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NHE	� Na+/H+-exchanger
VEGF	� Vascular endothelial growth factor

Introduction

Proton (1H) magnetic resonance imaging (MRI) is the gold 
standard for diagnosis and management of human gliomas. 
Gliomas are a heterogeneous group of tumors that account 
for 27% of all primary central nervous system (CNS) 
tumors [1] and are considered uniformly fatal even with 
aggressive treatment [2, 3]. Contrast enhancement on post-
contrast, T1-weighted proton MRI can be used to define the 

Abbreviations
ADC	� Apparent diffusion coefficient
ATP	� Adenosine triphosphate
CET	� Contrast-enhancing tumor
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GBM	� Glioblastoma
IDH-mut	� Isocitrate dehydrogenase mutant
IDH-wt	� Isocitrate dehydrogenase wild-type
NAWM	� Normal-appearing white matter
NET	� Non-enhancing tumor

Extended author information available on the last page of the article

Abstract
Purpose  There is limited knowledge about the associations between sodium and proton MRI measurements in brain tumors. 
The purpose of this study was to quantify intra- and intertumoral correlations between sodium, diffusion, and perfusion MRI 
in human gliomas.
Methods  Twenty glioma patients were prospectively studied on a 3T MRI system with multinuclear capabilities. Three 
mutually exclusive tumor volumes of interest (VOIs) were segmented: contrast-enhancing tumor (CET), T2/FLAIR hyperin-
tense non-enhancing tumor (NET), and necrosis. Median and voxel-wise associations between apparent diffusion coefficient 
(ADC), normalized relative cerebral blood volume (nrCBV), and normalized sodium measurements were quantified for each 
VOI.
Results  Both relative sodium concentration and ADC were significantly higher in areas of necrosis compared to NET 
(P = 0.003 and P = 0.008, respectively) and CET (P = 0.02 and P = 0.02). Sodium concentration was higher in CET compared 
to NET (P = 0.04). Sodium and ADC were higher in treated compared to treatment-naïve gliomas within NET (P = 0.006 and 
P = 0.01, respectively), and ADC was elevated in CET (P = 0.03). Median ADC and sodium concentration were positively 
correlated across patients in NET (r = 0.77, P < 0.0001) and CET (r = 0.84, P < 0.0001), but not in areas of necrosis (r = 0.45, 
P = 0.12). Median nrCBV and sodium concentration were negatively correlated across patients in areas of NET (r=-0.63, 
P = 0.003). Similar associations were observed when examining voxel-wise correlations within VOIs.
Conclusion  Sodium MRI is positively correlated with proton diffusion MRI measurements in gliomas, likely reflecting 
extracellular water. Unique areas of multinuclear MRI contrast may be useful in future studies to understand the chemistry 
of the tumor microenvironment.

Keywords  Glioma · Sodium MRI · Diffusion MRI · Dynamic susceptibility contrast perfusion MRI · Multinuclear 
MRI · Glioblastoma
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contrast-enhancing component of the tumor (CET), which 
contains the most aggressive high-grade features of the 
tumor [4, 5], while T2-weighted proton images including 
fluid-attenuated inversion recovery (FLAIR) sequences are 
useful for defining non-enhancing tumor (NET), which con-
tains the bulk of the tumor in lower grade gliomas and a 
combination of infiltrative glioma cells and edema in higher 
grade tumors [6].

In addition to these standard anatomic proton MRI 
sequences that are used to isolate areas of concern, advanced 
physiologic imaging techniques including diffusion and per-
fusion MRI are often used to explore cellularity and vas-
cularity, respectively, within these regions. The apparent 
diffusion coefficient (ADC) measured using proton diffu-
sion weighted imaging (DWI) has been shown to be sensi-
tive to cell density and proliferation [7], and ADC values 
are reported to differ between treated, recurrent tumors and 
radiation necrosis or pseudoprogression [8]. Additionally, 
the extracellular space and volume fraction are increased in 
brain tumors compared to healthy brain tissue as infiltrating 
glioma cells deposit extracellular matrix components along 
with extravasation of fluid from leaky vasculature [9, 10], 
which increase ADC [11]. Dynamic susceptibility contrast 
(DSC) perfusion MRI is also used often in human gliomas 
to isolate areas of high vascular density [12], identify highly 
aggressive areas of the tumor undergoing angiogenesis [6], 
and may also be useful in differentiating recurrent tumor 
from pseudoprogression [13].

