Furthermore, our technique

does not require any modifications in the software stack, in the layers between the applica-

tion source and the underlining architecture simulator, thus reducing the implementation

effort and consequently accelerating the architecture design exploration [PHC03a].

4.2.2 Controlling the Simulation on a Co-designed Processor

To illustrate that the use of special escape instructions to control the energy-performance

simulation analysis is a large engineering effort, we demonstrate the steps required to

implement it in a state-of-art architecture simulator for a mobile processor.
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In a VM with a HW/SW co-designed bytecode accelerator, such as the one we presented

in [WCW13], adding a special bytecode to delimit a region of interest, for means of en-

ergy/performance evaluation, is a complex infra-structure modification, since significant

modifications are needed to the bytecode accelerator interface, to the underlying bytecode

runtime, and to the DBT virtual accelerator, in order to support the new bytecode. The

scheme we propose in this chapter simplifies the modifications to an existing architecture

simulator for a co-designed processor, since it reduces the implementation and debugging

efforts of the non-trivial task of adding a new bytecode instruction. As shown in Figure 4.2

on the previous page, a new simulation control counter (scc) is defined and initialized to

0 (zero) at application level. The application used for performance evaluation is modi-

fied, adding calls to increment the scc at certain points of interest. The simulator engine

is extended to watch the values of scc, and stop the application execution based on the

values assumed by the counter, when hardware counters metrics, used to evaluate perfor-

mance and energy consumption, are dumped. Our scheme requires no modifications to the

application compiler, VM (and its components), Architecture ISA, DBT, or to the internal

Implementation ISA (I-ISA).

4.3 Benchmarking Using Special Markers

In this section we present an overview of our scheme to control the simulation engine to

perform energy/performance analysis of bytecode applications on different architectures.

We present a new API to create and manipulate the simulation control counter (scc or

bytecode marker), at program source level. We then show the modifications in the OS,

virtual machine environment, and simulator software necessary to implement the bytecode

marker.
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public c lass SCC {

// na t i ve API to con t ro l the
// scc : s imula t ion con t ro l conunter
public na t i ve void i n i t ( i n t value ) ;
public na t i ve i n t get () ;
public na t i ve void increment () ;

public SCC( i n t i n i t V a l u e ) {
t h i s . i n i t ( i n i t V a l u e ) ;

}

public SCC() {
t h i s (0) ;

}

s t a t i c {
System . loadL ib ra ry (`` s imulatorNat iveAPI ' ' ) ;

}
}

Listing 4.1: Simulation Control Class (SCC) - main API to control scc updates

4.3.1 API for Bytecode Instrumentation

Listing 4.1 shows the Simulation Control Class (SCC) definition. This class provides the

main services needed to instrument bytecode applications written in the Java program-

ming language. When a new instance of the class is created, the constructor will call the

init method, which will use the java native interface to initialize the simulation control

counter (scc) with the initial value provided.

4.3.2 OS Simulation Control Driver

We implement the OS simulation driver as shown in the flow chart in Figure 4.4 on

page 73. The simulation driver interacts with the virtualized device driver for simula-

tion control, implemented by the simulation application, across the simulation interface

with privileged architecture I/O instructions. During the OS boot time, the simulation

interface is probed and the simulation driver is loaded and initialized accordingly. The
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simulation driver initialization reserves MMIO address space from the OS and sends it to

the virtualized device driver through the simulation interface. The MMIO address space

is used by the virtualized device driver to set up the simulation execution control unit,

which can be used to stop the bytecode execution when the virtualized simulation counter

reaches a certain value of interest. The bytecode application will increment the virtualized

counter by calling the method increment in our simulation interface, as shown in Listing

4.1.

Figure 4.3: Flow Chart for the Simulation Driver

When a virtual machine instance is attached to the simulation interface with ioctl calls,

the simulation driver will request a MMIO page address with the virtual machine thread
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id (tID) from the virtualized device driver, through the simulation interface, which will

respond with a MMIO page address from the available MMIO address space, using a dif-

ferent page for any different virtual machine instance attached to it. Since the user-level

virtual machine has no privilege to directly access physical MMIO page, the simulation

driver needs to map the physical MMIO page to a process virtual page and return the

virtual page address mmio to the virtual machine, which will be used for the virtualized

simulation counter. That prevents different virtual machine instances from interfering with

each other because a virtual machine can only access the MMIO page mapped to its pro-

cess virtual page. The detachment from the simulation interface will lead to release of the

MMIO page for reuse.

Our scheme leverages the Operating System (OS) to reserve a physical memory address

to the scc, through the simulation driver, which is then mapped to the user virtual address

space. The scc has to reside in physical memory; otherwise, if defined in virtual memory

address space, it could occupy different physical memory positions during execution, due

to swapping. In this scenario, another mechanism would have to be implemented to inform

the simulator that the virtualized counter is residing in another virtual address, which is

not a trivial task. In our design, we implement a java native function init that is called to

allocate the address for the scc, as shown in Figure 4.3 on page 75.

4.3.3 Virtual Machine Modification

We modify the virtual machine implementation for accelerating managed code execution

as shown in Listing 4.2. The virtual machine first tries to open the OS device created by

the simulation control driver with an OS call open. If the OS device cannot be opened due

to either there being no simulation driver or because the driver is not correctly installed,

an error message will be shown, and all the calls to the simulation control API will become
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Figure 4.4: Simulation Control Interface

no-ops. If the OS device is opened successfully, the simulation interface will be initialized

and ready for use by the bytecode.

The novelty of our technique is that it does not require: 1) modifications to the syntax of

the language the application is written in; 2) modifications to the static compiler, since

there is no change in language syntax; or 3) modifications in the compiler to generate

special instructions into the output binary. For dynamic languages that execute in a VM

(ex. Java, Javascript, Python, Ruby, etc.), there is no need to change the portable bytecode

(Intermediate) representation, the interpreter, the JIT compiler, or the VM runtime. Our
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VM_run() {
execute bytecode in
the v i r t u a l machine ;

}

VM_init ( ) {
// open the s imula t ion dev ice
i f ( ( fd = open ( ' /dev/ simDevice ' ) ) == −1) {

pr in t f ( " Could not open Simulat ion Device \n " ) ;
VM_run() ;

}
else {

i n i t i a l i z e Simulat ion Contro l Device
// a t tach to the s imula t ion i n t e r f a c e and
// return a memory−mapped I /O address

mmio = i o c t l ( fd , ATTACH, ACB) ;
// run the a p p l i c a t i o n bytecode
VM_run() ;

i o c t l ( fd , DETACH, mmio) ;
close ( fd ) ;

}
}

Listing 4.2: Virtual Machine Initialization
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// V i r t u a l Machine global v a r i a b l e
long * scc ;

// Nat ive c a l l to i n i t i a l i z e scc
JNIEXPORT void JNICALL Java_SCC_ini t

( JNIEnv *env , j o b j e c t obj , j l ong value ) {

// GetSCCAddress r e tu rn s the v i r t u a l address for s cc
scc = ((* env )−>GetSCCAddress ( env ) ) ;
(* scc ) = value ;

}

// Nat ive c a l l to increment scc
JNIEXPORT void JNICALL Java_SCC_increment

( JNIEnv *env , j o b j e c t obj ) {
(* scc )++;

}

JNIEXPORT long JNICALL Java_SCC_get
( JNIEnv *env , j o b j e c t obj ) {
return (* scc ) ;

}

Listing 4.3: JNI implementation for Simulation API

simulation control technique also enables fast creation of cross-architecture simulation

points at a certain marker value (marker boundary).

4.3.4 Modifications to the Architecture Simulator

We now show how to modify the architecture simulator so that it may monitor the byte-

code execution according to the updates to the scc. Our novel technique simplifies the

modifications required in the architecture simulator, since the simulator only needs to

monitor the updates to the scc value, using it to control the application execution during

the energy-performance analysis and processor validation. Our scheme is of special inter-

est in the design exploration of co-designed processors [Kre03], as they have additional

layers of interpretation and translation in their internal runtime.
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Figure 4.5: Application source compilation into binary and bytecode format

4.3.5 Application Instrumentation

In Figure 4.6 on page 79 we show how our novel marker implementation can be used to

control the simulation execution. The marker is defined and incremented at application

source level. No modification is required in the compiler, VMs or in the Architecture ISA

interface, due to the way we implement the marker, which is guided by the following

principles:

1. It does not require extensions to the syntax of the source language, nor the handling of

special intrinsic functions.
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2. There is no special instruction being generated in the intermediate representation (byte-

code) handled by the Virtual Machine, nor does it require special runtime support.

3. The Architecture ISA is not modified, so there is no need to modify the underlining

hardware/Architecture simulator to support the marker.

In order to implement the virtualized control technique, the application source has to be

modified to instantiate an object of the SCC class, which is defined by the accelerator

API and encapsulates the creation and use of a virtualized marker in physical memory by

providing functions to initialize (constructor) and increment() the marker (scc) value.

In the implementation of the API class SCC, a special accelerator device, which is initialized

by the OS, provides the unique physical memory address where the scc resides. The scc

cannot be allocated in Virtual Memory address space, since the page swapping can change

the physical memory address where it resides during execution. This happens when the

paging supervisor frees the page in primary storage that holds the marker and swaps it out

to secondary storage. Once the marker is accessed again, a page fault will be raised, and

the page is swapped back into a different memory page. This results in a different physical

address for the scc, which makes it impossible for the simulator to track its value.

The SCC class constructor will get the scc address (non-Virtual) by calling the accelerator

device. Once the address is returned, the constructor sets the initial marker value to

0 (zero). Once the scc is defined, the application developer has to do add calls to the

increment() method in places of interest. The calls to the increment() method are usually

placed at the beginning and at the end of a region of interest for performance evaluation.

Now that the application is modified, it only needs to be recompiled, using the existing

compiler for the source language. As aforementioned in this chapter, no modifications

are needed in the underline hardware/software stack (compiler, VM, nor the Architecture

ISA).
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In order to control the application execution, the simulator has to be extended to monitor

the increments of the scc. Since the accelerator device is also visible to the simulator, it can

also provide the simulator with the same physical address where the scc resides, so that

the simulator can use it to control the workload execution based on scc values.

The only modification to the simulation environment is the addition of commands to con-

trol the execution based on the marker value. For example, in Figure 4.6 on the next

page, the command “run-to-scc == 1”, would start the execution and stop immediately

when the scc is incremented to 1. Whenever the scc reaches the desired value, the sim-

ulation execution is stopped, and existing commands can be executed to dump specific

hardware counters into a log file, which later can be processed by an offline tool to roll-up

the performance-per-watt data.

Note that the same simulator program could be used to simulate two different co-designed

processors, so that the modifications in the simulation control unit need be implemented

only once.

Although not shown in Figure 4.6 on the following page, our technique can also facilitate

the development and the energy-performance analysis of simulators for processors that

implement the “Code in Architecture ISA Z”. In this case, the marker would also control

the simulation execution, and no modification to the Architecture ISA would be needed.

4.4 Evaluation

4.4.1 Experiment Setup

We evaluated our bytecode simulation scheme using the Android Dalvik Virtual Machine

in a research x86 processor design running on a product-quality timing-accurate simulator.
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Figure 4.6: Application Instrumentation and Simulation Control

We experimented with a x86 version of the Android system for Medfield phones. We

implemented a simulation driver and plugged it into the Android OS. We modified the

Dalvik virtual machine to open the simulation driver and initialize the native call interface.

