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O R I G I N A L A R T I C L E
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Abstract

In presymptomatic Alzheimer’s disease (AD), beta-amyloid plaques (Aβ) and tau tangles accumulate in distinct
spatiotemporal patterns within the brain, tracking closely with episodic memory decline. Here, we tested whether
age-related changes in the segregation of the brain’s intrinsic functional episodic memory networks—anterior-temporal
(AT) and posterior-medial (PM) networks—are associated with the accumulation of Aβ, tau, and memory decline using fMRI
and PET. We found that AT and PM networks were less segregated in older than that in younger adults and this reduced
specialization was associated with more tau and Aβ in the same regions. The effect of network dedifferentiation on
memory depended on the amount of Aβ and tau, with low segregation and pathology associated with better performance at
baseline and low segregation and high pathology related to worse performance over time. This pattern suggests a
compensation phase followed by a degenerative phase in the early, preclinical phase of AD.
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Introduction

The accumulation of beta-amyloid (Aβ) plaques and neurofib-
rillary tau tangles is associated with episodic memory loss in
both normal and pathological aging (Nelson et al. 2012; Jagust
2018), but the mechanisms underlying this association are not
understood. Molecular and animal studies suggest that these
pathologies spread through structurally and functionally con-
nected brain regions (de Calignon et al. 2012; Ahmed et al. 2014;
Boluda et al. 2015; Wu et al. 2016), and human neuroimaging
studies indicate that patterns of tau deposition conform to large-
scale brain networks in older adults (OA) (Franzmeier et al. 2019,
2020; Vogel et al. 2020). Given that AD pathology starts to deposit

in episodic memory networks, we investigated whether age-
related changes in functional connectivity in these resting state
networks were associated with the accumulation of Aβ and tau.

Functional connectivity (FC)—the coactivation of brain
regions within brain networks—reflects the brain’s large-scale
network architecture. Brain networks specialized for different
cognitive functions become dedifferentiated, or less segregated
from each other, with older age (Koen and Rugg 2019). In task-
free functional magnetic resonance imaging (fMRI) studies, this
progression is typically characterized by decreased within- and
increased between-network FC at rest (Chan et al. 2014; Geerligs
et al. 2015; Damoiseaux 2017; Cassady et al. 2019; Cassady,
Gagnon, et al. 2020). This decrease in network segregation leads
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to reduced specialization of neural networks and has been
linked to OA’s worse performance relative to younger adults
(YA) in several behavioral domains (Chan et al. 2014; King et al.
2017; Iordan et al. 2018; Cassady et al. 2019). In contrast, other
studies have found that less segregated networks are associated
with better performance, suggesting that dedifferentiation may
reflect greater plasticity or compensatory processes that occur
during normal aging and neurodegeneration (Cabeza et al. 2002,
2018; Gallen et al. 2016; Grady et al. 2016; Monge et al., 2017,
2018; Wig 2017). One potential reason for this discrepancy may
be uncertainty about the molecular and pathological processes
that drive network reconfiguration.

During the early stages of neurodegeneration, normal
cognitive performance is often maintained despite neuronal
loss, changes in network function, or the accumulation of
neurodegenerative pathologies (Barulli and Stern 2013; Scheller
et al. 2014; Gregory et al. 2017). Such compensation is typically
only evident in preclinical or mild cases of neurodegeneration,
diminishing once the neurodegenerative pathology becomes too
severe. There is also evidence that greater FC can be associated
with either better or worse memory performance depending on
disease severity. For instance, Van Hooren and colleagues found
that greater FC between the default mode network and the
dorsal attention network was associated with better memory in
a cognitively normal group, but with worse memory in an MCI
group (Van Hooren et al. 2018). One potential interpretation of
these results is that although increased connectivity between
different networks is beneficial early, it may fail to support
compensation as pathology increases. In addition, it could
provide a means for that pathology to spread.

Events encoded as episodic memories usually combine infor-
mation about objects/items and scenes/context. Processing of
these two types of information depends on distinct cortical
pathways in the neocortex and medial temporal lobe (MTL) that
converge in the hippocampus (Ranganath and Ritchey 2012;
Inhoff and Ranganath 2017; Kim et al. 2018). Object process-
ing involves an anterior-temporal (AT) system that includes
fusiform gyrus (FuG)/perirhinal cortex, inferior temporal gyrus
(ITG), and amygdala. In contrast, scene processing relies on a
posterior-medial system (PM) that includes retrosplenial cortex
(RSC), precuneus, and parahippocampal cortex (PHC).

In vivo positron emission tomography (PET) studies have
demonstrated that Aβ and tau accumulate in distinct regions
within these two subnetworks in the aging brain (Maass et al.
2019). Specifically, tau initially deposits in the transentorhinal
region (Braak and Braak 1992, 1995) and appears to spread
throughout the AT system in both healthy aging and AD,
although it eventually affects the PM system as well. In
contrast, Aβ deposition preferentially affects the PM system
(Maass et al. 2019). Previous work has shown that the AT
and PM functional networks have distinct patterns of resting
state FC with entorhinal cortex subregions in YA and that
such patterns predict the spatial topography and level of
cortical tau deposition in cognitively normal OA (Adams
et al. 2019; Berron et al. 2020). However, it remains largely
unknown whether these networks change with age and
whether the accumulation of Aβ and tau is associated with
changes in their modular organization and, consequently,
memory decline.

