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Introduction  

The plausible conjecture that partial-wave scattering amplitudes 

become asymptotically pure imaginary (as c.m. energy VT.. co) is of 

current interest; we refer to this as diffraction scattering, henceforth 
t 

DS. 	In this note we offer heuristic and illustrative arguments that DS 

depends on the existence of an infinity of reaction channels and on the 

associated asymptotically infinite inelasticity. 	Accepting this view, 

we then demonstrate that, as a consequence, form factors probably vanish 

as 	a -, co. 	Although this result is not surprising, and indeed is 

expected from our intuitive ideas about composite particles, it has 

previously not been clear what dynamical feature would be responsible 

for such behavior. 	We here clarify this point and resolve a problem 

encountered in conventional dispersion-theory solutions for a form. 

factor 	F. 

If, for a single elastic strong-interaction channel, we can 

obtain an expression for the relevant partial-wave scattering amplitude 

in the usual form 	N/b, then 	F = C D 	(C an appropriate constant) 

satisfies the analyticity and unitarity requirements 1  for a form factor. 

However, conventionally, it is possible to normalize 	D(co) - a constant, 

so that apparently this solution for a form factor does not vanish2  

asymptotically. 	The same conclusion applies to the generalization of 

for a finite number of strong-interaction channels, 	Here, however, 

the new feature of asymptotically infinite inelasticity is shown to be 

responsible for the asymptotic vanishing of 	F 
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In Section 1 we present a heuristic argument that an infinity 

of channels Is essential for DS. Then, in Section 2, we exhibit' a model, 

for a single channel with inelasticity which possesses the asymptotic 

feature of DS, namely it becomes pure imaginary. Finally, in Seätion 3 

we explicitly construct a 	type of solution for' F which vanishes 
	S 

asymptotically. 

Throughout, we shall employ only two-body unitarity for two-

body partial-wave amplitudes; inelasticity can, of course, represent' 

many-body scattering channels also.  

1 Strong-InteractIon Amplitudes 

• 	' One'us.t.al1y defines diffractive scattering as the process in 

which forward total scattering amplitudes become pure imaginary, and the 

differential-scattering cross sections become strongly peaked in the 

forward direction. We assume that this situation also implies pure 

imaginary partial-wave amplitudes, 3  as has been shown to be the case If 

we have Regge asymptotic behavior'. with dominance by Pomeranchuk exchange. 

	

• 	•, In this case, we need consider only a subset of channels for which vacuum- 

	

• 	quantum-number exchange is a possible reaction mechanism. For this 

	

• 	subset of channels it is a plausible assumption that all the partial-wave 

	

• 	amplitudes are asymptotically pure imaginary. This is reasonable 

especially if for a - oo we.can think of all the relevant particles 

as belonging to a representation of some approximate group, for which 

all the relevant scattering is "elastic". ' 

We next show that this diffractive behavior cannot be achieved 

with an e1aSic one-channel model. We denote a partial-wave amplitude 
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• 	 n(s) - oo 	as 	s -, co . 	 (5) 

This rather sketchy argument leads us to believe that an infinity of 

reaction channels is essential to DS.. A corollary is obtained by 	 ( 

• 	considering inelastic unitarity for a single channel. We define 

H = 	kth 2/1 t'f 2 	 (6) 

It then follows from unitarity and the assumption t- i t1  that 

t1 	l 	, 	 (6a) 

so that according to our previous assumptions we must have B(s) - oo 

2. Sufficient Conditions for DS: a Model 

Thus far we have given only heuristic arguments about conditions 

which are necessarily implied by DS. In this section we shall employ 

• 	
• 

 

NID two-body partial-wave equations to examine possible situations which• 

• 	might suffice to give DS. 	 - 

• 	 We shall therefore examine the ratio 

X = tI/tB.= -Im-.]D/BeD 	 • 

00 

-- 	

= pH N/[l 	 f  -sJ(s'-a) dst] 

• • 	 Here we subtracted D at s = a; H as usual is the inelasticity. 

We choose a pole-model force, with the left-hand cut of t bein a 

function at b= a; we then find that Independent of B 	• 	• 
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N = G/(s - a) where G is a constant 	(8) 

The simplest model we might consider is that of a constant B , leading 

to 

X = -R N(s)/[l - Ri(s)]  

For large a (assuming that the integral, does not tend to zero 

as s -, oo) we thus find, that X does not increase with increasing, 

large R 

The next complication we can study is contained in a system of 

n degenerate channels, with 

• 	
N 	=f(s)G. 	 .''-• 

• . Here N and G are matrices, with G independent of a • For 

simplicity we can look at an "average" ratio X ; we now find that, 

X 	Im t1 e t11 	 . 

turns out to have the same v.1ue as for a single channel. Thus, this 

model also falls to guarantee that X= Im t 1 /e t 	increases with 

the number of channels, i.e., with the inelasticity. 