The JNI call interface of the Dalvik VM was extended to include one call to increment the

scc value. Overall, we added 150 lines of code for the simulation driver and changed 50

lines of code in the Dalvik virtual machine in order to initialize the simulation interface as

well as to implement the JNI call to control the SCC.
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4.4.2 Workloads

We used the industry standard CaffeineMark Android benchmark for evaluating the over-

head of our simulation control technique. The CaffeineMark is a series of synthetic bench-

marks that measure the performance of Java programs running in various hardware and

software configurations [Cor97]. It integrates a series of benchmarks for the Android

system into a comprehensive benchmark suite.

To compare Dalvik bytecode execution on two processor simulators, we used our scheme

to put virtualized bytecode markers (calls to increment the scc) into CaffeineMark applica-

tions in order to measure the performance and energy consumption for the same bytecode

snippets. For each benchmark program, we collected data on the execution of 25 ran-

domly selected snippets and averaged over them so that we could report the data for that

program. For each measurement, we ran at least 1 billion instructions to warm up the

just-in-time compilation in the functional execution of the simulator, then at least 100

million instructions to warm up the simulator microarchitecture states, and at the end col-

lected performance and energy data on the execution of at least 300 million instructions

between markers. The marker was used on both systems to delimit the boundaries of JIT

compilation, micro-architecture, and the actual energy/performance evaluation.

Figure 4.7 on the next page shows the execution overhead for CaffeineMark. Overall, the

additional calls to increment the marker incurs less than 3% execution overhead.

Our technique can also be used to measure the amount of dynamic code (bytecode) ver-

sus the native code executed, which is native code executed in native libraries and native

code called via JNI calls. In this scenario, the bytecode marker is be used to indicate when

the execution engine is running bytecode versus native code. The simulator software is

extended to increment the counter for bytecode execution, or the native code execution,

according to the bytecode marker value. With our scheme, this measurement was straight-
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Figure 4.7: Execution overhead for CaffeineMark with bytecode marker

forward and allowed us to get a better understanding of the benchmark we used to collect

the performance described in the next chapter.

Benchmark Dynamic Code Native Code Total % Dynamic
0xBench Linpack 6.00E+08 4.00E+08 1.00E+09 60.00%
0xBench Scimark 1.36E+10 1.34E+09 1.49E+10 91.01%
EEMBC AndEBench 5.49E+09 2.64E+09 8.13E+09 67.57%

Table 4.1: Percentage of Dynamic Code Execution on Android Benchmarks

We also used our marker implementation to measure the ratio of bytecode execution for

CaffeineMark. Figure 4.8 on the following page shows the ratio of dynamic code (byte-

code) executed in CaffeineMark. Overall, 95% of the instructions in CaffeineMark run in

bytecode. The majority (over 90%) of code executed in the String benchmark is native

code, not dynamic code (bytecode), since one of the objectives of this benchmark is to test

the performance of garbage collection. This finding indicates that the String benchmark is
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not suited to evaluate a bytecode acceleration framework such as AccelDroid, since most

of the execution time is spent on native code.

Figure 4.8: Bytecode vs. Native Execution for CaffeineMark

4.5 Related Work

In an architecture design exploration, it is necessary to take one instance of a program

with a given input, and simulate its performance over many different configurations for

any given architecture feature. Simulating the full execution of a bytecode application

benchmark on a cycle accurate simulator can take days or even weeks to complete.

SimPoint [SPC01, PHC03b, SPHC02] automates the process of picking simulation points

using an offline phase classification algorithm based on k-means clustering, which signifi-

cantly reduces the amount of simulation time required.

It is known that whole program simulation does not represent the majority of the program’s

behavior because the code that is executing is often cold code allocating and clearing the

data structures to be used. To skip over the initialization phase, the simulator usually fast-

forwards the application to a given point in execution, and then starts the simulation from

there [PLP+07]. Ideally the code that is executed should be a representative of the whole
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execution.

An alternative to fast-forwarding is to use checkpointing to start the simulation of a pro-

gram at a specific point. With checkpointing, the program is executed up to a given point

and the state is checkpointed (saved) so that the simulation later can be re-started from

this point. One advantage of checkpointing is the ability to simulate all of the samples in

parallel, thus obtaining very fast results using distributed computing [Lau94]. One draw-

back of this technique however is that the checkpoints can become quite large since the

contents of main memory need to be saved along with the architectural state.

Binder at al. [BH04] applied bytecode instrumentation in order to monitor and control

resource consumption in standard Java Virtual Machines (JVMs), and to generate calling

context-sensitive profiles for performance analysis. In [BHM07] extends the framework to

allow dynamic instrumentation of bytecode. Our approach is similar since the application

has to be modified to insert API calls to monitor the counter.

The Pin [LCM+05] dynamic instrumentation system is a easy-to-use, efficient, and trans-

parent system to instrument embedded applications to perform tasks such as profiling,

performance evaluation, and bug detection, without the need for application source code.

Pin uses dynamic compilation of instrument executables and cannot be used to instru-

ment the platform independent bytecode format. Furthermore, Pin significantly slows the

application down by an average of 2.5 times [LCM+05].

4.6 Conclusion and Future Work

At the heart of computer architecture design exploration is the need to precisely evaluate

the impact of novel architectural features on the overall energy/performance efficiency of

a system. Modern mobile applications execute on a virtual machine that can run on top of
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different hardware platforms. For efficiency, the bytecode is dynamically compiled to the

native ISA of each hardware platform. To help compiler and architecture researchers in

simulating managed code applications on new processor design exploration, this chapter

proposed a new mechanism to facilitate the control the execution and energy/performance

analysis of bytecode applications on processor simulators. Our technique requires the

workload applications to be instrumented, using our proposed API, in order to monitor

a special marker at points of interest for performance evaluation. The simulation control

marker is allocated in a region of physical memory address space that is visible to both the

Virtual Machine and the simulation software. An OS simulation driver is used to define the

control marker in physical memory. Our scheme requires significantly less implementation

effort to modify the virtual machine, the OS, and the architecture simulator software.

We implemented the scheme proposed in this chapter in a state-of-art architecture simu-

lator for an Out-Of-Order processor. This enabled us to quickly perform the energy/per-

formance analysis of our bytecode acceleration framework implemented on top of a OOO

processor, which is the subject of the next Chapter. This is strong evidence of the value of

our scheme for architecture design exploration, since it allows the same bytecode applica-

tion to be evaluated in different architecture designs, possibly having completely different

ISAs, reducing the time-to-market, which is an important aspect in mobile processor de-

signs.

Our simulation control scheme can be extended to monitor the performance-per-watt of a

released processor. To achieve this, the monitoring tool would watch the marker values,

collecting hardware counters when the control marker reaches a specif value during exe-

cution. In this approach, a virtual device driver has to emulate the OS simulation driver,

so that the OS and Virtual Machine can interact via the simulation control interface, as

described in Figure 4.3 on page 71.
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Chapter 5

Bytecode Acceleration in a Out-of-Order

Co-Designed Processor

“Perfecting oneself is as much unlearning as it is learning.”

Edsger Dijkstra

In Chapter 3 on page 29, we presented AccelDroid, a bytecode acceleration scheme that

speeds up bytecode execution by leveraging the hardware features exposed by the internal

ISA of a co-designed, in-order processor, the Transmeta Efficeon. In this chapter we explore

the benefits of direct compilation of bytecodes into the internal ISA of a modern Out-

of-Order (OOO) processor, which employs an efficient floating point unit compared to

Efficeon. We use a state-of-art, cycle accurate processor simulator to perform our energy

and performance evaluations.
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5.1 Motivation

In Chapter 3 we presented AccelDroid, one implementation of our bytecode acceleration

interface designed for the Dalvik Virtual Machine (DVM), which allows us to run bytecode

through the internal implementation ISA (I-ISA) of a co-designed processor. AccelDroid is

designed in support of the thesis statement of this dissertation, which aims at exploring the

effects, on energy and performance efficiency, of JIT optimizations that are made possible

when the ISA is exposed to the JIT compiler through the acceleration interface.

We implemented and evaluated AccelDroid on top of an in-order processor, the Transmeta

Efficeon. An in-order processor processes the instructions in the order that they appear in

the binary (according to the sequential semantics of the instructions), relying on the com-

piler to provide the best schedule for the instructions, whereas an Out-Of-Order(OOO)

processor processes the instructions in an order that can be different (and usually is) from

the one in the binary. The purpose of executing instructions out of order is to increase

the amount of instruction level parallelism (ILP) by providing more freedom to the hard-

ware to dynamically choose which instructions to process in each cycle. The OOO engine

executes the instructions in an order that is governed by the availability of input data,

rather than by their order in the executable’s binary. Obviously, OOO processors require

more complex hardware than in-order ones, since the scheduling of the instructions is

performed dynamically, in hardware, as the program executes, which results in increased

energy consumption.

A dynamic instruction issue scheme is a common trend in today’s high performance mo-

bile processor design due to its potential to exploit Instruction-Level Parallelism (ILP) at

runtime, for applications whose behavior is hard to predict at compile time. However,

the hardware support required by a dynamic instruction issue scheme is one of the most

critical components of modern microprocessors, both from the delay and energy dissipa-
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tion standpoints, which may affect the cycle time [PJS97], and the amount of the energy

consumed by the processor [CG01]. Processor designers face the challenge of delivering

high single-thread performance while at the same time not increasing the complexity of

the design.

It is generally challenging to design an acceleration interface for a hardware accelerator

due to the complicated synchronization and communication between CPU and the acceler-

ator, and to precisely handle the exceptions. Our acceleration interface is designed to run

bytecode through uop runtime on the CPU pipeline, not on a hardware accelerator. So we

do not need to consider any synchronization or communication issues in our acceleration

interface design. In this chapter we implement AccelDroid on a research OOO x86 proces-

sor and show that the programming for acceleration only requires 150 lines of code for

an OS acceleration driver and 30 lines of code change in the existing Dalvik VM imple-

mentation. Most of the implementation is in the internal uop runtime, which is invisible

to programmers. To summarize, this chapter makes the following main contributions:

• We present a novel acceleration scheme for bytecode, which allows flexible and effi-

cient acceleration of the general-purpose bytecode execution in the state-of-art CPU

design.

• We identify many interesting challenges in our acceleration scheme and provide

novel SW/HW techniques for handling them.

• We implement our overall acceleration scheme for Android Dalvik bytecode on a

research x86 processor and evaluate the benefits with solid performance and energy

results.

87



5.2 Acceleration Interface Design

In this section, we discuss our acceleration interface design with the following goals:

ISA-Compatibility: The acceleration interface does not require any new architecture ISA

support.

Virtual Machine Simplicity and Flexibility: The acceleration interface only needs minor

changes to the existing VM implementations for accelerating the bytecode execution, and

is flexible enough to support different VM implementations.

OS-Transparency: The acceleration interface does not need any change to the existing OS

for accelerating bytecode execution, except a simple kernel mode acceleration driver that

is plugged into the existing OS.

We next discuss the detailed acceleration interface design aimed at achieving the above

goals. Since our uop runtime runs bytecode with an acceleration interface, we simply call

the bytecode execution through uop runtime of the accelerated managed code execution.

5.2.1 ISA-Compatibility

For ISA-compatibility, our acceleration interface is supported by an OS acceleration driver

via privileged architecture I/O instructions (e.g., x86 in/out instructions). The virtual

machine accelerates bytecode execution through OS calls to the acceleration driver. Fre-

quent switches between the bytecode execution and architecture ISA code execution, in

interactive web and mobile applications, can result in large execution overhead due to the

frequent and expensive OS calls. For efficiency, our acceleration interface can also be ac-

cessed via an architecture memory-mapped I/O (MMIO) instruction. The OS calls are only

used for initializing the MMIO access, which happens at VM start-up. After that, the VM
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can trigger accelerated bytecode execution via non-privileged MMIO access without using

the expensive OS calls.