While proton MRI is commonly used in clinical care 
given the abundance of water protons and the intrinsi-
cally high proton magnetic moment, other nuclei, includ-
ing sodium (23Na), may complement proton MRI [14, 15] 
given the importance of sodium homeostasis for healthy tis-
sue and gliomas. Intracellular (10–15 mM) and extracellular 
sodium concentrations (140–150 mM) are tightly regulated 
by well-known mechanisms, including the Na+/K+-ATPase 
and Na+/H+-exchangers (NHEs) [15, 16]. In gliomas, NHE1 
is important to maintain an intracellularly alkaline environ-
ment [17] and is implicated in resistance to temozolomide 
chemotherapy [18]. Matched recurrent gliomas have higher 
expression of NHE1 compared to primary gliomas, which 
is also associated with reduced overall survival [19]. How-
ever, several intrinsic and technical challenges have lim-
ited clinical sodium MRI applications. For example, while 
sodium is the second-most abundant MR-detectable nucleus 
in the body after 1H, its intrinsic MR sensitivity is nearly 
1/10,000th that of proton, has a concentration of below 
0.1% that of water protons, and presents short biexponential 
signal decay times in tissue [14, 15].

Early sodium MRI studies have shown elevated sodium in 
brain tumors compared to normal brain [20, 21], which has 
been associated from a potential combination of increased 

intracellular sodium from altered sodium homeostasis in 
malignancy [22] and from increased extracellular vol-
ume fraction [21]. Sodium MR contrast also demonstrates 
intra-tumor heterogeneity between tumor subregions, with 
necrotic areas reportedly exhibiting higher sodium sig-
nal intensity than CET and NET [23]. Furthermore, total 
sodium MR signal has been shown to be higher in human 
isocitrate dehydrogenase (IDH)-mutant (IDH-mut) glio-
mas compared to IDH-wild-type (IDH-wt) gliomas prior to 
chemoradiation [23, 24]. However, other studies reported 
that IDH-wt gliomas exhibit higher sodium signal than 
IDH-mut gliomas when imaged with advanced sodium 
MRI acquisition techniques, which are believed to be more 
sensitive to intracellular sodium by targeting sodium ions 
with restricted mobility [24, 25]. Sodium MR signal also 
increases after radiosurgery in brain metastases [26] and 
vestibular schwannoma [27], and sophisticated sodium MR-
derived metrics including tumor cell volume fraction can 
demonstrate changes in glioblastomas after chemoradiation 
[28], suggesting sodium MRI may provide value for thera-
peutic response assessment.

However, no studies have examined whether similar 
information to sodium MRI is already available using com-
mon proton MRI techniques in human gliomas. Preclinical 
data suggest sodium concentration and proton ADC both 
increase after chemotherapy [29, 30], but to our knowledge, 
there remains no study assessing the potential association 
between sodium and proton MRI, including diffusion and 
perfusion MRI, in human gliomas. For example, in an early 
study utilizing sodium MRI in human gliomas, Ouwerkerk 
et al. speculated that increased neoangiogenesis may con-
tribute to elevated sodium MR contrast in gliomas [21], so 
studies combining sodium and perfusion MRI would be 
valuable to explore this potential association. Furthermore, 
better characterizing the potential relationships between 
sodium and proton MRI measurements within tumor sub-
regions may provide new insights into brain tumor biology.

