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2.2 Significant findings from the A) PARADIGM and B) hVIPER path-
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scaled mean IPLs of regulatory hubs that have at least 10 down-
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fies the clusters in which a hub is differentially active (yellow). B)
The heatmap displays master regulators (MRs) that have differ-
ential activity levels in at least one of the one-vs-all-other cluster
comparisons. The panel at the left identify the lncRNA cluster in
which MRs are differentially active (yellow). For each cluster, gene
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lighted in boldface. The similarity can be based on: 1. complexes
or families with components identified by both methods, 2. genes
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taken from [117]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 A) Correlation network for lncRNA clusters 3, showing PARADIGM
pathway features, hVIPER regulators, and lncRNAs. Red and blue
edges indicate Spearman correlations (|ρ| > 0.5) between the ex-
pression of a differentially expressed lncRNA and the inferred activ-
ity of a differentially active PARADIGM or hVIPER feature. The
color of each node reflects differential expression for a lncRNA, and
relative activity for a PARADIGM/hVIPER feature (red for over-
expressed/active, blue for underexpressed/inactive). B) A subnet-
work highlighting the lncRNAs with high degree of correlation to
regulators in the proliferation and DDR pathways. Both panels
generated by myself, with input from Christina Yau and Gordon
Robertson, for the TCGA UM working group. Panel A) also ap-
pears in [117]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
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of a differentially active PARADIGM or hVIPER feature. The
color of each node reflects differential expression for a lncRNA, and
relative activity for a PARADIGM/hVIPER feature (red for over-
expressed/active, blue for underexpressed/inactive). B) A subnet-
work highlighting the breadth of associations of LINC00152 and
BANCR with regulators in the immune response, DDR, MYC/-
MAX and hypoxia signaling pathways. Both panels generated by
myself, with input from Christina Yau and Gordon Robertson, for
the TCGA UM working group. Panel A) also appears in [117]. . 20
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2.9 Full network of significantly differential Master Regulators. Nodes
are colored by differential activity as in Fig.2.8. Shapes represent
types of MR. Groups identified by MR Combinatorial Analysis are
shown as multi-regulator nodes. Links are colored by type of in-
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translational regulation. Links to and from a module indicate reg-
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ately decreased. All links are plotted on a common thickness scale,
with the thinnest lines corresponding to links between individual
MRs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
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2.11 CREB1 RNAi and 666-15 experiments. A) CREB1 RNAi sup-
presses enzalutamide-resistant cell growth. The indicated cell lines
were transfected with CREB1 RNAi or NTC RNAi. Cell viability
was determined 120 hours later using fluorescent-labeled cell imag-
ing. Protein lysates were harvested at 120 hours and probed with
the indicated antibodies. B) CREB1 inhibitor 666-15 suppresses
enzalutamide-resistant cell growth. The indicated cell lines were
treated with dose escalation of the CREB1 inhibitor 666-15. Cell
viability was quantified 72 hours later using fluorescently-labeled
cell imaging. C) 666-15 treatment blocks the transcriptional func-
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MSI status on UCEC and COADREAD cohorts. B) Top 10 most
predictive AKLIMATE feature sets and top 50 most predictive fea-
tures. Expression of top 50 features (left heatmap); Membership
of most predictive features in most predictive feature sets (right
heatmap). Features are organized by KNN clustering into 3 groups,
followed by hierarchical clustering within each cluster. Feature set
model weights scaled to a sum of 1 (barplot, top of right heatmap).
Feature model weights scaled to a sum of 1 (Barplot, right of
right heatmap). Feature and feature set weights averaged across
50 train/test splits. . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.2 AKLIMATE results for the reduced AKLIMATE model (using only
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4.3 AKLIMATE performance on predicting MSI-High vs MSI-Low+MSS
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pairwise comparisons. Methods as in Fig.4.1. . . . . . . . . . . . . 83

xi



4.4 AKLIMATE performance on predicting survival at 2000 days in
the METABRIC cohort. A) Performance of AKLIMATE under
different data type combinations. EXP+CNV - AKLIMATE with
genomic features only; clinical - a RF model run with the clini-
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nomic features as "local" variables and clinical features as "global"
ones. FSMKL and BCC dashed lines show mean performances for
the two models under 5-fold cross-validation as shown in [129]. B)
AKLIMATE results highlighting the top 10 most predictive fea-
ture sets and top 50 most predictive features. Figure organized
as Fig. 4.1. Clinical variables shown as column annotations; they
are included only if among the top 50 most informative features
in the model. Clinical variables are ranked from top to bottom by
relative predictive contribution. Survival status is a binary vari-
able representing survival at 2000 days (labels) while days survived
shows actual duration of survival. Samples sorted by days survived
within the two classes. Feature and feature set weights averaged
across 50 train/test splits. . . . . . . . . . . . . . . . . . . . . . . 87

xii



4.5 Prediction of cell line viability after shRNA gene knockdowns. A)
RMSEs of AKLIMATE and competing methods on 37 consensus
viability profiles from the Achilles dataset. Methods: Random For-
est (RF), Gaussian Process Regression (GPR), Multiple Pathway
Learning (MPL), ensemble of MPL and Random Forest (MPL-RF),
L2 regularized linear regression (GLM-dense), L1 regularized lin-
ear regression (GLM-sparse). B) Number of times an algortihm
produced the best RMSE on a prediction task. To prevent small
relative RMSE differences from having a biasing effect on the win
counts, for each task we consider all algorithms with RMSE within
1% of the min RMSE to be joint winners. For that reason total
win counts add up to more than the number of regression tasks. C)
AKLIMATE’s top 10 most predictive feature sets and top 50 most
predictive features for the task of predicting MDM4 shRNA knock-
down viability. Figure organized as Fig. 4.1. D) RMSEs of KRAS
AKLIMATE models with and without the use of mutational pro-
files for 8 key regulators. Results shown for 10 matched stratified
train/test splits where 80% of the cohort is used for training and
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Abstract

Prediction of cancer phenotypes through the integration of multi-omic data and

prior information

by

Vladislav J. Uzunangelov

High-throughput data have become ubiquitous in the study of biological phe-

nomena. We can now query cellular state at higher resolution, giving us better

insight into complex diseases. For example, there are currently tens of thou-

sands of cancer patients with simultaneous copy number, mutation, methylation,

mRNA, miRNA and protein level profiles. Furthermore, cellular perturbations are

increasingly characterized on the multi-omic level. These experiments uncover im-

portant dependencies among genes, their products and environmental conditions

- relationships that accumulate in a growing number of databases. However, the

integration of such prior pathway knowledge with new heterogeneous genomic

measurements in an interpretable model remains a formidable challenge that is

still not fully solved.

My thesis presents three different approaches which incrementally address that

problem. First, I present a feature engineering method (hVIPER) that infers ki-

nase protein activity levels in a pathway-informed manner. Next, I develop one of

the joint winners of the DREAM9 Gene Essentiality Prediction Challenge - a Mul-

tiple Kernel Learning algorithm with multi-omic pathway-derived kernel functions

(MPL). Finally, I improve upon the DREAM9 winner by introducing empirical

kernel functions computed through Random Forest tree ensembles (AKLIMATE).

AKLIMATE outperforms state-of-the-art methods in diverse phenotype learning

xix



tasks, including predicting microsatellite instability in endometrial and colorectal

cancer, survival in breast cancer and shRNA knockdown response in CCLE cell

lines. In conclusion, I briefly demonstrate how AKLIMATE can be adapted to

the development of multi-omic minimum-feature predictors for patient subtypes.
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Chapter 1

Introduction

Modern cell biology is a science of data integration. Experiments are now

routinely set up to collect genomic, transcriptomic and proteomic measurements,

often in the same patient cohort. The Cancer Genome Atlas (TCGA) is one such

example - the consortium generated a compendium of over 10,000 samples that

has been richly characterized across multiple data modalities[66]. By examining

these data types both individually [8][24][66] and integratively [66], TCGA has led

to major breakthroughs in the molecular-level understanding of cancer initiation

and progression.

A great majority of published biological experiments, ranging in size from

TCGA-level analysis to small-cohort expression studies, produce signatures of

differential features that capture contrasts between subgroups of the examined

cohorts (e.g. [42]). Such signatures can serve two purposes - on one hand, they

inform our growing understanding of gene-gene interaction networks and the ge-

netic, signaling and metabolic pathways they describe. On the other hand, they

can be directly used in unsupervised [148] or supervised [59] learning tasks as
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a way to transfer prior knowledge to current analysis. In fact, many of the Dia-

logue on Reverse-Engineering Assessment and Methods (DREAM)[137] challenges

have demonstrated that the incorporation of pathway or signature (PS) informa-

tion in predictive modeling can boost performance across a wide range of tasks

[32][147][59]. As a consequence, efforts to catalogue and update PS information

have led to the proliferation of (often heavily overlapping) PS collections and

databases,with sizes varying from a few dozen to 10,000’s. Their focus ranges

from the most narrow view of "canonical" pathways [76][46] to ones that special-

ize in a particular data type [55][73][68] to general compendiums that aggregate

many disparate sources [21][93][114].

The emergence of next generation data-generating technologies in the last

decade has clearly fueled the rapid recent growth of PS collections - more mul-

timodal data profiles introduce more novel signatures. However, there is still

paucity of methods that can truly take advantage of 10,000’s of heterogeneous

data features and 10,000’s of potentially relevant PS feature sets. My thesis pro-

vides a sequence of progressively better solutions to that problem, leading up to

the introduction of a novel machine learning method that natively integrates all

sources of information at scale.

In Chapter 2, I lay the foundations for multi-modal data analysis by describ-

ing a feature engineering method (hVIPER) that solves one aspect of a problem

critical to many experimental designs - what if we can’t generate the data that

is most salient to our investigation? In particular, hVIPER approximates kinase

protein state by an activity score computed from expression data. hVIPER uses

a pathway-informed hierarchical application of an existing method for the inferral

of transcription factor activities [3]. Chapter 2 gives examples of A) the integra-
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tion of hVIPER activities with other data types for a deeper characterization of

cancer subtypes and B) hVIPER utility in identifying novel therapeutic targets in

treatment-refractory castration-resistant prostate cancer. Furthermore, hVIPER

activities are one of several data modalities used for the prediction of shRNA

knockdown profiles in Chapter 4.

Chapter 3 transitions to the creation of learning models that can handle both

heterogeneous data and PS prior knowledge. One commonly used approach for

multimodal data integration is Multiple Kernel Learning (MKL)[7] - a framework

for the discovery of optimal (generally conical or convex) combinations of pairwise

sample similarities (kernel matrices). In an MKL setup, different data types can

be encoded as distinct kernel matrices by utilizing data-type specific linear or non-

linear transformations. Chapter 3 introduces Multiple Pathway Learning (MPL)-

an MKL instance in which each kernel serves the dual purpose of encoding a

specific data type as well as a particular PS gene set. As a consequence, an

MPL solution is in effect the most predictive meta-pathway we can construct

with available PS gene sets as building blocks. MPL co-won the DREAM9 gene

essentiality challenge[59] - chapter 3 describes how we achieved that milestone and

what insights we gained from the different predictive models.

Despite its obvious advantages and excellent predictive performance, MPL is

not without shortcomings. In particular, it cannot assign predictive importance

to features in the original input space and it cannot model inter-data type feature

dependencies. In chapter 4, I introduce AKLIMATE - an algorithm that resolves

MPL’s deficiencies in feature interpretation and integration. It still operates with

PS-based kernels in an MKL framework, but each kernel matrix is derived through

the clever interpretation of supervised decision tree ensembles. This novel manner
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of kernel construction is in large part responsible for AKLIMATE’s superior per-

formance when compared to standard MKL methods of various flavors. Finally,

Chapter 5 presents ideas for further AKLIMATE improvements or applications.

This dissertation introduces a modern, flexible and extensible framework for

the native integration of multimodal data and prior knowledge. AKLIMATE’s

unique blend of Random Forests, MKL and stacked learning provides a blueprint

for the creation of interpretable, high-performing and scalable ensemble models.

As this body of work demonstrates, such models can make crucial contributions

to a wide range of genomic prediction tasks.
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Chapter 2

Hierarchical VIPER (hVIPER)

In this chapter I describe a feature engineering technique (hVIPER) that uses

pathway information to infer transcription factors (TF) and kinase protein ac-

tivity. The technique extends a previous approach called Virtual Inference of

Protein-activity by Enriched Regulon analysis (VIPER) [3] that derives TF activ-

ities from the expression of their targets. hVIPER modifies the original VIPER

model in two important ways. On one hand, hVIPER uses a hierarchical inference

approach to compute kinase activities (in addition to TF ones). Characterizing

the kinome behavior is crucial in translational medicine (e.g. drug development

and drug therapy) as kinases are generally much easier to target pharmacolog-

ically than TFs. On the other hand, hVIPER activities are derived from pre-

assembled compendiums of TF and kinase targets instead of the empirically re-

constructed regulator-target networks used in VIPER. The use of literature-based

target sets allows for the intuitive incorporation of past experimental results into

new data analysis. Furthermore, they are generally more accurate than de novo

data-inferred TF regulomes, at the expense of reduced TF coverage [52].
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I present two applications of hVIPER to the analysis of dysregulated networks

in A) uveal melanoma (UM) and B) metastatic castration-resistant prostate cancer

(CRPC). I was responsible for all hVIPER results in the UM marker paper[117].

Furthermore, in collaboration with Christina Yau (provider of PARADIGM[160]

analysis), I contributed the network characterization of the main UM subtypes

which required integrating hVIPER activities with lncRNA and PARADIGM fea-

tures. The introduction, data generation, and subtype analysis included here are

attributable to all authors of [117].

The CRPC study has been submitted for publication. It is a collaboration

under the umbrella of the Stand Up 2 Cancer West Coast Dream Team (WCDT),

with main contributions from Josh Stuart’s lab at UCSC and Joshi Alumkal’s lab

at OHSU. I contributed the AR signature and hVIPER analyses. The regula-

tory network discovered by hVIPER led to the main finding of the manuscript -

a CREB1-influenced dysregulation circuit that could lead to potential novel tar-

geted therapies for CRPC patients. The introduction and data generation are

attributable to all authors, with wet lab validation contributed by Joshi Alumkal

and his group.

2.1 Uveal Melanoma

2.1.1 Introduction

Uveal melanoma (UM), which arises from melanocytes resident in the uveal

tract, is the second most common melanoma subtype after cutaneous melanoma

(CM) [134][163]. Although both UM and CM tend to occur in people with light

iris color and fair skin [167], their clinical and molecular characteristics are very
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different [33][170]. While primary UM is treated with either surgery or radiation

and has a low local recurrence rate, up to 50% of UM patients develop distant

metastatic disease, often to the liver, after treatment of the primary tumor. At

present there are no effective therapies for metastatic UM, and most patients

survive less than 12 months after diagnosis of metastases [45][22]. UM displays

chromosome aberrations and gene mutations that correlate strongly with clinical

outcome and are not present in CM. Loss of one copy of chromosome 3 (monosomy

3, M3) in UM is associated with an increased risk of metastasis and a poor prog-

nosis [39][133]. Loss-of-function mutations in BAP1, which is located on 3p21,

have been identified in M3-UM [61], and decreased BAP1 mRNA and protein ex-

pression, indicating BAP1 aberrancy, are highly correlated with the development

of UM metastases [75][84]. Currently either disomy 3 (D3) versus M3 status or

a 12-gene microarray-based gene expression panel is used to determine whether a

patient is in a low- or a high-risk prognostic group [60][152]. Recent analysis of

a large D3-UM cohort showed SF3B1 mutation to be associated with an interme-

diate risk of developing later-onset metastatic UM [173]. Despite prognosis being

clearly correlated with the expression of a small panel of marker genes, with M3,

and with BAP1 aberrancy or SF3B1 mutation, the molecular pathways involved

in the development of metastatic disease have not been elucidated. In this Rare

Tumor Project of The Cancer Genome Atlas (TCGA), we performed a global

and integrated molecular characterization of 80 primary UM, seeking to generate

insights into biological processes that underlie UM tumors that have distinctly

different prognoses.
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2.1.2 Results

We used RNA-seq data to profile the expression of 20,531 mRNAs and of

8,167 long non-coding RNAs (lncRNAs) and processed transcripts, and identified

four-cluster consensus solutions for both mRNA and lncRNA (Fig.2.1A&B). The

two clustering solutions exhibited very high concordance. This concordance was

maintained in subtypes generated from other data types as well - very high for

PARADIGM-based clusters and reasonably strong for miRNA-, methylation-, and

copy number-based ones (Fig.2.1B). Unless specifically stated, the rest of the

chapter describes the lncRNA-based solution. D3-UM divided into transcription-

based clusters 1 and 2, M3-UM into clusters 3 and 4, and the 12-gene panel’s two

prognostic groups were each further separated into two groups.

As expected, M3-UM patients had a significantly worse prognosis than D3-UM

(Fig.2.1C). BAP1 alterations are widely prevalent in poor-prognosis clusters 3 and

4 - such alterations lead to biallelic BAP1 loss since patients in these subtypes

are already characterized by the loss of chromosome 3. Furthermore, M3/BAP1-

aberrant tumors from both poor-prognosis clusters map to the same DNA methy-

lation cluster (Fig.2.1B), suggesting the existence of a global M3/BAP1-aberrant

methylation pattern.

Interestingly, even though the poor-prognosis clusters group together based on

survival, large scale copy number events, and the 12-gene prognostic signature,

they have very different transcriptomic profiles, suggesting the operation of dis-

tinct biological processes. A significant difference between cluster 3 and cluster 4

is that the latter contains all samples with high inferred CD8 T cell infiltration

levels (Fig.2.1B). The association between immune infiltration and M3/poor prog-

nosis has been documented previously [17]. Leukocyte infiltration alone, however,
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is not sufficient to explain cluster 4 as only ∼ 60% of the tumors in it exhibit high

leukocyte fraction.

To further characterize the differences between the two poor-surviving clus-

ters, we performed PARADIGM and hVIPER (see 2.1.4.2) analysis. Each of the

methods provides a measure of pathway activity - PARADIGM by integrating

expression and copy number on a network of gene interactions and hVIPER by

approximating master regulator (MR) activity from the expression or inferred

activity of an MR’s targets. Since the two methods provide distinct pathway-

informed views of the patients, we hypothesized that combining the results of

the two approaches will give us the most complete description of the different

biological processes underpinning poor-survival phenotypes.

On the feature level, PARADIGM and hVIPER differential features tend to

show only moderate overlap (Fig.2.2, also see Section 2.1.4.3). However, the

overlap is much stronger on the pathway level, with the two methods providing

complementary support for the dysregulation of key biological processes.

In cluster 3, PARADIGM identified higher activities of key transcription fac-

tors FOXA1 and FOXM1, as well as elevated levels of MAPK1 and AKT, indi-

cating high cellular cycling and cell proliferation (Fig.2.2A and Fig. 2.3A). Those

findings were supported by the elevated hVIPER scores of E2F1 (proliferation) and

MAPK1 (Fig.2.2B and Fig. 2.3A). Furthermore, DNA Damage Response (DDR)

appears to be downregulated, with support from both PARADIGM (lower activ-

ity of the DNA Damage Process abstract) and hVIPER (lower activity of ATR

and CHEK2). Finally, the downregulation of hypoxia response can be inferred

from the lower activities of the HIF1α/ARNT complex (PARADIGM) and the

HIF1α regulator feature (hVIPER).
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Figure 2.1: Clustering solutions based on A) mRNA and B) lncRNA features.
Covariate annotation tracks show selected genomic and clinical features. The
lower heatmap displays the expression profiles of 12 genes used in a prognostic test
for the risk of developing metastasis [60], with blue text highlighting genes that are
on chromosome 3. High-risk primary tumors show low expression of eight of these
genes and high expression of four genes (yellow versus green panels at the left).
BAP1 structural alterations that include alternative splicing and rearrangements
were detected by assembly of RNA-seq and DNA-seq data. Leukocyte fraction
was estimated from DNA methylation data. LOH, loss of heterozygosity. *, **,
*** p value < 0.1, 0.01, 10 , Fisher’s Exact or Chi-square test. C) Kaplan-Meier
curves for overall and metastatis-free survival for mRNA and lncRNA subtypes,
with log-rank p-values. Figure panels taken from [117].

