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"ABSTRACT

The asymptotic feature of diffraction scattering of hadronS'v

'ﬂiis tentatively assumed to mean asymptotically pure 1maginary partial

.‘i‘Of an 1nf1nity of reaction channels and asymptotically 1nfinite_f!

o f“inelasticity (assuming asymptotic vanishing of partial-wave amplitudes)

model vhich has all the above features. Finally, these assumptions are.

showu to 1mply asymptotic vanishing of form factors, this resolves a

'°puzzling feature of conventional_dispersion theory;solutions for form

factors.

L

ilw_UCRL-l6728'x .

V ‘waves. An essential reqpirement is then inferred to be the existence»“f -

'EH;'This view is supported by construction of a physically sensible inelastic'
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- Introduction

The plausible conjecture that partial-wavé scattering amplitudes i

become asymptotically pure imaginary (as c.m. energy'wfs‘* oo) is of '
[

current interest, we refer to this as diffraction scattering, henceforth

DS. In this note we offer heuristic and illustrative arguments that DS

 depends on the existence of an infinity of reaction channels and on the

assoclated asymptotically infinite inelasticity. Accepting this view,

we then demonstrate that, as a consequence, form factors probably vanish -

as 8 -+ 0., Although this result is not surprising, and 1ndeed is

expected from our intuitive ideas about composite particles, it has ,&
previously not been clear what dyn&mical feature would be responsible
for such behavior. We here clarify this point and resolve a_problem fﬁ
encountered in conventioral dispersion-theory solutions for a form}a |
factor F . B

If, for a single elastic strong-interaction_channel, we can‘.
obtain an expression for the relevant'partial~vave scattening amplitcde
in the usual form N/D, then F = C p~t (C an appropriate constant) i‘:
satisfies the analyticity and unitarity requirementsl for a form factor.:
ﬁowever;'conventionally, 1t 1s possible %o normalize D(oo) -+ a constsnt;
| 2

so that apparently this solution for a form factor does not vanish

asymptotically., The same conclusion applies tolthe_generalization of

D' for a finite number of strong-interaction channels. Here, however,

the new feature of asymptotically infinite inelasticity is shown to be_

responsible for the asymptotic vanishing of F .




many~body scattering channels also.
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, In'Seetion 1 ve presentba heuristic argﬁment‘that an infinity'
of channels is essential for DS. Then, in Section 2, we exhibit a model

for a single channel with inelasticity which possesses the asymntotic

feature of DS, namely it becomes pure imaginary. Finally, in Section 3

we explicitly construct a "D =Lu type of solution for F which vanishes

asymptotically.

Throughout, we'shall employ only two-bodyvunitarity for two- .

:u body partial-wave amplitudes, inelasticity can, of course, represent

-+ 1. Strong-Interaction Amplitudes

One -ustially defines, diffractive seattering as phelpchess-inf'
which forward total scattering amplitudes become puie imaginarf, and fhe
differential-scattering cross sections become strongly peaked in thev
forward direction. We assume that this situation also implles pure
3

imaginary partial-wave amplitudes,” as has been shovn_to be the case if

‘we have Regge asymptotic behaviorh’s,with dominance by Pomeranchuk exchange;

 In this case, we need consider only a subset of channels for which vacuum-

quantum-number exchange is a possible reaction meehanism.6 For this~
subset of channels it is a plausible assumption that all the partial-wave
amplitudes are asymntotically pure imaginary. This is reasonable"'
especially 1if for s - oo we. can think of all the relevantrparticles~;v
as belonging to a representation of some approximafe group; for which i
all the relevant scattering is "elastic", | | - . -
We next show that this diffractive behavior cannet be achieved |

with an elasiic one-channel model, We denote a partial-wave amplitude'

R T . . o . . ¢
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Therefore, if t . 1 m v ,5 'i b then (1) implies that-"’t' - 1 ;

:’:

wf:~jfThis implication contradicts our usual 1deas about partiaW-wave amplitudes.;

: 'f- eCertainly, in a bootstrap theory with no- undetermined parameters, onef kfef

é;.should be able to write an unsubtracted dispersion relation for t Whic
 freqpires ty (s*oo)<* O;._ This premise is also true if Regge asymptotic‘e

.".fbehavior occurs (but is not true if there 1s a strictly non-shrinking Tf;f’
:f;diffraction peak) 2. | o el L Y '

For an n—channel situation,6 weiheve:‘e
o If tp(se00)/t(s+00) = 0, then

o o 1"I(")“ | n( 5) ) o( S) tIE

'where n(s) is the number of open channels at energy s connected to ff"
‘eichannel 1 via vacuum trajectory exchange, and c(s) is *€ O(l) We thuevh:‘» ’E?