5.2.2 Virtual Machine Simplicity and Flexibility

It is challenging to design an acceleration interface for a hardware accelerator due to

the complicated synchronization and communication between CPU and the accelerator.

Our acceleration interface is designed to run bytecode through uop runtime on the CPU

pipeline, not on a separate hardware accelerator unit. So we do not need to consider the

synchronization and communication issues in our acceleration interface design. The ac-

celerated bytecode execution is simply triggered by an architecture instruction accessing

MMIO, which switches the execution from architecture ISA to accelerated bytecode execu-

tion. The architecture ISA execution mode is resumed once it returns from the accelerator,

as shown in Figure 5.1. While executing in acceleration mode, the code can directly access

and update the CPU architecture states without the need for explicit data communication

between the architecture ISA code execution and the accelerated bytecode execution.

Figure 5.1: Accelerated Bytecode Execution

Since the execution in acceleration mode directly accesses and updates the CPU archi-

tecture states, including general-purpose registers, process virtual memory, etc., in order

to flexibly support different virtual machine implementations we have defined an Accel-
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eration Control Block (ACB) data structure. ACB specifies the mappings from all of the

bytecode states to the CPU architecture states such that the accelerated bytecode execu-

tion will access and update the corresponding CPU architecture states. For example, if the

ACB maps the bytecode register r0 to the x86 register EAX, then the managed code that

updates r0 will update EAX in the accelerated bytecode execution. The precise CPU archi-

tecture states controlled by ACB are maintained only at the moment of switching between

architecture ISA code execution and accelerated bytecode execution. So the uop runtime

can still freely run the bytecode with its internal microarchitecture states independent of

ACB by just copying-in/copying-out the precise CPU architecture states according to ACB

during the switching between architecture ISA code execution and accelerated bytecode

execution.

5.2.3 OS Transparency

Hardware interrupts during the accelerated bytecode execution may need OS handling.

For OS-transparency, we designed the bytecode accelerator to switch to architecture ISA

code execution on hardware interrupts before triggering the OS interrupt handling. Then

the interrupts can be handled as normal during the architecture ISA code execution with-

out OS change. Hardware exceptions triggered by the accelerated bytecode execution also

cause the switching to architecture ISA code execution. However, after switching to the

architecture ISA code execution, the exceptions are masked from OS exception handling

as the OS has no knowledge of the exceptions triggered by the accelerated bytecode ex-

ecution. Instead, the following architecture ISA code execution will rerun the bytecode

instruction that triggers the exception through the regular managed runtime without ac-

celeration. Then the exception can be triggered and handled during the regular virtual

machine execution without OS change.
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5.3 Programming for Acceleration

In this section, we discuss the system programming for acceleration, i.e., change of existing

virtual machines for accelerating bytecode execution with an OS acceleration driver. We

will discuss the internal implementation for acceleration in Section 5.4 on page 93.

5.3.1 Virtual Machine

We modify the virtual machine implementation for accelerating bytecode execution as

shown in Figure 5.1 on the next page. Existing VMs run the bytecode through interpre-

tation or just-in-time compilation. We implement an acceleration virtual machine, accel-

eration_VM, for accelerating bytecode execution. The acceleration virtual machine first

attempts to open the OS device supported by the acceleration driver (discussed in Sec-

tion 3.2.1 on page 32) installed, by using an OS call open. If the OS device cannot be

opened due to either there being no acceleration support in the CPU or because the OS ac-

celeration driver is not correctly installed, the VM proceeds to the regular virtual machine

execution. If however the OS device is opened successfully, it switches the execution to

the bytecode acceleration mode.

The acceleration virtual machine makes an OS call ioctl to attach the virtual machine in-

stance to the acceleration interface, passing the ACB (see discussion in Section 5.2.2 on

page 89), and returning a memory-mapped I/O (MMIO) address mmio. After that, the

acceleration virtual machine triggers the accelerated bytecode execution with a MMIO ac-

cess to address mmio. Multiple acceleration virtual machine instances may be attached

to the acceleration interface at the same time, which may use different ACBs for control-

ling the accelerated bytecode execution. Different acceleration virtual machine instances

will get different MMIO addresses when being attached to the acceleration interface for

91



VM () {
run bytecode with i n t e r p r e t a t i o n or ju s t−in−time

compi la t ion in a regu la r v i r t u a l machine
}

accelerat ion_VM () {
// open the OS a c c e l e r a t i o n dev ice
i f ( ( fd = open ( ' /dev/ a c c e l e r a t i o n ' ) ) == −1) {//open f a i l

VM() ;
}
else { // run bytecode with a c c e l e r a t i o n

i n i t i a l i z e ACB

// a t tach to the a c c e l e r a t i o n i n t e r f a c e and
// return a memory−mapped I /O address
mmio = i o c t l ( fd , ATTACH, ACB) ;

// ac ce l e r a t ed bytecode execut ion
while ( not end of program ) {

t r i g g e r a c ce l e r a t ed bytecode execut ion with
a MMIO acces s to address mmio

// upon return from acce l e r a t ed
// bytecode execut ion
i f ( not end of program )

run one bytecode i n s t r u c t i o n with
i n t e r p r e t a t i o n in a regu la r v i r t u a l machine

}

i o c t l ( fd , DETACH, mmio) ;
close ( fd ) ;

}
}

Listing 5.1: Existing DVM Implementation
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distinguishing them by the underlying implementation for acceleration (see Section 5.4).

The accelerated bytecode execution may be stopped due to HW interrupts/exceptions (see

Section 5.2.3 on page 90). After returning from the accelerated bytecode execution, the

acceleration VM runs one bytecode instruction using the interpreter running on top of the

OS, executing architectural ISA code. In this way, the bytecode instruction that triggers

a HW exception (see discussion in Section 5.2.3 on page 90) will be handled during

the interpretation in non-acceleration mode, just like the bytecode execution in a regular

virtual machine without bytecode acceleration. After the interpretation of one bytecode

instruction, the accelerated bytecode execution is triggered again with the MMIO access to

address mmio, and this process repeats until the end of the program. The interpretation

in regular virtual machine also allows flexible uop runtime implementation to support

only a subset of frequently-executed bytecode instructions. The corner-case non-supported

bytecode instructions will run through the interpretation in non-acceleration mode, which

simplifies the implementation of the accelerator in the uop runtime.

5.4 Internal Implementation for Acceleration

In this section, we will discuss the internal implementation for our acceleration, i.e., the

uop runtime to run bytecode according to the acceleration interface, and the corresponding

hardware supporting it. We will discuss these in detail in the following subsections.

5.4.1 Hardware Support for Acceleration Interface

Similar to the HW/SW co-designed processor [Kre03, EA97], uop runtime reserves inter-

nal memory invisible to OS/application to store code and data. To support the architecture
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I/O instructions in the acceleration interface, we implemented an internal microarchitec-

ture trap to trigger the uop runtime execution on all privileged architecture I/O instruc-

tions.

It would be expensive to implement an internal microarchitecture trap on all instructions

accessing MMIO. We implemented a special microarchitecture register for holding the

range of MMIO address space reserved for the acceleration interface such that only the

instructions accessing the reserved MMIO address space will trigger an internal microar-

chitecture trap. The uop runtime will set up the register with the reserved MMIO address

space passed from the acceleration driver (see discussion in Section 3.2.1 on page 32).

Figure 5.2 on the following page shows the trap handling in uop runtime. Unlike the

trap handling in OS, the internal microarchitecture trap handling in uop runtime can be

implemented in a very lightweight manner by using reserved internal microarchitecture

registers without the overhead of register context switch.

The bytecode execution through uop runtime needs to stop in cases of HW interrupts

and exceptions. So we also implemented an internal microarchitecture trap on all HW

interrupts/exceptions during the uop runtime execution. The trap handler in our uop

runtime will handle all the HW interrupts / exceptions by stopping the bytecode execution

through uop runtime and switching to the architecture ISA code execution, as shown in

Figure 5.2 on the next page.

5.5 Uop Runtime

Similar to the regular virtual machine, our uop runtime just-in-time compiles the byte-

code regions into the microarchitecture ISA code regions (we call them translations) and

store them in an internal microarchitecture translation cache in order to avoid recompila-
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Figure 5.2: Flow Chart for Trap Handling in Uop Runtime

tion when the same bytecode region is executed again. We also implemented a bytecode

interpreter in the uop runtime such that the initial execution of bytecode goes through

interpretation to collect runtime profiling information. Only the hot bytecode regions are

compiled to the I-ISA for efficient execution.

However, there are several implementation issues in the uop runtime, which do not exist

in the regular virtual machine. We discuss these issues in the following subsections.
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5.5.1 Handle Multiple Virtual Machine Instances

Multiple virtual machine instances may be attached to the acceleration interface at the

same time. So, unlike the just-in-time compilation in a regular virtual machine, which

only handles the translations for the bytecode regions in current virtual machine instances,

our uop runtime needs to distinguish translations belonging to different virtual machine

instances. Since a virtual machine instance triggers bytecode execution through uop run-

time with a unique MMIO address (see discussion in section 3.1), the uop runtime dis-

tinguishes the translations belonging to different virtual machine instances by using the

MMIO addresses that trigger their corresponding bytecode execution.

5.5.2 Handle HW Interrupt and Exception

For the internal microarchitecture trap triggered by HW interrupts and exceptions, the uop

runtime needs to restore the precise architecture states according to ACB at a bytecode

instruction boundary before switching to architecture ISA code execution. This brings

restrictions to the optimizations in our just-in-time compilation for bytecode. Previous

works [DGB+03, NRS+07, PTBC00, NDZ10] show that the hardware atomicity support

can greatly improve the optimization by putting the optimized code into an atomic region

for speculative execution. In case of HW interrupts / exceptions, the atomic region exe-

cution can be rolled back to the precise states at the entry of the region. For exceptions,

the precise states need to be immediately before the bytecode instruction that triggers the

exception. So, after rolling back, our uop runtime reruns the bytecode in the region one

instruction at a time until the instruction that triggered the exception is executed.
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5.5.3 Handle Non-Supported Instruction

The regular virtual machine relies on underlying OS support for bytecode execution. Our

uop runtime runs below the OS and cannot handle system operations such as OS I/O, OS

thread management, OS memory management, etc. There are two ways to run system

operations in the bytecode applications. First, the bytecode may support a special native

library call instruction (e.g., Java Native Interface call or JNI call) to run system libraries

(e.g., I/O library). Second, a special bytecode instruction may be used for a particular

system operation such as the synchronization instructions monitor-enter/monitor-exit in

Dalvik bytecode, whose execution may yield for OS thread context switch. In both cases,

our bytecode execution (after they are translated into microarchitecture ISA code) contin-

ues through uop runtime stops and switches to architecture ISA code execution. Then the

interpretation in the regular virtual machine (see Figure 5.1 on page 92) will run the JNI

call or the special bytecode instructions leveraging the OS support.

Certain bytecode execution may highly depend on a particular virtual machine implemen-

tation which is not flexible enough to run by our uop runtime. For example, different vir-

tual machines may implement different garbage collection algorithms. To flexibly support

virtual machines implementing different garbage collection algorithms, our bytecode exe-

cution through uop runtime also stops and switches to architecture ISA code execution on

the bytecode instructions that may trigger garbage collection (e.g., memory allocation/free

instructions).

5.5.4 Handle Floating Point Operations

The OOO processor used in our implementation contains the Fused Multiply-Add (FMA)

floating point instruction. FMA increases the performance by reducing the latency of de-
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pendent add-multiply operations, increasing the precision by computing the result as an

indivisible operation with no intermediate rounding.