In cluster 4, both PARADIGM and hVIPER capture strong immune-related

activity, concordant with the high leukocyte infiltration levels previously dis-

cussed. In particular, the JUN/FOS complex (identified by both methods) and

JAK2-related signlaing (IL23/JAK2, IL27/JAK2 complexes and JAK2-STAT1/3

signaling, all supported by both methods) were highly upregulated (Fig. 2.2

and Fig. 2.4A). Unlike cluster 3, increased activity of RAD21, ATM and ATF2

(hVIPER) as well as the DNA Damage Process abstract (PARADIGM) pointed

towards upregulation of DDR. In another cluster 3 contrast, strong MYC signaling

(hVIPER), possibly through the MYC/MAX/MIZ1 complex (PARADIGM), cou-

pled with higher levels of HIF1α (hVIPER, HI1α/ARNT complex in PARADIGM)

suggest upregulated hypoxia response.

The difference in DDR activity between the two poor-surviving clusters is

particularly interesting in light of the fact that BAP1 has been implicated in

the regulation of DNA damage response/repair - BAP1 loss of function leads to

inefficient DDR [71][174]. As the latter is similarly prevalent in clusters 3 and 4, a

fruitful future topic of investigation would be the elucidation of other contributing
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factors for the divergent DDR response in M3 patients.

On a similar note, and related to divergent hypoxia signaling, PARADIGM

and hVIPER could only produce a partially consistent view of MYC activity.

MYC is an oncogenic transcription factor located on chromosome 8 (8q24.21)

whose involvement in UM progression has been suggested previously [102][157].

As M3 and 8q gain show a high correlation (Fig. 2.1), we expected MYC signal-

ing to play a prominent role in the networks describing poor-surviving patients.

Interestingly, both PARADIGM and hVIPER produced some unexpected results

- PARADIGM’s MYC/MAX complex showed higher activity in cluster 4, but not

in cluster 3 (Fig. 2.2A). Furthermore, it had unexpectedly high activity in cluster

1, a group of good survivors with D3/8q-normal tumors. The MYC/MAX/MIZ1

complex showed similarly strong signal in cluster 4, much more neutral signal in

cluster 1, and decreased activity in the other group of M3 poor survivors (cluster

3). Similarly, hVIPER registered increased MYC activity in cluster 4 (but even

more so in the good-survivors of cluster 1), yet MYC downregulation in clus-

ter 3 (Fig. 2.2B). MYC’s partner in the MYC/MAX complex was highly active

in M3/8q-gain cluster 3, but also active in the D3 good survivors of cluster 2

(although the latter exhibits a pattern of 8q gain as well).

Taken together, the evidence points toward increased MYC activity in clus-

ter 4 (Fig. 2.4A), but is a lot more inconclusive for the other lncRNA clusters

(although suggesting downregulation in cluster 3 - Fig. 2.3A). One possible ex-

planation for this lack of clarity is that MYC can either upregulate or repress

its gene targets, depending on the activity of different complexes it is a part of

[85]. Another explanation is that the interplay between MYC and its regulators

is causing divergent MYC activity. For example, PVT1 is a lncRNA situated on
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chromosome 8 (8q29.21) that is one of the most differentially expressed transcripts

in poor-prognosis lncRNA clusters 3 & 4. Furthermore, its locus is adjacent to

the MYC locus and it is coamplified with MYC in 8q-gain UM tumors. PVT1

has been previously shown to stabilize MYC protein levels [28] and enhance its

activity [153]. A more precise examination of the MYC-PVT1 interplay could be

crucial in explaining MYC’s behavior in the context of UM.

As showcased by PVT1, lncRNAs can play significant roles in cancer devel-

opment and progression. The interactions between lncRNAs and key regulators,

however, are often poorly understood. As a first step towards constructing a

lncRNA-MR interactome, I constructed cluster-specific networks from the most

differential findings of hVIPER, PARADIGM, and a separate lncRNA differen-

tial analysis (see 2.1.4.3). The recovered network for cluster 4 has 709 correla-

tions between 26 lncRNAs, 70 hVIPER and 29 PARADIGM features (Fig.2.4A).

LINC00152 and BANCR are among the most highly connected and the most dif-

ferentially expressed lncRNAs in the cluster 4 network (Fig.2.4A, Fig.2.1B). The

expression levels of these lncRNAs are strongly correlated with regulator activi-

ties in previously discussed key pathway processes - e.g. immune-related JAK2,

JUN/FOS and STAT complexes, mediators of DDR, and MYC/MAX & HIF1α

hypoxia-related regulators (Fig.2.4B).

Similarly, the recovered network for cluster 3 contains 188 correlations between

10 lncRNAs with 21 hVIPER and 24 PARADIGM pathway features (Fig.2.3A).

In addition to being much smaller than the cluster 4 network, it only contains

lncRNAs that are poorly characterized (or not characterized at all) in cancer

settings. Nevertheless, most of these lncRNAs exhibited high correlation with

activated transcriptional regulators of proliferation (FOXM1, E2F1, PRKACA)
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and negative correlation with low DDR pathway activity (ATR, CHEK2, CDK1,

DNA Damage Process abstract, Fig.2.3B).

2.1.3 Data

Eighty primary UM tumors were available for multiplatform analysis. Can-

cer cell contents were high based on ABSOLUTE [20] (median purity = 0.95),

DNA methylation-derived leukocyte fraction, and histopathological assessment.

All cases were ≥T2 (seventh edition of the AJCC TNM-staging system); ∼10%

of patients developed another primary malignancy.

2.1.3.1 PARADIGM Superpathway

Pathways were obtained in BioPax Level 3 format, and included the NCIPID

and BioCarta databases (http://pid.nci.nih.gov) and the Reactome database

(http://reactome.org). Gene identifiers were unified by UniProt ID then converted

to Human Genome Nomenclature Committee’s HUGO symbols using mappings

provided by HGNC (http://www.genenames.org). Altogether, 1,524 pathways

were obtained. Interactions from all of these sources were combined into a merged

Superimposed Pathway (SuperPathway). Genes, complexes, and abstract pro-

cesses (e.g. “cell cycle” and “apoptosis”) were retained and are collectively referred

to as pathway “features”. The resulting pathway structure contained a total of

19,504 features, representing 7,369 proteins, 9,354 complexes, 2,092 families, 82

RNAs, 15 miRNAs and 592 abstract processes.
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Figure 2.2: Significant findings from the A) PARADIGM and B) hVIPER pathway
biomarker analysis (see 2.1.4.3). A) The heatmap displays scaled mean IPLs of
regulatory hubs that have at least 10 downstream targets and are differentially
active in at least one of the one-vs-all-other cluster comparisons. The panel at the
left identifies the clusters in which a hub is differentially active (yellow). B) The
heatmap displays master regulators (MRs) that have differential activity levels
in at least one of the one-vs-all-other cluster comparisons. The panel at the left
identify the lncRNA cluster in which MRs are differentially active (yellow). For
each cluster, gene biomarkers with similar findings across the two methods are
highlighted in boldface. The similarity can be based on: 1. complexes or families
with components identified by both methods, 2. genes within the same pathway
showing complementary inferred activity, or 3. abstract processes linked to any
of the above. Figure panels taken from [117].

2.1.3.2 hVIPER curated Transcription Factor and Kinase Regulome

A compendium of TFs and their targets (TF regulons) were created by com-

bining information from four databases:

1. SuperPathway [128]: This is the same interaction network described in

2.1.3.1. Only links that correspond to regulation at the transcriptional level

were retained for VIPER and hVIPER use.

2. Literome [112]: The network was filtered to include only transcription links

in which the regulator is a known TF.

3. Multinet [78]: The network was reduced to links that correspond to regula-

tion on transcriptional level.

4. ChEA [86]: Data from the Gene Expression Atlas [110] was used to filter the

inferred links in the ChEA database. Specifically, the context likelihood of

relatedness (CLR) method [47] was used to compute a measure of association

between every pair of genes. The top 10% of gene pairs based on the CLR
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Figure 2.3: A) Correlation network for lncRNA clusters 3, showing PARADIGM
pathway features, hVIPER regulators, and lncRNAs. Red and blue edges indi-
cate Spearman correlations (|ρ| > 0.5) between the expression of a differentially
expressed lncRNA and the inferred activity of a differentially active PARADIGM
or hVIPER feature. The color of each node reflects differential expression for a
lncRNA, and relative activity for a PARADIGM/hVIPER feature (red for over-
expressed/active, blue for underexpressed/inactive).
B) A subnetwork highlighting the lncRNAs with high degree of correlation to reg-
ulators in the proliferation and DDR pathways.
Both panels generated by myself, with input from Christina Yau and Gordon
Robertson, for the TCGA UM working group. Panel A) also appears in [117].

score were intersected with the ChEA network and the overlapping pairs

were added to the final combined network.

The combined network includes 72,915 transcriptional regulatory links between

6,735 regulators and their targets. Only regulators with at least 15 targets were

considered in the final analysis, which resulted in a final network consisting of 419

TFs with 58,363 total targets (covering a set of 12,754 unique targets).

Proteins identified as kinases in Manning [96] or Uniprot [30] were aggregated

into a list of 546 kinases. Protein substrates were extracted from PhosphositePlus

[68]. Kinase-substrate interactions were retained if the kinase appeared in the

Manning-Uniprot kinase list and the kinase was identified as a human protein

in the PhosphositePlus database. The final compendium consists of 5,388 links

between 342 kinases and 2,290 unique substrates.
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Figure 2.4: A) Correlation network for lncRNA clusters 4, showing PARADIGM
pathway features, hVIPER regulators, and lncRNAs. Red and blue edges indi-
cate Spearman correlations (|ρ| > 0.5) between the expression of a differentially
expressed lncRNA and inferred activity of a differentially active PARADIGM or
hVIPER feature. The color of each node reflects differential expression for a
lncRNA, and relative activity for a PARADIGM/hVIPER feature (red for over-
expressed/active, blue for underexpressed/inactive).
B) A subnetwork highlighting the breadth of associations of LINC00152 and
BANCR with regulators in the immune response, DDR, MYC/MAX and hy-
poxia signaling pathways.
Both panels generated by myself, with input from Christina Yau and Gordon
Robertson, for the TCGA UM working group. Panel A) also appears in [117].

2.1.4 Methods

2.1.4.1 VIPER

VIPER scores predict the activity of a TF, either differentially between two

cohorts, or within an individual sample (single-sample VIPER,ssVIPER). The

activity score is derived from a combined view of the expression levels of each

TF’s transcriptional targets (the TF regulome). Traditionally the TF regulome is

inferred from data using network reconstruction methods such as ARACNe [100].

In our approach we eschew the empirically derived interaction network for one

constructed from literature-extracted "prior knowledge". Once a TF regulome

has been selected, VIPER scores are computed as follows (for more details, see

[3]):

1. Each gene in the TF regulome is assigned a particular mode of operation

(MOR). The MOR can be one of the following relationships:

(a) Regulator clearly represses target.

(b) Regulator clearly activates target.
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(c) Regulator regulates target non-monotonically.

The distributions of the three types of relationships are estimated from the

overall density of all regulator-target correlations by fitting a mixture model

of 3 Gaussian distributions. Each target gene then gets assigned a triplet of

weights corresponding to its probability of belonging to each MOR class.

2. For multi-sample VIPER, a t-statistic derived from the difference in ex-

pression between the two classes of interest is computed for each gene. All

genes are ranked based on their t-statistics to produce a gene signature. For

ssVIPER, the ranked gene signature is based on the gene expression levels

within the sample instead.

3. An enrichment score is calculated by ranking regulome members by the

absolute value of the t-statistic/gene expression and computing the mean of

the quantile transformed rank positions, weighted by (1− |MOR|) (one-tail

approach).

4. A second enrichment score is calculated that uses the same t-statistic/gene

expression ranks, but with ranks of MOR-repressed targets inverted. The

enrichment score is again the mean of the quantile transformed rank posi-

tions, but it is now weighted by |MOR| (two-tail approach).

5. The final score is the sum of the one-tail and two-tail enrichment scores.

A TF whose MOR-upregulated and MOR-downregulated target sets show con-

sistent enrichment (i.e. the activated set is enriched for highly ranked genes and

the inhibited set is enriched for lowly ranked ones, or vice versa) receives the

highest (lowest) activity score.
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2.1.4.2 hVIPER

VIPER/ssVIPER are well suited for the analysis of TF activity, because TF

proteins are directly involved in changing the expression of their targets. Kinases,

on the other hand, regulate their targets post-translationally. Since the expression

levels of genes are often poorly correlated with the activity of the proteins they

encode, mRNA represents a poor proxy to protein phosphorylation data. In the

absence of the latter, the differential activity of a kinase can be estimated using a

hierarchical approach (Fig. 2.5) in which activities are computed at two successive

levels:

1. Level 1 activities are inferred for any regulator (TF or kinase) using single-

sample VIPER (ssVIPER). ssVIPER infers these activities based on the

expression of the regulator’s targets within individual samples. Note that

the kinase activity score from level 1 analysis is interpreted as an inference

about whether kinase targets are “poised” to be regulated, assuming that

increased protein levels would often require an increase in mRNA production

as a prerequisite.

2. Level 2 activities for kinases are inferred by performing a VIPER analysis on

the level 1 activities computed in the previous step. For level 2, the targets

of each kinase are restricted to those members that are themselves kinases

or TFs (i.e. those proteins with level 1 imputed activities).
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Figure 2.5: Hierarchical VIPER for the imputation of kinase activities. ssVIPER
is performed for all TFs and kinases with sufficient number of targets in their
regulons (bottom level). The inferred activities are used to rank regulators based
on difference in mean activity across the dichotomy of interest. Standard VIPER
analysis is then run with the kinase regulome and the regulator ranking to produce
the final estimates for kinase activities (top level).
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2.1.4.3 PARADIGM and hVIPER differential analysis of UM lncRNA

clusters

PARADIGM

mRNA expression, SCNA, and pathway interaction data for 80 UM samples

were integrated using the PARADIGM software [160]. Briefly, this procedure

infers integrated pathway levels (IPLs) for genes, complexes, and processes, using

pathway interactions, and genomic and functional genomic data from each patient

sample. Normalized gene-level RSEM RNA-seq expression data and thresholded

SCNA data were obtained from Firebrowse (http://firebrowse.org/). One was

added to all expression values, which were then log2 transformed and median-

centered across samples for each gene. The log2 transformed, median-centered

mRNA data were rank-transformed based on the global ranking across all samples

and all genes and discretized (+1 for values with ranks in the highest tertile, -1

for values with ranks in the lowest tertile, and 0 otherwise) prior to PARADIGM

analysis.

The PARADIGM algorithm infers an IPL for each feature that reflects the

log likelihood of the probability that it is activated. PARADIGM IPLs of the

19,504 features within the SuperPathway (see 2.1.3.1) are available on Synapse

(syn4556715, https://www.synapse.org). An initial minimum variation filter

(at least 1 sample with absolute activity > 0.05) was applied, resulting in 15,502

concepts (5,898 proteins, 7,307 complexes, 1,916 families, 12 mRNAs, 15 miR-

NAs and 354 abstract processes) with relative activities showing distinguishable

variation across tumors (syn4556729) for use in our differential pathway regulator

analysis.

24

http://firebrowse.org/
https://www.synapse.org


Differential pathway regulators of each lncRNA cluster were identified using

the t-test and Wilcoxon Rank Sum test with BH FDR correction in a one cluster

vs. all others comparison. Only features deemed significant (FDR p < 0.05) by

both tests and showing an absolute difference in group means > 0.05 were selected.

Interconnectivity between these pathway regulators within the PARADIGM Su-

perPathway was assessed, and regulatory hubs with ≥ 10 differentially activated

downstream targets were selected. There were a total of 49 PARADIGM differ-

ential pathway regulators identified across the four lncRNA clusters. The mean

IPL of the selected regulatory hubs was computed within each cluster and scaled

across clusters to a mean of 0 and a standard deviation of 1. The resulting scaled

mean IPLs are shown in Fig.2.2A.

hVIPER

The lncRNA clusters were dichotomized into one-vs-rest binary comparisons.

For each comparison, VIPER/ssVIPER was run via the VIPER R package

(http://www.bioconductor.org/packages/release/bioc/html/viper.html); and

hVIPER was performed by extending the functionality of the package. Level 3

mRNA data and the curated TF and kinase regulomes (see 2.1.3.2) were used as

inputs. Analysis was limited to TFs with at least 15 targets present in the expres-

sion data. Because the kinase regulome is much smaller than the TF regulome,

cutoffs for minimum number of kinase substrates were reduced to 10 in the Level

1 analysis and 5 in the Level 2 one. All other settings were identical to those used

for inferring TF activity.

Background models were computed by generating 1000 label permutations.

Significance was evaluated by computing p-values against the background distri-
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bution and applying a BH FDR correction. The final results provided activity

estimates for 393 TFs and 62 kinases in each dichotomy of interest. VIPER fea-

tures (TFs) with an FDR≤ 0.10 were retained. Since the kinase regulome is

significantly sparser than the TF one, the FDR cutoff for hVIPER features was

relaxed to 0.15. A total of 113 hVIPER differential pathway regulators were iden-

tified across the four lncRNA clusters. The differential activity for each of these

regulators in each lncRNA cluster is shown in Fig. 2.2B.

lncRNA Pathway Regulator Correlation Networks

The FPKM expression of every lncRNA was correlated with PARADIGM per-

sample IPL levels, and with the TF and kinase activities produced by hVIPER,

using per-sample ssVIPER activity scores. For each lncRNA cluster, correlations

between differentially active regulators and lncRNAs were retained if all four of

the following criteria were satisfied:

1. The TF/kinase was identified as a differentially active pathway feature by

PARADIGM or hVIPER for that cluster, as described above.

2. The lncRNA had a mean FPKM ≥ 5.

3. The lncRNA had a SAM [155] multiclass FDR q-value ≤ 0.05 and the ab-

solute value of its SAM contrast for the cluster was the largest compared to

the absolute contrast values for all other clusters.

4. The absolute value of the Spearman correlation coefficient between the

lncRNA and the regulator in question was ≥ 0.5.
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The filtered lncRNA-pathway regulator network for lncRNA Cluster 3 con-

tains 188 correlations between 10 lncRNAs with 21 hVIPER and 24 PARADIGM

pathway features. Similarly, the filtered lncRNA-pathway regulator network for

lncRNA Cluster 4 contains 709 correlations between 26 lncRNAs with 70 hVIPER

and 29 PARADIGM features. Figures 2.3A and 2.4A each shows the full network

of selected regulators and their associated lncRNAs. For the full list of links, see

https://tcga-data.nci.nih.gov/docs/publications/uvm_2016.

