UC Irvine UC Irvine Previously Published Works

Title

Molecular configuration of (Me) 2 N 4 Fe(CO) 3 , a tetrazadiene-tricarbonyliron complex

Permalink

https://escholarship.org/uc/item/5cq7c0f1

Journal

Chemical Communications, 0(21)

ISSN

1359-7345

Author

Doedens, Robert J

Publication Date

DOI

10.1039/c19680001271

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, available at <u>https://creativecommons.org/licenses/by/4.0/</u>

Peer reviewed

eScholarship.org

Molecular Configuration of $(Me)_2N_4Fe(CO)_3$, a Tetrazadiene-Tricarbonyliron Complex

By Robert J. Doedens

(Department of Chemistry, University of California, Irvine, California 92664)

The most unusual product of the reaction of methyl azide with enneacarbonyldi-iron¹ is a volatile stable orange-red solid, $Me_2N_4Fe(CO)_3$. On the basis of i.r., n.m.r., and mass spectral data, a molecular structure (I) analogous to that of butadienetricarbonyliron was suggested by Dekker and Knox for this compound. A single-crystal X-ray structural analysis has now shown that the Me_2N_4 ligand is bound in a chelating fashion, resulting in a nearly planar Fe–N₄ ring. This is the first example of a metal complex of a tetrazadiene, RN_4R .

Crystals of Me₂N₄Fe(CO)₃ (supplied by Dr. G. R. Knox) are orthorhombic, Z = 8, a = 22.00, The systematic b = 12.29, and c = 6.64 Å. absences, $h \neq 2n$ for hol reflections and $k \neq 2n$ for hk0 reflections, are consistent with space groups $P2_1ab$ (no.29) and Pmab (no.57). A threedimensional Patterson map could only be interpreted in terms of the former, noncentrosymmetric space-group and thus the asymmetric unit contains two crystallographically independent molecules. Intensity data for reciprocal lattice levels hk0-5 were collected by the multiple-film equi-inclination Weissenberg technique. The structure was solved by Patterson and Fourier methods, and an isotropic full-matrix leastsquares refinement led to a final R of 6.2% for the 336 independent non-zero reflections. Owing to the low value of the data: parameter ratio and the marginal quality of the crystals, this structure is one of relatively low precision, with a standard deviation of 0.07 Å for bond lengths between light atoms. Hence, only average bond lengths of a given type will be discussed.

The monomeric $Me_2N_4Fe(CO)_3$ molecule (see Figure) consists of an $Fe(CO)_3$ group co-ordinated via a 1,4-linkage to the 1,4-dimethyltetrazadiene moiety, a species not known to exist as a free

compound. Representations (Ia) and (Ib) for the bonding of this complex are inconsistent with the near-planarity of the five-membered ring and the fact that N(2) and N(3) are more than $2 \cdot 6$ Å away from the iron atom. If the N-Fe bonds are regarded as two-electron dative bonds, the iron atom attains its preferred 36-electron closed-shell configuration. It is reasonable that back-donation from the iron d_{π} orbitals to the π -antibonding orbitals of the tetrazadiene ligand could then serve to relieve the metal atom of an excess of negative charge. This model would imply a Fe-N bond order greater than one, which is consistent with the mean observed Fe–N bond length of 1.83 \pm 0.03 Å. In a variety of related compounds,² the lengths of unequivocal Fe-N single bonds range from 1.95 to 2.02 Å. The observed mean Fe-N

FIGURE. The molecular configuration of $Me_2N_4Fe(CO)_3$

distance is thus closer to the length of a typical Fe–CO bond, in which the presence of multiplebond character is generally accepted, than to that of an Fe–N single bond. The N–N bonds average 1.32 ± 0.03 Å in length, again a value indicative of the expected multiple-bond character in these bonds. The mean Fe–C, C–O, and C–N distances are 1.76 ± 0.03 , 1.18 ± 03 , and 1.53 ± 0.03 Å, respectively; all unremarkable values. None of the angles about the iron atom is within 20° of being linear, and the co-ordination seems best described as distorted square pyramidal.

1272

This work was supported in part by the Petroleum Research Fund, administered by the American Chemical Society and computation was supported CHEMICAL COMMUNICATIONS, 1968

by a National Science Foundation institutional grant.

(Received August 2nd, 1968; Com. 1054.)

¹ M. Dekker and G. R. Knox, Chem. Comm., 1967, 1243. ² M. M. Bagga, P. E. Baikïe, O. S. Mills, and P. L. Pauson, Chem. Comm., 1967, 1106; J. A. J. Jarvis, B. E. Job, B. T. Kilbourn, R. H. B. Mais, P. G. Owston, and P. F. Todd, *ibid.*, 1967, 1149; J. Piron, P. Piret, and M. Van Meersche, Bull. Soc. chim. belges, 1967, 76, 505; L. F. Dahl, W. R. Costello, and R. B. King, J. Amer. Chem. Soc., in the second the press; R. J. Doedens, Inorg. Chem., in the press.