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Preface

It was our privilege to serve as the program chairs for CAV 2021, the 33rd International
Conference on Computer-Aided Verification. CAV 2021 was held as a virtual con-
ference during July 20-23, 2021. The tutorial days were on July 19 and July 24, 2021,
and the pre-conference workshops were held during July 18-19, 2021. Due to the
COVID-19 outbreak, all events took place online.

CAV is an annual conference dedicated to the advancement of the theory and
practice of computer-aided formal analysis methods for hardware and software sys-
tems. The primary focus of CAV is to extend the frontiers of verification techniques by
expanding to new domains such as security, quantum computing, and machine
learning. This puts CAV at the cutting edge of formal methods research, and this year’s
program is a reflection of this commitment.

CAV 2021 received a very high number of submissions (290). We accepted 16 tool
papers, 3 case studies, and 60 regular papers, which amounts to an acceptance rate of
roughly 27%. The accepted papers cover a wide spectrum of topics, from theoretical
results to applications of formal methods. These papers apply or extend formal methods
to a wide range of domains such as concurrency, machine learning, and industrially
deployed systems. The program featured keynote talks by Loris D’Antoni
(UW-Madison), Corina Pasarecanu (NASA), and Anna Slobodova (Centaur Technol-
ogy, Inc.) as well as invited tutorials by Nate Foster (Cornell University), Zak Kincaid
(Princeton) together with Tom Reps (UW-Madison), and Nadia Polikarpova (UC San
Diego). Furthermore, we continued the tradition of Logic Lounge, a series of discus-
sions on computer science topics targeting a general audience.

In addition to the main conference, CAV 2021 hosted the following workshops:
Formal Approaches to Certifying Compliance (FACC), Formal Methods for
ML-Enabled Autonomous Systems (FoMLAS), Formal Methods for Blockchains
(FMBC), Numerical Software Verification (NSV), Theory and Practice of String
Solving (TPSS), Verifying Probabilistic Programs (VeriProP), Synthesis (SYNT),
Satisfiability Modulo Theories (SMT), and Verification Mentoring Workshop (VMW).

Organizing a flagship conference like CAV requires a great deal of effort from the
community. The Program Committee for CAV 2021 consisted of 79 members — a
committee of this size ensures that each member has to review only a reasonable
number of papers in the allotted time. In all, the committee members wrote over 900
reviews while investing significant effort to maintain and ensure the high quality of the
conference program. We are grateful to the CAV 2021 Program Committee for their
outstanding efforts in evaluating the submissions and making sure that each paper got a
fair chance. Like last year’s CAV, we made the artifact evaluation mandatory for tool
paper submissions and optional, but encouraged, for the rest of the accepted papers.
This year saw an unprecedented number of 66 artifact submissions. The Artifact
Evaluation Committee consisted of 72 members who put in significant effort to eval-
uate each artifact. The goal of this process was to provide constructive feedback to tool
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developers and help make the research published in CAV more reproducible. We are
also very grateful to the Artifact Evaluation Committee for their hard work and ded-
ication in evaluating the submitted artifacts.

CAYV 2021 would not have been possible without the tremendous help we received
from several individuals, and we would like to thank everyone who helped make CAV
2021 a success. First, we would like to thank Clément Pit-Claudel and Maria Schett for
chairing the Artifact Evaluation Committee and John Cyphert for putting together the
proceedings. We also thank Arie Gurfinkel for chairing the workshop organization,
Bor-Yuh Evan Chang for managing sponsorship, Thomas Wies for arranging student
fellowships, Norine Coenen for handling publicity, Leopold Haller for organising the
Logic Lounge, and Peter Miiller for putting together the Ask me Anything program. We
also thank Jean-Baptiste Jeannin and Arjun Radhakrishna for chairing the Mentoring
Committee. Putting together an online conference is a complex task and we are grateful
to the virtualization chair Tiago Ferreira, the student volunteer coordinators Tobias
Kappé and Tao Gu, the local organizers for the Asia timezone, Ichiro Hasuo and
Krishna S, and the team at Slides Live for all their efforts. Last but not least, we would
like to thank the members of the CAV Steering Committee (Kenneth McMillan, Aarti
Gupta, Orna Grumberg, and Daniel Kroening) for helping us with several important
aspects of organizing CAV 2021.