Both Figures 2.3 and 2.4 are augmented by protein-protein interaction and

transcriptional regulation links extracted from PhosphositePlus and the Super-

Pathway (see 2.1.3.2). In addition, regulators that were identified as consistent

pathway features by both methods were displayed using the shape of the method

that showed higher differential activity. Both the lncRNA cluster 3 network (Fig.

2.3) and lncRNA cluster 4 one (Fig. 2.4) contain network nodes identified as

hVIPER features which retain correlation links from both lncRNA-hVIPER and

lncRNA-PARADIGM comparisons.

2.2 Castration-Resistant Prostate Cancer

2.2.1 Introduction

Androgen Deprivation Therapy (ADT) is the standard of care for men with

metastatic prostate cancer. However, ADT is not curative in this setting, and

progression to lethal metastatic castration-resistant prostate cancer (CRPC) is

nearly universal. The androgen receptor (AR) antagonist enzalutamide is one of

the principal treatments for metastatic CRPC patients [11][122][123]. The ma-

jority of patients benefit from treatment with this agent [11][122][123]. However,
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disease progression is inevitable, and very little is known about mechanisms that

contribute to clinical enzalutamide resistance [44]. Seeking to clarify the molecu-

lar mechanisms that underlie enzalutamide resistance, we analyzed the genomes

and transcriptomes of CRPC metastases obtained prior to treatment and at the

time of disease progression in patients treated with enzalutamide.

2.2.2 Results

Men with metastatic CRPC were enrolled on the West Coast Dream Team

(WCDT) biopsy protocol. We describe results from patients with enzalutamide-

naïve CRPC who underwent both a baseline biopsy prior to enzalutamide treat-

ment and a repeat biopsy at the time of progression and whose matched biopsies

had sufficient tumor for molecular analyses. Importantly, all of the progression

biopsies were performed prior to discontinuing enzalutamide.

A variety of organ sites were biopsied, but bone was the most common site for

both pre-treatment and progression biopsies (Fig. 2.6). In six patients, the exact

same lesion was biopsied at baseline and progression.

To determine the genomic landscape of these tumors, we performed exome

sequencing on matched biopsy specimens from 16 patients for whom DNA was

available using a targeted panel of 124 genes commonly altered in solid tumors.

Beyond the AR, which is discussed below, the most common gene alterations

at baseline were in P53 or PTEN, which matches a prior report [118]. In most

matched pairs, there was significant concordance of mutations or copy number

alterations, demonstrating that new alterations in the genes examined were not

common contributors to acquired resistance.

Therefore, we sought to characterize AR gene alterations between the baseline
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Figure 2.6: Site of biopsy for CRPC patients.
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and progression samples. Increased AR copy number was common in baseline

samples (9/16 patients), and AR remained amplified in all but one tumor at

progression. We also examined the AR for mutations. Only one progression biopsy

harbored an AR mutation—AR H875Y—that results in partial agonist activity by

enzalutamide and confers broadened ligand specificity to non-androgen steroids

[87]. Despite prior results demonstrating that AR is commonly altered in CRPC

[118], there is no information about AR’s functional activity state in enzalutamide-

resistant clinical samples. To quantify AR transcriptional function, we measured

enrichment of a published AR gene signature [103] and a signature developed by

the WCDT (see 2.2.3.1). For this analysis, we used 16 matched tumor pairs for

which there was sufficient material for RNA-seq. There was a strong concordance

between the results of these two signatures (Fig. 2.7, Spearman correlation=0.809,

p-value=0.001).

Importantly, 11/16 patients were predicted to have reduced AR activity at

progression based on the AR signatures. In two cases, loss of AR activity occurred

in the setting of reduced AR mRNA expression, while nine others had reduced AR

activity at progression without decreased AR expression. These results suggest

that AR was less functional in the resistant vs. baseline samples.

Because AR function was predicted to be reduced in the majority of progression

biopsies examined, we sought to identify other transcriptional regulators that

contribute to enzalutamide-resistance. To achieve this, we used hVIPER on the

16 matched pairs with RNA-seq data. The top Master Regulators (MRs) predicted

to have the greatest differential activity scores in the enzalutamide-resistant versus

baseline samples are shown in Fig.2.8.

The MRs identified by hVIPER include several transcription factors and ki-
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Figure 2.8: Significant Master Regulators (FDR<0.2) discovered by hVIPER in
paired-biopsy CRPC patients. NES is the differential activity score between pre-
and post-treatment biopsies - positive scores (red) indicate higher differential ac-
tivity in post-treatment biopsies, while negative scores (blue) correspond to rela-
tive inactivation.
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Figure 2.9: Full network of significantly differential Master Regulators. Nodes
are colored by differential activity as in Fig.2.8. Shapes represent types of MR.
Groups identified by MR Combinatorial Analysis are shown as multi-regulator
nodes. Links are colored by type of interaction - green for transcriptional regula-
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links between individual MRs.
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nases that participate in a complex web of mutual interactions (Fig. 2.9). To sum-

marize these results, I identified modules for which multiple regulators had related

targets, suggested by VIPER Combinatorial Analysis (see 2.2.3.2). One such mod-

ule included CREB1 and TCF4 as the 15 common targets had a differential activ-

ity (DA) score of 3.14 (Combinatorial Analysis P < 0.002; FDR=0.016) compared

to the 138 individual targets of CREB1 (DA=2.2; P<0.03; FDR=0.17) and the 417

individual targets of TCF4 (DA=2.9; P<0.004; FDR=0.05). I then organized the

interactions between modules and individual proteins to gain a high-level overview

of the connections. Finally, I identified relevant cellular functions by aggregating

Reactome pathways [46] with highest significant MR membership. This revealed

a collection of circuits centered around the CREB1/TCF4 module involving sev-

eral key processes such as immune-related responses, cell cycle, senescence/stress,

nerve growth factor (NGF), and Wnt/Beta-catenin pathways (Fig.2.10). Sev-

eral feedback circuits that operate through transcriptional and post-translational

control logic were present. One such example is the Wnt-signaling feedback cir-

cuit that involves post-translational regulation by the P38α/ERK complex on the

CREB1/TCF4 and the BCL6/KLF4/LEF1 complexes.

Prior literature suggests an important role for CREB1 in castration-naïve or

enzalutamide-sensitive prostate cancer, but CREB1’s role in enzalutamide re-

sistance is unknown [143]. Therefore, Joshi Alumkal performed CREB1 loss of

function studies in enzalutamide-resistant CRPC cell lines. CREB1 RNAi sup-

pressed viability of acquired enzalutamide-resistant models, suggesting functional

importance of CREB1 (Fig.2.11A). Treatment with the CREB1 inhibitor 666-15

[90][172] recapitulated the effect of CREB1 RNAi (Fig.2.11B) and also reduced ex-

pression of luciferase reporters of CREB1 transcriptional function[90][172], further
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demonstrating the relevance of CREB1 to enzalutamide resistance (Fig.2.11C).

Importantly, CREB1 is not the only drug-targetable MR implicated in our

analysis. Relevant compounds that are FDA-approved for other conditions or

in clinical trials include ketoconazole (blocks NR1I2), ralimetinib or ulixertinib

(block MAPK1), and voruciclib (blocks CDK9) [162][165][41][109][141]. Exploring

different combinations of CRPC-relevant MR targeting can increase our chances

of mitigating enzalutamide resistance.

2.2.3 Methods

I used hVIPER (see section 2.1.4.2) with the regulator-target compendium

described in 2.1.3.2 to estimate the differential activity of TF and kinase MRs in

pre- and post- enzalutamide biopsies. I could not use generic t-test statistics for

the gene signature required in multi-sample VIPER workflow (section 2.1.4.1) -

had I done so, I would have been comparing MR activity differences across pre- and

post-treatment cohorts instead of within individual samples. Instead, I created

a ranked gene signature based on paired-sample t-test statistics. I also modified

the permutation-based background model used for p-value/FDR calculations to

prevent true sample biopsy pairs from occurring in permuted label sets (Fig.2.12).

Background models were computed by generating 1000 label permutations.

Significance was evaluated by computing p-values against the background distribu-

tion and applying a BH FDR correction. Significant master regulators (FDR<0.2)

are listed in Fig. 2.8.
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A B
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Figure 2.11: CREB1 RNAi and 666-15 experiments. A) CREB1 RNAi suppresses
enzalutamide-resistant cell growth. The indicated cell lines were transfected with
CREB1 RNAi or NTC RNAi. Cell viability was determined 120 hours later using
fluorescent-labeled cell imaging. Protein lysates were harvested at 120 hours and
probed with the indicated antibodies. B) CREB1 inhibitor 666-15 suppresses
enzalutamide-resistant cell growth. The indicated cell lines were treated with
dose escalation of the CREB1 inhibitor 666-15. Cell viability was quantified 72
hours later using fluorescently-labeled cell imaging. C) 666-15 treatment blocks
the transcriptional function of CREB1. The indicated cell lines were transfected
with a CRE-luciferase reporter plasmid. Cells were treated with 300nM of 666-15
or vehicle 24 hours post-transfection, and 10 µM forskolin added 30 minutes post-
treatment. Cells were harvested 6 hours post-treatment, and luciferase signal was
quantified and normalized to total protein concentration. Experiments and data
analysis performed by Joshi Alumkal.
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Figure 2.12: Balanced permutation procedure used in CRPC paired biopsy analy-
sis. The true background model must exclude same-patient biopsies from match-
ing up in the permuted folds.
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2.2.3.1 AR signature evaluation

WCDT AR signature

I trained an AR signature on cell line profiles of pre- and post- AR ligand gene

expression under various conditions [63][77][166][142][161][19]. Ligand status and

expression data for 71 cell line profiles were downloaded from the Gene Expression

Omnibus [10]. Three profiles were excluded due to low data quality (GSM288299,

GSM288300, and GSM288301); the expression data for the rest was quantile-

normalized by matching to the quantiles of an exp(1) distribution. The expression

data was further filtered to include only genes also measured in the WCDT CRPC

cohort. I trained a generalized elastic-net classifier [135] (L2 regularization coef-

ficient = 1) to separate the AR-positive cell lines (ligand status "ON") from the

AR-negative cell lines (ligand status "NO LIGAND"). To verify the performance

of the classifier, I used leave-pair-out cross validation to measure the area under

the curve (AUROC). The classifier had AUC of 1 (perfect accuracy for all cutoffs).

I then applied the trained model to WCDT expression data. To do so, I

quantile-normalized the WCDT data as described above and took the dot product

of normalized expression with the gene coefficients from the trained model.

Mendiratta AR signature

A published AR signature was taken from [103]. The signature provides weights

for individual probes represented on the Affymetrix U133A platform. To convert

the probe-level weights to the gene-level, I computed a median weight using all

probes that map to a specific HGNC symbol. I then applied the signature to

the WCDT samples. First, I found a common gene space by intersecting the

set of HGNC symbols mapping to any of the signature probes with the symbols
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mapping to the data used in this study. I then applied the signature to each

WCDT sample by taking a dot product between the signature’s weights and a

sample’s rank-transformed expression vector.

After scoring WCDT samples with both signatures, I computed the difference

between signature scores in pre- and post- treatment biopsies (Fig. 2.7).

2.2.3.2 Circuit Generation CRPC

I constructed a connected and directed network that linked together significant

master regulators (SMRs; FDR<0.2). To do so, I collected all links in the TF

and kinase regulons that involve at least one of the SMRs. The resulting “circuit”

represents the connected subnetwork of individual MRs (Fig. 2.9).

I ran VIPER combinatorial analysis (VIPER CA)[6] to identify groups of MRs

that are predicted to work together based on the behavior of their shared targets

(VIPER CA is run separately for TFs and kinases). Specifically,VIPER CA retains

any group of MRs for which the hVIPER activity score of the common targets

regulon is higher than the activity score of the regulons’ union. I considered

combinations of two and three MRs for all MRs that had a significant hVIPER

result (p-value<0.05) and found 44 combinatorial groups (CGs) - 36 TF and 8

kinase ones (Table 2.1). Because many of these groups are highly overlapping,

(e.g. some were proper subsets of others), I defined a non-redundant set of merged

Regulator Combinatorial Modules (RCMs) from these CGs. RCMs were created

by merging any CGs having a minimum of 15 TF or 10 kinase common targets

and sharing at least one MR. Four RCMs, each combining at least three TF or

two kinase component CGs emerged from this analysis. Those include a BCL6-

KLF4-LEF1 RCM consisting of 10 MRs and 17 CGs, a PPARγ RCM consisting
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of 5 MRs and 9 CGs, a CREB1-TCF4 RCM consisting of 5 MRs and 4 CGs,

and a GSK3B-MAPK1-MAPK14 RCM consisting of three MRs and two CGs

(Fig. 2.9). The RCMs were then filtered to only include MRs that appear in the

SMR network described above. RCMs were connected to individual MRs or other

RCMs if at least one regulator-target connection was present between any of the

constituent MRs in a module.

To further distill the main bilogical processes characterized by the newly dis-

covered SMR/RCM network circuit, I queried the Reactome [46] pathway database

for pathways with the highest abundance of SMRs. I excluded generic functional

pathways such as "developmental biology," "signal transduction," and "gene ex-

pression" as these provided little in the way of interpretation. Finally, I curated

the highest ranked pathways into biological signaling abstractions based on the

overlap in SMR membership among pathways. Figure 2.10 shows this stylized

circuit representation for the four main RCMs we discovered.
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Table 2.1: Combinatorial Analysis of significant MRs in CRPC.
Regulon Size NES p.value FDR module type included
MEIS2–TBX2 18 7.05 1.77E-12 6.91E-10 TF 1
BCL6–LEF1 25 6.16 7.18E-10 1.40E-07 TF 1
PPARG–ID2–TBX2 20 5.66 1.51E-08 1.96E-06 TF 1
KLF4–LEF1–RUNX2 19 5.55 2.85E-08 2.47E-06 TF 1
KLF4–LEF1 30 5.53 3.17E-08 2.47E-06 TF 1
KLF4–NCOA3 18 5.38 7.41E-08 4.82E-06 TF 1
RUNX2–TWIST1 40 4.96 7.17E-07 3.50E-05 TF 1
LEF1–RUNX2 26 4.81 1.53E-06 6.63E-05 TF 1
BARX2–ID2–MEIS2 18 4.42 9.74E-06 0.000317 TF 1
KLF4–RUNX3–RUNX2 17 4.18 2.91E-05 0.000742 TF 1
BARX2–PPARG–TBX2 18 4.17 3.04E-05 0.000742 TF 1
BCL6–KLF4 24 4.03 5.65E-05 0.0012 TF 1
ID2–MEIS2 18 4.02 5.91E-05 0.0012 TF 1
NCOA3–RUNX2 21 4.01 6.05E-05 0.0012 TF 1
PPARG–TBX2 23 4 6.33E-05 0.0012 TF 1
KLF4–RUNX3 29 3.99 6.49E-05 0.0012 TF 1
MAFF–MAFK 118 3.92 8.82E-05 0.00149 TF 0
DACH1–TAF1 16 3.91 9.19E-05 0.00149 TF 0
BARX2–PPARG–ID2 19 3.63 0.000285 0.00397 TF 1
KLF4–TWIST1 21 3.54 0.000397 0.00534 TF 1
FOXA2–TCF4 60 3.48 0.000493 0.0062 TF 1
DLX2–RUNX3–TWIST1 19 3.46 0.000542 0.0064 TF 1
BARX2–PPARG–MEIS2 18 3.37 0.000745 0.00831 TF 1
BARX2–PPARG 19 3.34 0.00084 0.00862 TF 1
TBX3–TWIST1 15 3.27 0.00107 0.0104 TF 1
CREB1–TCF4 15 3.14 0.00167 0.0156 TF 1
TAF1–TBP 104 3.14 0.00168 0.0156 TF 0
CCDC116–GP1BB 21 3.12 0.00182 0.0157 TF 0
RUNX3–TWIST1–LHX2 18 3.08 0.00207 0.0165 TF 1
LEF1–RUNX3–LHX2 18 3.01 0.00258 0.019 TF 1
DLX2–RUNX3 20 3.01 0.0026 0.019 TF 1
LHX2–RUNX3 18 2.94 0.00331 0.0229 TF 1
CCDC116–GNB1L 16 2.87 0.00406 0.026 TF 0
GATA4–GATA6 18 2.61 0.00915 0.0482 TF 0
CREB1–POU5F1 15 2.55 0.0109 0.0543 TF 1
HOXA9–POU5F1 15 2.07 0.0385 0.151 TF 1
MAPK1–PRKAA1 5 5.46 4.66E-08 4.24E-06 kinase 0
MAPK1–PRKCD 7 5.3 1.17E-07 5.34E-06 kinase 0
GSK3B–MAPK14 13 3.93 8.54E-05 0.00259 kinase 1
GSK3B–MAPK1 13 3.61 0.000303 0.00688 kinase 1
GSK3B–MAPK8 7 2.98 0.00286 0.0287 kinase 0
CDK2–GSK3B 6 2.95 0.00321 0.0287 kinase 0
CAMK2A–MAPK1 5 2.74 0.00606 0.0459 kinase 0
CDK2–MAPK1 8 2.42 0.0154 0.0728 kinase 0

Size = number of common targets to all MRs in a group.NES=inferred activity
score.Included=whether MR group is retained (1) or not (0) for subsequent anal-
ysis, based on 1) are common targets sufficiently many (≥15 for TFs and ≥10 for
kinases) and 2) are the member MRs part of the connected subnetwork defined
by TF and kinase literature regulomes.
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2.3 Conclusion

In this chapter I proposed a feature engineering approach (hVIPER) that ex-

tends previously existing methodology (VIPER). Both VIPER and hVIPER ad-

dress a commonly encountered problem - most experiments generally provide ge-

nomic and/or transcriptomic data, but not protein activity measurements for key

regulators. VIPER presents an elegant way to generate inferred TF protein ac-

tivities from the expression readings of their targets. hVIPER goes a step further

and provides inferred kinase activities, doing so in a prior knowledge-informed

manner. I demonstrate how this extension can provide key insights into the bio-

logical processes defining poor-surviving UM subtypes as well as the development

of enzalutamide resistance in CRPC patients. The latter case is a perfect exam-

ple of how hVIPER can lead towards novel clinical therapies - the addition of

kinase activities allowed for the discovery of an MR circuit of mixed transcrip-

tional and post-translational regulation that would have remained obscured or

only partially characterized if I used VIPER alone. Futhermore, kinases provide a

much more accessible drug targeting avenue - even though our main finding was a

TF (CREB1), we discovered several other targetable MRs that could potentially

supplement or improve upon the efficacy of targeting CREB1. More importantly,

our analysis provides a blueprint of how such targetable signaling circuitry can be

discovered in other experimental settings, solely using expression data.
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Chapter 3

Gene Essentiality Prediction via

Multiple Pathway Learning

This chapter describes one of the co-winning methods of the DREAM9 gene

essentiality prediction challenge [59]. I was the lead developer of Multiple Pathway

Learning (MPL) and a co-first author of the DREAM9 marker paper [59]. The

introduction, data description and analysis of combined results contain material

attributable to all authors. Evan Paull, a Stuart Lab PhD alumnus, contributed

the RF models used in the MPL-RF ensemble. The results specific to MPL are

my own work.