The purpose of this prospective study was to utilize 
sodium and quantitative proton MRI to investigate human 
gliomas. We hypothesized that sodium would be highest in 
necrotic regions compared to CET and NET regions, and 
that sodium would be increased in treated tumors compared 
to treatment-naïve tumors. We also theorized that sodium 
concentration would be positively correlated with ADC 
given the associations of ADC with extracellular space and 
positively correlated with nrCBV given the associations of 
nrCBV and tumor malignancy.
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Methods

Patient selection

This prospective study was performed in compliance with 
the Health Insurance Portability and Accountability Act 
and approved by our institutional review board (IRB# 
21–000514). All patients provided written informed con-
sent. Twenty glioma patients were studied, and patient data 
are summarized in Table  1 (see Online Resource Supple-
mentary Table 1 for detailed patient information). Gliomas 
were classified based on the 2021 World Health Organiza-
tion classification of CNS tumors [31]. IDH1/2 mutation 
status was determined using immunohistochemistry and 
genomic sequencing analysis [32]. 1p/19q codeletion sta-
tus was determined using fluorescence in situ hybridization. 
Most of the study population involved IDH-wt GBM (80%) 
and previously-treated tumors (75%).

Image acquisition and processing

Patient scans were conducted between October 2021 and 
February 2023. Imaging was performed on a 3T Siemens 
Prisma scanner (Siemens Healthcare; Erlangen, Germany). 
Proton and sodium scans were conducted during the same 
session using a dual-tuned head volume coil (16-chan-
nel 1H/1-channel 23Na; RAPID MR International; Colum-
bus, OH). Anatomical pre-/post-contrast high-resolution 
T1-weighted (1 × 1 × 1  mm isometric), T2-weighted, T2/
FLAIR, and DWI images were obtained according to the 
international standardized brain tumor imaging protocol 
[33]. Voxel-wise T1-weighted subtraction maps were cre-
ated from the post- and pre-contrast T1-weighted scans [4]. 
ADC maps were created from the DWI scans with b-values 
of 0 and 1000 s/mm2.

Multi-echo DSC perfusion MRI was acquired as 
described previously [12]. Normalized rCBV (nrCBV) 
maps were calculated by first motion-correcting the time-
series data (mcflirt; Functional Magnetic Resonance Imag-
ing of the Brain Software Library; Oxford, England), then 
utilizing a bidirectional contrast agent leakage correction 
algorithm [34] followed by normalizing the rCBV values to 
the mean rCBV values of the contralateral normal appearing 
white matter (NAWM) using 3 spherical volumes of interest 
(VOIs) in the centrum semiovale [35].

Sodium MRI was performed using a 3D spoiled gradient 
echo sequence optimized for short TE measurements with 
parameters: TE/TR = 2.39/10.52 ms, 5.5 mm isotropic reso-
lution, 264 × 264 × 264 mm3 FOV, 39.8o flip angle, 80 Hz/
pixel bandwidth, 26 averages, and 10.5  min scan time. 
Sodium images were normalized to the mean sodium MRI 
signal intensity of a VOI in the vitreous humor as done in a 
prior study [36].

Tumor imaging analysis

All images were registered to the T1 post-contrast scan 
using rigid-body registration (tkregister2; Freesurfer; Mas-
sachusetts General Hospital, Harvard Medical School | 
flirt; Functional Magnetic Resonance Imaging of the Brain 
Software Library; Oxford, England). Three mutually exclu-
sive volumes of interest (VOIs) within the tumor were seg-
mented: (1) contrast-enhancing tumor (CET) utilizing T1 
subtraction maps; (2) suspected macroscopic, central necro-
sis as defined by regions of hypointensity on T1-weighted 
post-contrast images surrounded by contrast-enhancement; 
and (3) suspected non-enhancing tumor (NET) as defined 
by T2/FLAIR hyperintense tumor excluding CET and 
necrosis. For two patients, only a NET VOI was segmented 
because there were no areas of contrast enhancement or 
central necrosis. Only central necrotic VOIs larger than 
0.1 cm3 were included to minimize potential partial vol-
ume effects. For one intraventricular case, only the nodular 
CET portions outside the ventricles were used for analysis 
to mitigate potential cerebrospinal fluid contamination. All 
tumor subregion segmentations were refined utilizing a 
semi-automated thresholding method involving the Analy-
sis of Functional NeuroImages (AFNI) software (NIMH 
Scientific and Statistical Computing Core; Bethesda, MD, 
USA; https://afni.nimh.nih.gov) [37]. A team of trained lab 
members performed the initial tumor VOI segmentations, 
and all final VOIs were inspected by two neuroradiologists 
with 6 years (FS) and 11 years (SO) of experience in neuro-
imaging analysis.

