UC Berkeley
UC Berkeley Previously Published Works

Title
Enforcing Almost-Sure Reachability in POMDPs

Permalink
https://escholarship.org/uc/item/5cs11779

ISBN
978-3-030-81687-2

Authors

Junges, Sebastian
Jansen, Nils
Seshia, Sanjit A

Publication Date
2021

DOI
10.1007/978-3-030-81688-9_28

Peer reviewed

eScholarship.org Powered by the California Diqgital Library

University of California

https://escholarship.org/uc/item/5cs11779
https://escholarship.org
http://www.cdlib.org/

Alexandra Silva
K. Rustan M. Leino (Eds.)

Computer Aided
Verification

33rd International Conference, CAV 2021
Virtual Event, July 20-23, 2021
Proceedings, Part Il

(@)
O
N~
N
—
v
)
=
—

@ Springer

Lecture Notes in Computer Science

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino

Purdue University, West Lafayette, IN, USA
Wen Gao

Peking University, Beijing, China
Bernhard Steffen

TU Dortmund University, Dortmund, Germany
Gerhard Woeginger

RWTH Aachen, Aachen, Germany
Moti Yung

Columbia University, New York, NY, USA

12760

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this subseries at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Alexandra Silva - K. Rustan M. Leino (Eds.)

Computer Aided
Verification

33rd International Conference, CAV 2021
Virtual Event, July 20-23, 2021
Proceedings, Part II

@ Springer

Editors

Alexandra Silva K. Rustan M. Leino
University College London Automated Reasoning Group | AWS
London, UK Seattle, WA, USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-81687-2 ISBN 978-3-030-81688-9 (eBook)

https://doi.org/10.1007/978-3-030-81688-9
LNCS Sublibrary: SL1 — Theoretical Computer Science and General Issues

© The Editor(s) (if applicable) and The Author(s) 2021. This book is an open access publication.

Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this book are included in the book’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the book’s Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-81688-9
http://creativecommons.org/licenses/by/4.0/

Preface

It was our privilege to serve as the program chairs for CAV 2021, the 33rd International
Conference on Computer-Aided Verification. CAV 2021 was held as a virtual con-
ference during July 20-23, 2021. The tutorial days were on July 19 and July 24, 2021,
and the pre-conference workshops were held during July 18-19, 2021. Due to the
COVID-19 outbreak, all events took place online.

CAV is an annual conference dedicated to the advancement of the theory and
practice of computer-aided formal analysis methods for hardware and software sys-
tems. The primary focus of CAV is to extend the frontiers of verification techniques by
expanding to new domains such as security, quantum computing, and machine
learning. This puts CAV at the cutting edge of formal methods research, and this year’s
program is a reflection of this commitment.

CAV 2021 received a very high number of submissions (290). We accepted 16 tool
papers, 3 case studies, and 60 regular papers, which amounts to an acceptance rate of
roughly 27%. The accepted papers cover a wide spectrum of topics, from theoretical
results to applications of formal methods. These papers apply or extend formal methods
to a wide range of domains such as concurrency, machine learning, and industrially
deployed systems. The program featured keynote talks by Loris D’Antoni
(UW-Madison), Corina Pasarecanu (NASA), and Anna Slobodova (Centaur Technol-
ogy, Inc.) as well as invited tutorials by Nate Foster (Cornell University), Zak Kincaid
(Princeton) together with Tom Reps (UW-Madison), and Nadia Polikarpova (UC San
Diego). Furthermore, we continued the tradition of Logic Lounge, a series of discus-
sions on computer science topics targeting a general audience.

In addition to the main conference, CAV 2021 hosted the following workshops:
Formal Approaches to Certifying Compliance (FACC), Formal Methods for
ML-Enabled Autonomous Systems (FoMLAS), Formal Methods for Blockchains
(FMBC), Numerical Software Verification (NSV), Theory and Practice of String
Solving (TPSS), Verifying Probabilistic Programs (VeriProP), Synthesis (SYNT),
Satisfiability Modulo Theories (SMT), and Verification Mentoring Workshop (VMW).

Organizing a flagship conference like CAV requires a great deal of effort from the
community. The Program Committee for CAV 2021 consisted of 79 members — a
committee of this size ensures that each member has to review only a reasonable
number of papers in the allotted time. In all, the committee members wrote over 900
reviews while investing significant effort to maintain and ensure the high quality of the
conference program. We are grateful to the CAV 2021 Program Committee for their
outstanding efforts in evaluating the submissions and making sure that each paper got a
fair chance. Like last year’s CAV, we made the artifact evaluation mandatory for tool
paper submissions and optional, but encouraged, for the rest of the accepted papers.
This year saw an unprecedented number of 66 artifact submissions. The Artifact
Evaluation Committee consisted of 72 members who put in significant effort to eval-
uate each artifact. The goal of this process was to provide constructive feedback to tool

vi Preface

developers and help make the research published in CAV more reproducible. We are
also very grateful to the Artifact Evaluation Committee for their hard work and ded-
ication in evaluating the submitted artifacts.

CAYV 2021 would not have been possible without the tremendous help we received
from several individuals, and we would like to thank everyone who helped make CAV
2021 a success. First, we would like to thank Clément Pit-Claudel and Maria Schett for
chairing the Artifact Evaluation Committee and John Cyphert for putting together the
proceedings. We also thank Arie Gurfinkel for chairing the workshop organization,
Bor-Yuh Evan Chang for managing sponsorship, Thomas Wies for arranging student
fellowships, Norine Coenen for handling publicity, Leopold Haller for organising the
Logic Lounge, and Peter Miiller for putting together the Ask me Anything program. We
also thank Jean-Baptiste Jeannin and Arjun Radhakrishna for chairing the Mentoring
Committee. Putting together an online conference is a complex task and we are grateful
to the virtualization chair Tiago Ferreira, the student volunteer coordinators Tobias
Kappé and Tao Gu, the local organizers for the Asia timezone, Ichiro Hasuo and
Krishna S, and the team at Slides Live for all their efforts. Last but not least, we would
like to thank the members of the CAV Steering Committee (Kenneth McMillan, Aarti
Gupta, Orna Grumberg, and Daniel Kroening) for helping us with several important
aspects of organizing CAV 2021.