3.1 Introduction

Although genetic alterations of human tumors have become increasingly well

characterized, the application of this knowledge to clinical therapy has been lim-

ited. The promise of targeted cancer therapy requires both effective treatments

and accurate,easily tested biomarkers to identify patient populations likely to re-
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spond to those treatments. Genes that are required for the survival of tumor cells,

but not for normal cells, may provide an opportunity for specific targeting. This

category of essential genes creates preferential vulnerabilities only in the context of

a tumor’s specific genetic and epigenetic background, but not in contexts lacking

those alterations. For example, the PARP1 gene has been shown to be essential in

tumors deficient in BRCA1 or BRCA2, thus making PARP inhibitors a candidate

for treating selective subtypes of breast and ovarian cancers [18][48][43]. There-

fore, a critical need exists to accurately predict differences in gene essentiality

across a wide variety of cancer genetic subtypes from molecular features.

Large-scale functional screening of molecularly characterized cancer cell lines

is a promising approach to generate pre-clinical hypotheses of tumor subtypes as-

sociated with sensitivity to functional perturbations. Several recent studies have

identified small numbers of validated biomarkers of preferential gene essentiality

based on statistical analysis of large-scale genetic screens [124][98][130][99] How-

ever, no study has yet conducted a systematic analysis of modeling approaches

designed to infer predictive models of relative gene essentiality of cancer cells from

such functional screening projects. Such a study is not only a challenging scien-

tific problem, but one that emphasizes the need for a community of scientists

with a range of expertise in data generation, predictive modeling, and biologic

interpretation.

The DREAM challenges (http://www.dreamchallenges.org/) aim to assess com-

putational models, contributed by researchers across the world, to prediction tasks

focused mainly on biomedical research problems. Participating research teams

develop and fine-tune their predictive models during one or more model building

rounds. In the final round, each research team submits their best models, and,
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after the challenge is closed, an unbiased assessment using standardized metrics

is performed on a blinded set of test data.

We used DREAM challenges to study the predictability of relative gene essen-

tiality by leveraging Project Achilles, which has created one of the largest publicly

available datasets containing genome-wide RNAi-mediated screens in molecularly

characterized cancer cell lines [34]. We examined 149 cell lines tested for gene

essentiality by a library of 98,000 shRNAs targeting 17,000 genes. To avoid teams

predicting off-target effects of RNAi screens, relative gene essentiality scores were

calculated using the DEMETER algorithm, which models out and corrects for

off-target miRNA seed effects [154]. The challenge also utilized molecular feature

data from these 149 cell lines (genome-wide gene expression and copy-number

data, in addition to mutational profiling of 1,651 genes) from the Cancer Cell

Line Encyclopedia [9]. Based on these data, participants were tasked with train-

ing a predictive model on a subset of 105 lines with both molecular feature and

relative gene essentiality data and applying it to infer the relative gene essentiality

values for the held out batch of 44 cell lines for which participants could only ac-

cess molecular feature data (Fig.3.1). Predictions were scored by Spearman’s rank

correlation coefficient for each gene between the measured and predicted relative

gene essentiality scores.
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Figure 3.1: Schematic of the Broad-DREAM gene essentiality prediction chal-
lenge. The challenge consisted of three related sub-challenges. Sub-challenge 1
addressed building a model that best predicts all gene essentiality scores in the
held-out test set, using any feature data. Figure taken from [59].
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3.2 Results

3.2.1 Overall Results - Subchallenge 1

The average ranks for all teams across 14738 prediction tasks are shown in Fig.

3.2 - the comparison metric for each task is the Spearman correlation between test

labels and a method’s predictions (average Spearman correlation for each team

across all tasks is displayed in the top row). The scores of the top 4 teams

displayed statistically improved performance from the fifth ranked team, but were

not statistically significantly different from each other. A more stringent post-

hoc test (nonparametric Friedman’s test) determined that the top three teams

achieved improved performance from the fourth ranked (red stars in Fig. 3.2, for

more information see Online Supplement in [59]).

As a baseline, a lasso regression model was trained with the same training and

test data and achieved mean Spearman correlation of 0.1528 (Fig. 3.3) - a result

that was bested by 18/21 teams, suggesting that more sophisticated models can

lead to a large boost in shRNA knockdown prediction accuracy. Furthermore,

when the same baseline model was applied to 10,000 permutations of the test

set (randomly shuffled cell line labels), the mean Spearman correlation of the

permuted sets is centered around 0 with standard deviation of 0.0211 (Fig. 3.3),

indicating that genomic data contains measurable signal that can at least partially

correlate to the shRNA knockdown phenotypic effects.

3.2.2 Results - Multiple Pathway Learning

Our Multiple Pathway Learning - Random Forest ensemble (MPL-RF, de-

scribed in 3.4.3) was the joint co-winner, and second highest performer overall, on
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Figure 3.2: Team’s performances on DREAM gene essentiality prediction subchal-
lenge 1. The average Spearman correlation across all predicted genes is shown
at the top. Black lines in the middle of blue boxes (“team rank”) display the
average rank of each team’s scores across 14,738 genes. Black lines below the
boxplots summarize the Wilcoxon signed rank test results by dividing the teams
into groups. Each group is denoted by a distinct black line, which contains the
teams with no statistically significant difference. The red line displays the rank
of an ensemble model constructed from all models with rank less than or equal to
the corresponding point on the x axis. Red stars on the x-axis indicate the three
joint co-winning teams, determined by non-parametric Friedman’s test - MPL-RF
is the middle star. Figure taken from [59].
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Figure 3.3: Mean Spearman correlation for a baseline lasso regression model (red
dot) across all prediction tasks. The histogram represents mean Spearman corre-
lations for a null distribution computed by randomly permuting the labels of the
test set 10,000 times and applying the baseline model to the permuted test data.
Figure taken from [59].
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subchallenge 1 (0.2321 mean Spearman correlation, Fig. 3.2). Multiple Pathway

Learning (MPL, described in 3.4.2) on its own was the fifth best performing model

(0.2293 mean Spearman correlation, not shown in figure). As the average scores

clearly indicate, predicting shRNA profiles is quite hard - most knockdown models

produce surprisingly poor fit to test data. There are at least two reasons for such

lack in performance. On one hand, gene expression was measured independently

of the knockdown procedure and could therefore provide overall transcript levels

only instead of the much more informative differential expression before and after

RNAi. Since expression is generally the most informative data type, this leads

to significant signal attenuation. On the other hand, shRNA knockdown is a no-

toriously noisy procedure with significant side effects - it is quite likely that the

DEMETER score correction can only partially counteract that biological artefact.

In fact, in their Dependency Map analysis [154] the authors focused on 769 knock-

down profiles in which at least one depletion score was ≥ 6 standard deviations

from the mean across all cell lines and all knockdown profiles.

Taking these 769 shRNA knockdowns as the high-confidence portion of the

label set, we can re-evaluate the performance of the top methods on tasks with

reliably measured labels. Because Dependency Map was based on ≈ 3 times more

cell lines than what was made available in the DREAM challenge, there were only

426 gene profiles matching the 6σ criteria in the latter.

As expected, the high-confidence profiles produce significantly improved aver-

age Spearman correlations for all methods (Table 3.1) and those improvements

are positively correlated with the number of 6σ measurements within each shRNA

profile (Fig.3.4). Interestingly, when only high confidence profiles are considered,

MPL (mean Spearman 0.3396) performs just as well as MPL-RF (mean Spearman
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Table 3.1: Mean Spearman correlations of MPL, RF, and the 3 top perform-
ing methods from subchallenge 1 for high-confidence shRNA profiles. Indi-
vidual correlation statistics for non-MPL DREAM9 methods downloaded from
www.synapse.org (synapse ID syn2384331).

method mean Spearman
MPL 0.3396±0.0071

MPL-RF 0.3385±0.0070
DREAM9-w2 0.3256±0.0072
DREAM9-w1 0.3121±0.0071

RF 0.3105±0.0074

DREAM9-w1 is the top-ranked method overall in subchallenge 1, MPL-RF is the
second best, and DREAM-w2 the third best.

0.3385) and significantly better than both of the other winning methods (p values

of 1.7× 10−13 and 0.0033 Wilcoxon signed-rank pairwise test, Fig. 3.5,Table 3.1).

3.2.2.1 Towards a Predictor-Knockdown Pathway Interaction Network

I further interrogated the MPL models to determine if there are any similarities

between the pathways involved in predicting different shRNA knockdown profiles.

I chose to focus on MPL and not MPL-RF models because of the considerations

in the previous section as well as the significantly more difficult interpretation

of the MPL-RF ensemble. Due to the nature of the non-linear Gaussian kernels

representing each pathway (see 3.4.4.5), it is impossible to create a reverse map-

ping that would allow the assignment of importance weights to the original input

features. Nevertheless, I can still extract pathway importance scores that quantify

the contribution of each MPL pathway kernel to individual shRNA profiles. I refer

to the pathways with non-zero weights in any MPL model as predictor pathways

(PP).

52

www.synapse.org


0.30

0.35

0.40

0.45

0.50

0 10 20 30 40

Number of cell lines whose viability is more than 6 SDs from mean

S
p
e
a
rm

a
n
 c

o
rr

e
la

tio
n method

MPL

MPL-RF

RF

DREAM9−w1

DREAM9−w2

Figure 3.4: Relationship between number of 6σ measurements in an shRNA profile
and the predictive accuracy of trained models for the best performers in subchal-
lenge 1. The curves represent a smoothed approximation by local polynomial
regression [27] computed via the R function loess with default parameters.
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Figure 3.5: Spearman correlations for top subchallenge 1 methods on 426 high-
confidence shRNA profiles. DREAM9-w1 is the top-ranked method overall in
subchallenge 1, MPL-RF is the second best, and DREAM-w2 the third best. P-
values for Wilcoxon signed-rank test pairwise comparisons.
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On the other hand, even though some knockdown profiles are more robust

than others, I would like to use as much of the shRNA data as possible. In

particular, it is very important to characterize the biological processes (knock-

down, or KD pathways) in which we can predict shRNA knockdown effects most

accurately. Mapping PP to KD pathways can help define a pathway-pathway in-

teraction network in which we can trace the effects of pathway dysregulation on

related cellular processes. To that effect, I defined a gene’s knockdown prediction

score as the Spearman correlation between my test set MPL predictions and the

actual knockdown measurements. I then applied Gene Set Enrichment Analy-

sis (GSEA)[139] to determine which "canonical" pathways are enriched for genes

with high knockdown prediction scores (see 3.4.4.1 for a definition of "canonical"

pathways). A high enrichment score indicates that most of the genes in that gene

set have high knockdown prediction scores and are thus well-characterized by the

associated MPL model. The most enriched KD pathways are generally related to

essential biological processes (e.g. ATP production, transcriptional control, cell

cycle progression and proteasomal degradation, Table 3.2) whose disruption is of-

ten catastrophic for the cell. Many of the key regulators of cell behavior, such as

TP53, RB1, VEGFA, CDK1/2, CHEK1, VHL and CCND1 appear in the most

enriched portions ("the leading edge", see [139]) of each of the top 10 KD path-

ways (Fig. 3.6). This suggests that MPL models can provide a suitable avenue

for analysis of disruptions in such key cellular processes.

We should point out that the leading edge genes for the top KD pathways are

not a subset of the group of genes with robust shRNA knockdown profiles (see

3.2.2) - for example, TP53, RB1, and VEGF do not appear in the latter. Even so,

MPL significantly outperforms both RF and the MPL-RF ensemble in predicting
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the essentiality of leading edge genes - for the 101 such genes in the top 10 KD

pathways (Fig. 3.6) MPL achieves mean Spearman correlation of 0.461±0.007 ver-

sus 0.447±0.008 for MPL+RF and 0.402±0.010 for RF. Part of this improvement

is due to selection bias - the top KD pathways are by definition enriched for the

knockdown profiles MPL predicts best. Another reason, however, is that many of

these genes are well studied, hence they have a higher proportion of relevant gene

signatures in our gene set compendium. As a consequence, RF models are at a

disadvantage because they do not incorporate such prior knowledge.

Table 3.2: Top 15 canonical pathways enriched for genes with highly predictive
MPL models.
NAME SIZE NES FDR
REACTOME FORMATION OF ATP BY CHEMIOSMOTIC COUPLING 12 1.92 0.14
REACTOME MRNA SPLICING MINOR PATHWAY 41 1.86 0.17
PID TOLL ENDOGENOUS PATHWAY 23 1.78 0.35
REACTOME G0 AND EARLY G1 22 1.77 0.30
BIOCARTA PROTEASOME PATHWAY 28 1.75 0.29
BIOCARTA LECTIN PATHWAY 11 1.74 0.29
BIOCARTA VEGF PATHWAY 27 1.72 0.32
BIOCARTA SKP2E2F PATHWAY 9 1.72 0.28
PID P38GAMMADELTA PATHWAY 9 1.70 0.30
BIOCARTA RB PATHWAY 12 1.70 0.27
REACTOME SCFSKP2 MEDIATED DEGRADATION OF P27 P21 50 1.69 0.27
BIOCARTA CELLCYCLE PATHWAY 21 1.68 0.29
REACTOME INTEGRATION OF PROVIRUS 8 1.67 0.30
REACTOME REMOVAL OF THE FLAP INTERMEDIATE FROM THE C STRAND 7 1.66 0.31
PID PLK1 PATHWAY 39 1.66 0.30

Results of GSEA enrichment analysis with MSigDB CP Canonical Pathways col-
lection and the ranked vector of Spearman correlations between MPL predictions
and shRNA knockdown measurements in 44 test cell lines. Size - size of pathway;
NES - normalized enrichment score; FDR - False Discovery Rate q-value

Finally, we can harness the results of our GSEA KD pathway enrichment

analysis to construct a PP-KD pathway interaction map. It is a bipartite graph
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Figure 3.6: Leading edge genes for the top 10 canonical pathways from the GSEA
analysis in Table 3.2. Spearman correlations between method predictions and
each shRNA knockdown test profile shown for MPL, RF, and the MPL-RF en-
semble. Vertical dotted lines mark boundaries between KD pathways. Pathways
are ranked from left to right, with the leftmost the most enriched (REACTOME
ATP FORMATION). Genes within pathways are ranked by the Spearman corre-
lation of the MPL predictions to the true test set labels.
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with KD pathways linked to PPs only and vice versa. Each edge has an associated

weight that measures the importance of a PP to modeling the gene knockdowns

in a KD pathway. We compute edge weights by averaging PP weights over a KD

pathways’ leading edge (Fig. 3.7). Fig. 3.8 shows the top 20 PPs for each of the

top 20 KD pathways.
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Figure 3.7: An overview of PP - KD pathway association strength score derivation,
with mRNA Splicing KD pathway as an example. The MPL models for the
leading edge gene are queried for their component non-zero weight PPs. If a
PP has positive weights for both its expression and copy number kernels, they
are summed to produce a composite weight. The PP composite scores are then
averaged across leading edge models to give a measure of PP importance for
modeling genes in a KD pathway.

58



As demonstrated by Fig. 3.8, many of the PPs remain very informative across

all KD pathways (inner circle of PPs). On one hand, this is expected - the top

KD pathways all represent essential cellular processes and disrupting their key

components can lead to very similar cell viability profiles. Therefore, large degree

of similarity in the PP weights for different models can and should occur. On the

other hand, however, heavy overlap among top PPs for individual KD pathways

make it very challenging to identify underlying biological processes that uniquely

characterize the latter. We could focus on PPs that are shared among only a

small subset of the KD pathways - for example, "NANOG Targets" is a top PP

for the "G0 and early G1" and "P27" KD pathways while "UVC Late Response" is

specific to the "P38 Gamma Delta" KD one (see outer PP circle in Fig. 3.8). Such

an approach can be problematic for two reasons, however. Firstly, we don’t know

how much overlap these putatively KD pathway-specific PPs have with other more

non-specific PPs. PP memberhsip overlap can give us a crude estimate, but that

can be quite misleading - individual features vary widely in predictive importance

hence treating them equivalently can lead to biased conclusions. Secondly, just

because a PP does not appear among the top PPs for a KD pathway does not

mean it is completely non-informative for that KD. In fact, all of my models assign

non-zero weights to most of the PPs in our compendium, with small differences

in importance scores leading to large changes in PP ranking.

These problems are broadly applicable to the MPL-derived PP-KD network

as a whole rather than just the subset of unique PPs. The highly concordant PP

signatures for different KD pathways indicate that the variability in knockdown

profiles is captured by subtle adjustments to the weights of the same PPs rather

than by using distinct sets of PPs. In such circumstances, the availability of
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feature importance scores is crucial to disambiguating the molecular processes

predictive of each KD pathway. Similarly, the heavy degree of overlap among both

PP and KD pathways makes it difficult to say with confidence that a PP is the

most informative for a given KD pathway - it is possible that another biological

process is more relevant, but its importance weight does not appear material

because it is split among multiple highly overlapping PPs. Evaluating PP feature

contributions can mitigate this issue as well. Therefore, a fully functional PP-KD

map should include individual genomic features in addition to the PP and KD

pathway entities.
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Figure 3.8: PP-KD pathway dependency map for the top 20 KD pathways and
the top 20 PPs associated with each of them. Edge weights are computed as
described in Fig.3.7. The map is a bipartite graph between KD (green) and
PP(red) pathways. The inner circle of PPs contains non-specific ones, i.e. PPs
that are among the top predictors for all or almost all KD pathways. Similarly,
the outer circle of PPs contains specific ones - PPs that appear among the top
predictors of 6 or fewer KD pathways.
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3.3 Data

Challenge organizers provided a genome-wide shRNA knockdown screen in

149 cell lines form the Cancer Cell Line Encyclopedia [9]. Individual shRNA

profiles for shRNAs targeting the same gene were combined into a consensus

profile through DEMETER [154]. For more information on DEMETER settings

and QC steps see [154] and the Supplementary Information in [59].

Molecular features (expression, copy number and mutation data) for the 149

cell lines were downloaded from https://portals.broadinstitute.org/ccle.

All DEMETER profiles and genomic data are available from the challenge Synapse

project (www.synapse.org,synapse ID syn2384331).

3.4 Methods

3.4.1 Random Forest

Random Forest is an ensemble learning algorithm whose component learners

are decision trees trained on perturbed versions of the training data. Each de-

cision tree is unique in two important ways - on one hand, its training set is a

bootstrapped resample of the original data, with some samples appearing multi-

ple times and others not at all (the latter are termed "out-of-bag", or OOB). On

the other hand, at each node only a random subset of all attributes is considered

for splitting. An optimal split produces two groups that minimize within-group

variance (regression tasks) or Gini impurity (classification) [16]. Optimal splits

are computed until all leaf nodes reach a pre-determined size (1 in the case of fully

grown trees). Predictions for training data are computed by walking the OOB
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samples along their respective trees and averaging the leaf OOB predictions for

each sample across the forest:

f̂(Xi) =
1

|OOBi|
∑

m∈OOBi

fm(Xi) where

OOBi = {t : Xi ∈ OOB(Treet); t = 1 . . . T}
(3.1)

Predictions for new samples are computed in a manner identical to OOB train-

ing sample predictions, with the difference that averaging is done over the whole

forest (new samples are OOB in all trees).

In our work we used the RandomForest R package [92] for all computations.

We grew RF ensembles of 1000 CART trees [16], with the random subset of

K features available for each node split set to K =
√
F (as suggested in [92]),

where F is the total number of features. Each tree was grown until leafs had no

fewer than 5 samples (the default minimum node size for regression tasks in the

RandomForest R package).