There were two main goals of this study: first, to investigate
the effects of age, Aβ, and tau on the resting state functional
architecture of the AT and PM memory networks and second,
to examine how relationships between pathology and network

Table 1 Cohort demographics

YA (n = 55) OA (n = 97)

Age 24.9 ± 4.4 (18–35) 76.4 ± 6.1 (60–93)
Sex (M/F) 28/27 36/61
Education (Years) 16.3 ± 2.0 16.8 ± 1.9
APOE ε4 (C/NC) N/A 28/66 (3 N/A)
Global PiB DVR N/A 1.17 ± 0.24 (0.92–1.89)
AT FTP SUVR N/A 1.28 ± 0.20 (0.98–2.3)
PM FTP SUVR N/A 1.18 ± 0.12 (0.94–1.63)
Aβ +/− N/A 42/54 (1 N/A)
Tau +/− N/A 30/66 (1 N/A)

segregation affect episodic memory performance. To that end,
we use resting state fMRI (rsfMRI) to measure the segregation of
the AT and PM networks in cognitively healthy YA and OA. After
examining the effect of age on network segregation, we then use
PET measures of Aβ and tau deposition in OA to explore the
relationship between these pathologies and segregation in the
AT and PM networks. Finally, we assess the relationship between
Aβ and tau, segregation, and episodic memory performance at
baseline as well as change in performance over an average of
6 years in OA. We test three hypotheses: 1) AT and PM networks
will be less segregated in OA compared to YA; 2) Given their
distinct spatial topographies, higher levels of tau in OA will be
associated with less segregated AT networks, whereas higher
levels of Aβ will be associated with less segregated PM networks;
and 3) Network segregation in OA will interact with AD pathol-
ogy to predict episodic memory performance at baseline as well
as change in performance over time.

Materials and Methods
Participants

Fifty-five YA (age 18–35) and 97 cognitively normal OA (age
60+) enrolled in the Berkeley Aging Cohort Study (BACS) were
included in this study. All YA and OA participants underwent
structural and resting state functional MRI. All OA additionally
underwent tau-PET imaging with 18F-Flortaucipir (FTP), Aβ-PET
with C-Pittsburgh 11Compound-B (PiB), and a standard neu-
ropsychological assessment. Eligibility requirements included
that all participants had a baseline MMSE score of ≥25. We also
excluded any participants with a history of significant neuro-
logical disease (e.g., stroke, seizure, and loss of consciousness
≥10 min), or any medical illness that could affect cognition,
history of substance abuse, depression, or contraindications to
MRI or PET. All study procedures were reviewed and approved by
the Institutional Review Boards of the University of California,
Berkeley, and Lawrence Berkeley National Laboratory (LBNL).
All participants provided written informed consent for their
involvement in this study. Demographic information for each
age group is presented in Table 1.

Neuropsychological Assessment

All OA participants in the BACS undergo neuropsychological
testing to measure cognitive performance related to verbal and
visual memory, working memory, processing speed, executive
function, language, and attention. In this study, composite
scores were calculated to measure two specific memory
domains: episodic memory and working memory. The tests for
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episodic memory included the California Verbal Learning Test
(CVLT) immediate and long delay free recall totals as well as
the Visual Reproduction (VR) immediate and delay recall totals.
Working memory was assessed with the Digit Span total score.
For episodic memory, the composite scores were produced by
calculating the average z-score of the tests included in each
domain. Please refer to Harrison et al. (2019) for more details of
the procedure (Harrison et al. 2019).

To examine change in behavioral performance over time,
our longitudinal analyses included participants (from the
97 OA sample) that had 1) at least one resting state fMRI
scan, 2) at least one Aβ and one tau PET scan (both near
the time of the resting state scan), and 3) at least two
neuropsychological testing sessions (one of which was near
the time of the resting state scan). Critically, all participants
had resting state fMRI, PET, and neuropsychological data at the
same timepoint, which is the timepoint we used to assess all
cross-sectional relationships (i.e., “baseline” timepoint). The
additional neuropsychological session(s) could be either before
or after the baseline timepoint (or both), depending on the
participant. Eighty-six of 97 OA participants had longitudinal
cognitive data (≥2 testing sessions). These participants had
between 2 and 13 testing sessions (mean, 6.1 ± 3.1) over a
period of 1–13 years (mean, 6.1 ± 3.5) with an average delay of
1.3 ± 0.6 years between sessions. Sixteen participants had only
retrospective data.

MRI Data Acquisition

All YA and OA participants underwent structural and functional
MRI acquired on a 3 T TIM/Trio scanner (Siemens Medical
System, software version B17A) using a 32-channel head coil.
First, a whole-brain high-resolution T1-weighted volumetric
magnetization prepared rapid gradient echo image (MPRAGE)
structural MRI scan was acquired with the following parameters:
voxel size = 1 mm isotropic, TR = 2300 ms, TE = 2.98 ms,
matrix = 256 × 240 × 160, FOV = 256 × 240 × 160 mm3, sagittal
plane, 160 slices, 5-min acquisition time. This was followed by an
rsfMRI scan that was acquired using T2

∗-weighted echo planar
imaging (EPI) with the following parameters: voxel size = 2.6 mm
isotropic, TR = 1067 ms, TE = 31.2 ms, FA = 45, matrix = 80 × 80,
FOV = 210 mm, sagittal plane, 300 volumes, anterior to posterior
phase encoding, ascending acquisition, 5-min acquisition time.
A multiband acceleration factor of four was used to acquire
whole-brain coverage at high spatial resolution by acquiring
four slices at the same time (Feinberg and Setsompop 2013;
Todd et al. 2016). During the rsfMRI scan, participants were
instructed to remain awake with their eyes open and focused
on the screen, which displayed a white asterisk on a black
background.