As a result, all 20 patients were included for NET anal-
yses, 18 patients were included for CET analyses, and 13 
patients were included for tumor subregion analysis of 

Table 1  Patient data
Characteristics Patients
Average Age ± SD (Years) 49 ± 13
Sex
  Male 14
  Female 6
IDH Status
  Wild-type 16
  Mutant 4
Tumor Type
  Grade 4 Glioblastoma 16
  Grade 4 Astrocytoma 1
  Grade 3 Astrocytoma 1
  Grade 2 Oligodendroglioma 2
Treatment Status
  Treatment-naïve 5
  Treated 15
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level was set to α = 0.05. All boxplots display the median 
with interquartile range.

Results

Two representative cases are shown in Fig.  1. The first 
patient was a newly-diagnosed non-enhancing IDH-mut 
oligodendroglioma and demonstrated moderate normalized 
sodium signal intensity in areas of NET (Fig. 1A), while the 
second patient had a recurrent, contrast enhancing IDH-wt 
glioblastoma and demonstrated highest sodium in necrosis 
followed by CET and then NET (Fig.  1B). Both patients 
exhibited a significant positive voxel-wise correlation 
between sodium and ADC, as well as a significant negative 
voxel-wise correlation between sodium and nrCBV within 
areas of NET.

Results show differences in sodium (P = 0.0007), ADC 
(P = 0.002), and nrCBV (P = 0.0008) across all anatomi-
cally distinct tumor subregions. In post-hoc analyses, 
sodium was highest in areas of central necrosis and slightly 
higher in areas of CET compared with NET (Fig. 2A; mean 
± standard deviation = 0.98±0.19 (necrosis), 0.83±0.20 
(CET), 0.74±0.15 (NET); P = 0.02 for necrosis vs. CET; 
P = 0.003 for necrosis vs. NET; P = 0.04 for CET vs. NET). 
ADC was also highest in areas of macroscopic necrosis 
but there was no significant difference in ADC measure-
ments between CET and NET (Fig. 2B; 1.50±0.30 µm2/ms 

NET, CET, and necrosis (Online Resource Supplementary 
Table  1). A single-slice NAWM region of interest (ROI) 
was also segmented in the centrum semiovale. Median and 
voxel-wise normalized sodium, nrCBV, and ADC values 
were obtained for each VOI and ROI.

Statistical analysis

Statistical analyses were performed using GraphPad Prism 
software (Version 8.4 GraphPad Software, San Diego, Cali-
fornia). Non-parametric tests were used for comparisons 
involving four or less cases. Voxel-wise correlations were 
assessed using the Pearson correlation. For all other com-
parisons, the Shapiro-Wilk test for normality was used to 
determine whether to apply non-parametric or parametric 
statistical methods. Tumor subregion differences in sodium, 
ADC, and nrCBV were assessed using the Repeated-Mea-
sures ANOVA test with post-hoc Tukey’s multiple compari-
sons test or Friedman test with post-hoc Dunn’s multiple 
comparisons test. Differences in MRI metrics based on 
treatment status were assessed using either the Student’s 
t-test or Mann-Whitney test. Correlations of median tumor 
subregion metrics were assessed using either the Pearson 
or Spearman correlation. Pearson correlation coefficients 
(r) of significant voxel-wise correlations were compared to 
a theoretical value of r = 0 using the one-sample t-test for 
group assessment of voxel-wise correlations. Significance 

