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Abstract— This paper describes the design of a robotic 
device – the Hand-Wrist Assisting Robotic Device, or HWARD 
(“Howard”) – that can assist functional grasping and releasing 
movements of the stroke-impaired hand.  The 3 degrees-of-
freedom device is pneumatically-actuated and backdriveable.  
The design of HWARD was guided by neurobiological 
principles of motor learning, such as sensorimotor integration, 
movement repetition, environmental complexity, and attention.  
Specifically, HWARD can assist repetitive grasping and 
releasing movements while allowing the subject to feel real 
objects during therapy.  The use of real objects having rich 
sensory and functional characteristics can stimulate 
sensorimotor cortex activation while enhancing subject 
motivation and attention – features hypothesized to reduce 
impairment and disability.  A pilot study will test the safety and 
efficacy of HWARD, with endpoints that include established 
motor function scales as well as brain mapping with functional 
MRI (fMRI). 

I. INTRODUCTION

TROKE is a pervasive and debilitating disease that 
afflicts approximately 5 million people and is the 

leading cause of adult disability in the United States [1].  
Many survivors cannot lead productive independent lives 
due to an inability to use their hands and arms for activities 
of daily living (ADL’s) such as feeding and grooming. 

Research has shown that intense active repetitive 
movement practice can enhance the strength and functional 
use of the affected arm and hand [2-8].  Treatment 
approaches for the fingers, hand, or wrist include 
conventional physical and occupational therapy, use of 
supports and splinting (reviewed in [9]), electrical 
stimulation [10-13], and robotics [14]. 

Robot-assisted therapy has been shown to improve arm 
motor function after stroke [15-21].  Robots – with their 
unique ability to accurately quantify limb movement and 
apply consistent un-fatiguing movement assistance – hold 
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great promise for enhancing traditional post-stroke therapy.  
Robots have the potential to relieve the labor intensiveness 
of the therapy or enhance the recovery process through the 
use of novel force assistance patterns [22].  

At present, however, the mechanisms of recovery with 
retraining are not well understood, and it is still unclear 
what specific aspects of therapy are the most essential in 
promoting recovery of motor function after stroke.  Cortical 
reorganization, or plasticity, is known to play a major role 
in the restoration of motor function after stroke [6, 8, 23, 
24].  Similar processes are involved in motor skill 
acquisition in healthy subjects [25, 26].  These similarities 
suggest that successful approaches to post-stroke therapy 
may involve factors that enhance motor learning. 

Two neurobiological principles that enhance motor 
learning are environmental complexity and attention.  
Environmental complexity – or enriched environments -  
has been found to alter brain function and structure in 
normal [27, 28] and neurologically impaired [29, 30] 
animals.   Similarly, the quality of post-stroke experience 
influences the functional outcome in humans [31, 32].  
Indeed, the approach of modern occupational therapy is to 
exercise the patient in a functional, sensory rich context to 
improve coordinated movements.  The use of real objects in 
a natural context (e.g., grasping the receiver of a working 
phone) or the performance of purposeful exercises may 
enhance the motor performance of individuals with 
hemiparesis [33-35].  A few studies have used robotics or 
other motion tracking technology along with a virtual reality 
interface to further explore the utility of sensory rich 
functional environments to create motivating therapeutic 
exercises [36-38]. 

These neurobiological principles have been applied in 
prior robotic studies of patients with stroke [16, 19].  
However, these studies have focused primarily on shoulder 
and proximal arm movements, rather than on hand and 
distal arm movements.  The goal of the current study is to 
develop a robotic device that retrains hand grasping and 
releasing movements (which are essential to performing 
activities of daily living), coupled with wrist movements, 
while simultaneously using natural objects during therapy. 

II. DESIGN OF ROBOTIC DEVICE
We therefore developed HWARD – the Hand Wrist 

Assisting Robotic Device (or “Howard”), whose general 
design was guided by neurobiological principles of motor 
learning.  Specifically, HWARD can assist grasping and 
releasing movements while simultaneously allowing the 
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subject to feel real objects during therapy.  This feature is 
achieved by keeping the palmar surface of the hand 
unobstructed so that objects may be placed into the hand.  
Also, the open surface area of the palm and fingers is 
maximized so that the subject retains tactile sensation of the 
grasped object (Fig. 1). 