We hope that you will find the proceedings of CAV 2021 scientifically interesting
and thought-provoking!

June 2021 Alexandra Silva
Rustan Leino

Organization

Steering Committee

Ornal Grumberg Technion, Israel

Aarti Gupta Princeton University, USA

Daniel Kroening Amazon, USA

Kenneth Mcmillan University of Texas at Austin, USA

Conference Co-chairs

K. Rustan M. Leino Amazon, USA
Alexandra Silva University College London, UK

Artifact Co-chairs

Clément Pit-Claudel Massachusetts Institute of Technology, USA
Maria Schett University College London, UK

Workshop Chair

Arie Gurfinkel University of Waterloo, Canada

Verification Mentoring Workshop Organizing Committee

Jean-Baptiste Jeannin University of Michigan, USA
(Co-chair)
Arjun Radhakrishna Microsoft Research, USA
(Co-chair)
Suguman Bansal University of Pennsylvania, USA
Roopsha Samanta Purdue University, USA
Caterina Urban Inria and Ecole Normale Supérieure, France

Logic Lounge Organizer

Leopold Haller Google Inc., USA

Ask Me Anything Organizer

Peter Miiller ETH Ziirich, Switzerland

viii Organization
Publicity Chair

Norine Coenen

Sponsorship Chair

Bor-Yuh Evan Chang

Fellowship Chair

Thomas Wies

CISPA Helmholtz Center for Information Security,

Germany

University of Colorado Boulder, USA

New York University, USA

Student Volunteer Coordinators

Tao Gu
Tobias Kappé

University College London, UK
Cornell University, USA

Proceedings and Talks Chair

John Cyphert

Virtualization Chair

Tiago Ferreira

University of Wisconsin—-Madison, USA

University College London, UK

Local Organization Chairs

Ichiro Hasuo
Krishna S.

Program Committee

Erika Abraham
Elvira Albert
Christel Baier
Clark Barrett
Ezio Bartocci
Josh Berdine
Armin Biere

Sam Blackshear
Jasmin Blanchette
Roderick Bloem
Borzoo Bonakdarpour
Ahmed Bouajjani
Tevfik Bultan

National Institute of Informatics, Japan
IIT Bombay, India

RWTH Aachen University, Germany
Universidad Complutense de Madrid, Spain
TU Dresden, Germany

Stanford University, USA

TU Wien, Austria

Facebook, UK

Johannes Kepler University Linz, Austria
Novi, USA

Vrije Universiteit Amsterdam, Netherlands
Graz University of Technology, Austria
Michigan State University, USA

Université de Paris, France

University of California, Santa Barbara, USA

Sagar Chaki

Bor-Yuh Evan Chang
Hana Chockler
Cristina David
Jennifer Davis

Yuxin Deng

Rayna Dimitrova

Alastair Donaldson
Constantin Enea
Joao Fernandes
Bernd Finkbeiner

Vijay Ganesh
Pierre Ganty
Aarti Gupta

Arie Gurfinkel
Ichiro Hasuo
Marieke Huisman
David N. Jansen

Jean-Baptiste Jeannin

Ranjit Jhala

Rajeev Joshi

Temesghen Kahsai

Benjamin Lucien Kaminski

Joost-Pieter Katoen

Guy Katz

Laura Kovacs

Mitja Kulczynski

Mohit Kumar Tekriwal

Orna Kupferman

Marta Kwiatkowska

Shuvendu Labhiri

Akash Lal

Kim Larsen

Marijana Lazic

Owolabi Legunsen

K. Rustan M. Leino
(Co-chair)

Rupak Majumdar

Ruben Martins

Ken McMillan

Aina Niemetz

Ruzica Piskac

Sylvie Putot

Organization ix

Mentor Graphics, USA

University of Colorado Boulder and Amazon, USA

King's College London, UK

University of Bristol, UK

Collins Aerospace, USA

East China Normal University, China

CISPA Helmholtz Center for Information Security,
Germany

Imperial College London, UK

Université de Paris, France

University of Porto, Portugal

CISPA Helmholtz Center for Information Security,
Germany

University of Waterloo, Canada

IMDEA Software Institute, Spain

Princeton University, USA

University of Waterloo, Canada

National Institute of Informatics, Japan

University of Twente, Netherlands

Institute of Software, Chinese Academy of Sciences,
China

University of Michigan, USA

University of California, San Diego, USA

Amazon, USA

The University of lowa, USA

University College London, UK

RWTH Aachen University, Germany

The Hebrew University of Jerusalem, Israel

Vienna University of Technology, Austria

Kiel University, Germany

University of Michigan, USA

The Hebrew University of Jerusalem, Israel

University of Oxford, UK

Microsoft Research, USA

Microsoft Research, India

Aalborg University, Denmark

Technical University of Munich, Germany

University of Illinois at Urbana-Champaign, USA

Amazon, USA

Max Planck Institute for Software Systems, Germany
Carnegie Mellon University, USA

University of Texas at Austin, USA

Stanford University, USA

Yale University, USA

Ecole Polytechnique, France

X Organization

Markus N. Rabe
Talia Ringer
Kristin Yvonne Rozier
Philipp Ruemmer
Krishna S.
Roopsha Samanta
Sanjit A. Seshia
Natarajan Shankar
Natasha Sharygina
Sharon Shoham
Alexandra Silva (Co-chair)
Tachio Terauchi
Cesare Tinelli
Aaron Tomb
Ashutosh Trivedi
Caterina Urban
Margus Veanes
Jules Villard
Yakir Vizel