We feel that these preliminary models lack an essential feature, 

namely, the existence of an infinite number of channels with thresholds 

above any given enerr. We shall therefore concoct a model having these 

features; this exercise is amusing in that it incorporates all physically 

reasonable features and predicts DS asymptotically.  
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The main assumption of our model is the form of.• R 

00 

A 8(s - c)  

The step functions admittedly introduce logarithmic singularities at the, 

thresholds, but we tolerate this because the relevant features for our 

purposes are retained in this approximation, which has the virtue of giving 

simple expressions. We will disperse the amplitude t/p2  N/b , and 

take a one-pole model force so that 'we have ........" . 

N(s) = G/(s - a) 	. 	. 	. 	' (12) 

We also use the approximation 

p = phase-space factor = 2p/(j 	. 1 • 	. . 

This is both convenient and accurate except when .p -+ 0 • 

From these specifications we now obtain, for s E(cN, cN+1) ' 

X(s) = (G 	 (13a) 

00 

Y(s) 	1[l+l {2<S: )-  1 H:} 
00 

+ 	
c1  - a A 	 (13b) 

1 
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where s is the first channel threshold and Y is just Re D, with the 

above approximations used to simplify the integral. Notice that for any 

finite number of channels N, we find 
total 

X(s -. co) 	Ntti/tti X £n(s) -, 0 o  

However, a radically new feature can emerge if we let Ntota1 
00- 

To illustrate this, we choose the following parameters for simplicity: 

a = 0; 	c n n.2 s0 ; 	A = A 	for all n • 	• () 

Consequently, 

A = A Ntotai open channe1s 	 (15a) 

00 

A In 	 = A In 	1- 	

)2) 	

(15b) 

• and 
a) 	 co 	 • 

(l5c) 

With these parameters, each new channel provides an equal 	• 

increment to the inelasticity (which is consonant with classical ideas 

of energy equipartition). The channel spacing would be typical. of 

multi-pion channels, for instance, with S0  = m 2 . For s - cc, we note 

2 
thatR\J, andalso Rp .xnumnerator "N function" 

According to Olesen and Squires, 3  this behavior can result In DS. 	• 

Furthermore, in a once-subtracted dispersion relation for D, the high- 
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energy integrand in our model is proportional to s 
_31'2 Thus, in spite 

of 'R(s-'00) 	, the low-energy phenomena in this partial wave can still 

be dominated by long-range forces (i.e., the lower energy range of the 

integral for D). 

• 	 The expressions of Eqs. (15) can be easily evaluated 7  with the 

result 

G 	- 	

S - 

S 	
sin 	

. 	 Si 
{n 	+A2n 	 }+A_ J 

(i6) 

For s - 00 it follows that 	 . 	 . 

(17) 

as promised. 	 . 

Again, we wish to emphasize the "cancellation" arising within 

the infinite series of channi contributions to. Y . (Incidentally, 

if we took ct = nth root of a Bessel function, then in Eq. (16) 

the asymptotic behavior would turn out to be unchanged.) . 

Apparently the existence of channels opening up above any 

arbitrary energy gives essential features which cannot be obtained 

with any finite number of channels. This need not be disconcerting,. 

since it is impossible to have one production channel without an 

infinity of many-body inelastic channels. 	. 	. 	. 	. 

Forhe interested reader, we sketch in the Appendix the 	. 

consequenceof a choice of R with more appropriate threshold 

properties. 	 .. 	 .. 	 . 

4) 
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3 	Form Factors 

In this section we shall adopt a "truncated" inelastic unitarity 
jV • . 	 . 	 . 	 . 	 . 	 . 	 .. 	 . 	 . 

relation to exariine the asymptotic behavior of a form factor 	F 	This 

relation is 

mi F 	F1 	= 	r t 	F  

where 

r = 
	( 	

t 	F 1)/t 	F11  

alin 

here 	r 	can generally be a complex number 	If we define 

ie 
r 	= 	pe 

ix 
e F 

iLL) 
t 	•= 	9, X, u 	functions of .e 	, s  

. 

then Eq 	(iS) can be written 

i(e+x) 
sin.X 	= 	r p3e  

We emphasize the important consequence 	• 	.• . 	 .• 	 • 

• 	 • 	 • 	 r t 	•.= 	e 1 	sinX 	. • 	
,. (18b) 

As long as .the .t!inelasticityfl 	r 	is finite, our usual assumptions. 

about 	t(s -ø  cx) 	lead to the conclusion that 	X - 0 as 	s - 	Hosever, 

if (and onlyif) 	r 	is asymptotically infinite, the possibility arises 

• 	 • 	
• 

• 

• 

..... . ....... 