We modified the just-in-time compilation in uop runtime to generate efficient microarchi-

tecture ISA code for bytecode traces with floating-point operations, leveraging the hard-

ware support available in the I-ISA of the underlying processor, such as the FMA instruc-

tion. The just-in-time compilation in the regular managed runtime does not have the

knowledge necessary to generate efficient code at the x86 level. Also, since we lever-

age the internal HW speculation feature [NRS+07, PTBC00], converting the rarely used

conditional branches into assertions, we create larger basic blocks which allow for more

speculative optimizations, such as FMA, to be performed across these asserts. In case an

assertion fails, the atomic region is rolled back, and the execution switches back to the

architectural ISA mode.

5.6 Experiment Setup

We evaluated our managed code acceleration scheme for Android Dalvik bytecode in a re-

search x86 processor running on a product-quality timing-accurate simulator. The baseline

design of the processor implements an out-of-order pipeline competitive to x86 mobile pro-

cessors in terms of energy, performance and die area, with an average IPC around 1.5 for

SPEC2006. Table 5.1 on the next page lists the important microarchitecture parameters

in our research x86 processor

We experimented with an x86 version of an Android system designed for Medfield phones.

The baseline Dalvik virtual machine in the Android system implements a managed run-

time with just-in-time compilation for x86 processors with a CaffeineMark score [Cor97]
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L1 I-Cache 32 KB
L1 D-Cache 24 KB
L2 Cache 256 KB
Reorder Buffer 128 entries
Reservation Station 64 entries
Branch Ordering Buffer 24 entries
Load Buffer 40 entries
Store Buffer 24 entries
Physical Integer Register 128

Table 5.1: Important Microarchitecture Parameters

of around 10500 on Medfield phones. We implemented an acceleration driver and plugged

it into the Android OS. We modified the Dalvik virtual machine to accelerate Dalvik byte-

code execution with the acceleration driver. Overall, we added 150 lines of code for the

acceleration driver and changed 30 lines of code in the Dalvik virtual machine. We ported

the just-in-time compilation in the Dalvik virtual machine to our uop runtime, with code

generation targeting the microarchitecture ISA. We implemented the whole tool-chain for

microarchitecture ISA to compile our uop runtime source code to the microarchitecture

ISA code, so the simulation measures all of the code executions, including the just-in-time

compilation in the uop runtime.

HW Features Benefits
Atomic Region Rollback in Speculative Optimization
Assert Control Speculation
HW Alias Detection Data Speculation
Fast Internal trap Reduce Mis-Speculation Overhead
Large Microarchitecture Register File Efficient Register Allocation
Control Transfer Support Fast Code Control Transfer
Profiling Support Reduce Runtime Profiling Overhead
Fast Interpretation Support Fast Interpretation

Table 5.2: Hardware Acceleration Support

To show the flexibility of our acceleration scheme, we integrated a set of hardware supports
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and dynamic optimization techniques into our microarchitecture ISA and uop runtime for

accelerating Dalvik bytecode execution, as listed in Table 5.2 on the preceding page. We

implemented the atomic regions [DGB+03, NRS+07, PTBC00, NDZ10] for supporting the

speculative optimizations including the control speculation [NRS+07, PTBC00] and data

speculation [WWRP12] in our just-in-time compilation of the Dalvik bytecode. In case of

mis-speculation, the atomic region execution will be rolled back to run the non-speculative

code. For supporting control speculation, we implemented assert [PTBC00]. This allows

efficient null-pointer checks, array-bound checks, etc. as the check failure rarely happens

[WCW13]. For supporting data speculation, we implemented hardware memory alias de-

tection [WWRP12], which is important for our efficient just-in-time compilation due to

the large runtime overheads in the aggressive compiler memory alias analysis. We imple-

mented a fast internal microarchitecture trap using reserved microarchitecture registers

[Kre03] without the need of context switching in trap handling, which is crucial for reduc-

ing the mis-speculation trap overheads in our aggressive control/data speculations. For

efficient register allocation, we implemented a large set of general purpose microarchi-

tecture registers (64 INT register and 64 FP registers) as compared to the small set of

registers in x86 (Android runs in 32-bit x86 with only 8 INT registers and 8 SSE regis-

ters). This helps a lot for our just-in-time compilation as it cannot use expensive register

allocation algorithms to reduce register spills due to the large runtime overheads. We

implemented hardware control transfer support [KS03, WW13] in order to reduce the

translation lookup overhead for indirect branches. We implemented hardware support

for profiling [Kre03] to reduce the runtime profiling overhead in our just-in-time com-

pilation. Finally, we also implemented various hardware support for fast interpretation

[Kre03, WCW13] in order to reduce the program startup overhead due to interpretation.

All of these hardware supports are difficult to be supported at x86 ISA level, although we

believe they can be efficiently supported at the microarchitecture level using our accelera-

tion scheme.
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Besides that, there are several natural benefits in the Dalvik bytecode execution through

our uop runtime as compared to the baseline regular managed runtime. First, the regular

managed runtime compiles the RISC-like Dalvik bytecode to CISC-like x86 code, which

is then decoded to the RISC-like microarchitecture ISA code for pipeline execution. That

brings big inefficiency to the finally generated code due to the conversion between RISC-

like instructions and CISC-like instructions. Previous work [HS04] has shown that de-

coding x86 instructions into a number of RISC-like micro-operations tends to increase the

number of operations that must be individually issued in order to execute the original pro-

gram. By directly compiling the RISC-like Dalvik bytecode to RISC-like microarchitecture

ISA code, our uop runtime generates much more efficient code than the baseline. Second,

our uop runtime leverages detailed internal microarchitecture knowledge for efficient code

generation. For example, to reduce the energy and die area, the x86 ISA typically only sup-

ports the efficient out-of-order execution of a subset of x86 floating-point instructions and

runs the rest in a slow path. Our uop runtime can thus generate more efficient floating-

point code with this knowledge.

Bytecode Coverage

We created the checkpoint for two 0xBench benchmarks, linpack and scimark. Using Intel

VTune Amplifier for Android SW on a XOLO PR4 SDV, we evaluated the ratio between

native-code and bytecode execution. In AndEBench-Java 67.59% of all retired instruc-

tions are spent on byte-code, which roughly matched the previous measurements in our

translation. In 0xBench-Linpack, it is 60% and in 0xBench-Scimark it is 91.01%. As the

acceleration technology is working on bytecode it is only speeding-up this portion of the

benchmark - thus the acceleration performance results achieved on AndEBench are excel-

lent. We expect results to be similar on 0xBench-Linpack and even better on 0xBench-

Scimark.
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Workloads

We use three suites of Android benchmarks for evaluating our acceleration scheme: Caf-

feineMark, AndEBench and 0xBench. The CaffeineMark is a series of 9 tests designed

to measure various aspects of the Java virtual machine (VM) performance on various

hardware and software configurations [Cor97]. AndEBench is a suite of benchmarks de-

veloped by the Embedded Microprocessor Benchmark Consortium (EEMBC) for Android

devices [Con12]. It provides a standardized, industry-accepted method of evaluating An-

droid platform performance. 0xBench is an Android benchmark suite developed by 0xlab

[0xl11]. It integrates a series of benchmarks for the Android system into a comprehensive

benchmark suite.

To compare Dalvik bytecode execution through our micro-virtual machine and through the

regular virtual machine, we put special markers in the program in order to measure the

performance and energy consumption for the same bytecode snippets. For each bench-

mark program, we collected data on the execution of 25 randomly selected snippets and

average over them to report the data for that program. For each measurement, we run

at least 1 billion instructions to warm up the just-in-time compilation in the functional

execution of the simulator, then at least 100 million instructions to warm up the simulator

microarchitecture states, and at last collect performance and energy data on the execution

of at least 300 million instructions between markers.

Most of our speedup comes from the reduction of the microarchitecture ISA instructions

in our just-in-time compilation. We classified all of the microarchitecture ISA instructions

into 4 categories: ALU, BRANCH, LOAD and STORE. Figure 5.4 shows the dynamic in-

struction reduction for the different categories. Overall, we reduce 42% ALU instructions,

26% branch instructions, 16% load instructions and 28% store instructions. Most of the

branch instructions are reduced due to the control speculation on null-pointer check and
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array-bound check with asserts [PTBC00]. The load/store instructions reductions are due

to the large microarchitecture ISA register set and the data speculation support in the

microarchitecture ISA.

5.7 Evaluation

Performance

We used the same Caffeinemark benchmark we presented in Section 3.4.4 on page 51,

which consists of six benchmarks: logic, loop, method, sieve, string and float. We excluded

the string test which mainly evaluates the garbage collection performance (more than 90%

of the time is spent in garbage collection), and which cannot leverage our acceleration

scheme for speedup. So we excluded it from our measurement. The logic program mainly

evaluates the conditional branch execution. The loop program mainly evaluates loop exe-

cution. The method program mainly evaluates method call and return. The sieve mainly

evaluates integer division operation and the float program mainly evaluates floating point

operations. Figure 5.3 shows the CaffeineMark speedup through our acceleration. Over-

all, our acceleration speeds up the programs by 45%. We get a big speedup for float. This is

because, for energy efficiency, the microarchitecture ISA is designed to run efficiently only

on a subset of x86 floating-point instructions. Our just-in-time compilation in the micro-

virtual machine generates the most efficient microarchitecture ISA code for floating-point

operations, while the just-in-time compilation in the regular virtual machine does not have

the knowledge necessary to generate efficient code at the x86 level.

Most of our speedup comes from the reduction of the microarchitecture ISA instructions

in our just-in-time compilation. We classify all the microarchitecture ISA instructions into

4 categories: ALU, BRANCH, LOAD and STORE. Figure 5.4 shows the dynamic instruc-
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Figure 5.3: CaffeineMark Performance

tion reduction for different categories. Overall, we reduce 42% ALU instructions, 26%

branch instructions, 16% load instructions, and 28% store instructions. Many branch in-

structions are eliminated due to the control speculation on null-pointer checks and array-

bound checks with asserts [PTBC00]. The load/store instructions reductions are due to

load/store elimination optimization leveraging the large microarchitecture ISA register file

and the data speculation support in the microarchitecture ISA.

For method, our acceleration achieved big instruction count reduction (see Figure 5.4),

but no performance improvement. We traced this to the allocation stalls in the out-of-

order pipeline execution as shown in Figure 5.5 on page 106. Each bar in the figure

shows the allocation stalls in the pipeline execution due to the blocking in different hard-

ware buffers: LB (load buffer, 32 entries), SB (store buffer, 24 entries) and others (reorder
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Figure 5.4: Instruction Reduction

buffer, reservation station, etc.). We can see that the method execution with our accel-

eration suffers from allocation stalls due to the load/store buffer overflow. Even though

our acceleration reduces a lot of microarchitecture ISA instructions, the ratio of load/store

instructions over other instructions increases, and thus the critical path is on the LB/SB

allocation stalls. Enlarging the load/store buffer sizes may further improve the perfor-

mance for our acceleration, although it will provide little help to the baseline execution.