Chao Wang

Wang Yi
Mingsheng Ying
Nobuko Yoshida
Lijun Zhang

Google, USA

University of Washington, USA

Iowa State University, USA

Uppsala University, Sweden

IIT Bombay, India

Purdue University, USA

University of California, Berkeley

SRI International, USA

Universita della Svizzera italiana, Switzerland

Tel Aviv University, Israel

University College London, UK

Waseda University, Japan

The University of Iowa, USA

Galois, Inc., USA

University of Colorado Boulder, USA

Inria, France

Microsoft, USA

Facebook, UK

Technion, Israel

University of Southern California, USA

Uppsala University, Sweden

University of Technology Sydney, Australia

Imperial College London, UK

Institute of Software, Chinese Academy of Sciences,
China

Artifact Evaluation Committee

Rosa Abbasi Boroujeni
Guy Amir

Vincent Archambault
M. Fareed Arif
Filipe Arruda

Kshitij Bansal
Suguman Bansal
Shraddha Barke
Kevin Batz

Heiko Becker

Julia Belyakova
Murphy Berzish
Ranadeep Biswas
Alexandra Bugariu
Katherine Cordwell
Martin Desharnais
Zafer Esen

Mathias Fleury

Max Planck Institute for Software Systems, Germany
The Hebrew University of Jerusalem, Israel
University of Montreal, Canada

The Unviersity of lowa, USA

Universidade Federal de Pernambuco, Brazil
Facebook, USA

Rice University, USA

University of California, San Diego, USA

RWTH Aachen University, Germany

Max Planck Institute for Software Systems, Germany
Southern Federal University, Russia

University of Waterloo, Canada

Université de Paris, France

ETH Zurich, Switzerland

Carnegie Mellon University, USA

Bundeswehr University Munich, Germany

Uppsala University, Sweden

Johannes Kepler University Linz, Austria

Isabel Garcia-Contreras

Luke Geeson

Nick Giannarakis
Pablo Gordillo
Laura Graves
Zheng Guo

Vedad Hadzi¢
Miguel Isabel
Anastasiia Izycheva
Chris Jenkins
Daniela Kaufmann
Brian Kempa
Bettina Konighofer
Mitja Kulczynski
Mohit Kumar Tekriwal
Stella Lau

Julien Lepiller
Chunxiao Li

Junyi Liu

Debasmita Lohar
Makai Mann

Roy Margalit

Sidi Mohamed Beillahi
Marcel Moosbrugger
Marianela Morales
Jasper Nalbach
Andres Noetzli
Mario Pereira
Mateo Perez
Elizabeth Polgreen
Mathias Preiner
Tim Quatmann
Bob Rubbens
Vimala S.

Philipp Schroer
Joseph Scott
Amanda Stjerna
Zachary Susag
Hira Syeda

Martin Tappler
Michael Tautschnig
Saeid Tizpaz Niari
Hazem Torfah
Deivid Vale

Organization Xi

IMDEA Software Institute and Universidad Politecnica
de Madrid, Spain

Arm, UK

University of Wisconsin-Madison, USA

Universidad Complutense de Madrid, Spain

University of Waterloo, Canada

University of California, San Diego, USA

Graz University of Technology, Austria

Universidad Politécnica de Madrid, Spain

Technical University of Munich, Germany

University of Iowa, USA

Johannes Kepler University Linz, Austria

Iowa State University, USA

Graz University of Technology, Austria

Kiel University, Germany

University of Michigan, USA

Massachusetts Institute of Technology, USA

Yale University, USA

University of Waterloo, Canada

Institute of Software, Chinese Academy of Sciences,
China

Max Planck Institute for Software Systems, Germany

Stanford University, USA

Tel Aviv University, Israel

Université de Paris and CNRS, France

TU Wien, Austria

Inria, France

RWTH Aachen University, Germany

Stanford University, USA

Universidade NOVA de Lisboa, Portugal

University of Colorado Boulder, USA

University of California, Berkeley, USA

Stanford University, USA

RWTH Aachen University, Germany

University of Twente, Netherlands

Indian Institute of Technology, Madras, India

RWTH Aachen University, Germany

University of Waterloo, Canada

Uppsala University, Sweden

University of Wisconsin-Madison, USA

Chalmers Universityof Technology, Sweden

Graz University of Technology, Austria

Queen Mary University of London, UK

University of Texas at El Paso, USA

University of California, Berkeley, USA

Radboud University Nijmegen, Netherlands

xii Organization

Masaki Waga Kyoto University, Japan

Peixin Wang Shanghai Jiao Tong University, China
Sarah Winkler Free University of Bozen-Bolzano, Italy
Tobias Winkler RWTH Aachen University, Germany

Ali Younes Bauman Moscow State University, Russia
Xiao-Yi Zhang National Institute of Informatics, Japan
Yuhao Zhang University of Wisconsin-Madison, USA

Additional Reviewers

Ahmad, Hammad
An, Jie
Armborst, Lukas

Defourné, Antoine
Downing, Mara
Darwin, Oscar

Almagor, Shaull Dill, David
Arenas, Puri Dunn, Isaac
Asadi, Sepideh Dave, Vrunda
Amir, Guy Dohmen, Taylor