As part of the standard PET processing pipeline, a whole-
brain high-resolution T1-weighted volumetric MPRAGE scan
was acquired for each participant on a Siemens Magnetom
Avanto scanner at LBNL with the following parameters:
voxel size = 1 mm isotropic, TR = 2110 ms, TE = 3.58 ms, flip
angle = 15◦, sagittal slice orientation. These data were used
for PET coregistration and to parcellate the brain for PET data
analysis.

PET Data Acquisition

All OA participants underwent PET scanning at LBNL using
a Biograph PET/CT Truepoint 6 scanner (Siemens, Inc.) with

CT scans performed for attenuation correction prior to each
emission acquisition and radiotracers synthesized at the LBNL
Biomedical Isotope Facility. Tau deposition was measured using
18F-Flortacipir (FTP) with data binned into 4 × 5 min frames from
80 to 100 min postinjection (Adams et al. 2019.; Harrison et al.
2019; Maass et al. 2017). Aβ was measured using 11C-Pittsburgh
Compound B (PiB), with data acquired across 35 dynamic frames
for 90 min postinjection (4 × 15, 8 × 30, 9 × 60, 2 × 180,
10 × 300, and 2 × 600 s). All PET images were reconstructed
using an ordered subset expectation maximization algorithm,
with attenuation correction, scatter correction, and smoothing
using a Gaussian kernel of 4 mm.

MRI Processing

Structural scans (3 T) were processed with FreeSurfer to derive
regions of interest (ROIs) in each subject’s native space using
the Desikan–Killiany atlas. The structural images were also seg-
mented into gray matter (GM), white matter (WM), and cere-
brospinal fluid (CSF) using Statistical Parametric Mapping soft-
ware (SPM12; Wellcome Trust Centre for Neuroimaging, Lon-
don, UK) (default parameters). RsfMRI data were preprocessed
using SPM12 and FreeSurfer (v5.3.0). Preprocessing included slice
time correction, realignment, coregistration to the T1 image,
and outlier volume detection. All functional images were first
corrected for differences in slice time acquisition using SPM12.
Functional images were then realigned to the first volume, and
coregistered to the T1 image. Outliers in average intensity and/or
scan-to-scan motion were identified using the artifact detec-
tion toolbox (ART; http://www.nitrc.org/projects/artifact_detect)
using a conservative movement threshold of >0.5 mm/TR and
a global intensity z-score of 3. Outlier volumes were flagged
and included as spike regressors during the denoising procedure
(Lemieux et al. 2007; Power et al. 2014). Additional denoising
on the rsfMRI data was performed using the CONN toolbox
(v18a: www.nitrc.org/projects/conn). Temporal and confounding
factors were regressed from each voxel BOLD time series and
the resulting residual time series were filtered using a temporal
band-pass filter of 0.008–0.09 Hz to examine the frequency band
of interest and to exclude higher frequency sources of noise such
as heart rate and respiration. For noise reduction, we used the
anatomical component–based noise correction method aComp-
Cor (using the first five components of the times series signal
from white matter and CSF), which models the influence of
noise as a voxel-specific linear combination of multiple empiri-
cally estimated noise sources by deriving principal components
from noise regions of interest (ROIs) and including them as
nuisance regressors in the first-level general linear model (GLM)
(Behzadi et al. 2007). Residual head movement parameters (three
rotations, three translations, and six parameters representing
their first-order temporal derivatives) and signals from WM and
CSF, and spike regressors from motion detection were regressed
out during the computation of functional connectivity maps. We
did not exclude any participants from analyses due to excess
motion, as all participants had <19% of outlier volumes, with
an average of 4.4% ± 3.25% outlier volumes. Although there were
significant age differences in both percentage of outlier vol-
umes (t = 3.4, P = 0.001) and mean framewise displacement (t = 5,
P < 0.001) between OA and YA, these parameters did not change
the significance of any of the results when they were included as
covariates in the statistical models (see Supplemental Tables 1–
4). Supplemental Table 5 details these movement parameters for
each age group.

http://www.nitrc.org/projects/artifact_detect
www.nitrc.org/projects/conn
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab122#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab122#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab122#supplementary-data
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Figure 1. A priori defined regions of interest in anterior-temporal (AT; red) and posterior-medial (PM; blue) networks. AT regions include bilateral amygdala, fusiform
gyrus (FuG)/perirhinal cortex, and inferior temporal gyrus (ITG). PM regions include bilateral retrosplenial cortex (RSC), parahippocampal cortex (PHC) and precuneus.

First-level ROI-to-ROI functional connectivity analysis was
performed using the CONN toolbox. For this analysis, we used
12 FreeSurfer ROIs that included unilateral amygdala, fusiform
gyrus/perirhinal cortex, and inferior temporal gyrus as part
of the AT network and retrosplenial cortex, parahippocampal
cortex, and precuneus as part of the PM network (Fig. 1). Semi-
partial correlations were used for these first-level analyses to
determine the unique variance of each (unilateral) seed, con-
trolling for the variance of all other seed regions entered into
the same model. For each participant, the rsfMRI time series
within each of the ROIs was extracted and the mean time
series was computed. Then, the cross-correlation of each ROI’s
time course with every other ROI’s time course was computed,
creating a 12 × 12 correlation matrix for each subject. Correlation
coefficients (i.e., graph edges) were converted to z-values using
Fisher’s r-to-z transformation (Zar 1996). As in previous studies
(Chan et al. 2014; Cassady et al. 2019; Cassady, Gagnon,et al.
2020), the diagonal of the matrix was removed and negative
correlations were set to zero as we were mainly interested in
positive connections (Zhan et al. 2017). We also performed the
same analyses with inclusion of both positive and negative
correlations and observed similar results (Supplemental Fig. 1).
Network segregation values were calculated as the difference
in mean within-network FC and mean between-network FC
divided by mean within-network FC