Fig. 1  Representative cases of sodium, diffusion, and perfusion MRI 
associations in gliomas. Tumor volumes-of-interest were segmented as 
contrast-enhancing tumor (pink), non-enhancing tumor (purple), and 
necrosis (cyan). Patient 1 (A) had a newly-diagnosed grade 2 IDH-
mutant oligodendroglioma. Patient 2 (B) had a recurrent grade 4 IDH-
wild-type glioblastoma with sodium highest in necrotic regions fol-

lowed by CET and NET. Both patients exhibited positive voxel-wise 
associations of sodium & ADC and negative voxel-wise correlations 
of sodium & nrCBV in NET (P < 0.0001 for all four correlations). 
There were also regions of sodium hotspots not observed on other pro-
ton MRI scans. nrCBV = normalized relative cerebral blood volume; 
ADC = apparent diffusion coefficient; NET = non-enhancing tumor
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the subset of patients without obvious macroscopic necrosis 
(Online Resource Supplementary Fig. 1).

Sodium was significantly higher in previously-treated 
compared to treatment-naïve tumors, particularly in areas 
of suspected NET (Fig. 2D; 0.79±0.10 (treated), 0.62±0.12 
(treatment-naïve), P = 0.006). Areas of CET tended to 
have slightly higher sodium in treated tumors, but this was 
not statistically significant (Fig.  2G; 0.89±0.14 (treated), 
0.65±0.29 (treatment-naïve), P = 0.16). Treated tumors also 
had significantly higher ADC in areas of suspected NET and 

(necrosis), 1.22±0.26 µm2/ms (CET), 1.19±0.20 µm2/ms 
(NET); P = 0.02 for necrosis vs. CET; P = 0.008 for necrosis 
vs. NET; P = 0.63 for CET vs. NET). In contrast to sodium 
and ADC measurements, nrCBV was highest in areas of 
CET but no difference in nrCBV was observed between 
areas of necrosis and NET (Fig. 2C; 1.94±1.26 (necrosis), 
3.41±1.38 (CET), 1.50±0.80 (NET); P = 0.001 for CET vs. 
NET; P = 0.0098 for CET vs. necrosis; P > 0.99 for necro-
sis vs. NET). The differences of sodium, ADC, and nrCBV 
between CET and NET remained consistent when including 

Fig. 2  Sodium, ADC, and 
nrCBV differences based on 
tumor subregions and treatment 
status. Sodium was significantly 
highest in necrosis compared to 
other tumor subregions (P = 0.02 
compared to CET and P = 0.003 
compared to NET) and was 
higher in CET compared to 
NET (P = 0.04) (A). ADC was 
highest in necrosis compared to 
other tumor subregions (P = 0.02 
compared to CET and P = 0.008 
compared to NET) but there 
was no significant difference 
in sodium level between CET 
and NET (P = 0.63) (B). nrCBV 
was significantly higher in CET 
compared to NET (P = 0.001) 
and necrosis (P = 0.0098) (C). 
In NET, treatment-naïve tumors 
had a significantly lower sodium 
level (P = 0.006) (D), lower 
ADC (P = 0.01) (E), and higher 
nrCBV (P = 0.003) (F) com-
pared to treated tumors. In CET, 
treatment-naïve tumors had no 
difference in sodium (P = 0.16) 
(G), significantly lower ADC 
(P = 0.03) (H), and no differ-
ence in nrCBV (P = 0.25) (I) 
compared to treated tumors. 
NET = non-enhancing tumor; 
CET = contrast-enhancing tumor; 
ADC = apparent diffusion coef-
ficient; nrCBV = normalized 
relative cerebral blood volume; 
Tx-Status = treatment status; 
Post-Tx = post-treatment; △ 
indicates median; * indicates 
P < 0.05; ** indicates P < 0.01
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areas of suspected NET (Fig.  4A; -0.10±0.17, P = 0.03) 
and, interestingly, areas of macroscopic necrosis (Fig. 4C; 
-0.27±0.21, P = 0.005). In NAWM, the voxel-wise correla-
tions of sodium and ADC were significantly different from 
zero and overall positive (Fig. 4D; 0.25±0.22, P = 0.0002), 
while there was no association between sodium and nrCBV 
(Fig. 4D; -0.13±0.30, P = 0.1).