Arif, Fareed

Asarin, Eugene
Baanen, Anne

Batz, Kevin

Berzish, Murphy

Bacci, Giovanni
Baumeister, Jan

Blicha, Martin
Balasubramanian, A. R.
Belo Lourenco, Claudio
Boker, Udi

Barbosa, Haniel
Bentkamp, Alexander
Bonneland, Frederik M.
Barwell, Adam

Berger, Jana

Brain, Martin
Castellano, Ezequiel
Chen, Mingshuai
Coenen, Norine
Castro-Pérez, David
Chida, Nariyoshi
Cogumbreiro, Tiago
Cetinkaya, Ahmet
Chipara, Octav

Correas Fernandez, Jesus
Cheang, Kevin

Dai, Gaoyang

Dureja, Rohit

De Masellis, Riccardo
Doveri, Kyveli
Eberhart, Clovis
Eiers, William

Esen, Zafer

Ebrahimi, Masoud
Farzan, Azadeh

Feng, Yuan

Fleury, Mathias
Fedyukovich, Grigory
Ferraiuolo, Andrew
Gardy, Patrick
Godefroid, Patrice
Graham-Lengrand, Stéphane
Gehani, Ashish
Gomez-Zamalloa, Miguel
Grumberg, Orna
Genaim, Samir

Goorden, Martijn

Guan, Ji

Georgiou, Pamina
Gordillo, Pablo

Guha, Shibashis
Giacobbe, Mirco

Graf, Susanne

Gupta, Ashutosh

Giesl, Jirgen

Habermehl, Peter
Helfrich, Martin
Huang, Chengchao
Hadzic, Vedad
Hofmann, Jana
Huber, Nikolaus
Hark, Marcel

Holik, Lukas
Hyvirinen, Antti
Hecking-Harbusch, Jesko
Hozzova, Petra
Irfan, Ahmed
Isabel, Miguel
Jaber, Nouraldin
Jha, Susmit
Jovanovi¢, Dejan
Jensen, Mathias Claus
Jiang, Xu

Junges, Sebastian
Jensen, Peter Gjol
Kadron, Burak
Klikovits, Stefan
Koenighofer, Bettina
Kempa, Brian
Klinkenberg, Lutz
Kremer, Gereon
Kheterpal, Nishant
Kliippelholz, Sascha
Kura, Satoshi

Kim, Edward

La Malfa, Emanuele
Li, Jianlin

Lin, Shaokai
Lachnitt, Hanna

Li, Yangjia

Lorber, Florian
Larraz, Daniel

Li, Yong

Lukina, Anna
Lathouwers, Sophie
Limperg, Jannis
Luppen, Zachary
Lee, Sang-Hwa
Maderbacher, Benedikt
Merayo, Alicia
Mora, Federico

Organization

Madnani, Khushraj
Metzger, Niklas
Mueller, Peter
Mallik, Kaushik
Michelmore, Rhiannon
Mundkur, Prashanth
Mann, Makai
Mohageqi, Morteza
Murali, Vishnu
Martin-Martin, Enrique
Monti, Raul

Mbohle, Sibylle
Mazzucato, Denis
Moosbrugger, Marcel
Nagisetty, Vineel
Nenzi, Laura

Noll, Thomas
Narodytska, Nina
Niksi¢, Filip
Nummelin, Visa
Nejati, Saeed
Otoni, Rodrigo
Ozdemir, Alex
Ozkan, Burcu
Overbeek, Roy
Pant, Yash Vardhan
Perez, Mateo
Polgreen, Elizabeth
Passing, Noemi
Philipoom, Jade
Poulsen, Danny Bogsted
Patane, Andrea
Pick, Lauren
Preiner, Mathias
Pereira, Mario
Piribauer, Jakob
Purser, David
Quatmann, Tim
Reynolds, Andrew
Rubbens, Bob
Ryan, Megan
Rowe, Reuben
Sato, Sota
Sebastiani, Roberto
Stanford, Caleb
Schupp, Stefan

Xiii

Xiv Organization

Shah, Ameesh
Stankovic, Miroslav
Schurr, Hans-Jorg
Solovyev, Alexey
Stein, Benno
Schwenger, Maximilian
Spel, Jip

Tabar, Asmae
Torfah, Hazem
Tsiskaridze, Nestan
Tekriwal, Mohit
Tschaikowski, Max
Turrini, Andrea
Tibo, Alessandro
Unno, Hiroshi
Vasconcelos, Vasco

Vediramana Krishnan, Hari Govind

Vukmirovi¢, Petar

Vazquez-Chanlatte, Marcell

Venkatesan, Abinaya
Waga, Masaki
Wang, Qisheng

Wilson, Amalee
Wagner, Christopher
Weil-Kennedy, Chana
Winkler, Tobias
Wang, Benjie
Welzel, Christoph
Wu, Haoze
Wang, Fang
Wicker, Matthew
Wu, Min

Wang, Peixin
Xue, Bai

Yu, Emily

Zelji¢, Aleksandar
Zhang, Linpeng
Zhou, Mengchu
Zhang, Hanwei
Zhao, Hengjun
Zuleger, Florian
Zhang, Hengjun
Zhou, Li

Contents — Part 11

Complexity and Termination

Learning Probabilistic Termination Proofs 3
Alessandro Abate, Mirco Giacobbe, and Diptarko Roy

Ghost Signals: Verifying Termination of Busy Waiting 27
Tobias Reinhard and Bart Jacobs

Reflections on Termination of Linear Loops. 51
Shaowei Zhu and Zachary Kincaid

Decision Tree Learning in CEGIS-Based Termination Analysis. 75
Satoshi Kura, Hiroshi Unno, and Ichiro Hasuo

ATLAS: Automated Amortised Complexity Analysis of Self-adjusting
Data Structures 99
Lorenz Leutgeb, Georg Moser, and Florian Zuleger

Decision Procedures and Solvers

Theory Exploration Powered by Deductive Synthesis. 125
Eytan Singher and Shachar Itzhaky