HWARD provides assistance in a pattern that combines 
wrist extension with hand grasping (known as a “power 
grip”), and wrist flexion with hand release.  This 
combination of joint movement serves to increase grasping 
force.  In addition, wrist extension practice activates the 
motor system from the level of the primary cortex and 
corticospinal tract.  Wrist extension, unlike simple grasping, 
is a cortically-based motor behavior. 

During therapy, subjects will grasp and release a variety 
of real objects (with varying size, shape, surface texture, 
temperature, and functional valence) based on visual and 
auditory cues, and they will attend their movements based 
on purposeful instructions (e.g., squeeze the toothpaste out 
of the tube).  During this period, HWARD will assist both 
grasping and releasing movements.  We believe that rich 
sensory and functional settings will enhance the effects of 
robotic therapy by increasing subject attention and 
motivation. 

A. Mechanical design and kinematics 
HWARD is a 3-degrees-of-freedom (3-DOF) mechanism 

that allows the rotational movement of the fingers, thumb, 
and wrist.  HWARD allows the movement of the 4 fingers 
as a single unit about the metacarpophalangeal (MCP) joint 
with a range of movement (ROM) of approximately 25 to 90 
degrees flexion.  HWARD allows thumb movement out of 
the plane of the palm and fingers with an approximate ROM 
of 90% full extension to 75% of full flexion.  Finally, 
HWARD allows wrist flexion-extension movement with a 
ROM of approximately 20 degrees extension to 15 degrees 
flexion.  Robot joint movement is achieved using a lever 
design.  Each air cylinder and limb interface is mounted on 
opposite ends of a lever, with a revolute joint in between. 

The right hand is positioned in the device so that both the 
MCP joint and the wrist center of rotation are aligned with 
the robot’s finger and wrist joint axes, respectively.  The 
device contacts the subject along the dorsal side of the 
fingers, hand, and thumb.  This design feature leaves the 
region of the open hand unobstructed, permitting the 
placement of real objects into the hand (Fig. 2).  The subject 
is secured to the device through the use of narrow padded 
Velcro straps.  The strap width is minimized so that the 
palmar surfaces of the hand are accessible for tactile 
sensation of the object.  With the hand secured in the robot 
mechanism, the subject’s forearm rests inside of a padded 
splint that is mounted to the surface of a platform.  The 
splint is designed to stabilize and anchor the forearm. 

HWARD can be adjusted to accommodate a variety of 
hand sizes.  First of all, the distance between the finger and 

wrist joint axes can be adjusted between 7.6 and 12.7 cm, so 
the robot can accommodate hand sizes with that range of 
distance between the wrist center of rotation and the MCP.  
The finger interface has a range of adjustment between 2.5 
and 7.6 cm away from the robot finger joint.  The thumb 
interface has a range of adjustment between 4.6 and 10.6 cm 
from the robot thumb joint. 

B. Backdriveability 
The device was specifically designed to be backdriveable 

so that subjects can move the mechanism while it is in a 
passive state.  Backdriveable robots will not encumber the 
subject’s natural movement even while applying assistive 
forces.  In addition, they can be used as tools for assessing 
kinematic measures of movement performance such as 
active range of motion. 

Backdriveability is achieved by minimizing friction in the 
mechanism.  Each of the revolute joints is assembled using 
paired radial ball bearings.  The air cylinder friction (1 to 
2% of load with no side loading) is low due to the use of 
graphite pistons riding through glass-lined cylinders 
(Airpel).    Finally, sensors are low friction conductive 
plastic rotary potentiometers (Midori America Corp.) which 
use ball bearings.  Backdriveability is also enhanced by 
designing the levers of each joint so that mechanical 
advantage is given to the subject’s limb rather than to the air 
cylinder. 