. 	 . 

that 	r .t r aoes not vanish asymptotically, and therefore 	X 	a npnzero 
. • 

• •• 	constant as 	00. 	To see the relevance of this, we additionally assume 

• 	 • .• 	 . 	 .. . 
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that F satisfies a dispersion relation (possibly once subtracted). 

The solution to Eq. (18) is then given, e.g., in Goldberger and Watson, 8  

by 	

F(s) = F(0) e[ Is 	
(20) 

tan 	Be(r t) 	= tan X , 	 (20a) 
1 - Ln(rt) 

that is 

Equation (20) has the asymptotic behavior 

	

-(co)/1t 	i) 
F( JsJ.-. oo) = F(0) JsJ 	e 	(i+ 0(2n s) 

(21) 

If r remains finite, then our above discussion implies that 

F(oo) 7(0. However, if r(s-co) .- o, then it is possible to have 

X(co) 7(0, which implies an asymptotically vanishing form factor 

[barring the possibility or X(oo) < 0, not reasonable physically]. 

An example, which is not necessarily realistic, is rurnished 

by assuming that asymptotically r R • In this case, DS impLies. 

that X -' /2, so that asymptotically F 	. \Asymptotic Regge 

behavior with Pomeranchuk trajectory exchange provides an example for 

such DS, giving rise to partial waves 5  or the rorm 

2 1 [i- , /22ns] • 	

. 	 . 
Note that oflee we concede the possibility of rt -74 0, we also encounter 

* 	ix 
the possibility of rt = sin X e 	oscillating, with X(s) increasing 

(. 
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steadily as 	s-co. 	Again, this.is a feature not expected with.a 

finite number of channels, but unfortunately we are now unlikely to be 

able to infer such behavior solely from our sparse knowledge of 

In particular, for 	X(s) 	'/7 	asymptotically, the following 
behavior of 	F 	is possible: 

F(s) does not vanish asymptotically but oscillates for 

-+co; 

F(s) vanishes as 	e[_] for 	s 	- 

(The reader may convince himself that this is possible by noting the 

following identity, 9  relevant for evaluating Eq. (20): 

icc 	 -1/2 
ds' Is! 	, 	s<0 

I! 	ss) 
'Jo 

= 	0 ) 	s > 0 

and 	F(s) 	exp(if 	) 	everywhere.] 

Currently we do not have any good model for the fox-in-factor, 

Inelasticity 	r 	(which probably will not be asymptotically the same 

as 	R). 	Nevertheless the presence of asymptotically infinite 

ttlnelasticitytt enables us to see how a form factor vanishes asymptotically, 

In principle, when calculated via present dispersion techniques. 10  
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Appendix: An Inelastic N/D Model. 

We briefly sketch the consequences of choosing an R which 

• 

	

	 more appropriately preserves inelastic-threshold analyticity. For all 

P-wave channels an appropriate choice would be 

B 	A(s) e(s - c)  

To provide easily integrable expressions we could approximate 

	

2 	 2 	 2  
(i 	P1 	(P 

3 - 	 P 	 P 

1 1 s' - a 	 s' - a 	
by 	

s' - a 

•(A2) 

This at least prevents the occurrence of singularities at inelastic. 

thresholds as in Section 2. As a result we now have 

BeD -1 = 

• 	
• 	(i3) 

For C -, 	the individual terms at fixed s are O(s/c) so that 

our previous choice of parameters still gives a convergent result. • 

Choosing A = A, we sum the series using the identity 	. 

f ds Ln(l - 	) = (s - c) Ln(l - 	) 	s . 

to obtain 	 . 	 . 	 Ai  

1 	 r Re D •'. 1 = - - 1 - I 	ds In 	 j 	. 	(A) 	 'I 

0 	J . • 	. 

For S - 	) 	In s and therefore (A5)  is of order In s also., 

Our conclusions of Section 2 are therefore unaffected. 
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10 After this work was done, the author received a preprint by 

D. H. Lythe, University of Birmingham (November 1965), which 

covers much of the relevant material from a more mathematical 

approach. (He does not discuss form factors, however.) He notes 

that the features of DS as presently known experimentally are also 

consistent with the following assumptions 

t - i a, 	a / 0, but = 1/2 for ttcornplete  absorption tt  

R constant, = 1/a for one-channel case. 

Allowing t(c) / 0 deviates from conventional assumptions in the 

literature of dynamical calculations; this results in the possibility 

rt) 	/0. 
s-, 00 

Thus, it is again possible for X(oD) / 0, with the consequences 

F(s)- 
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