CoqQFBV: A Scalable Certified SMT Quantifier-Free Bit-Vector Solver. ... 149
Xiaomu Shi, Yu-Fu Fu, Jiaxiang Liu, Ming-Hsien Tsai,
Bow-Yaw Wang, and Bo-Yin Yang

Porous Invariants 172
Engel Lefaucheux, Joél Ouaknine, David Purser, and James Worrell

JavaSMT3: Interacting with SMT SolversinJava.................... 195
Daniel Baier, Dirk Beyer, and Karlheinz Friedberger

Efficient SMT-Based Analysis of Failure Propagation 209
Marco Bozzano, Alessandro Cimatti, Anthony Fernandes Pires,
Alberto Griggio, Martin Jonds, and Greg Kimberly

ddSMT 2.0: Better Delta Debugging for the SMT-LIBv2 Language
and Friends e 231
Gereon Kremer, Aina Niemetz, and Mathias Preiner

Xvi Contents — Part II

Learning Union of Integer Hypercubes with Queries:
(with Applications to Monadic Decomposition). 243
Oliver Markgraf, Daniel Stan, and Anthony W. Lin

Interpolation and Model Checking for Nonlinear Arithmetic. 266
Dejan Jovanovi¢ and Bruno Dutertre

An SMT Solver for Regular Expressions and Linear Arithmetic

over String Length L 289
Murphy Berzish, Mitjia Kulczynski, Federico Mora, Florin Manea,
Joel D. Day, Dirk Nowotka, and Vijay Ganesh

Counting Minimal Unsatisfiable Subsets 313
Jaroslav Bendik and Kuldeep S. Meel

Sound Verification Procedures for Temporal Properties

of Infinite-State Systems 337
Quentin Peyras, Jean-Paul Bodeveix, Julien Brunel,
and David Chemouil

Hardware and Model Checking

Progress in Certifying Hardware Model Checking Results 363
Emily Yu, Armin Biere, and Keijo Heljanko

Model-Checking Structured Context-Free Languages. 387
Michele Chiari, Dino Mandrioli, and Matteo Pradella

Model Checking w-Regular Properties with Decoupled Search 411
Daniel Gnad, Jan Eisenhut, Alberto Lluch Lafuente, and Jorg Hoffmann

AIGEN: Random Generation of Symbolic Transition Systems 435
Swen Jacobs and Mouhammad Sakr

GPU Acceleration of Bounded Model Checking with ParaFROST. 447
Muhammad Osama and Anton Wijs

Pono: A Flexible and Extensible SMT-Based Model Checker 461
Makai Mann, Ahmed Irfan, Florian Lonsing, Yahan Yang,
Hongce Zhang, Kristopher Brown, Aarti Gupta, and Clark Barrett

Logical Foundations

Towards a Trustworthy Semantics-Based Language Framework via
Proof Generation. 477
Xiaohong Chen, Zhengyao Lin, Minh-Thai Trinh, and Grigore Rosu

Contents — Part II Xvii

Foundations of Fine-Grained Explainability 500
Sylvain Hallé and Hugo Tremblay

Latticed k-Induction with an Application to Probabilistic Programs 524
Kevin Batz, Mingshuai Chen, Benjamin Lucien Kaminski,
Joost-Pieter Katoen, Christoph Matheja, and Philipp Schroer

Stochastic Systems

Runtime Monitors for Markov Decision Processes. 553
Sebastian Junges, Hazem Torfah, and Sanjit A. Seshia

Model Checking Finite-Horizon Markov Chains

with Probabilistic Inference 577
Steven Holtzen, Sebastian Junges, Marcell Vazquez-Chanlatte,
Todd Millstein, Sanjit A. Seshia, and Guy Van den Broeck

Enforcing Almost-Sure Reachability in POMDPs 602
Sebastian Junges, Nils Jansen, and Sanjit A. Seshia

Rigorous Roundoff Error Analysis of Probabilistic

Floating-Point Computations.« ..ttt 626
George Constantinides, Fredrik Dahlqvist, Zvonimir Rakamaric,
and Rocco Salvia

Model-Free Reinforcement Learning for Branching Markov Decision

Processes . . . o 651
Ernst Moritz Hahn, Mateo Perez, Sven Schewe, Fabio Somenzi,
Ashutosh Trivedi, and Dominik Wojtczak

Software Verification

Cameleer: A Deductive Verification Tool for OCaml. 677
Mario Pereira and Antonio Ravara

LLMC: Verifying High-Performance Software 690
Freark 1. van der Berg

Formally Validating a Practical Verification Condition Generator 704
Gaurav Parthasarathy, Peter Miiller, and Alexander J. Summers

Automatic Generation and Validation of Instruction Encoders and Decoders. . 728
Xiangzhe Xu, Jinhua Wu, Yuting Wang, Zhenguo Yin, and Pengfei Li

An SMT Encoding of LLVM’s Memory Model for Bounded
Translation Validation 752
Juneyoung Lee, Dongjoo Kim, Chung-Kil Hur, and Nuno P. Lopes

Xviil Contents — Part 11

Automatically Tailoring Abstract Interpretation to Custom

Usage Scenariosot 777
Muhammad Numair Mansur, Benjamin Mariano, Maria Christakis,
Jorge A. Navas, and Valentin Wiistholz

Functional Correctness of C Implementations of Dijkstra’s, Kruskal’s,
and Prim’s Algorithms. 801
Anshuman Mohan, Wei Xiang Leow, and Aquinas Hobor

Gillian, Part II: Real-World Verification for JavaScript and C. 827
Petar Maksimovié, Sacha-Elie Ayoun, José Fragoso Santos,
and Philippa Gardner

