UC Irvine UC Irvine Previously Published Works

Title

Electron spin resonance study of the local environment for the Gd3+ and Eu2+ ions in Ca1-xRxB6(R=Gd,Eu)($0.0001 \le x \le 0.30$)

Permalink https://escholarship.org/uc/item/5cr101dr

Journal Journal of Magnetism and Magnetic Materials, 310(2)

ISSN 0304-8853

Authors

Duque, JGS Urbano, RR Pagliuso, PG <u>et al.</u>

Publication Date

2007-03-01

DOI

10.1016/j.jmmm.2006.10.1103

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

Available online at www.sciencedirect.com

Journal of Magnetism and Magnetic Materials 310 (2007) 864-866

www.elsevier.com/locate/jmmm

Electron spin resonance study of the local environment for the Gd³⁺ and Eu²⁺ ions in Ca_{1-x}R_xB₆ (R = Gd, Eu) (0.0001 $\leq x \leq 0.30$)

J.G.S. Duque^{a,*}, R.R. Urbano^a, P.G. Pagliuso^a, C. Rettori^a, P. Schlottmann^b, Z. Fisk^c, S.B. Oseroff^d

> ^aInstituto de Fisica ''Gleb Wataghin'', UNICAMP, Campinas-SP 13083-970, Brazil ^bDepartment of Physics, Florida State University, Tallahassee, FL 32306, USA ^cUC Davis, Physics Department, CA 95616, USA ^dSan Diego State University, San Diego, CA 92182, USA

> > Available online 27 November 2006

Abstract

The environment of $\text{Gd}^{3+}/\text{Eu}^{2+}$ (4f⁷, $S = \frac{7}{2}$) in $\text{Ca}_{1-x}\text{R}_x\text{B}_6$ ($\mathbf{R} = \text{Gd}, \text{Eu}; 0.0001 \le x \le 0.30$) is studied by electron spin resonance (ESR). For $x \le 0.001$ the spectra show Lorentzian shape (insulating phase). As x increases, the spectra present a superposition of Lorentzian and Dysonian resonances (coexistence of insulating and metallic phase). For $x \ge 0.01$, the line shape becomes pure Dysonian (metallic phase). Thus, the intermediate concentration regime of $\text{Ca}_{1-x}\text{R}_x\text{B}_6$ is intrinsically inhomogeneous. These compounds show no weak ferromagnetism.

© 2006 Elsevier B.V. All rights reserved.

PACS: 71.10.Ca; 71.35.-y; 75.10.Lp

Keywords: ESR; Dysonian Line shape; CaB₆

1. Introduction

The cubic system $Ca_{1-x}R_xB_6$ (R = rare earths; space group 221, Pm3m), specially La, was extensively investigated since the reported weak-ferromagnetism (WF) at $T_C \sim 600-800$ K by Young et al. [1]. Later reports on strong sample dependent WF [2] and doubts about its intrinsic nature were raised [3]. It was argued that the intrinsic WF could be hidden by the FM of Fe and Ni impurities [4] and that CaB₆ is a ~1 eV-gap semiconductor. Hence, an ESR study, probing the local R = Gd³⁺/Eu²⁺ environment is of great interest to understand the magnetic/non-magnetic and metallic/non-metallic properties in Ca_{1-x}R_xB₆.

2. Experiments

Single crystals of $\sim 1 \times 0.5 \times 0.3 \text{ mm}^3$ of $\text{Ca}_{1-x} \text{R}_x \text{B}_6$ (R = Gd, Eu) (0.0001 $\leq x \leq 0.30$) were grown as described in Ref. [1]. The structure, phase purity and orientation were checked by powder and Laue X-ray diffraction. The ESR experiments were done in a Bruker X-band (9.479 GHz) spectrometer with a TE₁₀₂ room-T cavity coupled to a T-controller of helium gas flux system for $4.2 \le T \le 300$ K. The Gd³⁺/Eu²⁺ concentration was obtained from Curie–Weiss fits of $\chi(T)(2 \le T \le 300$ K) measured in a Quantum Design SQUID DC-magnetometer.

3. Experimental results

Fig. 1 shows the room-T Eu²⁺ ESR for H||[001], x = 0.023, 0.07 and 0.30 crystals. The spectra for x = 0.023 and 0.07 were simulated by the superposition of two Eu²⁺ spectra: a resolved fine structure of Lorentzian resonances (fsL) corresponding to Eu²⁺ ions in an insulating phase [5] and a single Dysonian (D) resonance associated to Eu²⁺ ions in a metallic phase [6]. For x = 0.30 the spectrum was simulated with a D resonance. The insets show the spectra for (a) three crystals of the same x = 0.03 batch, and (b) an as-grown and 950 °C five days annealed/

^{*}Corresponding author. Tel.: +551937885504; fax: +551937884146. *E-mail address:* jduque@ifi.unicamp.br (J.G.S. Duque).