Discussion

The current study showed that (1) sodium MR signal was 
highest in necrotic regions followed by CET and NET; (2) 
sodium was elevated in CET compared to NET, but not 
ADC; (3) sodium and ADC were positively correlated in 
enhancing and non-enhancing tumor subregions, as well 
as NAWM, but not in necrotic areas; and (4) sodium and 
nrCBV were negatively correlated in non-enhancing tumor 
and areas of macroscopic necrosis. These findings add to 
the previous literature by utilizing sodium MRI together 
with complementary proton MRI in human gliomas, which 
allows for further insights into the potential biological 
underpinnings of sodium imaging as a biomarker.

Our observation that sodium concentration was highest 
in areas of necrosis was consistent with prior findings by 
Regnery et al. [23] and can be explained by increased extra-
cellular fluid with high sodium concentration in necrotic 
tissues and suggests elevated sodium MR signal may have 
a potential clinical use in identifying treatment-related 

areas of CET compared to treatment-naïve tumors (Fig. 2E, 
H; NET: 1.28±0.14 (treated), 1.05±0.22 (treatment-naïve), 
P = 0.01; CET: 1.34±0.18 (treated), 0.93±0.25 (treatment-
naïve), P = 0.03). Conversely, areas of suspected NET had 
significantly lower nrCBV in treated compared with treat-
ment-naïve tumors (Fig. 2F; 1.10±0.45 (treated), 2.16±0.73 
(treatment-naïve), P = 0.003); however, nrCBV did not dif-
fer between treated and treatment-naïve tumors in areas of 
CET (Fig.  2I; 2.91±1.36 (treated), 3.96±1.07 (treatment-
naïve), P = 0.25).

In suspected NET and CET, median sodium and ADC 
were positively correlated across all patients evaluated 
(Fig.  3A-B NET: r = 0.77, P < 0.0001; CET: r = 0.84, 
P < 0.001), but not when examining areas of macroscopic 
necrosis (Fig.  3C; r = 0.45, P = 0.12). Conversely, median 
sodium in areas of suspected NET was negatively cor-
related with nrCBV across patients (Fig.  3D; r   =   -0.63, 
P = 0.003), but not in areas of CET (P = 0.3) or macroscopic 
necrosis (P = 0.2). Examination of intravoxel heterogene-
ity via exploring voxel-wise correlations within anatomi-
cally distinct tumor regions showed similar trends to those 
observed across patients. Namely, the pooled r-values of 
voxel-wise sodium and ADC correlations were signifi-
cantly different from zero and overall positive within areas 
of suspected NET (Fig.  4A; mean ± standard deviation 
of r-values = 0.50±0.19, P < 0.0001) and CET (Fig.  4B; 
0.32±0.29, P = 0.0008). Additionally, the voxel-wise cor-
relations of relative sodium concentration and nrCBV were 
significantly different from zero and overall negative within 

Fig. 3  Sodium correlations of 
median values in tumor subre-
gions. There was a significantly 
positive correlation between 
ADC and sodium level in NET 
(r = 0.77, P < 0.0001) (A) and 
CET (r = 0.84, P < 0.0001) (B) 
but no significant relationship 
in necrosis (r = 0.45, P = 0.12) 
(C). There was also a significant 
negative correlation between 
nrCBV and sodium level in 
NET (r  =  -0.63, P = 0.003) (D). 
NET = non-enhancing tumor; 
CET = contrast-enhancing tumor; 
ADC = apparent diffusion coef-
ficient; nrCBV = normalized rela-
tive cerebral blood volume
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MR findings are also consistent with the results reported 
by Regnery et al. [23]. Since extracellular sodium concen-
tration is at equilibrium with plasma and the extracellular 
volume fraction as measured by ADC can be comparable 
between CET and NET, these results suggest this increase 
in sodium concentration may be due to intracellular con-
tribution from an altered metabolic state within enhancing 
tissue. This appears consistent with the preclinical work 
by Schepkin et al. [30] who observed elevated sodium MR 
signal without alterations in proton ADC during tumor 
recurrence and studies that have observed an increase in 
intracellular sodium with increasing tumor cell prolifera-
tion due to abnormal Na+/K+-ATPase and NHE activity 
in glioma cells [17–19]. Additionally, some clinical cases 
demonstrated hotspots of elevated sodium MR signal not 
represented by other proton MRI sequences as illustrated in 
the two representative cases, further suggesting that sodium 
MRI may be useful to investigate the chemistry of the tumor 
microenvironment.