Network segregation = Zw − Zb

Zw
,

where Zw is the mean Fisher z-transformed correlation between
ROIs within the same network and Zb is the mean Fisher z-
transformed correlation between ROIs of one network with
all ROIs in the other network (Chan et al. 2014). Thus, larger
positive values for network segregation indicate that regions
within a network (e.g., AT) have higher connectivity with each

other compared to their connectivity with regions outside of the
network (e.g., PM).

PET Data Processing

As part of our standard PET preprocessing procedure, 1.5 T
structural MRI data were preprocessed with FreeSurfer to derive
ROIs in subject’s native space. These ROIs were then used for the
calculation of PiB-PET global distribution volume ratio (DVR) and
region-specific, partial volume corrected (PVC) (Baker, Maass,
et al. 2017) FTP standardized uptake value ratio (SUVR) mea-
sures. FTP images were processed with SPM12. Images were
realigned, averaged, and coregistered to each participant’s 1.5 T
structural MRI scan. SUVR images were calculated by averaging
the mean tracer uptake over the 80–100 min data and normal-
ized by an inferior cerebellar gray reference region (Baker, Lock-
hart, et al. 2017). The mean SUVR of each (FreeSurfer segmented)
ROI was extracted from the native space images. These data
were then partial volume corrected using a modified Geometric
Transfer Matrix approach (Rousset et al. 1998) as previously
described (Baker, Maass, et al. 2017). The weighted mean (by
region size), partial volume corrected FTP SUVR of all AT (amyg-
dala, FuG/perirhinal cortex, ITG) and PM (RSC, PHC, and pre-
cuneus) ROIs were used in subsequent analyses. Tau positivity
was defined as the mean SUVR in a BraakIII-IV composite ROI
(cutoff 1.26) that included regions from both AT (amygdala, FuG,
and ITG) and PM (PHC, RSC) systems. APOE was not related to
segregation (Ps > 0.63); therefore, we did not control for APOE in
these analyses.

PiB images were also processed with SPM12. Images were
realigned, averaged across frames from the first 20 min of acqui-
sition, and coregistered to each participant’s 1.5 T structural
MRI image. DVR values for PiB-PET images were calculated with
Logan graphical analysis over 35–90 min data and normalized by
a cerebellar gray matter reference region (Logan et al. 1996; Price
et al. 2005). Global PiB was calculated across cortical FreeSurfer

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab122#supplementary-data
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ROIs as previously described (Mormino et al. 2012), and a thresh-
old of 1.065 was used to classify participants into Aβ− and
Aβ+ groups (Villeneuve et al. 2015). One participant was missing
PiB DVR data and therefore was excluded from all analyses
involving measures of Aβ. There were 209 (cognitive) time points
for Aβ+ and 249 time points for Aβ− older adults. There were
60 time points for Aβ + OA participants versus 62 timepoints
for Aβ− OA participants during or after the “baseline” scan.
There were 148 time points for Aβ+ OA participants versus 182
timepoints for Aβ− OA participants before the “baseline” scan.
Supplemental Table 2 contains demographic information for the
older adult group split by Aβ− and tau status.

Statistical Analyses

Statistical analyses were conducted using R (http://www.R-pro
ject.org/) and SPSS (SPSS Inc.) software. Independent sample
t-tests were used to test for age group differences in within-
and between-network FC and segregation (corrected for multiple
comparisons using FDR). Multiple regression models were used
to assess the relationship between segregation, Aβ and tau, and
baseline cognitive performance.

Because our episodic memory composite measure included
both object- and spatial-related memory domains, we com-
puted a single segregation measure by averaging the AT and
PM segregation values for associations with behavior (follow-
up analyses showed essentially the same results for AT and
PM networks; see Supplemental Fig. 2). As a control analysis, we
also examined the association between segregation and working
memory performance using the same analysis procedure as
above.

Longitudinal cognitive measures were modeled using linear
mixed-effects regression with a random intercept (to account for
variability in baseline measurements) and slope (to account for
variability in slopes) using the lme4 package in R v3.6.3 (www.
r-project.org). In order to examine the relationship between
baseline segregation, Aβ and tau, and change in cognitive
performance, the models included two-way interactions
between baseline segregation and time, baseline Aβ and time
as well as tau and time. We were specifically interested in the
segregation x time interaction to determine whether baseline
segregation was associated with longitudinal episodic memory
decline. As a control analysis, we also examined change in
working memory performance over time using the same model.
All predictor variables were standardized before entered into
the model.

All statistical models were adjusted for age and sex, and
years of education (for models including cognitive measures).
Table 2 provides a description of the time (in years) between
all PET, fMRI, and cognitive sessions. All statistical analyses
used a two-tailed level of 0.05 for determining statistical sig-
nificance. Reported P-values were corrected for multiple com-
parisons (using FDR) where relevant, including the associations
between age and segregation.