3.4.2 Multiple Pathway Learning (MPL)

MPL is a classification framework that integrates heterogeneous data sources

and pathway information in a combined prediction model. Each gene set is ker-

nelized (see 3.4.4) and the problem is reformulated as learning the linear combina-

tion of pathway-based kernels[136]. To avoid overfitting, we used Multiple Kernel

Learning with elastic net regularization [145]:
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min
α∈RNM ,b∈R

N∑
i=1

L(yi,
M∑
m=1

N∑
j=1

km(xi, xj)αm,j + b) + λ1

M∑
i=1

‖αm‖Km + λ2

M∑
i=1

‖αm‖2Km

(3.2)

where N - number of samples, M - number of kernels, km is the kernel matrix

for the mth kernel, αm = (αm,1 . . . αm,N)T are the sample-specific weights for the

mth kernel, and ‖αm‖Km =
√
αmKmαm is the respective kernel norm. Intuitively,

the regularization terms control the trade-off between prediction accuracy and

model parsimony. For more details, see 4.5.2 and 4.5.3 in the next chapter.

3.4.3 MPL-RF Ensemble

The MPL ensemble computes predictions by averaging the predictions from

RF (Section 3.4.1) and MPL (Section 3.4.2).

3.4.4 Kernel construction

3.4.4.1 Pathway collections

I used MSigDB C2 (curated gene sets,4722 sets) and C5 (GO gene sets, 1454

sets)[139] collections as sources for our gene set compendium. The C2 collection

comprises both "canonical" pathways (CP, 1320 sets) as well as gene signatures for

various chemical and genetic perturbations (CGP, 3402 sets). The C5 collection

is derived from a flattened representation of the hierarchical network of terms in

the Gene Ontology [5][29]. The C2 and C5 collections consist of 6176 gene sets in

total. To minimize computing time, prior to kernelization I used several filtering

steps to reduce the number of gene sets as well as the number of genes within
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each gene set.

3.4.4.2 Variance-Based Expression Filter

We reduced the dimensionality of gene expression data by ranking genes based

on variance and only retaining the top 25 % most variable ones. There were 4707

expression features left post-filtering.

3.4.4.3 Pathway Redundancy Filter

The gene sets in our compendium exhibit high degree of overlap. To mitigate

that redundancy, I implemented the following size-based filtering:

1. The gene sets from the two MSigDB collections were ranked by size from

largest to smallest.

2. The largest one was kept.

3. Every subsequent gene set was only included if it did not overlap more than

65% with any previously included gene sets (if the overlap exceeded 65%,

the smaller gene set was discarded).

3.4.4.4 Copy Number TCGA PANCAN Filter

Copy number variation is often the result of large-scale events in which whole

chromosome arms can be amplified or deleted. As a result, biological “driver” genes

can be obscured by a (large) majority of “passenger” gene events. To mitigate this

effect, we only used copy number data for 1752 genes enriched for functional

genomic events in multiple tumor types of the TCGA PanCan12 cohort [26].
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3.4.4.5 Features To Gene Set Kernels

Prior to filtering, I z-score normalized each feature in the training set.

For expression kernels, I first reduced gene set membership to genes that pass

our variance-based filter and then I applied the pathway redundancy filter. I

retained 2804 gene sets, ranging in size from 2 to 634 genes (median size 25, Fig.

3.9A), from which I constructed Gaussian expression kernels

Km(xi, xj) = exp(−‖ei − ej‖
2

σ
) (3.3)

where ei, ej are the expression vectors for samples i, j. Each expression vector

consists of the expression measurements for genes in the mth filtered gene set.

For copy number kernels, I applied the variance-based filter and pathway re-

dundancy filter as before, followed by the TCGA PanCan functional events filter.

The intuition behind my approach is that I wanted to focus on copy number events

that were not only a priori known to be involved in cancerogenesis but also have

supporting expression changes in the cell line molecular data. I retained 2338 gene

sets, ranging in size from 1 to 67 genes (median size 3, Fig. 3.9B), from which I

constructed Gaussian copy number kernels

Km(xi, xj) = exp(−‖ci − cj‖
2

σ
) (3.4)

where ci, cj are the copy number vectors for samples i, j. Each CN vector consists

of the CN values for the genes in the mth filtered gene set.

I applied the same σ to all kernels (EXP and CN). I chose sigma by exploring

hyperparameter space around the mean length of all filtered expression gene sets

(mean length=51.5, see also 3.4.5).
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Figure 3.9: Distributions of A) Expression filtered and B) Copy number filtered
gene set lengths. Filtering steps as described in text.
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3.4.5 Hyperparameter selection

I tuned three MPL hyperparameters - the width of the Gaussian kernels σ and

the parameters controlling elastic-net regularization (λ1, λ2). I optimized them

on the Phase 2 data of the DREAM9 challenge, with 66 cell lines available for

training and 33 cell lines withheld as a test set [59]. To reduce computation

time, I applied the same σ to all kernels and the same λ1 and λ2 to all prediction

tasks. I considered values of 10, 50 and 100 for σ and λ vectors that induce sparse

([λ1 = 0.005, λ2 = 0], few kernels with positive weights), dense ([λ1 = 0.0001, λ2 =

1], almost all kernels have positive weights) and in-between ([λ1 = 0.001, λ2 =

0.0001],[λ1 = 0.0007, λ2 = 0.0006]) solutions. I also considered the utility of

combining different data types by comparing models using only EXP kernels with

ones trained on both EXP and CN kernels (both sets derived with the filtering

steps described in 3.4.4). Finally, I evaluated the relative contributions of the

three main groups of gene sets (CP, CGP and GO) in our gene set compendium.

I used a univariate hyperparameter selection approach - first I picked the best

λ’s, followed by the best σ, the best data type combination, and the best gene set

compendium, with each successive tuning run using the optimal hyperparameters

from preceding runs.

My tuning experiments suggest that models in which most kernels receive

non-zero weights tend to outperform ones with sparser weight vectors (Table

3.3). Similar conclusions have been previously reached from the analysis of non-

bioinformatics data - sparser solutions often generalize less well and are frequently

outpeformed by baseline models such as the sum of uniformly weighted kernels

[81].

The kernel width σ shows less effect on model accuracy, with values closer to
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Table 3.3: Mean Spearman correlation for different (λ1, λ2) values
(λ1, λ2) mean Spearman
(0.005,0) 0.1711 ± 0.0016

(0.001,0.0001) 0.1704 ± 0.0016
(0.0007,0.0006) 0.1748 ± 0.0016

(0.0001,1) 0.1849 ± 0.00156

Standard deviation is computed by dividing the sample sd by the square root of
the number of observations (14738 tasks).

the mean length of the kernelized gene sets providing slightly better performance

(Table 3.4). The inclusion of CN kernels in addition to EXP ones boosted perfor-

mance to a larger extent than finding the optimal kernel width, but less so than

optimizing MPL regularization parameters (Table 3.5).

Finally, the addition of information-rich gene sets provided the biggest accu-

racy gains (Table 3.6). Interestingly, the most highly curated collection (canon-

ical pathways, CP) did not produce the most accurate models - both GO and

CGP contained valuable orthogonal information that improved model fit. This

is important for two reasons - on one hand, it highlights the fact that the best

characterized regions of the human gene interaction network (CP) cover only a

small portion of it, which is why exclusively focusing on them can lead to biased

interpretations. On the other hand, curated signatures from prior experiments

(CGP) can help shed light on the regions of the interaction network that CP does

not cover. This is encouraging because experimental gene signatures are much

easier to obtain - if more of them are made available to MPL, either by better

aggregation of currently existing data or by incorporation of future experiments,

model accuracies will likely improve.

69



Table 3.4: Mean Spearman correlation for different σ values
σ mean Spearman
100 0.1849 ± 0.00157
50 0.1870 ± 0.00157
10 0.1866 ± 0.00159

Standard deviation is computed by dividing the sample sd by the square root of
the number of observations (14738 tasks).

Table 3.5: Mean Spearman correlation for different data type combinations. Both
EXP and CN were filtered as described in the text.

Data Type mean Spearman
EXP 0.1870 ± 0.00157

EXP+CN 0.1926 ± 0.00156

Standard deviation is computed by dividing the sample sd by the square root of
the number of observations (14738 tasks).

Table 3.6: Mean Spearman correlation for different gene set collections
Collection mean Spearman

CP 0.2098 ± 0.00131
CP+GO 0.2192 ± 0.00131

CP+GO+CGP 0.2291 ± 0.00132

Standard deviation is computed by dividing the sample sd by the square root of
the number of observations (14738 tasks).
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3.5 Conclusion

This chapter introduces MPL - a kernel-based framework for the integration of

pathway information and heterogeneous data types. MPL models achieve supe-

rior predictive accuracy in challenging regression tasks such as predicting cell line

shRNA knockdown viability from molecular features. They provide a straight-

forward interpretation of the relative importance of a gene set to a particular

prediction task. MPL can therefore be viewed as a way to blend together model

learning and gene set enrichment analysis.

As all frameworks, however, MPL comes with some trade-offs. On one hand,

it is not equipped to capture cross-data type feature-feature interactions as each

data modality is kernelized separately. On the other hand, it cannot assess the

relevance of individual features to modeling performance. The latter is particu-

larly evident in my attempts to construct a pathway-pathway dependency map.

Without a measure of feature importance it is extremely difficult to disambiguate

the relevance of highly redundant gene sets - different pathways might share the

same key driver features, but they will appear as distinct entities in the depen-

dency map. This can confound the interpretation of PP-KD pathway pairs as the

same biological process can be represented by multiple predictor gene sets. Both

of these challenges are addressed by AKLIMATE - a novel algorithm I introduce

in Chapter 4.
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Chapter 4

AKLIMATE: Algorithm for Kernel

Learning with Approximating Tree

Ensembles

As we saw in Chapter 3, Multiple Pathway Learning (MPL) provides a very

powerful framework for the integration of different genomic data types with path-

way information. However it suffers from two distinct shortcomings. On one hand,

it has no sound way of assigning predictive importance to the features within each

pathway. On the other hand, the data integration model of MPL does not allow

for feature-level cross-data type interactions within a pathway. To address these

challenges, we introduce AKLIMATE.

4.1 Introduction

High-throughput data have become ubiquitous in the study of biological phe-

nomena. Genome-wide structural variant estimates are available for thousands
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of samples [140]. The exome is even better characterized, particularly in cancer

studies, where tens of thousands of patients have copy number, mutation, methy-

lation, mRNA, miRNA or protein levels measurements [66]. In addition, the drop

in sequencing cost has led to a proliferation of experiments that capture multi-

omic profiles under a plethora of conditions and perturbations. They produce

feature sets that characterize differences between experimental conditions or pro-

vide wet lab validation for interactions at various steps of the Central Dogma.

Such "prior knowledge" accumulates in an ever-growing number of databases

[21][93][37][177][113]. However, the integration of prior knowledge with hetero-

geneous genomic measurements in an interpretable model remains a formidable

challenge that is still not fully solved.

Scores of methods have been developed to address some aspects of the three

main challenges (prior knowledge interrogation, heterogeneous data interrogation,

and ease of interpretation), both for supervised and unsupervised analysis (for re-

cent reviews, see [116][95][69]). Several common approaches emerge for supervised

learning of sample phenotypes. A popular way of increasing interpretability is to

train models with regularization terms that constrain the number of included

features - sparse models are considered easier to interpret than ones containing

thousands of variables. Common regularization penalties are the lasso [149] and

the elastic net [176]. More sophisticated regularization schemes can control the

model behavior at the feature set level - e.g. the group lasso (GL) [175] and the

overlap group lasso (OGL) [72] - thus allowing the incorporation of prior knowl-

edge in the form of feature set definitions. However, both have drawbacks that

make them less suitable for biological pathway analysis where genes often par-

ticipate in multiple processes. GL requires that if a feature has a coefficient of
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zero in one group, it must necessarily have zero coefficients in all other groups.

OGL tends to assign positive coefficients to (unions of) whole groups - this is

problematic when the pathway definitions used to construct the feature sets are

noisy or not appropriate for the learning task (e.g. using non-tissue-specific lists

of transcription factor targets).

Network-regularized methods [135][91] use gene-gene interaction networks as

regularization terms on the L2-norm of feature weights. While they do use pathway-

level information and are straightforward to interpret, they focus on an individual

data type. Multiple Kernel Learning (MKL) [7][115][145][57][129] approaches can

incorporate heterogeneous data by kernelizing each set of features and learning

a linear combination of the kernel representations. To prevent overfitting MKL

methods generally include a regularization term - e.g., L1-norm [115] or the elas-

tic net [145]. Prior knowledge can also be integrated by constructing individual

kernels from a pathway’s member features within each data type [59][57][129].

Indeed, MKL methods with prior knowledge integration [59][32] have won several

Dialogue on Reverse-Engineering Assessment and Methods (DREAM)[137] chal-

lenges. Nevertheless, MKL suffers significant drawbacks when the contributions of

input features need to be evaluated - except in trivial cases it is generally impossi-

ble to assign importance to the original features once the method is trained in the

kernel function feature space. In addition, feature heterogeneity necessitates the

construction of separate kernels for each data type, limiting the ability of MKL

to capture cross-data-type interactions.

All these methods can in turn be used as components in more complex en-

semble learning models. Ensembles combine predictions from multiple methods

into a more robust, and often more accurate, "wisdom of crowds" final prediction.
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The simplest and most common ensemble technique is averaging the predictions

of component models. Averaging over uncorrelated models or models with com-

plementary information can improve performance - it is one of the main reasons

for the emergence of collaborative competitions such as the DREAM challenges

[97][32]. In fact, such ensemble methods often win DREAM challenges [23] or

outperform competitors in genomic prediction tasks [79]. While they provide a

boost in predictive accuracy, their interpretation is quite challenging - due to the

need for minimally correlated component model predictions, ensembles often com-

bine different model types, making the computation of input feature importance

impossible in the large majority of cases. A notable exception is the Random

Forest (RF)[15] - an ensemble of decision trees that has been widely adapted in

bioinformatics analysis.

A more general approach to combining the predictions of multiple models is

model stacking [169]. In stacking base learner predictions are given as input to a

stacked model which produces the final predictions. To reduce overfitting and im-

prove generalization, base learner predictions are generated via a cross-validation

scheme in which a sample prediction is calculated by a model trained on all folds

but the one including the sample in question. Importantly, if the stacked model

is a weighted combination of the base models (a Super Learner), it is asymptoti-

cally guaranteed to perform at least as well as the best base learner or any linear

combinations of the base learners (including average and convex combinations)

[159][111]. Stacked models exhibit identical pros and cons as standard ensem-

ble models, with diminished interpretability traded off for increased accuracy. In

some cases, however, interpretability can be tractable - [164] uses base RF learn-

ers with a stacked least square regression to compute a final weighted average of
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the predictions from the base RFs. Although not examined in the original ar-

ticle, we demonstrate that a similar setup can lead to an intuitive derivation of

feature importance scores. Furthermore, their approach scores well in terms of

multi-omic integration. However, it incorporates no prior knowledge and, similar

to the drawbacks of pathway-based MKL, the segregation of data types in the

base learner stage excludes cross-data-type interactions.

In this study, we introduce the Algorithm for Kernel Learning with Integra-

tive Modules of Approximating Tree Ensembles (AKLIMATE) - a novel approach

that combines heterogeneous data with prior knowledge in a model that is easy

to interrogate on the feature as well as feature set level. AKLIMATE harnesses

the advantages of RFs (native handling of continuous, categorical and count data,

invariance to monotonic feature transformations, ease of feature importance com-

putation), MKL (intuitive integration of overlapping feature sets), and stacked

learning (improved accuracy) while avoiding many of their shortcomings. It relies

on two major computational insights. First, summary statistics of decision trees

within an RF model can be used to compute a kernel similarity matrix (RF kernel)

that is data driven yet capable of capturing complex non-linear feature relation-

ships. Second, if an RF model is trained with only the features corresponding to

a biologically relevant feature set, converting that model to an RF kernel allows

us to handle many different kinds of heavily overlapped prior knowledge groups

without the undesirable side effects of GL/OGL. What is more, the RF kernel

naturally re-weights the input features so that more informative ones make bigger

contributions to kernel construction - this property is key when dealing with noisy

or partially relevant feature set definitions.
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4.2 Results

We evaluated AKLIMATE performance on various prediction tasks - microsatel-

lite instability in endometrial and colon cancer, survival in breast cancer, and

shRNA knockodown viability in cancer cell lines. We benchmarked AKLIMATE

against comparable methods that have performed well in recent DREAM chal-

lenges. We chose both classification and regression tasks as well as various levels

of data availability - a single data type, multiple data types (including inferred

data), or multiple data types with clinical information.

4.2.1 Microsatellite Instability

We first tested AKLIMATE on predicting microsatellite instability in the col-

orectal (COADREAD) and endometrial (UCEC) TCGA cohorts. Microsatellite

instability (MSI) arises as a result of defects in the mismatch repair machinery of

the cell. Tumors with MSI (often accompanied by higher mutation rate) represent

a clinically relevant disease subtype that is associated with better prognosis. MSI

is also an immunotherapy indicator as such tumors produce more neoantigens.

We used expression data and MSI annotations for the COADREAD and UCEC

TCGA cohorts. The UCEC cohort consists of 326 patients, of which 105 exhibit

high microsatellite instability (MSI-H) and the remaining 221 are classified as

either low (MSI-L) or stable (MSS). The COADREAD cohort includes 261 sam-

ples, with 37 MSI-H and the remaining 224 classified as either MSI-L or MSS.

In both tumor types, methods were trained to distinguish MSI-H patients from

MSI-L+MSS patients. 50 stratified partitions of 75% training and 25% test were

created for each cohort and methods were trained using only samples from the

training split. We then computed area under the ROC curve (AUROC) for each set
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of test set predictions. We chose this problem because MSI can be predicted with

high accuracy from expression alone [57], giving us a straightforward benchmark

for AKLIMATE performance with a single feature type in a binary classification

setting.

We compared AKLIMATE to Bayesian Multiple Kernel Learning (BMKL)-

BMKL performed well in several DREAM challenges, in particular winning the

NCI-DREAMDrug Sensitivity Prediction Challenge[32]. Furthermore, its pathway-

informed extension [57] shares several similarities with AKLIMATE - it is a mul-

tiple kernel learning method that operates on pathway-derived kernels. In partic-

ular, BMKL uses expression-based Gaussian kernels computed on features from

the PID pathway collection [121]. We tested four versions of BMKL - sparse

single-task BMKL(SBMKL), dense single-task BMKL(DBMKL), sparse multi-

task BMKL (SBMTMKL), and dense multi-task BMKL (DBMTMKL). Sparse

BMKL models are the focus of [57] - they use sparsity-inducing priors to train

models with few non-zero kernel weights (we used the hyperparameters specified

in [57]). We added DBMKL and DBMTMKL to the comparison because dense

MKL models (almost all kernels receive non-zero weights) tend to produce higher

predictive accuracy in many experimental settings (e.g. [150]). Their parameters

are identical to the ones for the sparse models except for (ζκ, ηκ), which are set

to (999, 1) in the dense models ((ζκ, ηκ) = (1, 999) in the sparse ones). Finally,

the single-task models train separately on the UCEC and COADREAD cohorts,

while the multitask versions learn MSI status on the two TCGA cohorts jointly.

All train/test splits are matched across methods, including multi-task ones. All

BMKL models use 196 PID gene sets; all model parameters, kernel computa-

tions and data filtering steps match the setup described in [57]. To control for
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the pathway sets used when comparing the methods, we created a reduced ver-

sion (AKLIMATE-reduced) that was restricted to the same set of input PID sets

available to BMKL. The unrestricted, full model of AKLIMATE is referred to as

AKLIMATE in this comparison.