The current study also noted higher sodium MR signal 
and proton ADC within T2 hyperintense regions in treated 
tumors compared to treatment-naïve tumors. Radiation ther-
apy is known to impact the extracellular matrix by increasing 
vascular permeability, which in turn would cause increased 
extracellular fluid that may explain the elevated sodium and 
ADC values in our treated cohort [38]. These findings add 
to the growing literature of evaluating treatment response 
of brain tumors through elevated sodium levels [26–30], 
though these results may be interpreted with caution given 
the small sample sizes. Interestingly, even though increased 
sodium in tumor regions has been speculated to be related to 
increased angiogenesis that leads to increased extracellular 
volume fraction [21], the present study observed a nega-
tive correlation between nrCBV and sodium in NET regions 
and no association in CET regions, contrary to our initial 
hypothesis. We speculate that this finding may be explained 
by a combination of factors including higher angiogen-
esis leading to reduced extracellular space and while brain 
edema can cause acidosis and vasodilation, the increased 
tissue pressure can counteract the vasodilation and lead to 
reduced perfusion [39]. Further studies with a larger sam-
ple size and histological analyses are warranted to better 
explore these associations.

Limitations

There are several limitations that should be addressed. First, 
the current study had a limited sample size and the patients 
enrolled were heterogenous. Previous sodium MRI studies 
exploring IDH-status differentiation observed higher sodium 
in IDH-mut gliomas compared to IDH-wt, but these studies 
mostly involved untreated tumors [23, 24, 40, 41]. Most of 

changes, pseudoprogression or radiation necrosis. Interest-
ingly, relative sodium concentration and proton ADC were 
positively correlated in NET, CET, and NAWM, but not in 
necrotic regions. While ADC can be both high or low within 
areas of necrosis due to heterogeneous extracellular matrix 
composition and few intact cells restricting free water 
mobility [8], sodium is likely to be exclusively related to 
extracellular water concentration as sodium concentration 
is highly regulated and water molecules form a hydration 
sphere around sodium ions in solution.

The present study also observed elevated sodium in CET 
compared to NET, but no difference in ADC. The sodium 

Fig. 4  Voxel-wise sodium correlations in tumor subregions. Each dot 
represents the significant voxel-wise Pearson correlation value for one 
patient. Voxel-wise correlations were significantly different from zero 
and overall positive between sodium and ADC in NET (P < 0.0001) 
(A) and CET (P = 0.0008) (B). Voxel-wise correlations were signifi-
cantly different from zero and overall negative between sodium and 
nrCBV in NET (P = 0.03) (A) and necrosis (P = 0.005) (C) but not 
in CET (P = 0.93) (B). In exploratory analyses, voxel-wise correla-
tions in NAWM of ADC and sodium were significantly different from 
zero and overall positive (P = 0.0002) and no significant correlation 
between sodium and nrCBV (P = 0.1) (D). NET = non-enhancing 
tumor; CET = contrast-enhancing tumor; ADC = apparent diffusion 
coefficient; nrCBV = normalized relative cerebral blood volume; 
NAWM = normal-appearing white matter;  *  indicates P  < 0.05; ** 
indicates P < 0.01; *** indicates P < 0.001; **** indicates P < 0.0001
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