Results
AT and PM Networks Are Less Segregated
with Older Age

As hypothesized, OA exhibited lower within-network (AT:
Fig. 2A, t(150) = 6.7, P = 0.002; PM: Fig. 2B, t(150) = 3.1, P = 0.002)
and greater between-network (AT: Fig. 2C, t(150) = −2.5, P = 0.01;

Table 2 Mean, standard deviation, and range of time (in years)
between PET, fMRI, and (MRI baseline) cognitive sessions

Sessions Time between (Years)

PiB- and Tau-PET 0.04 ± 0.13 (0–0.76)
PiB and rsfMRI 0.13 ± 0.12 (0–0.52)
Tau and rsfMRI 0.12 ± 0.11 (0–0.4)
Tau and (Baseline) Cog 0.28 ± 0.44 (0.02–4.1)
PiB and (Baseline) Cog 0.28 ± 0.45 (0.02–4.1)
rsfMRI and (Baseline) Cog 0.28 ± 0.47 (0–4.4)

Figure 2. Anterior-temporal (AT; left) and posterior-medial (PM; right) networks

are less segregated in older (red) relative to younger (blue) adults. Independent
samples t-test indicated that OA have lower within-network (A and B) and
greater between-network (C and D) functional connectivity (FC), and lower
network segregation (E and F) compared to YA. T-tests were corrected for

multiple comparisons using FDR. On each box, the central mark indicates the
median, and the bottom and top edges of the box indicate the 25th and 75th
percentiles, respectively. The whiskers extend to the most extreme data points
not considered outliers.

PM: Fig. 2D, t(150) = −3, P = 0.006) functional connectivity and
decreased segregation (AT: Fig. 2E, t(150) = 4.9, P < 0.001; PM:
Fig. 2F, t(150) = 4.3, P < 0.001) in the AT and PM networks com-
pared to YA. Of particular importance, the relationship between
age group and segregation was assessed across multiple analysis
approaches related to matrix thresholding (i.e., inclusion of
positive only vs. negative correlations), bivariate versus semi-
partial correlations, various network metrics of intersystem
relationships (i.e., segregation, participation coefficient, and
modularity), and network labeling (i.e., the regions included

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab122#supplementary-data
http://www.R-project.org/
http://www.R-project.org/
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab122#supplementary-data
www.r-project.org
www.r-project.org


4786 Cerebral Cortex, 2021, Vol. 31, No. 10

Table 3 Multiple regression results for AT-Tau predicting AT-
segregation and Global Aβ predicting PM-segregation

AT-seg PM-seg

Predictor t P t P

Age −0.34 0.73 −1.3 0.19
Global Aβ 0.13 0.9 −2.8 0.006
Sex −0.54 0.59 0.068 0.95
Tau∗ −2.1 0.04 1.6 0.12
Aβ × Tau∗ −1.4 0.18 0.44 0.66

Note: ∗AT-tau was used for the regression predicting AT-segregation,
whereas PM-tau was used for predicting PM-segregation.

to define AT and PM networks). The age group differences
in segregation were found to be robust in all instances (see
Supplemental Fig. 1).

Tau Relates to at Segregation and Aβ Relates
to PM Segregation

To assess the relationship between Aβ, tau, and segregation,
we performed two multiple regressions including age, sex, Aβ,
tau (AT-tau for predicting AT-segregation and PM-tau for pre-
dicting PM segregation), and the interaction between Aβ and
tau in the models. The fit for the overall model predicting AT
segregation was not significant (F(5, 89) = 1.96, P = 0.092) with
an R2 of 0.099 and an adjusted R2 of 0.049. However, we did
observe a main effect of AT-tau (B = −0.25, t = −2.1, P = 0.04), but
not for Aβ, and no significant interaction of Aβ and AT-tau
(Table 3). This indicates that greater levels of tau in AT regions
were associated with less segregated AT networks. However,
because the relationship between AT tau and AT segregation
appeared to be influenced by a few high-tau individuals, we
performed a follow-up robust regression, which is less affected
by more extreme data points (Rousseeuw and Leroy 2005). This
analysis was performed using the “fitlm” function with the
“RobustOpts” name-value pair in Matlab to create a model that
limits the influence of outliers and heteroscedasticity. The rela-
tionship between tau and AT segregation was no longer signifi-
cant across the whole group (t = 0.95, P = 0.34), but remained sig-
nificant in the Aβ+ group (t = 3.1, P = 0.004). These results should
thus be interpreted in light of these disparate results. The fit
for the overall model predicting PM-segregation was signifi-
cant (F(4, 90) = 2.6, P = 0.042) with an R2 of 0.1 and an adjusted
R2 of 0.063. We also observed a main effect of Aβ (B = −0.32,
t = −2.8, P = 0.006), but not for tau, and no significant interaction
of Aβ and PM-tau (Table 3). This indicates that greater levels of
global Aβ were associated with less segregated PM networks.
Figure 3 displays these results as partial correlations for visual
purposes.