AKLIMATE predicted MSI status in the UCEC cohort significantly better

than AKLIMATE-reduced or any of the BMKL models (Fig.4.1a). In partic-

ular, AKLIMATE achieved a mean AUROC of 0.962 compared to 0.938 for

AKLIMATE-reduced (P < 4.1e−08; Wilcoxon signed-rank test), suggesting a pre-

dictive benefit to using AKLIMATE’s larger collection of gene sets. A larger gene

set collection is both more likely to contain sets derived specifically to describe the

MSI process and more flexible in terms of the possible combinations of component

gene sets. Indeed, the most informative feature set according to AKLIMATE was

"MSI Colon Cancer" (16.9% relative contribution to model explanatory power) -

a gene expression signature for MSI-H vs MSI-L+MSS in COADREAD cohorts

[74] (Fig.4.1b). Other highly ranked gene sets were also related to MSI. For exam-

ple, the next two most informative sets were "GO DNA Binding" (4.55% relative

contribution) and "REACTOME Meiotic Recombination" (2.4% relative contri-

bution), both of which are strongly relevant to DNA mismatch repair (MMR). Of

particular note, MLH1 was the top-ranked single feature in AKLIMATE (26.7%

relative contribution) and was present in all of the top ten ranked pathway ker-

nels (Fig.4.1b). MLH1 is a key MMR gene involved in meiotic cross-over [70].

Loss of MLH1 expression, usually through DNA methylation, is known to cause

microsatellite instability.

These results demonstrate that AKLIMATE is able to pinpoint individual

causal genes as it sifts through thousands of pathways. In contrast, the meta-
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Figure 4.1: AKLIMATE performance on predicting MSI in UCEC TCGA. A)
Performance of AKLIMATE and BMKL on classifying MSI-H vs MSI-L+MSS.
AUC computed for 50 75%/25% stratified train/test splits. P-values for Wilcoxon
signed-rank test pairwise comparisons. Methods: aklimate - aklimate on full col-
lection of feature sets; aklimate-reduced - aklimate with 196 PID pathways; sbmkl
- sparse single-task BMKL; dbmkl - dense single-task BMKL; sbmtmkl - sparse
multi-task BMKL; dbmtmkl - dense multi-task BMKL. Multi-task BMKL models
were trained to simultaneously predict MSI status on UCEC and COADREAD
cohorts. B) Top 10 most predictive AKLIMATE feature sets and top 50 most
predictive features. Expression of top 50 features (left heatmap); Membership of
most predictive features in most predictive feature sets (right heatmap). Features
are organized by KNN clustering into 3 groups, followed by hierarchical clustering
within each cluster. Feature set model weights scaled to a sum of 1 (barplot, top
of right heatmap). Feature model weights scaled to a sum of 1 (Barplot, right
of right heatmap). Feature and feature set weights averaged across 50 train/test
splits.
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pathway constructed by AKLIMATE-reduced represents a poorer approximation

to the underlying biological process, as evidenced by it lower AUROC. This is

likely due to the fact that only a single PID pathway (out of 196), contains MLH1

("PID P53 Downstream", 35.2% relative contribution, Fig.4.2), limiting the in-

fluence of a key feature on the prediction task.

Interestingly, even though AKLIMATE-reduced used the same feature sets as

BMKL, it achieved a statistically significant improvement over all BMKL varieties

(Fig.4.1a). This includes both the non-sparse and multi-task BMKL versions,

despite the fact that the latter benefited from an entire additional COADREAD

data set. In this case, the difference in kernel representation may have contributed

to the improved performance of AKLIMATE-reduced (see Section 4.3).

An important aspect of AKLIMATE that highlights the benefits of using prior

knowledge feature sets is its relative robustness to false positive findings. Con-

sider AKLIMATE’s top two most informative features, MLH1 and EPM2AIP1.

EPM2AIP1 is on the opposite strand of MLH1, shares a bi-directional CpG island

promoter with it and can be concurrently transcribed [64]. The transcriptional

profiles of the two genes are nearly identical (Fig.4.1b) - in the absence of other

information (more data types, prior knowledge) it would be extremely difficult to

prioritize the "driver" (MLH1) over the "passenger" (EPM2AIP1) using expres-

sion data alone. AKLIMATE’s feature sets provide just such prior knowledge -

while EPM2AIP1 is indeed deemed the second most informative feature, its rela-

tive contribution is over three times smaller than that of MLH1. Thus, our method

can enrich for biological drivers of MSI with a minimal amount of investigation.

AKLIMATE outperformed other methods on the COADREAD MSI classifi-

cation task as well. The degree to which it did so was smaller due to the fact that
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test splits. Figure organized as Fig. 4.1.
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all classifiers perform well on this problem (Fig.4.3).
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Figure 4.3: AKLIMATE performance on predicting MSI-High vs MSI-Low+MSS
in TCGA COADREAD cohort. AUC computed for 50 75%/25% stratified
train/test splits. P-values for Wilcoxon signed-rank test pairwise comparisons.
Methods as in Fig.4.1.

83



4.2.2 Breast Cancer Survival

Our next benchmark is predicting survival in the Breast Cancer International

Consortium (METABRIC) cohort [38]. This task is significantly more challeng-

ing than predicting MSI status, as demonstrated by the DREAM Breast Cancer

Challenge [101] and elsewhere [129]. Another big difference between this task and

the MSI one is that the METABRIC cohort is annotated with curated clinical

data. In fact, the clinical features are quite informative for survival prediction -

pre-competition benchmarking by the DREAM Challenge organizers found that

models using exclusively clinical features significantly outperformed ones using

only genomic features, and did only marginally worse than models in which clin-

ical features were augmented by a subset of molecular features selected through

prior domain-specific knowledge [12]. In addition, the best pre-competition clin-

ical feature model was only bettered by the top 5 models in the actual challenge

[101].

Clearly any model that foregoes the use of clinical data would suffer from in-

ferior accuracy as well as reduced relevance to real-world medical settings. To

achieve clinical data integration, AKLIMATE introduces a special category of

"global" features - these features are added to every feature set (i.e. the "lo-

cal" features) prior to the construction of its matching RF. Global features can

therefore be interpreted as a uniform conditioning step applied to all AKLIMATE

component RFs. In our METABRIC analysis, all clinical features were treated as

global.

We compared AKLIMATE to two state-of-the art METABRIC survival pre-

dictors. The first one, which we refer to as BCC, is the top-performer in the

Sage Bionetworks–DREAM Breast Cancer Prognosis Challenge [101][23] - an en-
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semble of Cox regression, gradient boosting regression, and K-nearest neighbors

trained on different combinations of clinical variables and molecular-feature de-

rived metagenes. The second one - Feature Selection MKL (FSMKL)[129] - is

a pathway-informed extension of SimpleMKL [115] that uses linear and polyno-

mial kernels created from clinical data and molecular features in pathways of the

Kyoto Encyclopedia of Genes and Genomes (KEGG) [76]. In FSMKL, pathway

features from different data types lead to the construction of separate kernels -

in the case of METABRIC, each pathway produces distinct expression and copy

number kernels (AKLIMATE, in contrast, learns one kernel matrix from the com-

bined pathway features across all data types). In addition, each clinical feature is

treated as a singleton pathway and produces an individual kernel. To make our

results directly comparable to FSMKL and BCC as run in [129], we used a subset

of the patient cohort (N = 639) and a reduced set of clinical variables to match

the dataset used in that publication .

We cast the problem as a classification task where we predicted from molecular

data and relevant clinical features whether a patient was alive or not at 2000 days.

Based on that binarization, there were 387 survivors and 252 non-survivors in our

reduced cohort. Similar to our MSI analysis, we performed 50 stratified repeats of

80% train and 20% test partitions; we trained AKLIMATE on each training split

and computed accuracy on the respective test samples. To decrease computational

time, AKLIMATE’s kernel construction step used 1000 trees instead of the default

2000 (see 4.5.9 for all other hyperparameter settings).

The full AKLIMATE model had higher mean accuracy than BCC (74.1% vs

73.2%) and was on par with FSMKL (74.1% vs 74.2%). This is unsurprising,

given that all of these models use clinical variables and correctly prioritize them
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as driver features. Furthermore, two of AKLIMATE’s main advantages could not

be fully utilized under these experimental conditions: first, the benefit of incor-

porating prior knowledge was reduced because of the relatively low information

content of genomic features. Second, the clinical variables did not seem to exhibit

complex interaction behavior, which is why modeling them with simpler linear

techniques was just as effective. In fact, the most explanatory feature in the full

AKLIMATE model (16% relative contribution) was the Nottingham Prognostic
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Figure 4.4: AKLIMATE performance on predicting survival at 2000 days in the
METABRIC cohort. A) Performance of AKLIMATE under different data type
combinations. EXP+CNV - AKLIMATE with genomic features only; clinical - a
RF model run with the clinical variables only; EXP+CNV+CLINICAL - AKLI-
MATE with genomic features as "local" variables and clinical features as "global"
ones. FSMKL and BCC dashed lines show mean performances for the two models
under 5-fold cross-validation as shown in [129]. B) AKLIMATE results highlight-
ing the top 10 most predictive feature sets and top 50 most predictive features.
Figure organized as Fig. 4.1. Clinical variables shown as column annotations; they
are included only if among the top 50 most informative features in the model. Clin-
ical variables are ranked from top to bottom by relative predictive contribution.
Survival status is a binary variable representing survival at 2000 days (labels)
while days survived shows actual duration of survival. Samples sorted by days
survived within the two classes. Feature and feature set weights averaged across
50 train/test splits.

Index (NPI)[62] - a linear combination of tumor size, tumor grade, and number

of lymph nodes involved. Even with these disadvantages, however, AKLIMATE

achieved performance on par with two state-of-the-art methods that were specifi-

cally developed on the METABRIC data.

As expected, clinical information proved to be the most influential feature

type for predicting outcomes. AKLIMATE models with clinical features alone

were significantly more accurate than AKLIMATE models with genomic features

alone (p-val=1.9e-08). Even so, the AKLIMATE models using both clinical and

genomic features outperformed models with either one alone (p-val=1.4e-09 for full

versus genomic, p-val=6.7e-04 for full versus clinical , Fig.4.4a). The mean relative

contributions of each feature type in the combined models were 61.6% for clinical,

29.6% for expression, and 8.8% for copy number. The fact that genomic features

far outnumbered clinical features (tens of thousands versus 15) underscores the

predictive power of the clinical variables and the importance of including them

during training.
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Of note, while the full AKLIMATE and FSMKL models achieved similar mean

accuracies, the importance of individual features and pathways in each model

were quite distinct. AKLIMATE heavily favored clinical variables, with 54.5%

of the relative explanatory power carried by just five features - NPI, tumor size,

lymph node involvement, age and treatment (Fig.4.4b). FSMKL also ranked NPI

as the most important clinical feature, but the model considered it less infor-

mative than 8 other KEGG pathway-based kernels. Other highly ranked clini-

cal variables included age (11th), histological type(14th), tumor group(34th) and

PAM50(40th) [129]. FSMKL’s top ranked pathway was "Intestinal Immune Re-

sponse," which has some overlap with the "Lymphoma IL-6 and IL-10 signaling

through STAT3" signature that AKLIMATE selected as the 7th most informative

feature set (Fig.4.4b).

While such distinctions were expected given the different analytical frame-

works of the two methods, further analysis is necessary to determine which model

aligns more closely with the relevant biology of patient outcomes. Encouragingly,

AKLIMATE’s most informative feature sets were enriched for breast cancer pro-

gression and response to treatment, with 3 of the top 10 and 8 of the top 20 (Table

4.1) related to these functional groups. For example, the most informative feature

set ("BREAST CANCER ER-/PR- DN") represents a signature that is corre-

lated with reduced protein abundance of the estrogen and progesterone hormone

receptors [36], while the 9th most informative feature set ("BREAST CANCER

HER2 ENDOCRINE THERAPY RESISTANCE") [35] represents transcriptome

changes associated with the development of resistance to targeted therapies. Both

of these signatures serve as proxies for highly relevant information not available

for the METABRIC cohort (protein activity for the progesterone receptor and
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therapy resistance). Furthermore, the latest AJCC breast cancer staging man-

ual introduces tumor grade and ER/PR/HER2 receptor status among the key

breast cancer classification characteristics, which already include tumor size and

lymph node engagement [54]. All of these variables appear as highly informative

AKLIMATE model features, either directly or via a proxy genomic signature.

4.2.3 shRNA knockdown viability

We tested AKLIMATE’s ability to integrate multiple data types and solve

regression problems on the task of predicting cell line shRNA knockdown profiles.

We selected 37 ATARIS [130] consensus profiles for different genes across 216

cancer cell lines from the Cancer Cell Line Encyclopedia (CCLE) [34] - each

consensus profile reflects cell line viability when a particular gene has been knocked

down by multiple small hairpin RNAs (shRNAs). We chose these 37 tasks (out of

5711 available consensus profiles) because they had at least 10 cell lines showing

strong (>2 sd from mean) viability response to the knockdowns and were in the

top quartile by variance of all consensus profiles. We used expression and copy

number measurements from CCLE [9] as prediction features. These two data types

were augmented by discrete copy number alteration calls made by GISTIC2 [104]

(see 4.4) and activities for 447 transcriptional and post-transcriptional regulators

inferred by hierarchical VIPER (see Chapter 2). We focused on the 206 cell

lines for which we had knockdown profiles, copy number and expression features.

Based on results from the DREAM9 gene essentiality prediction challenge [59], we

expected this task to be significantly harder than either of our other case studies.

We compared AKLIMATE’s performance to three of the five top performing

methods in DREAM9 as well as 3 standard algorithms. The DREAM9 sub-
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challenge 1 top performers are briefly described next. Multiple Pathway Learn-

ing (MPL) took 5th place (see https://www.synapse.org/#!Synapse:syn238

4331/wiki/64760 for challenge results) - it used elastic-net regularized Multiple

Kernel Learning with Gaussian kernels based on feature sets from the Molec-

ular Signature Database (MSIGDB) [93]. MPL and Random Forest Ensemble

(MPL-RF) took 2nd place - it computed the prediction averages of a Random

Forest classifier and MPL. Both MPL-RF and MPL were extensively discussed

in Chapter 3 - we used the same hyperparameters and pathway collections as in

the DREAM9 challenge. Kernelized Gaussian Process Regression (GPR) took

3rd place - it used extensive filtering steps to reduce the input feature dimen-

sionality, followed by principal component analysis, and finally Gaussian Process

regression with covariance computed from the principal components ([59], see also

https://www.synapse.org/#!Synapse:syn2664852/wiki/68499 for implemen-

tation and model description). We downloaded their code from the Synapse URL

and ran it with their DREAM9 hyperparameters.

To provide performance baselines, the DREAM9 winners were augmented by

standalone Random Forest (RF), Generalized Linear Model (GLM) with a LASSO

penalty (GLM-sparse), and GLM with L2 regularization (GLM-dense). RF was

run with the ranger R package [171] with the following hyperparameters - sampling

without replacement with 70% of the samples used for tree construction, minimum

node size of 10, 1500 trees and 10% of the features randomly sampled for each

node split. GLM-dense and GLM-sparse were run with the glmnet R package [51]

with the response family set to "gaussian" and the strength of regularization λ

learnt through cross-validation. The elastic net tradeoff between the lasso and

ridge penalties α was set to α = 0.8 (GLM-sparse) and α = 0.001 (GLM-dense).
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We did not include the nominal first place winner of DREAM9 - an ensemble of

four kernel ridge regression models with kernels learned through Kernel Canonical

Correlation Analysis and Kernel Target Alignment - because we could not re-run

the source code supplied with the challenge submission. We felt this omission is

not material as the top 3 methods were declared joint co-winners - their results

were shown to not be statistically different from each other but significantly sta-

tistically different form the rest of the participants [59]. Furthermore, experiments

in Chapter 3 suggested that this method would underperform MPL, MPL-RF and

GPR when only high-quality shRNA knockdown profiles are considered.

To reduce correlation across prediction tasks and save computational time, we

compare methods on a single stratified train/test split for each ATARIS profile

(a different split for each profile) where 67% of the cell lines are used for training

and 33% are withheld for testing. Each method was run with its recommended

parameters and filtering steps - if no filtering steps were specified, the method

used all available features. AKLIMATE’s prediction binarization quantile was set

to its default value of q = 0.05 (see 4.5.7).

AKLIMATE achieved average Root Mean Squared Error (RMSE) of 1.031 vs

1.047 for GPR, 1.055 for RF, 1.065 for GLM-dense, 1.07 for MPL, 1.071 for GLM-

sparse and 1.08 for MPL-RF. The mean RMSE difference was statistically signifi-

cant in all but one case (Fig.4.5A). AKLIMATE was also the top performer when

the number of times an algorithm achieved the best RMSE on an individual predic-

tion task was considered (Fig.4.5B, AKLIMATE retains top spot under different

performance metrics as well - Fig.4.6). AKLIMATE performed better than aver-

age across nearly all tasks (Fig.4.7); its advantage was particularly pronounced in

predicting the essentiality of key regulators (CTNNB1,FOXA1,MDM4,PIK3CA)
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or housekeeping genes (PSMC2, PSMC5). As these gene classes are heavily stud-

ied and thus well represented in our pathway collections, AKLIMATE’s enhanced

accuracy in these tasks may be due to the relatively higher prevalence of relevant

feature sets. For example, AKLIMATE’s ability to predict cell viability for MDM4

knockdowns benefits from MDM4’s function as a p53 inhibitor - many of the most

informative feature sets in the MDM4 model relate to p53’s regulome and its role

in controlling apoptosis, hypoxia and DNA damage control (Fig.4.5C). The top

features are also functionally linked to p53. CDKN1A (28.6% relative contribu-

tion), a kinase that regulates G1 cell cycle progession, is tightly regulated itself

by p53. MDM2 (8% relative contribution) participates in a regulatory feedback

loop with p53. ZMAT3 (3.7% relative contribution of expression; 3.5% of cnv) is

a zinc finger whose interaction with p53 plays a key role in p53-dependent growth

control.

Furthermore, the four p53 features from each data type are all present in the

top 50 most informative ones. Individually they carry little signal (relative contri-

bution - 0.5% expression, 0.3% copy number, 0.3% activity, 0.2% cnv gistic) but

taken together they clearly implicate p53 as one of the top 10 most informative

genes. The ability to capture such multi-omic interactions is one of AKLIMATE’s

main strengths. Elucidating the interplay between the different features char-

acterizing p53 would be much harder (if at all possible) in methods that assign

separate kernels to each data type, such as BMKL, FSMKL, MPL and MPL-

RF. Encouragingly, AKLIMATE dominates the MPL/MPL-RF performance on

almost all tasks even though they share the same MKL solver (Fig.4.5A, Fig.4.7).

FOXA1 knockdown prediction is another example of AKLIMATE producing a

superior performance on a well-studied gene. FOXA1 dysregulation is an essential
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event in breast cancer progression and subtype characterization. Due to breast

cancer’s status as one of the most prevalent and widely studied types of neoplasm,

there is a vast trove of relevant signatures in our feature set compendium. Indeed,

8 of the top 10 feature sets (and 12 of 14 overall) in our AKLIMATE model

are directly related to breast cancer experiments under different conditions (Fig.

4.8). As expected, FOXA1 features are the most informative (31.5% relative

contribution of expression; 3.4% relative contribution of inferred activity), with

AR also among the top 5 most informative genes (2.8% relative contribution of

expression).