We hope that you will find the proceedings of CAV 2021 scientifically interesting
and thought-provoking!

June 2021 Alexandra Silva
Rustan Leino
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Abstract. We present the first machine learning approach to the ter-
mination analysis of probabilistic programs. Ranking supermartingales
(RSMs) prove that probabilistic programs halt, in expectation, within
a finite number of steps. While previously RSMs were directly synthe-
sised from source code, our method learns them from sampled execution
traces. We introduce the neural ranking supermartingale: we let a neu-
ral network fit an RSM over execution traces and then we verify it over
the source code using satisfiability modulo theories (SMT); if the latter
step produces a counterexample, we generate from it new sample traces
and repeat learning in a counterexample-guided inductive synthesis loop,
until the SMT solver confirms the validity of the RSM. The result is thus
a sound witness of probabilistic termination. Our learning strategy is
agnostic to the source code and its verification counterpart supports the
widest range of probabilistic single-loop programs that any existing tool
can handle to date. We demonstrate the efficacy of our method over a
range of benchmarks that include linear and polynomial programs with
discrete, continuous, state-dependent, multi-variate, hierarchical distri-
butions, and distributions with undefined moments.

1 Introduction

Probabilistic programs are programs whose execution is affected by random vari-
ables [17,19,23,29,36]. Randomness in programs may emerge from numerous
sources, such as uncertain external inputs, hardware random number generators,
or the (probabilistic) abstraction of pseudo-random generators, and is intrinsic
in quantum programs [34]. Notable exemplars are randomised algorithms, cryp-
tographic protocols, simulations of stochastic processes, and Bayesian inference
[7,33]. Verification questions for probabilistic programs require reasoning about
the probabilistic nature of their executions in order to appropriately characterise
properties of interest. For instance, consider the following question, correspond-
ing to the program in Fig. 1: will an ambitious marble collector eventually gather
any arbitrarily large amounts of red and blue marbles? Intuitively, the question
has an affirmative answer regardless of the initially established target amounts,
since there is always a chance of collecting a marble of either color. Notice that,
if the probabilistic choice is replaced with non-determinism, as often happens
in software verification, an adversary may exclusively draw one color of marble
© The Author(s) 2021
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and make the program run forever. The question that matches the original intu-
ition is whether the expected number of steps to termination is finite; this is the
positive almost-sure termination (PAST) question [8,10,13,19,27].

1 while (red > 0 || blue > 0) do
2 p ~ Bernoulli(.01);

3 if p == 1 then

4 red = red - 1

5 else

6 blue = blue - 1

7 fi

8 od

Fig. 1. The ambitious marble collector (the variables red and blue are initialised non-
deterministically).

Probabilistic termination analysis is typically mechanised through the auto-
mated synthesis of ranking supermartingales (RSMs), which are functions of the
program variables whose value (i) decreases in expectation by a discrete amount
across every loop iteration and (ii) is always bounded from below; an RSM
formally witnesses that a program is PAST [10,13]. Early techniques for discov-
ering RSMs reduced the synthesis problem from the source code of the program
into constraint solving [10]. These methods have lent themselves to various gen-
eralisations, including polynomial programs, programs with non-determinism,
lexicographic and modular termination arguments, and persistence properties
[2,14-16,20,25]. Recently, for special classes of probabilistic programs or term
rewriting systems, novel automated proof techniques that leverage computer
algebra systems and satisfiability modulo theories (SMT) have been introduced
[5,6,38,39,41]. All the above methods are sound and, under specific assumptions,
complete; they represent the state of the art for the class of programs they have
been designed for. However, their assumptions are often too restrictive for the
analysis of many simple programs. In particular, to the best of our knowledge,
none can identify an RSM for the program in Fig. 1. For this simple program, it
is easy to argue that the expected output of the neural network depicted in Fig. 2
decreases after every iteration of the loop and that it is always non-negative (see
Ex. 1). As such, this neural network is an appropriate RSM for the program.