AD Pathology Moderates the Association between
Segregation and Episodic Memory

We performed a multiple regression to assess the effects of
segregation and Aβ-status on episodic memory performance
in OA. The fit for the overall model was significant (F(6,
89) = 2.65, P = 0.021) with an R2 of 0.15 and an adjusted R2

of 0.094. We observed main effects of segregation (B = −0.4,
t = −2.9, P = 0.005), Aβ-status (B = −1.7, t = −2.5, P = 0.013), and age

Table 4 Multiple regression results for mean segregation and its
interaction with Aβ-status predicting episodic memory at baseline

Predictor t P

Age −2.7 0.008
Aβ-status −2.5 0.013
Sex 0.86 0.39
Education 1.3 0.2
Segregation −2.9 0.005
Aβ-status × Seg 2.5 0.014

Table 5 Multiple regression results for mean segregation and its
interaction with Tau-status predicting episodic memory at baseline

Predictor t P

Age −2.5 0.014
Tau-status −1.4 0.16
Sex 0.75 0.45
Education 1.2 0.22
Segregation −2.9 0.043
Tau-status × Seg 2.5 0.14

(B = −0.27, t = −2.7, P = 0.008) on episodic memory. This analysis
also revealed a significant interaction between Aβ-status and
segregation on episodic memory performance (B = 1.7, t = 2.5,
P = 0.014). Specifically, less segregated networks were associated
with better performance among all OA (Fig. 4A) and in Aβ-
OA (Fig. 4B), but segregation was not associated with perfor-
mance in Aβ + OA (Fig. 4C). Table 4 reports the results of this
regression.

As a follow-up analysis, we also explored the effects of
segregation and tau-status on episodic memory performance.
The fit for the overall model was not significant (F(6, 89) = 1.86,
P = 0.097) with an R2 of 0.11 and an adjusted R2 of 0.05. We
again found main effects of segregation (B = −0.26, t = −2.1
P = 0.043) and age (B = −0.26, t = −2.5, P = 0.014), but not tau-
status (B = −0.92, t = −1.4, P = 0.16) on episodic memory. There
was not a significant interaction between tau-status and mean
segregation on performance, (B = 0.96, t = 1.5, P = 0.14). Table 5
reports the results of this follow-up regression.

As a control analysis, we also examined the relationship
between segregation, Aβ-status, and baseline working memory.
There were no significant relationships between segregation
and working memory performance, nor was there an interaction
between Aβ-status and segregation on performance (Ps > 0.41).
Including tau-status in place of Aβ-status, we similarly found
no significant relationships between segregation and working
memory performance in either group, nor was there an
interaction between tau-status and segregation on performance
(Ps > 0.67).

Baseline Segregation Predicts Longitudinal
Memory Decline

Longitudinal cognitive measures were modeled using linear
mixed-effects regression with a random intercept (vari-
ance = 0.52) and slope (variance = 0.04). In order to examine the
relationship between baseline (at MRI) segregation, baseline Aβ

and tau, and change in (both retrospective and prospective)
cognitive performance in one model, the model included

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab122#supplementary-data
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Figure 3. Tau and beta amyloid (Aβ) deposition are related to the segregation of anterior-temporal (AT; first row) and posterior-medial (PM; second row) networks,
respectively. Less segregated AT networks are associated with higher levels of tau in AT regions∗ (A) but are not associated with global Aβ (B). Less segregated PM
networks are not associated with tau in PM regions (C) but are associated with higher levels of global Aβ (D). Plots are illustrated as partial correlations, controlling for
the effects of age and sex. The x- and y-axes reflect the residuals from the model. ∗The relationship depicted in Figure 3A was no longer significant after using robust

regression; this relationship should therefore be interpreted cautiously.

Figure 4. Alzheimer’s disease pathology moderates the association between mean network segregation and episodic memory performance. (A) Multiple regression
results showed that less segregated networks were associated with better performance in OA. They also demonstrated an interaction between segregation and memory
performance such that (B) less segregated networks were associated with better performance in Aβ- OA, whereas (C) segregation was not associated with performance

in Aβ + OA (C). Plots are illustrated as partial correlations, controlling for the effects of age, sex, and education; the x- and y-axes reflect the residuals from the model.

two-way interactions between baseline segregation and time,
global Aβ and time, and tau and time. We report the results
using continuous measures of global Aβ and BraakIII-IV tau
as they retain more statistical power in the model. The
results were very similar whether we used BraakIII-IV tau,

AT-tau (Supplemental Table 3), or PM tau (Supplemental Table 4)
and whether we used dichotomous (Supplemental Table 5)
or continuous Aβ and tau in the model. Segregation was
a continuous variable in the model but is displayed graph-
ically using tertiles. Figure 5A displays each participant’s

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab122#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab122#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab122#supplementary-data
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Figure 5. Relationship between network segregation and longitudinal episodic memory change. (A) Individual participant trajectories in longitudinal episodic memory
change over time. Each black line represents one participant. The blue trendline reflects the participant average change in memory over time. The dotted gray line
(at X = 0) represents the “baseline” timepoint in each plot. (B) Plot of estimated curves for three groups with different baseline network segregation (low, medium, and

high) and episodic memory outcomes over time. Note that segregation was modeled as a continuous variable but is shown as a categorical variable for illustration
purposes only. Lower baseline segregation was associated with a steeper decline rate in episodic memory over time.

trajectory in longitudinal episodic memory performance
over time.

We found that individuals with lower segregation at baseline
showed a steeper decline rate in episodic memory over time
(β = 0.08, SE = 0.03, P = 0.02; Fig. 5B; Table 6). We also found that
more tau at baseline was associated with a steeper decline
rate in memory over time (β = −0.15, SE = 0.04, P = 0.002). There
was no interaction of Aβ and time predicting memory change
(β = −0.003, SE = 0.04, P = 0.94). To examine whether Aβ or tau
moderated the effect of segregation on cognitive change, follow-
up analyses included the same factors in addition to three-
way interactions between baseline segregation, baseline Aβ

and tau, and time. These analyses did not show a significant
three-way interaction between segregation, tau, and time
(β = 0.03, SE = 0.05, P = 0.58) nor between segregation, Aβ,
and time (β = −0.04, SE = 0.04, P = 0.34) on memory change.
As a control analysis, we also examined change in working
memory performance over time using the same model (not
including three-way interactions). Baseline segregation was
not associated with longitudinal change in working memory
(β = −0.02, SE = 0.04, P = 0.57).