Out of the 37 shRNA prediction tasks we considered, KRAS was the most

obvious example of a well-characterized gene that did not experience discernible

accuracy improvement over competing methods (Fig.4.7). We hypothesized that

this lack of improvement was caused by the absence of the true bilogical "driver"

from the set of molecular features presented to AKLIMATE. To test that, we

added mutation information for 8 key regulators (KRAS, NRAS, PIK3CA, BRAF,

PTEN, APC, CTNNB1 and EGFR), 3 of which (KRAS, CTNNB1, PIK3CA) had

knockdown profiles among the 37 shRNA prediction tasks. We did not include

mutations in our original method comparison because not all cell lines were pro-

filed (165/206 had mutation data) - the 8 regulators were the exception as their

mutation profiles covered all 206 cell lines. We included the 8 mutation features

as an additional "local" data type instead of the "global" approach we used for

clinical variables in the METABRIC case study.

Even though our mutation data type consisted of only 8 features, its addi-

tion led to a dramatic improvement in KRAS shRNA prediction accuracy across

all metrics (Fig.4.5D, mean RMSE 0.918±0.025 vs 1.02±0.024; mean Pearson
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0.665±0.023 vs 0.529±0.025; mean Spearman 0.57±0.039 vs 0.453±0.034). Fur-

thermore, the KRAS mutation feature proved to be by far the most informative

(23.5% relative contribution, Fig.4.5E), followed by KRAS copy number (6.9%),

KRAS GISTIC (3.3%) and KRAS expression (3.1%). The addition of the KRAS

mutation feature was not only crucial in improving the predictive performance of

the model, but it also helped prioritize KRAS features from other data types -

while KRAS expression, copy number and GISTIC features all appeared among

the top 50 most informative in the "no mutation" run, their combined relative

contribution was only 3.33% (1.5% copy number, 1% expression, 0.8% GISTIC,

Fig.4.9). Such signal amplification is possible because AKLIMATE’s RF kernels

allow genomic features from different data types to interact directly with one

another- this is how complementary genomic patterns (e.g. a composite KRAS

pattern drawing from all component data types) can be (correctly) prioritized as

most relevant.

Finally, AKLIMATE can examine mutation importance at the amino acid po-

sition as well as amino acid substitution level. In the case of KRAS, glycine

replacement by either aspartic acid or valine in the 12th amino acid position ap-

peared to have the biggest negative effect on cell viability post-shRNA knockdown

(Fig.4.5E). G12 is a well known KRAS mutational hotspot [67] - AKLIMATE’s

ability to prioritize relevant hotspots could be a key advantage in modeling drug

response or recommending treatment strategies.

The same approach did not lead to any predictive benefit in modeling PIK3CA

(Fig. 4.10) or CTNNB1 (Fig. 4.11) post-knockdown viability. CTNNB1 has

only 9 mutations in the cohort, all of them in different codons. PIK3CA has 30

mutations, with some hotspots - the lack of improvement in this case could be
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due to the change in protein sequence not being biologically relevant, the ability

of other genomic features to fully capture the mutational signal, or the fact that

the "no mutation" models are quite accurate to begin with.
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Table 4.1: Most informative feature sets for breast cancer survival prediction in
METABRIC data. Weights are averaged over 50 train/test splits. The table
lists the top 20 most relevant feature sets, out of 1836 feature sets with a non-
zero weight in at least one train/test split. Weights are normalized to sum to
1. Aliases for the top 10 feature sets are included in brackets - they provide a
more descriptive representation of biological functionality, based on information
gathered from the source publication. The aliases are also used in Fig. 4.4 and
throughout the text.

feature sets weights
GENESIGDB_BREAST_CREIGHTON09_594GENES 0.0097

(BREAST CANCER ER-/PR- DN)
SCHAEFFER_PROSTATE_DEVELOPMENT_48HR_UP 0.0093

(PROSTATE DEVELOPMENT 48 HRS UP)
KOINUMA_TARGETS_OF_SMAD2_OR_SMAD3 0.0089

(SMAD2/3 TARGETS)
GENESIGDB_LEUKEMIA_MARCUCCI08_696GENES 0.0075

(MIRNA TARGETS IN CYTOGENETICALLY NORMAL AML)
NUYTTEN_NIPP1_TARGETS_DN 0.0067

(NIPP1 TARGETS DN)
GENESIGDB_BREAST_MILLER05_P53 0.0066
(BREAST CANCER P53 REGULOME)

GENESIGDB_LYMPHOMA_LAM08_1502GENES 0.0064
(LYMPHOMA IL-6 AND IL-10 SIGNALING THROUGH STAT3)
GOBERT_OLIGODENDROCYTE_DIFFERENTIATION_UP 0.0056

(OLIGODENDROCYTE DIFFERENTIATION UP)
NEUTROPHIL_DEGRANULATION_REACTOME 0.0053

(NEUTROPHIL DEGRANULATION)
GENESIGDB_BREAST_CREIGHTON08_772GENES 0.0051

(BREAST CANCER HER2 ENDOCRINE THERAPY RESISTANCE)
GENESIGDB_BREAST_BARRY10_1022GENES 0.0048

CASORELLI_ACUTE_PROMYELOCYTIC_LEUKEMIA_DN 0.0046
MARKEY_RB1_ACUTE_LOF_DN 0.0046

GO_CELL_CYCLE_PHASE 0.0045
GENESIGDB_BREAST_YOSHIHARA10_88GENES 0.0043

GO_MITOTIC_CELL_CYCLE 0.0042
SMID_BREAST_CANCER_BASAL_DN 0.0041

GENESIGDB_OVARIAN_BARANOVA06_907GENES_SERTOLILEYDIG 0.0041
DUTERTRE_ESTRADIOL_RESPONSE_24HR_UP 0.0039

SARRIO_EPITHELIAL_MESENCHYMAL_TRANSITION_UP 0.0038
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Figure 4.5: Prediction of cell line viability after shRNA gene knockdowns. A) RM-
SEs of AKLIMATE and competing methods on 37 consensus viability profiles from
the Achilles dataset. Methods: Random Forest (RF), Gaussian Process Regres-
sion (GPR), Multiple Pathway Learning (MPL), ensemble of MPL and Random
Forest (MPL-RF), L2 regularized linear regression (GLM-dense), L1 regularized
linear regression (GLM-sparse). B) Number of times an algortihm produced the
best RMSE on a prediction task. To prevent small relative RMSE differences from
having a biasing effect on the win counts, for each task we consider all algorithms
with RMSE within 1% of the min RMSE to be joint winners. For that reason
total win counts add up to more than the number of regression tasks. C) AKLI-
MATE’s top 10 most predictive feature sets and top 50 most predictive features
for the task of predicting MDM4 shRNA knockdown viability. Figure organized
as Fig. 4.1. D) RMSEs of KRAS AKLIMATE models with and without the use
of mutational profiles for 8 key regulators. Results shown for 10 matched strat-
ified train/test splits where 80% of the cohort is used for training and 20% for
testing. E) AKLIMATE’s top 10 most predictive feature sets and top 50 most
predictive features for the task of predicting KRAS shRNA knockdown viability
when mutation features are used (feature and feature set weights averaged over
10 train/test splits). Figure organized as Fig. 4.1.
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Figure 4.6: Method performance on predicting cell line viability after shRNA
gene knockdowns measured by A) Spearman correlation. B) Number of times
an algorithm produced the best Spearman correlation on a prediction task. C)
Pearson correlation. D) Number of times an algortihm produced the best Pearson
correlation on a prediction task.
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Figure 4.10: Metrics for PIK3CA AKLIMATE models with and without the use
of mutational profiles for 8 key regulators. Results shown for 10 matched stratified
train/test splits where 80% of the cohort is used for training and 20% for testing.
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Figure 4.11: Metrics for CTNNB1 AKLIMATE models with and without the use
of mutational profiles for 8 key regulators. Results shown for 10 matched stratified
train/test splits where 80% of the cohort is used for training and 20% for testing.
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4.3 Discussion

Recent surveys of cancer genome landscapes have shown that alterations of a

particular pathway can involve many different genes and many different kinds of

disruptions - for example, RB1 mutation, RB1 methylation, or CDKN2A deletion

could all lead to cell proliferation [42]. Consequently, combining data at the level

of pathways may benefit machine-learning applications in the cancer genomics set-

ting. However, data platform diversity often prohibits such integration - variables

can be of different scales (e.g. copy number vs gene expression) or different types

(continuous DNA methylation, binary mutation calls, ordinal inferred copy num-

ber estimates). AKLIMATE’s early integration approach is a potential solution

to capturing complementary pathway-level information spread across data modal-

ities - all data types are considered, and potentially used, when constructing every

pathway kernel. AKLIMATE does so by building supervised tree-based empirical

kernel functions that optimally align the training labels with each pathway-specific

set of multimodal data. In contrast, FSMKL (and other MKL approaches with

unsupervised kernel construction) integrate pathway knowledge and multiple data

types by computing segregated data type-specific kernels for each pathway and

letting the linear combination "meta-kernel" determine each data type’s contribu-

tion. This may result in suboptimal solutions - features that belong to the same

pathway but in different data types can now only interact with each other on the

kernel level and not individually. AKLIMATE’s approach creates a much richer

interaction model that is flexible enough to capture same-gene, cross-gene, and

cross-data type interactions.

Another limitation of current pathway-informed kernel learning methods is

that a single informative feature can go undetected if only present in large path-
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ways - if all member features contribute equally to kernel construction, the im-

portance of the relevant feature is obscured by the non-relevant majority. In

contrast, AKLIMATE’s RF-based kernels effectively allow individual features to

influence the model. This advantage is illustrated by the improvement in AKLI-

MATE performance over BMKL on the MSI prediction task. BMKL’s Gaussian

kernels treat each feature in a feature set as equally important in the computation

of the respective kernel matrix. As MLH1 appears only once in the PID path-

way set, its contribution is masked by less informative features. On the other

hand, AKLIMATE’s RF kernels, due to the supervised manner in which they are

constructed, inherit RF’s ability to prioritize features based on their importance

to the classification task - informative features are by definition overrepresented

among tree node splitting variables. As all components of the RF kernel are

derived from characteristics of the RF trees, informative features exercise pro-

portionately higher influence over the RF kernel construction. Therefore, if only

a small subset of a pathway’s features are truly relevant, they can be clearly

distinguished from (thousands of) non-relevant ones. For example, both AKLI-

MATE and AKLIMATE-reduced picked MLH1 as the most informative feature

(26.7% and 16.4% relative contribution respectively), with a steep decline in the

importance of the next best feature (AKLIMATE - EPM2AIP1, 8% relative con-

tribution; AKLIMATE-reduced - PARD6A, 4.8% relative contribution).

The METABRIC case study highlights another key advantage of AKLIMATE

- a straightforward way to accommodate variables that do not readily map to

genome-based feature sets (e.g. clinical data). In cases such as METABRIC, where

clinical features provide most of the predictive power, the most salient question

becomes what genomic features can provide additional orthogonal information
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given that the clinical data are already incorporated into the model. Posing the

problem as a conditional relationship between clinical and molecular data closely

reflects the practical situation in hospital settings where clinical information is

usually the first thing available to a treating physician. AKLIMATE and FSMKL

illustrate two different ways of incorporating such information. FSMKL treats

each clinical variable as a feature set of size one and constructs a kernel for each

of them individually. This approach is viable, but quite restrictive in how it models

clinical variable interactions. While AKLIMATE can accomodate such a setup,

it also permits a more complex representation of the way features interact - each

clinical feature is of a special "global" type that gets included in every feature set

in addition to the features "local" to it. The "global"-"local" feature hierarchy

allows maximum flexibility in modeling interactions among clinical variables and

between clinical variables and genomic features. Such a hierarchy is necessary

when features work on different biological scales - for example, tumor grade is an

organ level characteristic that captures a snapshot of the behavior of millions of

cells and is therefore likely to be vastly more informative than the copy number

status of an individual gene.

An important aspect of AKLIMATE’s use of prior knowledge is its ability

to identify relevant features even in cases where many confounders exhibit high

collinearity. This problem is similar to the one encountered in genome-wide as-

sociation studies where an allele conferring a phenotype of interest can exist in a

large haplotype block containing the alleles of many other genes. In such situa-

tions, prior knowledge often helps researchers select the true causal variant among

the many false positive ones. In the MSI prediction task, AKLIMATE was able

to identify MLH1 among several other correlated features based solely on gene
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expression data. AKLIMATE’s robustness to collinearity is not limited to expres-

sion features. Importantly, AKLIMATE can prioritize relevant genes even if they

are subject to large-scale copy number events and thus have almost identical copy

number profiles with many other genes. This can be observed in AKLIMATE

results for the MDM4 knockdown prediction task (Fig.4.5C) as well as the con-

sensus AKLIMATE feature importance for KRAS predictions with mutation data

(Fig.4.5E). In the former, there is a clear large scale CN event that involves 7 of

the top 50 most predictive genes, but ZMAT3 is given by far the highest weight

because of the biological prior of the feature sets. Similarly, in the latter 9 CN

features have very similar profiles, but the KRAS one is prioritized as the most

important. The KRAS GISTIC feature is also favored among a group of genes af-

fected by large-scale events - a strong indicator that the robustness to collinearity

extends beyond continuous features to categorical ones as well.

Making use of prior knowledge, such as the results of past experiments, is of-

ten a key component to the success of machine-learning applications in genomics

analysis [12] [147]. AKLIMATE uses a biologically-motivated prior distribution

on the feature space - as demonstrated, this approach often outperforms methods

that use a uniform prior over input features. AKLIMATE updates its prior in-

formation in a data driven manner - therefore, the feature set compendium does

not need to be specifically tailored to the problem at hand, avoiding the need

for feature set membership filtering heuristics. When high quality relevant prior

experiments are available, AKLIMATE tends to perform better. For example, the

most important feature set for MSI prediction in endometrial cancer was a pre-

viously published signature characterizing MSI in colon cancer (Fig.4.1B). From

that perspective, AKLIMATE can be thought of as a framework for discovering
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the past experiments whose results are most relevant to the interpretation of a

new dataset.

Alternatively, AKLIMATE can be considered a data type prioritizer. By ag-

gregating the weights of features within a data type, AKLIMATE can implicitly

measure data type relevance to an experiment. For example, while expression

is generally most important in predicting shRNA knockdowns (mean importance

71.6% across tasks), there are cases where copy number is more informative -

PSMC2(61.7%), RPAP1(55%) and CASP8AP2(47%) (Fig.4.12). Furthermore,

inferred protein activity varies tremendously in terms of its contribution - from

< 1% in predicting PSMC2 knockdowns to 27.7% for STRN4 (Fig.4.12). AKLI-

MATE’s ability to zero in on information-rich data types could help in designing

targeted future experiments.

From a stacked learning perspective, AKLIMATE implements level-one data

augmentation by including not just a base learner’s CV-based predictions, but

also its intrinsic properties that might convey additionl predictive information (in

the case of AKLIMATE base RFs - how often data points end up in the same leaf

node and whether they tend to end up in early-split or late-split leaves). This

augmenation leads to improved performance - if we use AKLIMATE’s bestRFs

as the base learner set, AKLIMATE outperforms with statistical significance the

ensemble that averages base learner predictions as well as the best individual base

learner across all three case studies (Fig. 4.13). In addition, it does better than

a standard Super Learner (regularized linear regression meta learner) although

without achieving statistical significance on some of the data sets (Fig. 4.13).

This clearly indicates that the additional information encoded in components K2

and K3 of AKLIMATE’s RF kernels is relevant and helpful. What is more, it
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highlights how intrinsic properties of a base learner can be propagated into a

more accurate meta learner. While AKLIMATE provides a blueprint for tree-

based algorithms, using other base learners might yield even better results.
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Figure 4.13: Comparison of AKLIMATE versus different ways of combining AK-
LIMATE component RFs. Ensemble superlearner component RFs - learning a
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AKLIMATE requires minimal feature pre-processing, can query tens of thou-

sands of feature sets, and its main steps are embarrassingly parallel. It performs

as well as, or better than, state-of-the-art algorithms in a variety of prediction

tasks, with the added benefit of easily interpretable integrated feature set analy-

sis. AKLIMATE can natively handle continuous, binary, categorical, ordinal and
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count data, and its feature sets can be trivially extended with features related to

current members - e.g. gene sets can be augmented by appropriate methylation

probe status, promoter mutations, splice variant proportions and many more. Fur-

thermore, with slightly more effort AKLIMATE can incorporate prior importance

scores for features within a feature set as well as structured prior relationships

such as known feature-feature interactions or dependencies. Finally, even though

all case studies came from the field of bioinformatics, AKLIMATE can be applied

to any problem with prior knowledge of problem-relevant feature groups and/or

heterogeneous data types, particularly problems where the feature sets extend

across data types.

4.4 Data Acquisition and AKLIMATE pre-processing

Data for all three case studies was processed in the following manner:

1. Expression data was filtered based on the mean and variance of genes across

samples - any gene whose mean or variance fell in the bottom 20% of the

respective distribution was discarded.

2. Copy number data, if available, was filtered similarly to expression but with

the cutoff set at 50%. In case GISTIC2 [104] discretized gene-level copy

number calls were computed, they were filtered the same way.

3. hVIPER-generated regulator activity scores were not filtered as there were a

small number of such features to begin with (447, see Chapter 2 for hVIPER

description and derivaiton).

In addition, filtered data for the two classification tasks (MSI and METABRIC
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survival prediction) was discretized by computing the quintiles of the distribution

of each molecular feature and binning each quintile into a separate category. This

discretization was done to speed up computation in the larger cohorts. Finally,

non-ordered categorical data (e.g. METABRIC clinical variables) were one-hot

encoded prior to AKLIMATE use.

4.4.1 Microsatellite Instability

Data for the COADREAD and UCEC TCGA cohorts were downloaded from

the Synapse copy of the PANCAN12 TCGA cohort [65] (synapse object id syn300013,

https://www.synapse.org/#!Synapse:syn300013/wiki/70804). The UCEC ex-

pression data (syn1446289) was log transformed and filtered as previously de-

scribed. The filtered data set contained 13,424 expression features. The MSI

status for UCEC patients was extracted from UCEC clinical data (syn1446167).

Similarly, the COADREAD expression dataset was created by joining the

COAD (syn1446197) and READ (syn1446276) PANCAN12 cohorts, log trans-

forming the combined matrix and applying previously described filtering. The

filtered data set contained 14,036 features. MSI status was downloaded from

firebrowse.org and matched to the whitelisted samples for the joint COAD-

READ PANCAN12 expression set.

4.4.2 METABRIC Survival

Expression (Illumina HT12 array), copy number (Affymetrix SNP 6.0) and

clinical data for the METABRIC cohort[38] were downloaded from https://www.

synapse.org (Synapse ID syn1688369). Expression and copy number data were

processed as described in the marker paper [38]. Expression data used Illumina
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HT12V3 probe identifiers while copy number data had Entrez gene features. Since

our pathway compendium is HGNC-based, we translated each HGNC gene set to

all Illumina probes and Entrez gene ids matching any of its members. We used

the IlluminaHumanv4.db Bioconductor package for the Illumina-HGNC map and

the org.Hs.eg.db package for the Entrez-HGNC one.