Float also suffers from high allocations stalls due to the load buffer overflow. However,

the acceleration not only reduces 60% of the ALU instruction (see Figure 5.4), but also

generates more efficient code, which leads to the big speedup.
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Figure 5.5: Allocation Stalls

Figure 5.6 on the following page shows the speedup on AndEBench and 0xBench bench-

mark suites. The 0xBench contains applications evaluating JavaScript, 2D/3D graphics,

etc., instead of Dalvik bytecode. So we only evaluated our acceleration scheme on the two

Dalvik benchmarks for arithmetic computing, Linpack and Scimark2. Overall, we got 23%

speedup for AndEBench. AndEBench only spends 70% of its time in the Dalvik bytecode

execution. The remaining 30% of time is spent in x86 native code execution, which does

not run through our acceleration. So for the bytecode only, our acceleration actually im-

proves the performance by 36%. For 0xBench, we got 80% speedup for Linpack and 48%

speedup for Scimark2, with an average speedup of 64%.
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Figure 5.6: AndEBench and 0xBench Performance

5.7.1 Energy Consumption

We also measured the energy consumption in our simulator execution. Figure Figure 5.7

on the next page shows the normalized CPU dynamic capacitance (Cdyn), which measures

the dynamic energy dissipation, in the CaffeineMark execution. We can see that our accel-

eration increases little to the dynamic capacitance; hence the energy consumption. This

is because our performance improvement mainly comes from the instruction reductions,

without affecting the energy consumption. The Cdyn for method actually gets reduced due

to the frequent allocation stalls (see Figure 5.5 on the preceding page). Float has more

frequent ALU activities with our acceleration, which increases the Cdyn slightly. Figure 5.8

on page 109 shows the normalized Cdyn for AndEBench and 0xBench.

5.7.2 Startup Overhead Reduction

One issue with the just-in-time compilation for bytecode is the program startup overheads,

which impacts the user experience in interactive mobile and web applications. In previous

sections, we mainly evaluated performance for the benchmarks after they warm up from
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Figure 5.7: CaffeineMark Energy Consumption

just-in-time compilation. Our microarchitecture ISA also provides hardware supports such

as runtime profiling support, fast interpretation support, etc., which greatly reduce the

program startup overheads. Figure 5.9 on page 110 shows, from the program start,

the number of microarchitecture ISA instructions executed for the corresponding number

of Dalvik bytecode instructions, averaged over all of the programs in CaffeineMark. So

to run the initial 1M, 10M and 100M bytecode instructions, the baseline needs to run

140M, 410M and 790M microarchitecture ISA instructions, respectively. However, our

acceleration only needs to run 20M, 80M and 230M microarchitecture ISA instructions,

respectively. That represents 7x, 5x and 3.4x speedups for running the initial 1M, 10M

and 100M bytecode in terms of microarchitecture ISA instruction counts.

5.8 Conclusion

In this chapter, we present a novel acceleration scheme to permit the JIT compiler of a

virtual machine to directly convert bytecodes into the internal CPU ISA, which allows flex-
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Figure 5.8: AndEBench and 0xBench Energy Consumption

ible and efficient acceleration of the general-purpose bytecode execution in a state-of-art

out-of-order CPU design. Our experiments, using industry standard and scientific work-

loads, show significant evidence that the direct translation of bytecode into the internal

ISA of an out-of-order processor significantly improved the performance of bytecode appli-

cations, without increases in energy consumption. As a future work, the acceleration in-

terface could be extended to support JavaScript code and other dynamic typed languages,

in order to demonstrate that our acceleration scheme can be deployed to accelerate other

managed languages.
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Figure 5.9: Startup Overhead Reduction
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Chapter 6

Future Work

“We can only see a short distance ahead, but

we can see plenty there that needs to be done.”

Alan Turing

In the preceding chapters we have touched on many areas where more study is required.

In this chapter we present areas of future research that are more long-term in nature.

6.1 Promotion of Stack Variables to Registers

In this dissertation we proposed a scheme to accelerate bytecode execution. We believe

more study must be done to investigate new optimizations opportunities on HW/SW co-

designed systems. One future research goal is to exploit the similarity between register-

based bytecode, such as the Dalvik bytecode, and the underlying register-based architec-

tures commonly found in modern processor designs, promoting stack variables to physical

registers, which can significantly enhance the performance of both interpreted and JIT
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translated code. Promoting stack variables at the bytecode level would avoid the problem

of dealing with memory aliases between promoted stack variables and other implicit mem-

ory references that exist when stack promotion is performed in the architectural ISA code,

as described in [LWH11a].

The novelty of this solution lies in the promotion of stack variables to physical registers

both in interpreter execution and in the JITed code, by using the same calling convention.

If a method has more local variables than the maximum number of physical registers for

automatic promotion, all of its variables that cannot be promoted are stored in (spilled to)

memory, and additional load/store instructions are required prior to each use or definition.

Our experiments show that this is not the common case, since most methods have less than

ten (10) local variables.

In Dalvik, for example, all the Non-VM related instructions (like binary operations) can

benefit from stack variable promotion, since they operate on virtual registers. This shows

that this technique would not be restricted to a small subset of bytecode instructions, and

could provide substantial performance improvements. In one possible implementation, up

to n registers could be reserved for stack variables promotion. We believe n = 10 physical

registers is enough for well-designed methods of modern object oriented languages. This

future work can unlock further optimization opportunities in co-designed processors, for

example the exec instruction available in the Transmeta Efficeon [DGB+03], which allows

dynamic modification of the operands of an instruction. For example, to execute an add

v0, v1, v2 instruction, the interpreter would first decode the bytecode instruction, identi-

fying the local variables involved, and then it would dynamically produce an instruction

to add the corresponding physical registers, or to load local variables from memory in case

they have not been promoted, which would be rare. Contrary to previous solutions, this

technique would not require modifications to the internal intermediate representation, nor

additional translation of the intermediate representation.
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var_type_map = new hash_map(method . max_ loca l_va r i ab le s ) ;
for each bytecode b of method M do

switch ( bytecode . op) {
i f ( bytecode de f ine s a double / long v a r i a b l e ds t ) {

var_type_map . add( dst , dword) ;
} else {

var_type_map . add( dst , sword ) ;
}
i f ( bytecode opera tes on double / long s r c operands ) {

opnd_type = dword ;
} else {

opnd_type = sword ;
}
for each operand opnd in bytecode do

var_type_map . add( src , opnd_type ) ;
}

}

Listing 6.1: Algorithm to detect at runtime the data type of stack variables

We use the Dalvik VM to illustrate the stack variable promotion technique, since Dalvik is

a register-based VM. However, the techniques we propose can be applied to any register-

based VM. In order to promote stack variables into physical registers, a single-pass al-

gorithm has to scan the whole method bytecode, retrieving the data type of each stack

variable from the semantics of each bytecode. The metadata for the method, contained

in a dex file, provides the number of local variables in the method stack frame. Our algo-

rithm uses this information to create a new data structure to map local variables into its

data type. The pseudo code for the algorithm is shown in Listing 6.1 below.

Listing 6.1 processes each bytecode, creating an identity map var_type_map, which maps

local variables to its data type. The mapping with the data types of the variables is used

by the interpreter and JIT compiler to promote stack variables into physical registers. The

single word variables (sword) are promoted to 32 bit registers. The double word (dword)

variables are promoted to 64 bit physical registers.

After detecting the data types for the local variables, a single calling convention has to

be defined, such that both the interpreter and JIT compiler must follow. We assume that
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the underlining architecture has only a set of n registers (n = 10) available for promoting

local variables into registers. So, whenever there is a function call, we need to explicitly

define the actions that both the caller and the callee must execute in order to preserve the

physical registers allocated for register promotion.

To support method invocation, the following calling convention between caller and callee

could be used:

1) At caller: Prior to the method call, the caller must save all local variables promoted to

physical registers back to the stack frame, in memory. These include the physical registers

assigned to local virtual registers and argument registers. The amount of input virtual

registers in callee can be acquired from the invoke DEX instruction, so the physical argu-

ment registers in callee can be determined by the caller according to the register mapping

algorithm described previously. The invoke instruction will adjust the stack for the new

method.

2) At callee entry: Callee method does not need to save any register, since it is the respon-

sibility of the caller to do so.

3) Caller, After Call: After callee returns, the caller has to reload all promoted virtual

variables from stack into physical registers.

The reason the caller spills all promoted virtual registers to stack is to preserve the method

invocation stack, which is used by the exception handling and the garbage collection algo-

rithms.

Besides the performance improvements in cold code executed by the interpreter, this

technique also unlocks the potential for further performance improvements on JIT trans-

lated code. Modern JIT compilers for mobile devices (ex. Dalvik JIT) usually employ a

lightweight trace compiler, due to its simplicity, lower compilation overhead and speedup

114



similar to heavy-weight JIT compilers [GPF06b]. A trace is a linear sequence of frequently

executed operations. A trace contains a single entry and multiple exits, without control

flow merge points. One common optimization performed by a trace compiler is the promo-

tion of local variables into physical registers. The compiler keeps track of variables loaded

into registers, reusing the physical register whenever possible. Before taking a trace side

exit, and jumping back to the interpreter, all promoted registers are spilled back to mem-

ory. Whenever a side exit of a trace becomes hot, a new trace is formed, and again, local

variables have to be reloaded from memory when they are first used, since each trace is

compiled separately. The stack variable promotion technique avoids the loading of the

variables at the beginning of a trace, as well as the store back (spill) to memory before a

side exit is taken, which significantly reduces the overhead. Since most traces belong to

hot code, this technique can significantly reduce the number of load store operations, and

so increase the performance and energy efficiency of JIT generated code.

6.2 Universal Acceleration Bytecode

As a generalization of our framework, we envision the design of a universal acceleration

bytecode format. Such an acceleration bytecode would be the interface to accelerate ap-

plications written in different languages. This universal format would have special byte-

code instructions, for example to target the dynamic typed languages such as PHP and

JavaScript. This would allow the bytecode accelerator to leverage the higher level seman-

tics of dynamic typed languages and perform aggressive speculative optimizations, such as

type specialization, to improve the performance per watt of these applications.
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6.3 Fill the Dark Silicon with Specialized cores for Byte-

code Acceleration

Dark silicon has emerged as the fundamental limiter in modern processor designs. The

GreenDroid [GHSV+11] is a research mobile processor prototype that provides special-

ized energy-reducing cores targeting key portions of Google’s Android smartphone plat-

forms, which is an effective approach to use the dark silicon to execute general-purpose

smartphone applications with 11 times less energy use than today’s most efficient designs.

GreenDroid does not directly accelerate bytecode execution. Instead, it designs special

c-cores for accelerating the frequently-executed code in the Android runtime library and

in the Dalvik virtual machine.

As a future work, the bytecode acceleration framework proposed in this dissertation can

be extended to dynamically translate common fragments of bytecode to run natively in the

conservation cores, similar to the approach used in the GreenDroid. This would allow fill-

ing the chip’s dark silicon area with specialized conservation cores in order to save energy

on common applications running atop the mobile platform. We believe the use of special

hardware acceleration can significantly improve the energy efficiency of special purpose

applications running in resource constrained devices, such as the emerging wearable de-

vices, which have very popular in recent years.

6.4 HW/SW Codesigned Security

Due to the extensive growth and diffusion of mobile devices, and to their increasingly

powerful capabilities, many users are massively using mobile devices both for personal

and work related activities. As such, these devices can expose personal and organizational
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data if not properly protected. This poses serious threats to the security of such devices.

The low power budget and reduced computational capabilities of such kinds of devices

impose several constraints that must be fulfilled in order to provide effective and suitable

security schemes. We envision our framework being used to enable the development of

more sophisticated security mechanisms, along with the development of innovative se-

curity hardware support, with little or no increase in the energy consumption and per-

formance requirements, which could provide a more secure environment for applications

running in mobile devices.
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Chapter 7

Conclusion

“I think and think for months and years.

Ninety-nine times, the conclusion is false.

The hundredth time I am right.”

Albert Einstein

This concluding chapter discusses what we have accomplished in this dissertation.

7.1 Discussion

Engineering involves the analysis of tradeoffs. In the case of mobile processor design this

analysis is particularly complex and difficult to understand completely as these processors

have stringent constraints on power, minimized die area, and must deliver outstanding

performance for today’s coolest applications, fast web browsing, and seamless connectivity.