Discussion
The goal of this study was to investigate the effects of Aβ and
tau on the intrinsic functional architecture of episodic memory
networks and episodic memory ability in cognitively normal
OA. OA showed reduced segregation of AT and PM networks
compared to YA. This effect was driven by lower within-network
FC and greater between-network FC between the two systems.
Higher levels of tau in AT regions were associated with less
segregated AT networks, whereas higher levels of global Aβ were
associated with less segregated PM networks, demonstrating a
regional dissociation of these AD pathologies to the large-scale
organization of the AT and PM systems. Finally, less segregated
networks were associated with better memory ability at baseline

Table 6 Linear mixed-model results for segregation and pathology
predicting longitudinal episodic memory change

Predictor Estimate P

Age −0.19 0.03
Sex −0.01 0.93
Education 0.13 0.13
Segregation −0.20 0.02
Time −0.07 0.06
Tau −0.13 0.17
Aβ 0.03 0.8
Tau × Time −0.15 0.002
Aβ × Time −0.003 0.94
Segregation × Time 0.08 0.02

(at the time of the MRI) in OA with low levels of AD pathology
but with a steeper decline in memory performance over time,
independent of baseline pathology. These results suggest differ-
ent phases in the long-term interaction of network organization
and AD pathology on episodic memory.

We interpreted our findings based on a model that includes
both age- and AD pathology-related effects. We found that age
was associated with changes in the functional segregation of the
AT and PM resting state networks. This finding is consistent with
studies of age-related neural dedifferentiation demonstrating
that older age is associated with less distinct neural activation
patterns (Carp et al. 2011; Lalwani et al. 2018; Cassady et al. 2019;
Koen et al. 2019; Koen and Rugg 2019; Cassady, Ruitenberg, et al.
2020) and, more recently, with less distinct large-scale resting
state networks (Betzel et al. 2014; Cao et al. 2014; Chan et al. 2014;
Geerligs et al. 2015; Damoiseaux 2017; Cassady et al. 2019; Cas-
sady, Gagnon, et al. 2020). While a majority of these prior studies
explored the organization of the brain’s canonical resting state
networks (e.g., the default mode, frontoparietal and cingulo-
opercular networks), we demonstrated a robust age effect in two
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neural networks that are associated with episodic memory and
AD pathology. Recent work from our laboratory also showed that
less differentiated activation in AT and PM regions during an
object/scene discrimination task was associated with more tau
deposition (Maass et al. 2019). These findings, in conjunction
with the present results, suggest a neuropathological correlate
of dedifferentiation in the episodic memory system.

We found that the modular organization of the AT and
PM brain networks was selectively vulnerable to tau and Aβ

deposition. Specifically, greater tau in AT regions was associated
with less segregated AT networks but was not associated with
PM network segregation. In contrast, greater cortical Aβ was
associated with less segregated PM networks but was not asso-
ciated with AT network segregation. Since between-network
FC was the same in the AT and PM networks, these results
indicate that this relationship was driven by within-network
FC. This is consistent with previous investigations that have
demonstrated relationships between within-network FC and
AD pathology (Schultz et al. 2017; Adams et al. 2019; Franzmeier
et al. 2020). The findings of a double dissociation between AD
pathology and network segregation are in accordance with
previous work from our lab demonstrating differential selective
vulnerability to these two networks participating in episodic
memory function. Specifically, Maass et al. (2019) showed
that tau deposits mainly in AT regions, resulting in object
discrimination deficits, whereas Aβ deposits preferentially in
PM regions, resulting in impaired scene discrimination (Maass
et al. 2019).

There is no agreement on a precise region where Aβ depo-
sition begins, and existing data suggest that this pathology
appears multifocally and quickly accumulates throughout most
of association cortex (Braak and Braak 1991; Palmqvist et al.
2017; Thal et al. 2002; Whittington et al. 2018). For example, while
we used a global measure of cortical Aβ to define positivity, Aβ

in the PM network is highly correlated with this measure as
are most regions throughout the brain (Lockhart et al. 2017). In
contrast, tau initially deposits in the entorhinal cortex and then
progresses in a distinct spatiotemporal pattern first to anterior
temporal and limbic regions and then throughout association
cortex (Braak and Braak 1985, 1991; Kaufman et al. 2018). Cellular
and molecular data reveal that tau can spread trans-synaptically
and in relation to neural activity (de Calignon et al. 2012; Pooler
et al. 2013; Yamada et al. 2014; Wu et al. 2016), suggesting that
this specific AD pathology accumulates through the brain along
neural connections.

The idea that large-scale brain network connectivity may
underlie the spatiotemporal patterns of AD pathology has
support from other laboratories. For instance, Franzmeier
et al. (2019) found that canonical network regions with higher
FC showed higher covariance of tau deposition. In addition,
Jacobs et al. found that Aβ facilitated the spread of tau from
the hippocampus to the posterior cingulate via structural
connectivity (Jacobs et al. 2018), and Adams et al. reported
that FC of the entorhinal cortex was related to Aβ-facilitated
neocortical tau deposition (Adams et al. 2019). Previous data
suggesting preferential involvement of the AT network by
tau (Maass et al. 2019), along with these results showing
dedifferentiation, raise the possibility that tau may spread
from the AT to the PM network as these networks become less
segregated.