‘obtain the rough estimate

e e o

© From this ahil our assumptions that t - 1 tp >0 :as,feff-oof_yefihggflrlg

.7 that

.
/o,
=]
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H.n(s)‘* Ioe) as 8 - © . g :['_ .'k-_l.(5)

This rather sketchy argument leads us to believe that an infinity of

reaction channels is essential to DS.. A corollary is obtained by

vconsidering inelastic unitarity for a single channel. Ve define"

n-

It then follows from unitarity and the assumption t - i tI .that',

o
. -

-

so that according to our previous assumptions we must have R(s) = .00 .

2. Sufficient Conditions for DS: a Model .

Thus far we have glven only heuristic arguments about conditions

"which are’ necessarily implied by DS. In this section we shall employ

N/D two-body partial-wave equations to examine possible situations whichs

might suffice to give DS.

We shall therefore examine the ratio

>
]

t;/tg= ~Im-D/Re’ D

panwfi-t f pRica a)vds}. :

Here we subtracted D at 8 = a; R as usual is the inelasticity.

We choose & pole-model force, with the left-hand cut of ¢ being a b

function at® E a; we then find that independent of R

.~

e
a2



n
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-large R .

-n degenefate channels, with
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N = G/(s'- a) where G is a constant. - (8) -

The simplest model we might consider is that of = constant R, leading
to . , CoLn
X = -RN(s)/[1-RI(s)] . . - (9
For large s (assuming that the integral does not tend to zero ,-.
as s - oo)l we thué find that X does not increase with increasihg,?

The next complication we can study is contained in a system of

Here N and G are matrices, with G independent of s , For

_simplicity we can look at an “"average" ratio X ; we now find that ‘g

X = zz Im tii/Re tii | T S ERA
turns out to have the same vdlue as for a single channel, Thus, this

model. also fails to guarantee that Xii = Im tii/Fe tii inéreases_with

the’ number of channels, i.e., with the inelasticity.

We feel that these preliminary models lack an essential feature,
namely, the existence of an infinite-number of channels with thresholdS'

above any given energy. We shall therefore concoct a model having these -

features; this exercise is amusing in that 1t incorporates all physically ‘

EN
[ty

reasonable fé&tures and predicts DS asymptotically., . -
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The main assumption of our model is the form of 'R :

o ‘ = ‘ o
n=1 o

" The step functions e.dmittedly introduce logari*.thmicwsinguvle.rities at the, _
thresholds, but we tolerate this because the relevant features for our
purposes are retained in this approximation, which has the virtue of giving
simple expressions. . We will disperse the a.mplitude t/p = N/D , and_

oW

take a one-pole model force so that: e have '
M) - ofesw. G
We also u‘se .‘bhe approximation ' S
= phase-space factor = 2p)l\/'§f % .. l

‘This is both convenient and accurate except when p — O o |
R —

From these specifications we now obtain, for 8 e( CN’ °N+1) PR

( Z )/Y R  -<151;)‘

. S -8 8, - & _ ¢ -8
Y(s) 1-811 4 1 .Zl( 1 )- z A fn| 22—
7 s - 8 S - 8, - n c =&
: © n=1 ’

X(s)

i}

Lk o

e
e

T e ¥

Ko
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. where s, 1s the first channel threshold and Y is just Re D, with the

1

‘above approximaﬁibns used to simplify the integral. Notice that for any

fipite numbgr of channels Ntotal’ we find

X(s > ) = total/vtotalx gn(s) he O <

However, a radically new feature can emerge if we let Ntot N -~ .