C. Robot actuation and control 
HWARD is pneumatically actuated by 3 double-acting air 

cylinders with bore diameters of 1.59 cm.  Each cylinder can 

Fig. 1.  HWARD is a 3-DOF pneumatically-actuated robotic device 
that assists the stroke-impaired hand in grasping and releasing 
movements. 

Fig. 2.  HWARD allows the subject to grasp, feel, and release real 
objects of varying sizes and shapes. 

18



produce up to 122.8N (at source pressure of 689kPa) of 
force, but air pressure is regulated so that the air cylinders 
produce roughly 4-15N, the estimated levels necessary to 
assist movements.  Pneumatics is strong, clean, and has the 
potential – with some modifications to the existing design – 
to be used in the MRI environment. 

Pressurized air is routed to the air cylinders through 3-
port pneumatic solenoid valves, one positioned on each side 
of each air cylinder.  In the de-energized position, the valves 
vent the air cylinder to ambient pressure, putting the device 
into passive mode.  This attribute serves as a safety feature 
for the device.  Inline flow control valves allow for manual 
adjustment of the rate of application of force.  Precision 
regulators control source air pressure levels entering the 
pneumatic system, so they serve as a reliable safety measure 
for limiting the maximum force that the robot can apply to 
the subject’s limb. 

Rotary potentiometers measure the finger, wrist, and 
thumb joint angles.  Microstructure pressure sensors 
(Honeywell) are mounted on both sides of each air cylinder 
to measure the pressure levels.  The applied forces by the 
robot can be computed from data from these sensors. 

The device is interfaced to the computer through a PCI 
bus data acquisition board (National Instruments) having 
digital input and output, analog input, and analog output 
functions. 

HWARD has multiple safety mechanisms.  Adjustable 
hard stops prevent overextension of the subject’s joints.  Air 
pressure is regulated to maintain safe force levels.  An 
emergency stop button can render HWARD passive by de-
energizing the solenoid valves.  The control software also 
provides a safety shutdown feature. 

D. Software interface 

HWARD is controlled through a customized software 
interface (Fig. 3) that was written in Visual Basic using the 
Measurement Studio development environment (National 
Instruments), running on a Windows XP computer.  The 

program allows the experimenter to control the robotic 
functions, execute standardized training protocols, perform 
emergency safety shutdowns, and collect data (joint angles 
and air cylinder pressures).  The program also controls an 
LCD monitor (placed near the hand) that visually instructs 
the subject through a sequence of motor tasks (e.g., grasp 
object, hold object, release object, relax, etc.). 

III. PROPOSED PILOT STUDY

We plan to conduct a pilot study to test the safety and 
effectiveness of HWARD.  Subjects with chronic stroke will 
undergo two pre-tests that measure hand motor function 
ability (using established motor function tests) as well as 
fMRI.  Subjects will then receive assistive robotic therapy, 
during which they will practice grasping, feeling, and 
releasing a variety of real objects of varying sensory 
characteristics (size, shape, texture, valence, etc.).    During 
therapy, subjects will view both their hand and the grasped 
object.  A key aspect of the study will be to enhance subject 
attention by giving instructions that add purpose to the task 
(e.g., squeeze the toothpaste from the tube).  Following 
therapy, subjects will undergo a post-treatment assessment 
of hand motor function ability as well as a repeat fMRI.  
They will also return for a follow-up assessment about 1 
month after completing treatment in order to assess retention 
of therapy-related motor gains. 

IV. CONCLUSION

This paper has described the rationale and design for a 
pneumatically-actuated robot, called HWARD, for 
providing assistive hand motor therapy after stroke.  
HWARD uses low friction air cylinder actuators to provide 
mechanical assistance during the grasping and releasing of 
real objects.  The rationale for this design is to incorporate 
functional and purposeful tasks during assistive therapy that 
may enhance recovery through established theories of motor 
learning.  Future work will be to complete fabrication of the 
device and begin a pilot study to assess its safety and 
effectiveness.
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