Unfortunately, these characteristics are often adversarial, and improving one often results

in worsening the others. This dissertation presented dynamic optimization techniques that
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improve both the performance and energy efficiency of mobile processors.

Ever since the first stored program computer was designed 60 years ago, microarchitecture

and compiler technology have both evolved tremendously. These advances encompass:

high speed processors and memory, microarchitecture support for speculative execution,

advances in compiler techniques for data and control analysis, dynamic compilation, dy-

namic binary translation, among others, which allowed the development of innovative

computer systems technologies. However, for decades, processor designers have strived to

maintain ISA compatibility, usually hiding rich hardware features available in the CPU, in

order to fulfill the requirement of running existing applications on new processor designs.

HW/SW Co-Design technologies have emerged as an alternative to overcome the ISA

compatibility issue, and permit to architect innovative implementation ISAs and micro-

architecture support to fulfill the performance and energy efficiency requirements of mod-

ern mobile devices. In this dissertation we demonstrated that modern mobile software

applications can greatly benefit from the feature-rich implementation ISA of modern pro-

cessors, which is the real interface that the hardware pipeline implements, and can be

designed with relatively more freedom to realize architecture innovations to fulfill the

performance and/or energy efficiency requirements.

This dissertation tackles the problem of developing new Just-in-Time compilation tech-

niques for bytecode acceleration by exploiting the hardware features of modern code-

signed processors, which are not exposed at the architectural ISA in order to preserve ISA

compatibility. We have established in this thesis statement that: This thesis explores the

effects, on performance and energy efficiency, of optimizations that are made possible when a

JIT can directly compile bytecodes to the internal, flexibly-designed, ISA rather than the ex-

ternal, architectural ISA of a microprocessor.. To support our claim, we provided the design

of an acceleration framework to accelerate the execution of applications written in mod-

ern object oriented high level languages, such as Java and C#, which are compiled into a
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platform independent ISA, with richer semantics compared to the architectural ISA of ex-

isting systems. Our acceleration framework allows the JIT compiler of a managed runtime

to bypass the architectural ISA, and directly translates bytecodes into the implementation

ISA of modern co-designed processors, and performs code optimizations on-the-fly, to ex-

ploit the existing hardware features at the micro-architecture level. In our experiments,

we observed that the additional registers and the support for speculative execution at the

micro-architecture level, are the two hardware features that can deliver the best benefits

in terms of performance and energy efficiency. Even though we used the x86 ISA, we

believe the same ISA compatibility limitation in other architectural ISA implementations,

such as ARM and SPARC, is also a major roadblock to make the best use of the underlying

hardware.

As a supporting evidence, we provided two implementations of our bytecode acceleration

framework, the first on a real co-designed machine, and the second on a cycle accurate

simulator for a modern co-designed processor, both showing solid performance improve-

ments with no increases in energy consumption. Our results is a significant evidence that

codesigned systems combined with modern High Level Languages VM abstractions is a

viable approach to combine the advances in hardware and software to deliver new heights

of energy performance efficiency. Our acceleration framework demonstrated that the ISA

compatibility requirement of modern mobile processor designs is a major roadblock to

make the best use of the underlying hardware facilities. This is because several innova-

tions at the microarchitecture level cannot be easily exploited by a compiler, as we have

shown in this dissertation.

We showed that our transparent interface has other applications other than bytecode accel-

eration by implementing a simulation control interface that requires reduced implementa-

tion efforts to control the simulation of bytecode applications across multiple levels of the

application software stack, facilitating the validation as well as the performance evaluation
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of processor designs.

We believe that our transparent interface, based on a OS driver, is an effective approach

to introduce new techniques in computer architecture while providing backwards binary

compatibility. As such, this thesis provides the groundwork for research on specialized in-

core hardware accelerators, with the potential to expand the capabilities of mobile devices

and provide a richer experience to the user. Furthermore, it opens new avenues for future

research on codesigned optimizations, both to address the aforementioned energy and

performance requirements, as well as to produce low cost mobile processor designs, which

has become a critical design requirement as high-end features are embedded on low cost

mobile devices.

We achieved our goals of making AccelDroid deployable, efficient, transparent, practical,

and modular, so that it can easily be added to an existing Virtual Machine, requiring a

lot less system programming effort compared to existing hardware accelerators. It took a

significant amount of effort to build the system, with many design choices along the way.

Even though each decision required novel research, we did not have time for exhaustive

exploration of every design point. We hope that others will benefit from our framework,

from the lessons we learned, and continue the research on innovative co-designed JIT

compilation techniques to enable the design of next generation processors to fulfill the

growing demands of modern mobile devices for more performance and energy efficiency.

7.2 Limitations

Our acceleration framework, just like any software system of significant complexity that

exists in a large design space, inevitably has tradeoffs, limitations, and pitfalls. This sec-

tion discusses some of the limitations of AccelDroid. First, as a new acceleration interface,
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AccelDroid has not been fully stressed by the demands of large software applications run-

ning in mobile devices. Second, probably the biggest limitation of AccelDroid is that a lot

of applications running on Android platforms are shipped with significant amounts of na-

tive code. AccelDroid cannot accelerate applications on which most of the code is written

in the native architectural ISA. Lastly, if the application execution is constantly alternat-

ing between bytecode accelerated execution and native code execution (code in x86 ISA),

due to JNI calls or due to the execution of an OS dependent bytecode instruction (like

new-array), our framework delivers less performance-per-watt improvements. This is due

to the additional overhead to switch from x86 to bytecode acceleration execution mode,

which reduces our gains.

7.3 A Final Word

The techniques proposed in this dissertation provide a groundwork for future research

on HW/SW codesigned optimizations for managed runtime environments. Specifically,

this study showed that by using the bytecode acceleration framework proposed in this

thesis, improved performance-per-watt can be achieved for mobile applications written

in modern programming languages that execute on managed runtime of mobile devices.

These initial results provide significant evidence of the enormous power and viability of

our approach to utilize the rich semantic of bytecodes to perform dynamic optimizations at

the microarchitecture level, to benefit from the hardware support of modern, codesigned

processors.

We demonstrated that our acceleration interface is an effective approach to communicate

high level language abstractions to the underlying processor ISA implementation, pro-

viding the building blocks for the design of innovative hardware support and speculative

optimizations to effectively deliver the stringent energy and performance requirements of

122



modern processors. As such, our acceleration interface excels in making the best usage

of the constrained resources of mobile devices, enabling the deployment of more features,

without sacrificing the usability requirements, which is a critical aspect of modern software

that runs on mobile devices.

Recently, since Android version 4.4, the Android runtime uses an Ahead of Time Compiler

(AOT), the ART (Android RunTime), which translates the DEX bytecodes into the native

ISA of the mobile phone when the application is installed. The Java Hotspot runtime also

employs an AOT compilation system, which translates java bytecodes into the native ISA

when a Java class (.class file) is loaded for execution. In addition, Hotspot also has a JIT

compiler that re-translates hot regions of the code, during program execution, using more

aggressive profile-directed optimizations. We are fairly certain that the two most fruitful

future works growing out of this dissertation will focus upon: 1) extending the proposed

acceleration framework to work in a Runtime environment based on AOT compilation,

and 2) designing new hardware support for bytecode acceleration. Both avenues will re-

quire new design choices to tradeoff memory usage and silicon for improved performance

and reduced energy consumption, which is a promising research area and an immediate

continuation of our work.
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Appendices

A Dalvik Virtual Machine

The Dalvik Virtual Machine (DVM) is a register-based machine that performs computations

using the virtual registers included in the VM. The stack frame for each method includes

a register file with general purpose registers, which are mapped to local variables/argu-

ments, as well as special registers for saving the caller method’s state, such as caller’s PC,

the pointers to the caller’s register file, and the method data, etc., which are used to restore

the caller’s execution state when the callee method returns.

A.1 Dalvik Bytecodes

Dalvik bytecodes can be grouped into two categories: 1) VM-related instructions that in-

teract with a virtual machine, and 2) computation instructions that just compute on the

virtual registers. There are about 232 instructions in DEX, and 43 of them are VM-related

instructions. The remaining instructions (Non-VM related) are very simple instructions

such as arithmetic instructions, logic instructions, etc.

Consider the recursive method notInlinaeableSeries from class MethodT in Listing 1. The

method has only one integer argument - paramInt - and one integer local variable -i-. The
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c lass MethodT {
. . .
public i n t n o t I n l i n e a b l e S e r i e s ( i n t paramInt )
{

i n t i = paramInt ;
t h i s . depthCount += 1;
i f ( paramInt == 0) {

return i ;
}
i f (( i & 0x1) != 0) {

i += n o t I n l i n e a b l e S e r i e s ( paramInt − 1) ;
}
else {

i += 1 + n o t I n l i n e a b l e S e r i e s ( paramInt − 1) ;
}
return i ;

}
. . .

}

Listing 1: Method notInlineableSeries of class MethodT

bytecode in Listing 2 is the DEX bytecode representation for the method notInlinaeable-

Series.

A standard method call, such as the one in line 11 of Listing 1 (first recursive call), will be

turned into a piece of bytecode, which is often referred to as a call site. This comprises a

dispatch opcode (such as invokevirtual, for regular instance method calls) and a constant

(an offset into the Constant Pool of the class), which indicates which method is to be called.

The bytecode at offset 000f in Listing 2 is the call site for the method call in line 11 of

Listing 1. Before performing the method invocation, the class and the method identified

by the method invocation bytecode (for example, invoke-virtual) are resolved. If the class

file has not been loaded, the runtime will load it and initialize the proper data structures.

To invoke a method, the Dalvik VM first creates a new stack frame of the proper size, on

the stack, for the new method. The stack frame contains space for the method’s arguments,

local variables and its operand stack. The size of the local variables and operand stack are

calculated at compile-time and placed into the bytecode metadata, so the VM knows just
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MethodT . n o t I n l i n e a b l e S e r i e s : ( I ) I
|0000: i g e t v0 , v1 , LMethodAtom ; . depthCount : I
|0002: add−i n t / l i t 8 v0 , v0 , #i n t 1
|0004: ipu t v0 , v1 , LMethodAtom ; . depthCount : I
|0006: i f−nez v2 , 0009
|0008: return v2
|0009: and−i n t / l i t 8 v0 , v2 , #i n t 1
|000b : i f−eqz v0 , 0016 // +000b
|000d : add−i n t / l i t 8 v0 , v2 , #i n t −1
|000 f : invoke−v i r t u a l {v1 , v0 } , MethodT . n o t I n l i n e a b l e S e r i e s : ( I ) I
|0012: move−r e s u l t v0
|0013: add−i n t /2addr v0 , v2
|0014: move v2 , v0
|0015: goto 0008 // −000d
|0016: add−i n t / l i t 8 v0 , v2 , #i n t −1
|0018: invoke−v i r t u a l {v1 , v0 } , MethodT . n o t I n l i n e a b l e S e r i e s : ( I ) I
|001b : move−r e s u l t v0
|001c : add−i n t / l i t 8 v0 , v0 , #i n t 1
|001e : add−i n t /2addr v0 , v2
|001 f : goto 0014

Listing 2: Dalvik bytecode for Method notInlineableSeries of class MethodT

how much memory will be needed by the method’s stack frame. In Dalvik, when a method

is invoked, the parameters to the method are placed into the last n registers. If a method

has 2 arguments, and 5 virtual registers (v0-v4), the arguments would be placed into the

last 2 registers - v3 and v4, as shown in Figure 2 on the next page.