Debugging Network Reachability with Blocked Paths 851
S. Bayless, J. Backes, D. DaCosta, B. F. Jones, N. Launchbury,
P. Trentin, K. Jewell, S. Joshi, M. Q. Zeng, and N. Mathews

Lower-Bound Synthesis Using Loop Specialization and Max-SMT 863
Elvira Albert, Samir Genaim, Enrique Martin-Martin, Alicia Merayo,
and Albert Rubio

Fast Computation of Strong Control Dependencies 887
Marek Chalupa, David Klaska, Jan Strejcek, and Lukas” Tomovic

Dirry: Inductive Reasoning of Array Programs Using
Difference Invariants L 911
Supratik Chakraborty, Ashutosh Gupta, and Divyesh Unadkat

Author Index e 937

Contents — Part 1

Invited Papers

NNREeraIR: Constraint-Based Repair of Neural Network Classifiers 3
Muhammad Usman, Divya Gopinath, Youcheng Sun, Yannic Noller,
and Corina S. Pdsareanu

Balancing Automation and Control for Formal Verification
Of MICTOPIOCESSOLS . . o . v v ottt e et e e e e e e e e e e e e e e 26
Shilpi Goel, Anna Slobodova, Rob Sumners, and Sol Swords

Algebraic Program Analysis. 46
Zachary Kincaid, Thomas Reps, and John Cyphert

Programmable Program Synthesis 84
Loris D’Antoni, Qinheping Hu, Jinwoo Kim, and Thomas Reps

Deductive Synthesis of Programs with Pointers: Techniques, Challenges,
Opportunities: (Invited Paper). 110
Shachar Itzhaky, Hila Peleg, Nadia Polikarpova, Reuben N. S. Rowe,
and Ilya Sergey

Al Verification

DNNV: A Framework for Deep Neural Network Verification. 137
David Shriver, Sebastian Elbaum, and Matthew B. Dwyer

Robustness Verification of Quantum Classifiers 151
Ji Guan, Wang Fang, and Mingsheng Ying

BDD4BNN: A BDD-Based Quantitative Analysis Framework
for Binarized Neural Networks 175
Yedi Zhang, Zhe Zhao, Guangke Chen, Fu Song, and Taolue Chen

Automated Safety Verification of Programs Invoking Neural Networks 201
Maria Christakis, Hasan Ferit Eniser, Holger Hermanns,
Jorg Hoffmann, Yugesh Kothari, Jianlin Li, Jorge A. Navas,
and Valentin Wiistholz

Scalable Polyhedral Verification of Recurrent Neural Networks 225
Wonryong Ryou, Jiayu Chen, Mislav Balunovic, Gagandeep Singh,
Andrei Dan, and Martin Vechev

XX Contents — Part 1

Verisig 2.0: Verification of Neural Network Controllers Using Taylor

Model Preconditioning. 249
Radoslav Ivanov, Taylor Carpenter, James Weimer, Rajeev Alur,
George Pappas, and Insup Lee

Robustness Verification of Semantic Segmentation Neural Networks Using

Relaxed Reachability. 263
Hoang-Dung Tran, Neelanjana Pal, Patrick Musau,
Diego Manzanas Lopez, Nathaniel Hamilton, Xiaodong Yang,
Stanley Bak, and Taylor T. Johnson

PEREGRINN: Penalized-Relaxation Greedy Neural Network Verifier 287
Haitham Khedr, James Ferlez, and Yasser Shoukry

Concurrency and Blockchain

Isla: Integrating Full-Scale ISA Semantics and Axiomatic

Concurrency Models 303
Alasdair Armstrong, Brian Campbell, Ben Simner, Christopher Pulte,
and Peter Sewell

Summing up Smart Transitions.t 317
Neta Elad, Sophie Rain, Neil Immerman, Laura Kovdcs,
and Mooly Sagiv

Stateless Model Checking Under a Reads-Value-From Equivalence. 341
Pratyush Agarwal, Krishnendu Chatterjee, Shreya Pathak,
Andreas Pavilogiannis, and Viktor Toman

Gobra: Modular Specification and Verification of Go Programs 367
Felix A. Wolf, Linard Arquint, Martin Clochard, Wytse Oortwijn,
Jodo C. Pereira, and Peter Miiller

Andrew Johnson and Thomas Wahl

Checking Data-Race Freedom of GPU Kernels, Compositionally 403
Tiago Cogumbreiro, Julien Lange, Dennis Liew Zhen Rong,
and Hannah Zicarelli

GENMC: A Model Checker for Weak Memory Models 427
Michalis Kokologiannakis and Viktor Vafeiadis

Contents — Part [

Hybrid and Cyber-Physical Systems

Synthesizing Invariant Barrier Certificates via

Difference-of-Convex Programming.

Qiuye Wang, Mingshuai Chen, Bai Xue, Naijun Zhan,
and Joost-Pieter Katoen

An Iterative Scheme of Safe Reinforcement Learning for Nonlinear

Systems via Barrier Certificate Generation

Zhengfeng Yang, Yidan Zhang, Wang Lin, Xia Zeng, Xiaochao Tang,
Zhenbing Zeng, and Zhiming Liu

HyBrIDSYNCHAADL: Modeling and Formal Analysis of Virtually

Synchronous CPSs in AADL

Jaehun Lee, Sharon Kim, Kyungmin Bae, and Peter Csaba Olveczky

Computing Bottom SCCs Symbolically Using Transition

Guided Reduction

Nikola Benes, Lubos Brim, Samuel Pastva, and David gafrdnek

Implicit Semi-Algebraic Abstraction for Polynomial Dynamical Systems

Sergio Mover, Alessandro Cimatti, Alberto Griggio, Ahmed Irfan,
and Stefano Tonetta

IMITATOR 3: Synthesis of Timing Parameters Beyond Decidability

Etienne André

Formally Verified Switching Logic for Recoverability

of Aircraft Controller.