" To iilustrate this, we choose the rollowing parameters for simplicity%

a=0; c =1 sy; A, =A ' forall n . 47.(lh)52
s N P .
Consequently, |
N | o S IS SO
§: An B A Nyotel open channeis(s) ' S ' (;58)
X c -8 hog v “’Vr;7;;r g 3 N
ZAwn = am| [] 1--<—-——-————) (15b)
n c | ne C
1 n=1 o : )
.and © , © , .
T A S © 1 T
‘ . — = omm— — - : ' . . 5
> T | ) S

With these parameters, éach new channel pxovides an.eqﬁalv‘g-:
increment t6 the inelasticity (which'is consonant with classical ideas
of energy_equipartition). The channel spacing‘would be typical.ofl ‘
multi-pion channels, for instance, witﬁ g = mﬂe. Fof ‘s~4 60; we note
that R 2 *Jf- and also R pe X numerator "N function" ~ \JE:;

According to Olesen and Sq,uires,3 this behavior can result in DS..Y o

o Furthermore,;in‘a once-subtracted dispersion relation for D, the high-"

T




‘of R(s*o0) =+ o, the low-energy phenomena in this partial'wave can;sfillv'

. UCRL-16728
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energy integrand in our model 1s proportlonal to 8'3/2. Thus, in spite

b

4
be dominated by long-range forces.(i.e., the lower energy range oflﬁhe
integral for D). | | 4 <
The expressions of Egs. (15) can be easily evaluated ! with thév
resultv‘ ui v o : o : f  | |
G . 8 =8 s -8y sin n V O Sy “
Y=1- -y ;.f —f;———'{gn —;;f-— + A gn }-+ A gg ..
. 0 IR
| (16)
For s = oo 1t follows that - - . f{_,v'
X ® %ngs. - o ; o ()
as_?romised. _ ‘ o
vAgain, we wish to emphasize thev"cancellation“ érising within'
the infinite series of channel contributions to. Y . (incidentéllj;'"
if we took =\ = nth root of a Bessel function, then 1in Eq. (16)_'.-' | = (
the asymptotic behavior would turn out to be'unchanged.)v: | |
Apparently the existence of channels opening up,ébove any N
arbitrary energy gives essential features which cannotAbe obtainéd |
‘with eny finite number of channels. This need not be diséoncertiﬁg;  
since if is impossible to havé one production channel without an’
infinity of many-body inelastic channels. '?
Fbrféhe interested reader, we sketch in the Appendix thé- 7 'vf '-: &j

consequenceg of a choice of R with more appropriate threshold

properties.”’
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55 3}{ Form Factors

inelastic unitarity

h In this section we shall adopt a "truncatedf‘

'ij‘relation to examine the asympuotic behavior of a form factor Fg; iThise""‘
B ?Lx“. relation is;n‘

: Iﬁ.Fi .uaif(iéiln

1}
!
1
o+
oo

%

... where j’fff'f'”'" ‘

1

< Z 1n Py /tll Y

2\
i alln .

" here’ r.,caﬁ>generally be a complex number.;_If‘Ve-define_Jnoiﬂli;'

; ‘lf..ié -
r = pe . |

F = ;§;,e T

'°iiﬁA;Afem%e,x,w'ﬁmﬂhmsofaa;ﬁ:_oi‘m)

.- then Eq. (18) can be written

-ﬁ stax = eFe 0 (e

We emphasize,the'important consequenCe'
rt .= e ?x sin X . e o L (a8h)

As-long aslthe "iﬁelasticity" r' is'fihite; our-usual assomptions,

v:1about t(s - a:) lead to the conclusion that X - 0 as :s 4 oo., However,

7.%W”irii »,--.';v-if (and onl fif) r is asymptotically infinite, the possibility arises i

," does not vanish asymptotically, and therefore X =8 nonzerov;f"
'ﬂJ;i- Constantfqé - 00. To see the relevance of this, e additionally assume
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that F’' satisfies a dispersion relation (possibly once subtraéted); S .

_ . -8
The solution to Eq. (18) is then given, e.g., in Goldberger and Watson,

by: A o ' . : o e = ¢
‘ S ds' &(s' o L
F(s) = F(0) exp = k/ Z§1—:£;7%7 o : j_(20) oy
: 5 . - S
1 L : ,
tan & = Re(r t) tan X , o (20a)

T < In(r*t)

that is

O = X .