^{0304-8853/\$ -} see front matter © 2006 Elsevier B.V. All rights reserved. doi:10.1016/j.jmmm.2006.10.1103

Absorption Derivative (arb. units)

x = 0.03

x = 0.30

x = 0.07

x = 0.023

4.5

5.0

а

2.4 2.8 3.2 3.6 4.0 4.4

Concernation of the second

fsL

4.0

D

3.5

H (kOe)

3.0

liquid N_2 quenched x = 0.01 crystal. These results confirm the highly metastable inhomogeneous coexistence of two different local environments for the Eu²⁺ ions in the range of $0.023 \le x \le 0.15$.

Fig. 2 displays the Gd³⁺ ESR at 4.2 K for H||[001], x = 0.0013 and 0.01 crystals. The spectra were simulated by the superposition of two Gd³⁺ spectra: a resolved fsL resonances corresponding to Gd³⁺ ions in an insulating phase and a single D resonance associated to Gd³⁺ ions in a metallic phase. For x = 0.01 the spectrum was simulated with a D resonance. Similarly to the Eu doped crystal, these results confirm the coexistence of two different local environments for the Gd³⁺ ions in the range of $0.001 \leq x \leq 0.003$.

4. Analysis and discussion

Ca₁, Eu B

9.481 GHz

0

b

1

H // [001]

2.0

Experiment

Simulation

3.6 4.0 4.

2.5

as grow

Absorption Derivative (arb. units)

The ESR of $R = Gd^{3+}/Eu^{2+}$ in $Ca_{1-x}R_xB_6$ show three concentration regimes. For low x the line shapes are Lorentzian, thus, the environment for Gd^{3+}/Eu^{2+} ions is insulating and the fine structure can be resolved. The isotropic g-value and anisotropy of the fine structure [7,8] indicate that the Gd^{3+}/Eu^{2+} local symmetry is cubic. For intermediate x the ESR present a superposition of fsL and D resonances. The line shape starts to show Dysonian shape (metallic phase), i.e., the microwave skin-depth is comparable to the size of our crystals. For higher x the resonance is Dysonian (metallic phase) and the fine structure can no longer be resolved. The g-value and line width are T-independent down to ~10 K [8], indicating that there are no direct/indirect magnetic interactions between the R ions. For small x each Eu²⁺ in Ca_{1-x}R_xB₆ gives rise

to an impurity bound state in the semiconductor gap which is localized within about one unit cell. As x increases the number of impurity states increases, starts to overlap, and eventually form a percolative network. Our data indicate coexistence of insulating and metallic phases for Gd and Eu concentrations of $x \approx 0.001$ and 0.02, respectively. These values are well bellow the percolation threshold for nearest neighbor (nn), next-to-nearest neighbors (nnn) and next to nnn in a simple cubic lattice (x = 0.307, 0.137 and 0.099). The Dysonian line shape indicates that the size of the Eu/ Gd rich regions should be of the order of the skin-depth which is about 1 µm for the resistivity of pure EuB₆ and GdB₆. According to Ref. [9] we may associate the fsL and D spectra with regions rich in Ca²⁺ and Eu²⁺, respectively.

5. Conclusions

In $Ca_{1-x}R_xB_6$ (R = Eu/Gd), as a function of x, an evolution from insulating to a metallic character of the compound is verified from the change of the Eu^{2+}/Gd^{3+} ESR line shapes. The percolative transition between these two regimes is estimated at $x\sim0.14$ for Eu doped samples, indicating that nnn bounds contribute to the percolative network. For lower x, a highly metastable inhomogeneous coexistence of insulating and metallic phases is observed. This coexistence was also found in $Ca_{1-x}Gd_xB_6$, however, due to the Gd^{3+} doping extra electron, the percolative interval is found at a much lower level of Gd concentration ($x\sim0.0015$). All measured $Ca_{1-x}R_xB_6$ (R = Eu, Gd) crystals presented a WF $\leq 0.5 \text{ emu}/\text{mol}$, i.e., much smaller than that of La doped CaB_6 [1].

Acknowledgments

Acknowledgment to FAPESP and CNPq (Brazil), NSF DMR-9527035, DMR-0102235 and DOE DE-FG02-98ER45797 (USA).

References

- [1] D.P. Young, et al., Nature 397 (1999) 412.
- [2] T. Terashima, et al., J. Phys. Soc. Japan 69 (2000) 2423.

- [3] K. Matsubayashi, et al., Nature 420 (2002) 143;
 D.P. Young, et al., Nature 420 (2002) 144.
- [4] M.C. Bennett, et al., Phys. Rev. B 69 (2004) 132407.
- [5] A. Abragam, B. Bleaney, EPR of Transition Ions, Clarendon Press, Oxford, 1970.
- [6] G. Feher, A.F. Kip, Phys. Rev. 98 (1955) 337;
 F.J. Dyson, Phys. Rev. 98 (1955) 349.
- [7] R.R. Urbano, et al., Phys. Rev. B 65 (2002) 180407.
- [8] R.R. Urbano, et al., Phys. Rev. B 71 (2005) 184422.
- [9] G.A. Wigger, et al., Phys. Rev. Lett. 93 (2004) 147203.