Ratan Lal, Aaron McKinnis, Dustin Hauptman, Shawn Keshmiri,
and Pavithra Prabhakar

SceneChecker: Boosting Scenario Verification Using Symmetry

ADSITACHIONS o e

Hussein Sibai, Yangge Li, and Sayan Mitra

Effective Hybrid System Falsification Using Monte Carlo Tree Search

Guided by QB-Robustness

Zhenya Zhang, Deyun Lyu, Paolo Arcaini, Lei Ma, Ichiro Hasuo,
and Jianjun Zhao

Fast Zone-Based Algorithms for Reachability in Pushdown

Timed Automata. e

S. Akshay, Paul Gastin, and Karthik R. Prakash

XXi

595

XXil Contents — Part 1

Security

Verified Cryptographic Code for Everybody. 645
Brett Boston, Samuel Breese, Joey Dodds, Mike Dodds, Brian Huffman,
Adam Petcher, and Andrei Stefanescu

Not All Bugs Are Created Equal, But Robust Reachability Can
Tell the Difference e 669
Guillaume Girol, Benjamin Farinier, and Sébastien Bardin

A Temporal Logic for Asynchronous Hyperproperties 694
Jan Baumeister, Norine Coenen, Borzoo Bonakdarpour,
Bernd Finkbeiner, and César Sanchez

Product Programs in the Wild: Retrofitting Program Verifiers to Check
Information Flow Security 718
Marco Eilers, Severin Meier, and Peter Miiller

Constraint-Based Relational Verification 742
Hiroshi Unno, Tachio Terauchi, and Eric Koskinen

Pre-deployment Security Assessment for Cloud Services Through
Semantic Reasoning 767
Claudia Cauli, Meng Li, Nir Piterman, and Oksana Tkachuk

Synthesis

Synthesis with Asymptotic Resource Bounds 783
Qinheping Hu, John Cyphert, Loris D ’Antoni, and Thomas Reps

Program Sketching by Automatically Generating Mocks from Tests 808
Nate F. F. Bragg, Jeffrey S. Foster, Cody Roux,
and Armando Solar-Lezama

Counterexample-Guided Partial Bounding for Recursive
Function Synthesis 832
Azadeh Farzan and Victor Nicolet

PAYNT: A Tool for Inductive Synthesis of Probabilistic Programs 856
Roman Andriushchenko, Milan Ceska, Sebastian Junges,
Joost-Pieter Katoen, and Simon Stupinsky

Adapting Behaviors via Reactive Synthesis 870
Gal Amram, Suguman Bansal, Dror Fried, Lucas Martinelli Tabajara,
Moshe Y. Vardi, and Gera Weiss

Contents — Part 1 XXiii

Causality-Based Game Solving. 894
Christel Baier, Norine Coenen, Bernd Finkbeiner, Florian Funke,
Simon Jantsch, and Julian Siber

Author Index e 919

http://dx.doi.org/10.1007/978-3-030-81685-8_1

Complexity and Termination

®

Check for
updates

Learning Probabilistic Termination Proofs

Alessandro Abate®™) Mirco Giacobbe®),
and Diptarko Roy®)

University of Oxford, Oxford, UK
{alessandro.abate,mirco.giacobbe,
diptarko.roy}@cs.ox.ac.uk

Abstract. We present the first machine learning approach to the ter-
mination analysis of probabilistic programs. Ranking supermartingales
(RSMs) prove that probabilistic programs halt, in expectation, within
a finite number of steps. While previously RSMs were directly synthe-
sised from source code, our method learns them from sampled execution
traces. We introduce the neural ranking supermartingale: we let a neu-
ral network fit an RSM over execution traces and then we verify it over
the source code using satisfiability modulo theories (SMT); if the latter
step produces a counterexample, we generate from it new sample traces
and repeat learning in a counterexample-guided inductive synthesis loop,
until the SMT solver confirms the validity of the RSM. The result is thus
a sound witness of probabilistic termination. Our learning strategy is
agnostic to the source code and its verification counterpart supports the
widest range of probabilistic single-loop programs that any existing tool
can handle to date. We demonstrate the efficacy of our method over a
range of benchmarks that include linear and polynomial programs with
discrete, continuous, state-dependent, multi-variate, hierarchical distri-
butions, and distributions with undefined moments.

1 Introduction

Probabilistic programs are programs whose execution is affected by random vari-
ables [17,19,23,29,36]. Randomness in programs may emerge from numerous
sources, such as uncertain external inputs, hardware random number generators,
or the (probabilistic) abstraction of pseudo-random generators, and is intrinsic
in quantum programs [34]. Notable exemplars are randomised algorithms, cryp-
tographic protocols, simulations of stochastic processes, and Bayesian inference
[7,33]. Verification questions for probabilistic programs require reasoning about
the probabilistic nature of their executions in order to appropriately characterise
properties of interest. For instance, consider the following question, correspond-
ing to the program in Fig. 1: will an ambitious marble collector eventually gather
any arbitrarily large amounts of red and blue marbles? Intuitively, the question
has an affirmative answer regardless of the initially established target amounts,
since there is always a chance of collecting a marble of either color. Notice that,
if the probabilistic choice is replaced with non-determinism, as often happens
in software verification, an adversary may exclusively draw one color of marble
© The Author(s) 2021

A. Silva and K. R. M. Leino (Eds.): CAV 2021, LNCS 12760, pp. 326, 2021.
https://doi.org/10.1007/978-3-030-81688-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81688-9_1&domain=pdf
https://doi.org/10.1007/978-3-030-81688-9_1

4 A. Abate et al.

and make the program run forever. The question that matches the original intu-
ition is whether the expected number of steps to termination is finite; this is the
positive almost-sure termination (PAST) question [8,10,13,19,27].