ReLU

red — 1

1 ReLU 1
blue —

Fig. 2. A neural ranking supermartingale for the program in Fig. 1.
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We present a novel method for discovering RSMs using machine learning
together with SMT solving. We introduce the neural ranking supermartingale
(NRSM) model, which lets a neural network mimic a supermartingale over sam-
pled execution traces from a program. We train an NRSM using standard optimi-
sation algorithms over a loss function that makes the neural network decrease—
in average—across sampled iterations. We phrase the certification problem into
that of computing a counterexample for the NRSM. To do so, we encode the
neural network together with the expected value of the program variables; then,
we use an SMT solver for verifying that the expected output of the network
decreases along every execution. If the solver falsifies the NRSM, then it pro-
vides a counterexample that we use to guide a resampling of the execution
traces; with this new data we retrain the neural network and repeat verifica-
tion in a counterexample-guided inductive synthesis (CEGIS) fashion, until the
SMT solver determines that no counterexample exists [4,44]. In the latter case,
the solver has certified the generated NRSM; our method thus produces a sound
PAST proof or runs indefinitely. Our procedure does not return for programs that
are not PAST and may, in general, not return for some PAST instances. How-
ever, we experimentally demonstrate that, in practice, our method succeeds over
a broad range of PAST benchmarks within a few CEGIS iterations. Previously,
machine learning has been applied to the termination analysis of deterministic
programs and to the stability analysis of dynamical systems [1,12,21,24,28,30~-
32,42,43,45]; our method is the first machine learning approach for probabilistic
termination analysis.

Our approach builds upon two key observations. First, the average of expres-
sions along execution traces statistically approximates their true expected value.
Thanks to this, we obtain a machine learning model for guessing RSM candidates
that only requires execution traces and is thus agnostic to the source code. Sec-
ond, solving the problem of checking an RSM is simpler than solving the entire
termination analysis problem. Reasoning about source code is entirely delegated
to the checking phase which, as such, supports programs that are out of reach
to the available probabilistic termination analysers.

We experimentally demonstrate that our method is effective over many pro-
grams with linear and polynomial expressions, with both discrete and continuous
distributions. This includes joint distributions, state-dependent distributions,
distributions whose parameters are in turn random (hierarchical models), and
distributions with undefined moments (e.g., the Cauchy distribution). We com-
pare our method with a tool based on Farkas’ lemma and with the tools AMBER
and ABSYNTH [2,39,41]; whilst our software prototype is slower than these alter-
natives, it covers the widest range of benchmark single-loop programs.

Summarising, our contribution is fivefold. First, we present the first machine
learning method for the termination analysis of probabilistic programs. Second,
we introduce a loss function for training neural networks to behave as ranking
supermartingales over execution traces. Third, we show an approach to verify
the validity of ranking supermartingales using SMT solving, which applies to
a wide variety of single-loop probabilistic programs. Fourth, we experimentally
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demonstrate over multiple baselines and newly-defined benchmarks the practical
efficacy of our method. Fifth, we built a software prototype for evaluating our
method.

x € Vars (variables)
NelRr (numerals)
Opy =+ | - | * [ && | || |<|<=|==]... (binary operators)
E:=z|N|Eopy, E|-E (arithmetic expressions)
D ::=Bernoulli( E ) | Gaussian( E, E ) |... (probability distributions)
B:=DBop, B|!B|FE op, E | true | false (Boolean expressions)
C ::= skip (commands)
|x=FE (deterministic assignment)
|~ D (probabilistic assignment)

|C; C (sequential composition)

| if B then C else C fi (conditional composition)

Fig. 3. Syntax of loop-free probabilistic programs.

2 Termination Analysis of Probabilistic Programs

We treat the termination analysis of single-loop probabilistic programs. We con-
sider an imperative language that includes C-like arithmetic and Boolean expres-
sions, and sequential and conditional composition of commands [13,17,19,23].

Syntaz. A grammar for this language is shown in Fig. 3. We analyse single-loop
programs of the form
while G do
U
od

where the loop guard G is a Boolean expression and the update statement U is
a command. Variables are real-valued and c