For example, the non-static method invocation invoke-virtual v1, v0, MethodT.notInlineableSeries:(I)I

calls the notInlineableSeries method passing 2 integer parameters. The first parameter is

Figure 1: Stack layout of a method with 2 parameters and 3 local variables.
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Figure 2: Stack layout of a method nonInlineableSeries.

public c lass F loa tTe s t {
public long twoArguments ( i n t fp i , double fpd ) {

i n t f l i ;
long f l d ;

i f ( f p i > 0) {
f l i = 1;
f l d = (( long ) fpd ) >> 1;

} else {
f l i = 2;
f l d = (( long ) fpd ) << 1;

}

return ( f l d + ( long ) f l i ) ;
}

}

Listing 3: A method with local variables of types double and long

the implicit (method’s object) pointer. The first parameter is assigned to virtual register

v1, in the call stack, as shown in Figure 2. The second parameter is the integer paramInt,

which is assigned to virtual register v2 in the stack frame, as shown in Figure 2.

The bytecode at offset 000f in Listing 2 invokes the method notInlineableSeries. It passes

two arguments, v1 and v0, which are the first argument and the class object pointer.

The example in Figure 1 on page 135 operates only on arguments and local variables of

type integer. In Dalvik bytecode registers are always 32 bits, and can hold any type of

value. Two consecutive registers are used to hold 64 bit types (Long and Double). Just by

looking at the method metadata it is not possible for the VM to infer what the data type of

a local variable is. Listing 3 shows a method with long and double variables.
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F loa tTe s t . twoArguments : ( ID ) J
|0000: const /4 v2 , #i n t 1
|0001: i f−l e z v5 , 0008
|0003: double−to−long v0 , v6
|0004: shr−long/2addr v0 , v2
|0005: in t−to−long v2 , v2
|0006: add−long/2addr v0 , v2
|0007: return−wide v0
|0008: const /4 v3 , #i n t 2
|0009: double−to−long v0 , v6
|000a : shl−long/2addr v0 , v2
|000b : move v2 , v3
|000c : goto 0005

Listing 4: A method with local variables of types double and long

Listing 4 shows the resulting DEX bytecode for the function twoArguments of class Float-

Test, shown in Listing 3.

A.2 Dalvik Interpreter

The Dalvik runtime includes three interpreters, labeled “portable”, “debug”, and “fast”.

The portable interpreter is largely contained within a single C function, and should compile

on any system that supports a C compiler. The fast interpreter uses hand-coded assembly

fragments. If none are available for the current architecture, the build system will create

an interpreter out of C “stubs”. The resulting “all stubs” interpreter is quite a bit slower

than the portable interpreter, making “fast” something of a misnomer. The fast interpreter

is enabled by default. The “debug” interpreter is a variation of the portable interpreter that

includes support for debugging and trace formation. This interpreter is used to record an

execution trace when the trace-based JIT compiler is enabled. When a debugger attaches,

or the tracing mode is enabled, the VM will switch interpreters at a convenient point. This

is done at the same time as the GC safe point check: on a backward branch, a method

return, or an exception throw. Similarly, when the debugger detaches or trace recording is

discontinued, execution transfers back to the “fast” or “portable” interpreter.
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We used the portable debug interpreter to implement the bytecode accelerator we describe

in Chapter 3 on page 29, and Chapter 5 on page 85. The portable interpreter was included

in a new module, integrating the DBT bytecode runtime as illustrated in Figure 3.4 on

page 38. The interpreter was extended to benefit from the support for fast interpretation,

by using the LINKPIPE feature, as we will detail in Section 3.3.1 on page 39.

A.3 Trace Based Just-in-Time compiler

When a new application is started, the DVM starts the bytecode execution using the inter-

preter. A counter is maintained for the target of each jump instruction. Once the counter

reaches a certain threshold, the runtime will switch the interpreter execution to the debug

interpreter, which will execute the bytecode instruction and at the same time record it in

the trace buffer. The DVM employs a trace-based JIT compiler [OKCM12], which uses a

trace as the unit of compilation.

The trace recording is stopped when a branch or a function call is interpreted or when the

number of bytecode instruction in the trace buffer exceeds a pre-defined limit (100 in our

case). After a trace is formed, it is passed to a compiler thread that will compile and install

it in the code cache. Dalvik also employs a runtime optimization that allows compiled

traces to be chained, in order to reduce the lookup overhead every time the execution

exits a compiled trace.
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B Tramseta Efficeon Processor

The low-power x86 compatible Efficeon processor [Cor04] is Transmeta’s second-generation

256-bit Very Long Instruction Word (VLIW) design aimed at ultra-portable and mainstream

notebook computers, as well as new classes of devices such as tablet PCs, ultra-personal

computers, silent desktop computers, blade servers, thin clients and embedded systems.

The Efficeon processor has a microarchitecture designed for simplicity by moving complex

but infrequent tasks into the software. Although a full discussion of the architecture is

beyond the scope of this dissertation, we provide some details here that are relevant to the

topic we will address in next chapters.

The Efficeon is an in-order VLIW processor, which is designed to provide high performance

execution of software-scheduled code. For design simplicity and reduced power, the mi-

croarchitecture does not provide hardware interlocks or register scoreboarding, and there-

fore relies on a compiler to correctly schedule dependent and independent operations. To

simplify the compiler’s task, and to enable speculative execution, Efficeon provides hard-

ware support for taking fast register and memory checkpoints and for reordering memory

operations.

Efficeon employs a software engine, the Code Morphing Software (aka CMS) [DGB+03],

to convert code written for x86 processors to the native VLIW instruction set of the chip, as

we describe in section Section B.3 on page 144. Like its predecessor, the Transmeta Cru-

soe (a 128-bit VLIW architecture), Efficeon stresses computational efficiency, low power

consumption and a low thermal footprint. To maximize performance and responsiveness,

the Efficeon processor features a state-of-the-art 256-bit-wide VLIW engine that can issue

up to 8 instructions per clock cycle, a large 1MB L2 cache and support for SSE & SSE2

instructions, all of which help make for a compelling multimedia experience.
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According to the design briefings [Cor04] released by Transmeta, the Efficeon processor

has the following features:

• Advanced 256-bit VLIW engine with two load/store units, two integer ALU units,

two multimedia SSE/SSE2/MMX units, a floating point unit, and a branch unit. The

VLIW core can execute one 256-bit VLIW instruction per cycle, which is called a

molecule. Each molecule has room to store eight 32-bit instructions, called atoms. Up

to eight atoms (instructions) can be issued per cycle.

• It has 64 general-purpose registers and 32 floating point registers, allowing the ar-

chitectural x86 registers to be assigned to dedicated native VLIW registers, with an

ample set available for use by CMS.

• 85 million 90nm transistors on a 65mm2 die area, as Figure 3 on the following page

illustrates.

• It provides an advanced Code MorphingTM software x86-compatible for a mobile

platform solution.

• It was built in a 0.13µm fabrication technology for GHz performance at very low

power levels.

• It has standard product speeds of 900 MHz - 1.1 GHz at low power consumption.

• 128 KByte L1 instruction cache, 64 KByte L1 data cache, and 1024 KByte (TM8600)

L2 write-back cache for high performance.

• Contains SSE, SSE2, and MMX instruction support for cinematic multimedia perfor-

mance.

Efficeon CMS reserves a small portion of main memory (typically 32 MB) for its translation

cache of dynamically translated x86 instructions.
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Figure 3: Efficeon Processor Package and Die Area

B.1 Hardware Support for Speculative Execution

For high performance, the Efficeon processor has hardware support for speculative execu-

tion. Each architecture register (x86) has two copies: a shadowed and a working copy.

Likewise, each data cache line has a bit to mark all speculative memory updates.

The Efficeon processor exposes its support for fast hardware checkpoints through the two

operations shown in Table 1. Software can use these operations to provide the illusion

of atomic execution - the execution of a region of code completely or not at all. The

commit operation is used to denote both the beginning and the end of an atomic execution

region (atomic region). It is used at the beginning of an atomic region to take a register

checkpoint and to treat all future register and memory updates as speculative. It is used

at the end of an atomic region to commit all speculative updates and discard the last

checkpoint. The rollback operation is used to unconditionally abort an atomic region

by restoring the last checkpoint. A rollback does not affect the program counter, so an

instruction following the rollback can be used to redirect control flow as necessary.
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Between checkpoints, all updates are speculatively written to either working registers or

the data cache. If a cache line is speculatively written, its speculative bit is set and it is

transitioned to the dirty state (after first evicting any non-speculative dirty data on the

line into a victim cache). The hardware can commit speculative work in a single cycle

by copying the working registers onto their shadowed counterparts and flash clearing all

speculative bits in the data cache. Alternatively, the hardware can roll back all specula-

tive work by restoring the working registers from their shadowed counterparts and flash.

Our acceleration framework leverages the hardware support for speculative execution in

Efficeon toHARDWARE SUPPORT FOR SPECULATION IN

B.2 Bytecode Execution Time Breakdown

Table 1 shows the execution time breakdown for two benchmarks:DaCapo [BGH+06]

and SPEC CPU2000 [Hen00]. The DaCapo benchmark is a popular set of open source,

client-side Java benchmarks.

Benchmark Interpreter Translator Non-tranlated Translated
DaCapo 2% 3.5% 20.5% 74%
SPEC CPU2000 1% 1% 13% 85%

Table 1: Execution Time Breakdown for DaCapo and Spec 2000

Here is a brief description of each component of Table 1:

• Interpreter: The interpreter is used to reduce translation overhead of infrequently

executed code, provide profiling information, interrupt narrowing, and serves as a

low latency “forward progress engine”. The CMS interpreter uses extensive hardware

support, and is only 30x slower than native code execution.
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• Translator: The translator is responsible for generating Efficeon code that corre-

sponds to input x86 code.

• CMS Non-translated Execution: This component comprises the memory allocation,

translation management, threading, TLB handler, translation lookup, and power

management.

• Translated Code: The translated code execution includes execution of Efficeon code

generated by the translator natively, including any CMS management tasks included

in translations as native code such as branch chaining.

B.3 Transmeta Code Morphing Software

Transmeta’s proprietary Code Morphing Software (CMS) [DGB+03] [Kla00b] is a product-

quality and highly-tuned software layer that runs at the heart of the Efficeon processor that

dynamically interprets, optimizes and translates x86 instructions (guest ISA) into internal

VLIW instructions (host ISA). CMS sits below the OS and is totally transparent to the entire

software stack. CMS perform analyzes of the stream of independent instructions, sniffs out

interdependencies, and then reschedules and combines them into molecules that are then

executable by the VLIW CPU.

CMS is designed as a staged dynamic compiler, like many other dynamic binary translation

(DBT) systems. Initially, the interpreter decodes and executes x86 instructions sequentially,

with careful attention to memory access ordering and precise reproduction of faults, while

collecting data on execution frequency, branch directions, and memory-mapped I/O op-

erations, as shown in Figure 4 on the next page. The interpreter is designed to provide

a low-latency cold start and collect enough profiling information to build complex code

regions in later stages.
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Figure 4: Interpretation and profiling of x86 Instructions

When the number of executions of a section of x86 code reaches a certain threshold, the

dynamic compiler of CMS, which is called the translator, as shown in Figure 5 on the fol-

lowing page, promotes the hot code region to a second compilation stage (second gear) on

which a lightweight-optimized code region is built for the host code starting at that particu-

lar address. The translator includes three levels of optimization aggressiveness (gears) that

allow the translator to generate code quickly in order to minimize the latency of executing

native code while applying aggressive optimizations to get higher performance code for

code that is executed frequently. The optimizer implements both classical non-speculative

optimizations (such as common sub-expression elimination) and speculative optimizations

that exploit the rollback hardware, as illustrated in Figure 7 on page 147. If any specula-

tive assumption fails, the hardware recovery mechanism will roll back the execution to the

beginning of the atomic region that failed, and the execution is switched to the interpreter,

to re-execute the code without speculation. This avoids the need to generate compensa-

tion recovery code. The translator also includes a register allocator and scheduler. Our
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Figure 5: Translation of x86 Instructions

bytecode accelerator leverages the rollback hardware in handling exceptions and interrup-

tions. This simplifies our accelerator since in the event of a trap, the handling is always

performed in the architectural ISA at OS level. This allows the implementation of a very

light-weight bytecode runtime module inside the DBT.