1 while (red > 0 || blue > 0) do
2 p ~ Bernoulli(.01);

3 if p == 1 then

4 red = red - 1

5 else

6 blue = blue - 1

7 fi

8 od

Fig. 1. The ambitious marble collector (the variables red and blue are initialised non-
deterministically).

Probabilistic termination analysis is typically mechanised through the auto-
mated synthesis of ranking supermartingales (RSMs), which are functions of the
program variables whose value (i) decreases in expectation by a discrete amount
across every loop iteration and (ii) is always bounded from below; an RSM
formally witnesses that a program is PAST [10,13]. Early techniques for discov-
ering RSMs reduced the synthesis problem from the source code of the program
into constraint solving [10]. These methods have lent themselves to various gen-
eralisations, including polynomial programs, programs with non-determinism,
lexicographic and modular termination arguments, and persistence properties
[2,14-16,20,25]. Recently, for special classes of probabilistic programs or term
rewriting systems, novel automated proof techniques that leverage computer
algebra systems and satisfiability modulo theories (SMT) have been introduced
[5,6,38,39,41]. All the above methods are sound and, under specific assumptions,
complete; they represent the state of the art for the class of programs they have
been designed for. However, their assumptions are often too restrictive for the
analysis of many simple programs. In particular, to the best of our knowledge,
none can identify an RSM for the program in Fig. 1. For this simple program, it
is easy to argue that the expected output of the neural network depicted in Fig. 2
decreases after every iteration of the loop and that it is always non-negative (see
Ex. 1). As such, this neural network is an appropriate RSM for the program.

ReLU

red — 1

1 ReLU 1
blue —

Fig. 2. A neural ranking supermartingale for the program in Fig. 1.

Learning Probabilistic Termination Proofs 5

We present a novel method for discovering RSMs using machine learning
together with SMT solving. We introduce the neural ranking supermartingale
(NRSM) model, which lets a neural network mimic a supermartingale over sam-
pled execution traces from a program. We train an NRSM using standard optimi-
sation algorithms over a loss function that makes the neural network decrease—
in average—across sampled iterations. We phrase the certification problem into
that of computing a counterexample for the NRSM. To do so, we encode the
neural network together with the expected value of the program variables; then,
we use an SMT solver for verifying that the expected output of the network
decreases along every execution. If the solver falsifies the NRSM, then it pro-
vides a counterexample that we use to guide a resampling of the execution
traces; with this new data we retrain the neural network and repeat verifica-
tion in a counterexample-guided inductive synthesis (CEGIS) fashion, until the
SMT solver determines that no counterexample exists [4,44]. In the latter case,
the solver has certified the generated NRSM; our method thus produces a sound
PAST proof or runs indefinitely. Our procedure does not return for programs that
are not PAST and may, in general, not return for some PAST instances. How-
ever, we experimentally demonstrate that, in practice, our method succeeds over
a broad range of PAST benchmarks within a few CEGIS iterations. Previously,
machine learning has been applied to the termination analysis of deterministic
programs and to the stability analysis of dynamical systems [1,12,21,24,28,30~-
32,42,43,45]; our method is the first machine learning approach for probabilistic
termination analysis.

Our approach builds upon two key observations. First, the average of expres-
sions along execution traces statistically approximates their true expected value.
Thanks to this, we obtain a machine learning model for guessing RSM candidates
that only requires execution traces and is thus agnostic to the source code. Sec-
ond, solving the problem of checking an RSM is simpler than solving the entire
termination analysis problem. Reasoning about source code is entirely delegated
to the checking phase which, as such, supports programs that are out of reach
to the available probabilistic termination analysers.

We experimentally demonstrate that our method is effective over many pro-
grams with linear and polynomial expressions, with both discrete and continuous
distributions. This includes joint distributions, state-dependent distributions,
distributions whose parameters are in turn random (hierarchical models), and
distributions with undefined moments (e.g., the Cauchy distribution). We com-
pare our method with a tool based on Farkas’ lemma and with the tools AMBER
and ABSYNTH [2,39,41]; whilst our software prototype is slower than these alter-
natives, it covers the widest range of benchmark single-loop programs.

Summarising, our contribution is fivefold. First, we present the first machine
learning method for the termination analysis of probabilistic programs. Second,
we introduce a loss function for training neural networks to behave as ranking
supermartingales over execution traces. Third, we show an approach to verify
the validity of ranking supermartingales using SMT solving, which applies to
a wide variety of single-loop probabilistic programs. Fourth, we experimentally

6 A. Abate et al.

demonstrate over multiple baselines and newly-defined benchmarks the practical
efficacy of our method. Fifth, we built a software prototype for evaluating our
method.

x € Vars (variables)
NelRr (numerals)
Opy =+ | - | * [&& | || |<|<=|==]... (binary operators)
E:=z|N|Eopy, E|-E (arithmetic expressions)
D ::=Bernoulli(E) | Gaussian(E, E) |... (probability distributions)
B:=DBop, B|!B|FE op, E | true | false (Boolean expressions)
C ::= skip (commands)
|x=FE (deterministic assignment)
|~ D (probabilistic assignment)

|C; C (sequential composition)

| if B then C else C fi (conditional composition)

Fig. 3. Syntax of loop-free probabilistic programs.

2 Termination Analysis of Probabilistic Programs

We treat the termination analysis of single-loop probabilistic programs. We con-
sider an imperative language that includes C-like arithmetic and Boolean expres-
sions, and sequential and conditional composition of commands [13,17,19,23].

Syntaz. A grammar for this language is shown in Fig. 3. We analyse single-loop
programs of the form
while G do
U
od

where the loop guard G is a Boolean expression and the update statement U is
a command. Variables are real-valued and c