P . S

[

Equation (20) has the,as&mptdtic.behavior -
- e(w)fx e(e)
F(]s] = 00) = ¥(0) |s] - e (1 +0(n s) =v=) .
v. , IR (21):i
if’ fi remains’finite, ﬁhen our above discuésioh'iﬁplies that'-
F(oo) { 0. However, if r(s=o) = oo, then it ié possible to hévé:
A X(o&) £ 0, which implies an asymptoticallijanishiné form‘facfor; ” |
[barring the possibility ot X(o&) < 0, not reasonable bb&sicaiiy]. o
An example, which is not necessarity realis?ié; ;é fufnished‘._
by assuming that asymptoticaliy r=R . In this'case,rDS impii§s 
that %X - 3/2, so that asymptotically F = 1/\/3'. ';Asymétotic Reégé

behavior with Pomeranchuk trajectory exchange provides an example for

such DS, giving rise to partiat waves5 ot the trorm
1 ‘ .
7n & [i - 1(/2 invS] . [&

i * - . _ .
Note that ohice we concede the possibility of rt -5 0, ve also encounter.

't * X , : -
the possibility of rt = sin X e oscillating, with X(s) increasing A

T
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+  steadily as s - . Again, this is a feature not expectcd with a 1

finlte number of channels, but unfortunately we are now unlikely to be

" able to infer such behavior solely from our sparse knowledge of -“tni .

Inbparticular, for X(s). z'\/?? asymptotically, the following
behavior of F 1s possible: | | o
(a) F(s) does not vanish asymptotically dut osciiiatés for"
§ > +00; - = |
(v) F(s) vanishes as exp[- -' Is] ] for ‘ s ->. -.'.00. '
fThe reader may convince himself that ﬁhis is poss;ﬁle'by noting fhe

following identity,9

fm ’\/S-' ds! ~ |sl-l/2 5.<o
A ’ .
0 _— -

l .
relevant for evaluating Eq. (20): -

$'(s' - 8)

and F(s) ~ exp(17\f s ) everyvwhere.] ' e X

Currently we do not have any good model for the form-factor

inelasticity r (which probably will not be asymptotically the same

as R). Nevertheless the presence of asymptotically infinite
"inelasticity" enables us to see how a form factor vanishes asymptotically,
in principle, when calculated via present dispersion tedhniques.lo‘
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Appendix: An Inelastic N/D Model.
We briefly sketch the conseguences of choosing an R which
more appropriately preserves inelastic-threshold analyticity. For all

‘P-wave channels an appropriate choice would be.
P, O\ :
- R = ZAn<-§;> G(S—cn). L _(Al)-.
n . »

To provide easily integrable expressions we could approximate

2 ' 2 7 2 .
()2 () - () v
W/ s -a Py / v s' - a Vg e’

o (a2)

;This at least prevents the occurrence of singularities at_inelastié,'f v
thresholds as in Section 2. As a result we now have
o o : , . N ] ‘
Re D-1 = —Re ZA{l-(l-_)gn(l___)} B
¢ B n - .8 ey v
, o _ i ' -
' : (A3)

v

" For c, = ® the individual terms at fixed s are ‘O(s/cn) so that
our previous~choicé of parameters still gives a convergent result.

Choosing An = A, we sum the series using the identity

8 < .
j as (1 -2) = (s-c) m(l-2)-s (Ak)"
n n
to obtain
) - s 'sin n "\[s/s - o
Re D~ 1 = -% 5f ds fn of - | . (A5)

= .
= : _ n'\/s/so |
For s = oo,w%n( ) ~ Ln s and therefore (A5) is of order fn s also.

Qur conclusions of Section 2 are therefore unaffected.

X3

(T

Kag
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covers much of the relevant material from a more mathematical:
approach. (He does not discuss form factors, ho&ever.)' Hevndtés.
that the features of DS as preéently kndwn experimentaily aré aléo”
consistent with the following assumptions |

(a)'- t-+-1a, a0, but=1/2 fﬁr "complete aﬁsorpfiénﬁ N

(b)° R constant, = 1/a for one-channel case.
o
Allowing +(c0) ¥ 0 deviates from conventional assumptions in the

literature of dyhamical calculations; this resulﬁs in the possibility

r tf) ¥, 0.
5 00

Thus, it 1s again pdssible for ¥X(oo) ¥ 0, with the consequences

F(s» ) - O

£
’}\C\
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