Figure 6: Chaining X86 Translations
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Once a translation has finished execution, it will exit by jumping somewhere else in the

DBT runtime, which will then find the next translation entry point to execute. If a transla-

tion point is found, the translation cache will chain the code in the translation that jumped

to it. The chaining process, shown in Figure 6 on the preceding page, alters the trans-

lation’s code so that it will subsequently jump directly to the next entry point to execute.

If no translation is found, the execution jumps back to the interpreter. Our acceleration

scheme also leverages the chaining mechanism of Efficeon, allowing two execution traces

to be chained according to the flow of execution.

This unique combination of hardware and software allows the processor to be more effi-

cient, adding intelligence to the Efficeon processor in order to manage power consumption

and heat dissipation in ways not found in other x86 microprocessors.

Figure 7: Speculative Support for Agressive Optimizations

Hardware/Software co-designed processors, like the Transmeta Efficeon, in general es-

chew branch prediction and scheduling hardware that is common in most mainstream

processors and instead rely on software to fulfill this task. Hence, the core of VLIW pro-

cessors has more die space for further functional units, registers or cache memory units,
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as opposed to an equivalent CPU die using the mainstream architectures.

Using software to decompose complex instructions into simple atoms, and to schedule

and optimize the atoms for parallel execution saves millions of logic transistors and cuts

power consumption on the order of 60-70% over conventional approaches - while at the

same time enabling aggressive code optimization techniques that are simply not feasible

in traditional x86 implementations [Kla00b]. Transmeta’s CMS and fast VLIW hardware,

working together, achieve low power consumption without sacrificing high performance

for real-world applications. This was the main motivation for us to use this processor in

our experimentations.
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C Translation Example

In this appendice we show an example of translation for the function execute() of Loop

benchmark, from the CaffeineMark 3.0 set of benchmarks.

1: public i n t execute ()

2: {

3: t h i s . f i b s [0] = 1;

4: for ( i n t i = 1; i < t h i s . FIBCOUNT; i++) {

5: t h i s . f i b s [ i ] = ( t h i s . f i b s [( i − 1) ] + i ) ;

6: }

7: i n t i1 = 0;

8: i n t i2 = 0;

9: for ( i n t j = 0; j < t h i s . FIBCOUNT; j++) {

10: for ( i n t k = 1; k < t h i s . FIBCOUNT; k++)

11: {

12: i n t m = t h i s . FIBCOUNT + t h i s .dummy;

13: i1 += m;

14: i2 += 2;

15: i f ( t h i s . f i b s [( k − 1) ] < t h i s . f i b s [k ])

16: {

17: i n t n = t h i s . f i b s [( k − 1) ] ;

18: t h i s . f i b s [( k − 1) ] = t h i s . f i b s [k ] ;

19: t h i s . f i b s [k] = n ;

20: }

21: }

22: }

23: t h i s . sum1 = i1 ;

24: t h i s . sum2 = i2 ;

25: return t h i s . f i b s [0] ;

26: }

Listing 5: Execute function from Loop Benchmark in CaffeineMark 3.0
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001a0e : 52a4 1900 |0031: i g e t v4 , v10 , LLoopAtom ; . FIBCOUNT: I // field@19

001a12 : 52a5 1a00 |0033: i g e t v5 , v10 , LLoopAtom ; . dummy: I // field@1a

001a16 : b054 |0035: add−i n t /2addr v4 , v5

001a18 : b041 |0036: add−i n t /2addr v1 , v4

001a1a : d800 0002 |0037: add−i n t / l i t 8 v0 , v0 , #i n t 2 // #02

001a1e : 54a4 1b00 |0039: ige t−o b j e c t v4 , v10 , LLoopAtom ; . f i b s : [ I // field@1b

001a22 : 9105 0308 |003b : sub−i n t v5 , v3 , v8

001a26 : 4404 0405 |003d : aget v4 , v4 , v5

001a2a : 54a5 1b00 |003 f : i ge t−o b j e c t v5 , v10 , LLoopAtom ; . f i b s : [ I // field@1b

001a2e : 4405 0503 |0041: aget v5 , v5 , v3

001a32 : 3554 1600 |0043: i f−ge v4 , v5 , 0059 // +0016

Listing 6: Bytecode trace for lines 12-15 of Listing 5

[ begin b0 ]

0xfed2e790 : { pre au , xunlock , unlock , here , cmit ,431 }

0xfed2e794 : { ld .32/1 r6 , x86 : [ r7+40] ; ld .32/0 r42 , x86 : [ r7 ] }

0xfed2e79c : { ld .32/1 r40 , x86 : [ r7+4] }

0xfed2e7a0 : { add .32/0 r43 , r42 , 2 ; brc ~p3 , 0 xf fd6a9f0 <mtc_chain_0 >;

ld .32/0 r36 , x86 : [ r7 +32]; t s t . c .32/1 p3=ne , r6 , r6 }

[ begin b2 ]

0xfed2e7b0 : { ld .32/0 r37 , x86 : [ r6+12] ; ld .32/1 r38 , x86 : [ r6+16] }

0xfed2e7b8 : { ld .32/0 r3 , x86 : [ r7+12] ;

ld .32/1 r1 , x86 : [ r6+8] ; a l i a s 0 ,0 ,0 ,0 ,15 }

0xfed2e7c4 : { add .32/1 r39 , r38 , r37 ; a l i a s 0 ,1 ,0 ,15 ,15 ;

s t .32/1 r43 , x86 : [ r7 ] }

0xfed2e7d0 : { sub .32/0 r0 , r3 , r36 ; add .32/1 r41 , r40 , r39 }

0xfed2e7d8 : { t s t . c .32/0 p3=ne , r1 , r1 ; sh2add .32/1 r34 , r0 , r1 ;

segaddx/0 r31 , x86 : [ r62+r1 ] }

0xfed2e7e4 : { brc ~p3 , 0xffd6ab30 <mtc_chain_1> ;

a l i a s 0 ,1 ,0 ,15 ,15 ; s t .32/1 r41 , x86 : [ r7+4] }
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[ begin b4 ]

0xfed2e7f0 : { ld .32/0 r35 , x86 : [ r1+8] }

0xfed2e7f4 : { ld .32/1 r19 , x86 : [ r34+12] }

0xfed2e7f8 : { cmp . c .32/0 p3=ltu , r0 , r35 ;

brc ~p3 , 0xffd6ab58 <mtc_chain_2> }

[ begin b6 ]

0xfed2e800 : { or .32/0 r1 , r62 , r19 ; or .32/1 r0 , r19 ,0 }

0xfed2e808 : { t s t . c .32/0 p3=ne , r31 , r31 ; brc ~p3 , 0xffd6ab50 <mtc_chain_3 >;

[dup t s t . c .32/0 p3=ne , r31 , r31 ] ; or .32/1 r6 , r62 , r31 }

[ begin b8 ]

0xfed2e818 : { cmp . c .32/0 p3=ltu , r3 , r35 ; brc . h p3 , 0xffd6ab40 <mtc_chain_4> }

[ begin b9 ]

0xfed2e820 : { execf1 nop ; br 0xffd6ab28 <mtc_chain_5> }

Listing 7: JIT/CMS translation for bytecode trace of Listing 6
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[ begin b0 ]
0xfecd8bc8 : { pre aa , unlock , here , cmit ,392 }
0xfecd8bcc : { ld .32/1 r46 , x86 : [ r7 ] ; ld .32/0 r19 , x86 : [ r7+40] }
0xfecd8bd4 : { ld .32/1 r20 , x86 : [ r7+12] ; ld .32/0 r40 , x86 : [ r7+32] }
0xfecd8bdc : { or .32/1 r45 , r62 , r46 ; add .32/0 r46 , r46 ,2 }
0xfecd8be4 : { or .32/1 r44 , r62 , r46 ; ca te .32/0 53 , r19 ,0 ;

ld .32/1 r43 , x86 : [ r19+8] ; a l i a s 0 ,0 ,0 ,0 ,15 ;
[dup ld .32/1 r43 , x86 : [ r19 +8]];
segaddx/0 r42 , x86 : [ r62+r19 ] }

0 xfecd8bfc : { or .32/1 r39 , r62 , r20 ; or .32/0 r37 , r62 , r40 ;
s t .32/1 r46 , x86 : [ r7 ] ; a l i a s 0 ,1 ,0 ,1 ,15 }

0xfecd8c0c : { or .32/1 r46 , r19 ,0 ; or .32/0 r41 , r62 , r43 }
0xfecd8c14 : { or .32/1 r46 , r20 ,0 ; a l i a s 0 ,2 ,0 ,2 ,15 ;

ld .32/1 r36 , x86 : [ r43+8] ; ca te .32/0 53 , r43 ,0 }
0xfecd8c24 : { sub .32/1 r46 , r20 , r40 ; a l i a s 0 ,0 ,0 ,3 ,15 ;

ld .32/1 r18 , x86 : [ r42+8] }
0xfecd8c30 : { or .32/0 r38 , r62 , r46 ; sh2add .32/1 r35 , r46 , r41 ;

a l i a s 0 ,0 ,0 ,4 ,5 ; ld .32/1 r40 , x86 : [ r42+16] ;
ld .32/0 r20 , x86 : [ r42+12] }

0xfecd8c44 : { or .32/1 r33 , r62 , r35 ; add .32/0 r46 , r39 ,1 }
0xfecd8c4c : { sh2add .32/1 r35 , r39 , r41 ; a l i a s 0 ,2 ,0 ,6 ,15 ;

ld .32/1 r34 , x86 : [ r35+12] ; or .32/0 r28 , r62 , r46 ;
[dup ld .32/1 r34 , x86 : [ r35+12]] ;
segaddx/0 r23 , x86 : [ r62+r18 ] }

0xfecd8c64 : { catnb .32/1 53 , r38 , r36 ; add .32/0 r46 , r20 , r40 }
0xfecd8c6c : { or .32/1 r31 , r62 , r34 ; a l i a s 0 ,2 ,0 ,7 ,15 ;

ld .32/1 r19 , x86 : [ r35+12] ; or .32/0 r26 , r62 , r46 ;
[dup ld .32/1 r19 , x86 : [ r35+12]] ;
segaddx/0 r30 , x86 : [ r62+r35 ] }

0xfecd8c84 : { ld .32/1 r46 , x86 : [ r7+4] ; a l i a s 0 ,0 ,0 ,1 ,15 ;
catnb .32/1 53 , r39 , r36 }

0xfecd8c90 : { cmp.32/0 p3=ge , r31 , r19 ; or .32/1 r34 , r19 ,0 ;
a l i a s 3 ,61 ,0 ,15 ,15 ; s t .32/1 r31 , x86 : [ r7+16] }

0xfecd8ca0 : { a l i a s 3 ,0 ,61 ,15 ,15 ; brc p3 , 0 xf fd6a9f0 <mtc_chain_0> ;
add .32/0 r46 , r46 , r26 ; or .32/1 r29 , r62 , r19 ;
s t .32/0 r19 , x86 : [ r7+20] }

Listing 8: AccelDroid translation for bytecode trace of Listing 6
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