Indeed, segregated brain networks are characterized by a
fine balance of dense within-system relationships among brain
regions that have highly related processing roles, as well as

sparser relationships between areas in networks with diverse
processing roles. This pattern of brain network organization
facilitates communication among brain regions that have
related sets of processing operations and also reinforces the
functional specialization of networks that perform different
sets of processing roles. This distinction in the proportion of
functional connections within and between communities is
necessary for maintaining a fine balance between functional
segregation and global integration across networks. Importantly,
alterations to the connections that maintain effective network
organization can have negative consequences. For example, too
much integration or increased connectivity between systems (as
is the case in the present study with the AT and PM networks)
could potentially lead to the spread of pathological protein
aggregates (Salathé and Jones 2010; Wig 2017).

Our results revealed complex interactions between segrega-
tion, Aβ and tau pathology, and memory performance. Our cross-
sectional data showed that AD pathology moderated the rela-
tionship between segregation and baseline performance. Specif-
ically, less segregated networks were associated with better per-
formance in OA with low levels of Aβ pathology but not in those
with high levels of Aβ pathology. Additionally, our longitudinal
results revealed that less segregated networks and more tau at
baseline independently predicted a steeper decline in memory
performance over time. These findings are consistent with pre-
vious studies demonstrating that neurodegenerative pathology
interacts with FC to influence performance (Van Hooren et al.
2018; Lin et al. 2020). For instance, Lin et al. (2020) showed an
interactive effect of Aβ deposition and FC on cognition such that
increased FC between left middle frontal gyrus and a memory
encoding network was associated with better attention/process-
ing speed and executive function in those with low levels of Aβ

but with worse function in those with high levels of Aβ (Lin et al.
2020).

Overall, our findings may suggest different phases in the
long-term interaction of network segregation and AD pathology
on episodic memory ability. OA with low pathology may com-
pensate, either for normal aging processes or for the start of
AD pathology, by increasing communication between AT and
PM networks. As functionality in one system declines, recruiting
the other system may help performance. Over time, however,
this increased between-network FC in the context of increasing
pathology could become detrimental, as well as providing a
route for AD disease pathology to spread from one network to
the other, leading to more decline in memory ability. Based on
this model, it is likely that AT and PM networks continue to de-
differentiate over time, especially in the transition phase from
cognitively normal to cognitively impaired. This would further
the spread of AD pathology, eventually resulting in the hallmark
episodic memory impairments observed in MCI and AD. Future
studies that include patient data as well as longitudinal mea-
sures of FC, AD pathology, and memory function are crucial in
testing this hypothesis.

The cross-sectional PET and MRI data limit our interpreta-
tions of causality as well as long-term changes in this study.
Although it is possible that Aβ and tau spread lead to disrup-
tions in large-scale network FC (rather than the reverse), several
studies suggest that Aβ and tau propagation is a multifactorial
process that depends on both neural connectivity and regional
vulnerability (Yamada et al. 2014; Wu et al. 2016; Franzmeier et al.
2020). Hence, the relationship between Aβ and tau and FC is
likely bidirectional such that age-related disruptions in network
FC guide pathology spread and this, in turn, leads to further
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changes in the network architecture. Longitudinal designs are
critical in determining the order of age-related changes as well
as elucidating the sequence of neural events leading to episodic
memory decline. Another limitation of this study was that the
longitudinal cognitive data included different numbers of time
points before and after the “baseline” time point for different
participants. This design feature complicates our interpretation
of the longitudinal effects of segregation and Aβ and tau on
performance because our analyses were both retrospective and
prospective. However, this design feature allowed us to exam-
ine memory change over a longer period of time (average of
∼6 years) compared with many previous studies (O’Brien et al.
2010; Woodard et al. 2010; Amariglio et al. 2018). Furthermore,
we were able to include more participants from our sample
with longitudinal data using this design. Longitudinal studies
are often unable to observe any significant change in cognition
in OA given the relatively short time periods of observation
(Salthouse 2009; Reisberg et al. 2010). We believe that having a
greater number of time points for more participants outweighs
the disadvantage of this design feature. Another limitation of
this study is that some relationships, particularly those involv-
ing AD biomarker measures, were strongly influenced by a few
participants. In particular, the relationship between AT-tau and
AT network segregation appeared to be influenced by a few indi-
viduals with high levels of tau. Although we believe this requires
cautious interpretation, these participants also appeared to be
more cognitively impaired and closer to the transition of dis-
ease symptoms. Excluding them is not biologically justified and
would limit the range of biomarker results in our cognitively
normal cohort. Finally, the duration of our resting state scan was
only 5 min long. This is an important limitation because research
indicates that scan length can have a significant impact on the
reliability of resting state functional connectivity estimates (Birn
et al. 2013). Future studies should include longer resting state
scans.

Taken together, our data support a model whereby network
dedifferentiation performs a neural compensatory function that
fails over time as AD pathology accumulates. The effect of
network dedifferentiation on episodic memory ability is helpful
to performance when pathology levels are low but is harmful
to performance over time as pathology presumably spreads.
This research provides an important step in elucidating the
neural mechanisms associated with episodic memory decline in
healthy and pathological aging. By studying this episodic mem-
ory system in healthy OA, we can advance our understanding
of healthy aging and its similarities to and differences from
pathological aging, which could serve as a crucial building block
for the early detection of AD.
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Supplementary material can be found at Cerebral Cortex online.
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