To match the analysis in [129], we restricted the METABRIC cohort to 639

patients (list obtained in personal communication with authors). For the same

reason, we did not use the full set of clinical information available, but limited it

to variables used in [129], namely:

1. Age at diagnosis

2. Tumor size

3. Tumor grade

4. Tumor stage

5. Number of positive lymph nodes

6. Histological type

7. Estrogen receptor IHC status and expression-based status

8. HER2 IHC status, SNP6 status, and expression-based status

9. Nottingham Prognostic Index

10. PAM50-based breast cancer subtype

11. Cellularity

12. Composite treatment status
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The last clinical variable is not present in the METABRIC clinical file, but it

integrates aspects of other clinical variables in a manner described in [129].

Expression and copy number data sets were filtered as previously described,

with mean and variance calculations based on the reduced rather than the full

cohort.The combined filtered feature set contained 20,022 expression, 8608 copy

number and 15 clinical features.

4.4.3 shRNA Knockdown Profiles

Achilles 2.4.3 shRNA knockdown profiles were downloaded from https://de

pmap.org. The data release contained ATARIS [130] gene-level profiles for 5711

genes across 216 CCLE cell lines. ATARIS profiles were computed by aggregating

the profiles of multiple shRNAs targeting an individual gene. ATARIS was run

with a threshold of p = 0.05 on the samples and shRNAs that passed QC inspec-

tion (see online QC manifest of the Achilles 2.4.3 data). The mutation profiles

of the 8 regulators considered in 4.2.3 (KRAS, NRAS, PIK3CA, BRAF, PTEN,

APC, CTNNB1 and EGFR) were extracted from the sample annotation file for

the Achilles 2.4.3 data release.

Matching expression and copy number characterizations of individual cell lines

were downloaded from the Cancer Cell Line Encyclopedia (CCLE, https://port

als.broadinstitute.org/ccle/data). Expression was measured by Affymetrix

U133 Plus 2.0 array, aggregated via Robust Multi-array Average and quantile

normalized (see 2012 expression data release on CCLE website). Copy number

was evaluated by Affymetrix SNP 6.0 arrays and segmentation of the normalized

log2 probe ratios via Circular Binary Segmentation (see 2012 copy number release

on CCLE website). GISTIC2 version 2.0.22 was run on the copy number data
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with default parameters (amplification and deletion thresholds of 0.1, broad event

threshold of 0.7, enabled arm level peel-off events, and gene collapsing set to

extreme). hVIPER was run on the expression data as described in Chapter 2.

Expression, copy number and GISTIC data sets were filtered as previously

described. The combined filtered feature set contained 13,652 expression, 10,086

copy number, 9,557 GISTIC and 447 VIPER activity features.

4.4.4 Gene Set Collections

As AKLIMATE can feasibly query several times more gene sets than MPL

(see 4.5.7), we developed a much more extensive gene set compendium for use

with it. We again included the C2 and C5 collections of MSigDB [139], but we

augmented them with GeneSigDB [37](a curated collection of published signa-

tures) and PathwayCommons [21](a database of databases covering the spectrum

of metabolic, molecular, signaling, regulatory and genetic interactions). We ex-

cluded gene sets from the Small Molecular Pathway Database [73] (SMPDB, part

of Pathway Commons) because of its highly redundant and small-sized signatures.

We also removed the "canonical" pathways C2_CP MSigDB subcollection due to

its high degree of overlap with the much more extensive PathwayCommons re-

source. Futhermore, we added gene sets related to chromosomal location - they

were derived by passing TCGA LIHC segmented copy number data through the

CNRegions function of the iClusterPlus [105] R package, with ε = 0.0025. Finally,

we removed all sets with more that 1000 members. The final compendium consists

of 17,273 gene sets with median size of 30 (min size of 1, max size of 991).
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4.5 Methods

AKLIMATE is a stacked learning framework in which each base learner en-

capsulates the relationship between the training labels and a biologically relevant

concept mapped to a group of multi-modal features (a feature set, Fig.4.14). The

base learners are RFs, which allows the concurrent use of features with different

underlying distributions without the need for cross-data type normalization. The

feature sets can come from many diverse sources - e.g. pathway compendiums,

chromosomal regions, drug treatment differential signatures, siRNA knockdown

experiments or disease progression studies. Furthermore, even though such fea-

ture sets normally consist of member genes, they are easily amenable to a more

comprehensive membership - for example, if such input data are available, gene

sets can be extended by features corresponding to mutational hotspots, different

splice forms, or nearby methylation probes. Base learners are agnostic to any

features not included in their associated feature set - as a consequence, each one

presents a distinct, if correlated, view of the data. Each base learner produces a

pairwise similarity measure on the training samples (an RF kernel, see 4.5.4) that

captures the contributions of all modes of data mapping to the relevant feature

set. The stacked learning step finds the optimal combination of such similarity

matrices - it can be interpreted as the kernel associated with the most predictive

integrated meta-feature set derived from all interrogated feature sets.

The key contributions of AKLIMATE are:

1. The introduction of an integrative empirical kernel function that combines

similarity in predicted labels with proximity in the space of RF trees (RF

kernel).
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2. The extension of kernel learning to a stacking framework. To our knowledge,

AKLIMATE is the first stacked learning formulation to incorporate base

kernels.

In the next sections we give a detailed description of each AKLIMATE com-

ponent.
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Figure 4.14: Overview of AKLIMATE. AKLIMATE takes as inputs multiple data
types and a collection of feature set groups. AKLIMATE first trains RF learners,
one for each feature set, with all available multi-omic features that map to the set
in question. The RFs are then ranked by their OOB performance and the top K
are converted to RF kernels. Finally, RF kernels are used as input in an elastic
net MKL to produce the final predictions. Elastic net hyperparameters are learnt
via cross-validation.

4.5.1 Random Forest

An RF learner is an ensemble of decision trees, each of which operates on

a perturbed version of the training set. The perturbation is achieved by two

randomization techniques - on one hand, each tree trains on bootstrapped data

generated by drawing samples with replacement from the training set. On the

other hand, at each node in a decision tree only a subset of all features are con-

sidered as candidates for the next split. Such randomization is motivated by the
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desire to decorrelate the predictions of individual decision trees - averaging pre-

dictions of uncorrelated models tends to reduce the variance component in the

bias-variance decomposition of prediction error. Since decision trees are generally

low-bias high-variance predictors, in most applications the lower variance of the

RF ensemble far outweighs the accompanying increase in bias, leading to lower

overall prediction error (for an in-depth examination, see [94]).

4.5.2 Kernel Learning

Kernelization is a widely-used technique that allows linear discriminant meth-

ods to be applied to learning problems with non-linear decision boundaries [125].

It relies on the "kernel trick" - a transformation of the input space to a differ-

ent, potentially infinite dimensional, feature space where the train set samples

are linearly separable. The utility of the "kernel trick" lies in the fact that the

feature map between the input space and the feature space does not need to

be explicitly stated - if an algorithm can be formulated in terms of dot product

calculations, we only need to know the functional form of the feature space dot

product in terms of the input space variables. A kernel function represents such

a generalized dot product [125]. Furthermore, the Representer Theorem [80][125]

guarantees computational tractability since the optimal solution to a large col-

lection of optimization problems is guaranteed to only depend on kernel function

evaluations on the (finite-dimensional) training data. More formally, for an ar-

bitrary loss function L(f(x1) . . . f(xN)), the minimizer f ∗ of the regularized risk

function

R(f) = L(f(x1) . . . f(xN)) + Ω(‖f‖2H) (4.1)
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can be expressed as

f ∗ =
N∑
i=1

αik(xi, · ), αi ≥ 0 (4.2)

provided that the regularization term Ω(‖f‖2H) is a monotonically increasing func-

tion.

The kernel trick is valid under mild conditions - the kernel needs to be positive-

definite, ensuring the existence of an associated Reproducing Kernel Hilbert Space

[125][4]. Methods such as Support Vector Machines, Gaussian Processes, Fisher

Discriminant Analysis [125] and Kernel PCA [126] have all been extended to non-

linear settings via kernelization.

4.5.3 Multiple Kernel Learning

Kernel learning can lead to large improvements in accuracy, provided that an

appropriate kernel is selected. That choice, however, is often not obvious - kernel

functions might not be easily prioritizable, they might have hyperparameters that

need to be tuned or the training data might consist of heterogeneous features that

do not natively conform to a single feature map. MKL addresses the problem of

kernel selection by searching for a composite kernel that is a data-driven optimal

combination of candidate kernels [7][88][58][82]. Linear combinations of kernels of

the form K(α) =
∑M

i=1 αiKi with either a conical (∀i, αi ≥ 0) or convex (∀i, αi ≥ 0

and
∑M

i=1 αi = 1) constraint are by far the most commonly used target kernel

representations because of their many desirable properties (although algorithms

that allow non-linear combinations do exist - see [58]). Some important advantages

are:
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1. Conical/convex combinations of positive definite kernels are positive definite.

2. The composite kernel is associated with a feature space that is the concate-

nation of all component kernel feature spaces.

3. The Representer Theorem is readily extendable to the the conical combina-

tion case - the optimal solution f ∗ takes the form f ∗ =
∑M

m=1

∑N
i=1 km(x, xi)αm,i

[145][125].

MKL algorithms admit different forms of regularization depending on what

norm of the kernel weights is chosen. In our work we use an elastic-net [176] regu-

larizer on the norm of the individual kernel weights of the form λ1
∑M

i=1 ‖αm‖Km +

λ2
∑M

i=1 ‖αm‖2Km
, where ∀λ ≥ 0, αm = (αm,1 . . . αm,N)T , and ‖αm‖Km =

√
αmKmαm

is the definition of a kernel norm as in [145] and [144]. We chose elastic net regu-

larization because of its flexibility - with appropriately tuned λ’s we can capture

sparse (λ1 >> λ2, few non-zero weight norms) and dense (λ1 < λ2, many non-zero

weight norms) kernel weight solutions. Of note, such a regularization also permits

a uniform kernel weight solution (λ1 = 0, λ2 > 0).

The explicit form of our optimization problem becomes

min
α∈RNM ,b∈R

N∑
i=1

L(yi,
M∑
m=1

N∑
j=1

km(xi, xj)αm,j + b) + λ1

M∑
i=1

‖αm‖Km + λ2

M∑
i=1

‖αm‖2Km

(4.3)

as described in [145]. We use their algorithm (SpicyMKL) to solve (4.3).

The optimal kernel weights are recovered by
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wm =


0 (‖α∗m‖Km = 0),

‖α∗
m‖Km

λ1+λ2‖α∗
m‖Km

(otherwise)
(4.4)

where α∗ is the optimal solution of (4.3) [145]. The model weights are also

re-scaled to satisfy
∑M

i=1wi = 1.

4.5.4 RF Kernel

The most common approach to kernel construction is to specify an explicit

closed form for the kernel function, such as a polynomial or a radial basis one.

Kernel functions that encode more complex relationships between training ob-

jects also exist, particularly if the objects can be defined in a recursive manner

(ANOVA kernels, string kernels, graph kernels, see [131]). However, each of these

kernel functions represents a data dependency model chosen prior to kernel con-

struction. Such an approach can suffer from lack of robustness particularly when

it is not obvious what the appropriate data dependency model is. Learning that

dependency structure from training data is a logical solution, particularly if the

procedure is generalizable and resistant to overfitting. We propose the use of

random forests as tools for discovering the empirical dependency model and for

converting it to an associated RF kernel.

The idea of kernel characterization of a random forest emerged as early as

random forests themselves [14]. The most direct approach is to define a similarity

from the frequency at which two samples end up in the same terminal node (leaf)

of a tree. In particular, the limit of the probability two samples share a leaf in a
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random forest

K(xi, xj) = lim
M→∞

1

M

M∑
m=1

T∑
t=1

I(xi, xj ∈ Rt(θm)) (4.5)

defines a positive definite kernel [14] (M - number of trees in the forest, T -

number of leaves in an individual tree, θm - random vector of indices describing the

training set for themth tree, Rt - tth terminal rectangle (leaf) of themth tree, I(·)

- indicator function). The positive definiteness of the kernel is maintained if a cut

at a random height in each tree (with its associated data point partitioning) is used

in place of the partitioning induced by the tree leaves (the latter is just a special

case with the cut set at zero height)[40]. Furthermore, kernels generated from

extremely randomized trees (ERT) and their finite approximations are discussed

in [53] and [14], while [127] suggests an updated kernel construction weighting

scheme.

Our definition of an RF kernel extends (4.5) by incorporating two additional

RF-derived statistics (Fig.4.15). First, if two data points have similar predicted

labels across the trees of an RF, they should be considered alike even if they

don’t often fall in the same leaves. Furthermore, earlier node splits in a tree

generally separate more distinct data point groups, while later splits tend to fine

tune the decision boundary and often highlight much smaller differences between

populations. Therefore, two data points that end up in one early- and one late-

split leaf should be considered more distinct than data points in two late- split

leaves, even if the latter do not have matching predicted labels.

Our 3-input RF kernel is computed in the following manner:
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Figure 4.15: RF kernel construction. The RF Gram matrix is a geometric mean
of the Hadamard product of three component similarity matrices, each capturing
a different aspect of the RF model for a particular feature set: K1 - similarity over
RF tree label predictions (in the case of classification, probability of belonging to
a class), K2 - similarity over RF tree sample leaf indices, K3 - proportion of times
samples are assigned to the same RF tree leaf.
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1. Calculate similarity over predictions across RF trees

K1(xi, xj) = exp(−‖pi − pj‖
2

σ
) (4.6)

where pi = (pi,1, pi,2, . . . , pi,M) is a vector of predictions for data point i from

the M trees in the RF. pi always has continuous entries - either the actual

predictions in a regression setting, or the probabilities of class membership

for classification problems. We set σ = maxi,j ‖pi − pj‖2 so that distances

are scaled to the [0, 1] range. The distance is exponentiated to convert to

similarity.

2. Calculate similarity over leaf node indices across RF trees

K2(xi, xj) = exp(−‖ti − tj‖
2

σ
) (4.7)

where ti = (ti,1, ti,2, . . . , ti,M) is a vector of the indices of data point i leaf

nodes across the RF. Tree nodes are indexed starting from the base node

and then sequentially across each depth level of the tree. We set σ as in K1.

3. Calculate similarity over probability of leaf node co-occurrence by using the

finite approximation of Eqn.(4.5)

K3(xi, xj) = exp((
1

M

M∑
m=1

T∑
t=1

I(xi, xj ∈ Rt(θm)))− 1) (4.8)

We add the exponential transformation to keep K3 on a similar scale as

K1 and K2 in order to avoid any one component having a disproportionate

effect.
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4. Calculate the composite kernel as the geometric mean of the element-wise

product of K1,K2 and K3

K(xi, xj) = 3

√
K1(xi, xj) ◦K2(xi, xj) ◦K3(xi, xj) (4.9)

It is important to note that K as well as all component kernels K1,K2 and K3

are positive definite. Indeed, K1 and K2 are Gaussian kernels over P ×P ,P ⊆ I+

and T × T ,T ⊆ I+ respectively, which ensures their positive definiteness [131].

Furthermore, K3 is the exponent of a positive-definite kernel, i.e. a positive-

definite kernel as well [131]. Finally, K is the Hadamard product of three positive-

definite kernels raised to a positive power - since both of these operations preserve

positive-definiteness [131], K is a proper kernel itself.

4.5.5 Stacked Learning

Stacked generalization is a special case of ensemble learning in which the en-

semble, or metalearner, uses the output of its components (base learners) to learn

the final predictions [169][13]. What makes stacked learning unique is that the base

learner predictions (level-one data) are generated in a cross-validated manner that

excludes each sample from the training set that produces its predicted label. More

specifically, if our training set (level-zero data) is X = {Xi : i = 1 . . . N,Xi ∈ Rp}

with labels Y = {Yi : i = 1, . . . , N, Yi ∈ R} and we have a collection of base

learners {∆1, . . . ,∆S} then stacked generalization proceeds as follows [111][89]:

1. Randomly split the level-zero data into K folds of roughly equal size -

v1, . . . , vk (K-fold cross validation).

2. For each of the ∆s base learners, train k models (collectively denoted as
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∆̂s,cv). For each model, use X \Xvk to train on; use same model to generate

predictions for Xvk .

3. Concatenate the k sets of predictions for each base learner into a vector z

of length N . The N × S matrix Z of such vectors for all S base learners is

the level-one training set.

4. Train a metalearner Ψ on Z (with hyperparameter tuning, if necessary).

5. Train each ∆s base learner on the full level-zero training set X to obtain

∆̂s. The stacked model is {∆̂s : s = 1, . . . , S; Ψ}. To predict on a new data

point Xnew, we compute a 1 × S vector Znew = {∆̂s(Xnew) : s = 1, . . . , S}

and use Ψ(Znew) as the stacked model’s prediction.

4.5.5.1 Super Learner

Stacked learning has no specification requirements on the metalearner Ψ. The

disadvantage of such flexibility is the lack of theoretical results for the improved

empirical performance of stacking. A Super Learner [159] is a type of stacked

learner with restrictions on Ψ so that desirable theoretical properties can be

proven. The main such condition is that the optimal metalearner Ψ∗ is the min-

imizer of a bounded loss function. A Super Learner for which {∆1, . . . ,∆S} and

Ψ have uniformly bounded loss functions exhibits the "oracle" property - Ψ∗ is

asymptotically guaranteed to perform as well as the optimal base learner ∆∗s un-

der the true data-generating distribution [158][156]. Furthermore, if we constrain

the choice of Ψ to Ψ =
∑S

i=1 αi∆i,∀αi ≥ 0, Ψ∗ asymptotically converges to the

performance of the optimal conical combination of {∆1, . . . ,∆S} [159][111]. This

theoretical result is a main reason why in practice Ψ is often chosen to be some
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form of regularized linear or logistic regression.

For example, if the aim is to predict a continuous variable (regression task),

one can set Ψ =
∑S

i=1 αi∆̂i,cv and solve the regression problem

min
α

N∑
i=1

(Yi −
S∑
j=1

αj∆̂j,cv(Xi))
2 (4.10)

possibly regularized or subject to a convex constraint on the α weights (∀αi ≥

0,
∑S

i=1 αi = 1)[159] [111].

Similarly, for classification problems the squared error loss of (4.10) can be

replaced with the logistic loss:

min
α

N∑
i=1

log(1 + exp(−Yi ∗ (
S∑
j=1

αj∆̂j,cv(Xi)))) (4.11)

and all theoretical Super Learner results will still hold.

4.5.6 AKLIMATE as a Super Learner

AKLIMATE is an example of a Super Learner - the base learners {∆1, . . . ,∆S}

are RFs trained on biologically relevant feature sets, and the metalearner Ψ is a

regularized MKL, the latter being a linear regression in a new (unobservable)

feature space. To the best of our knowledge, this is the first time a kernel-based

stacked learning framework has been proposed.

Some of the most salient ways that AKLIMATE incorporates Super Learner

characteristics are:

1. To maximize performance, the base learners should be as diverse as possible

- either by using different algorithms, or by varying the parameters of a par-
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ticular modeling approach [13][159]. AKLIMATE achieves diversity through

the use of different feature subsets for each RF base learner.

2. The AKLIMATE equivalent to the level-one Z training set are level-one ker-

nels. To compute them efficiently, AKLIMATE makes use of RF’s inherent

ability to generate OOB predictions (predictions computed from trees for

which the data point in question was not part of the training set). Such

OOB predictions serve the same purpose as the "regular" CV-based level-

one training data and can successfully replace the latter. The level-one RF

kernels (OOB RF kernels) are thus computed as follows:

(a) For a RF with M trees, define OOB(m) as the set of data points that

are OOB in the mth tree. Furthermore, let

IOOB(xi, xj) = (δ1ij, . . . , δmij) where

δmij =


1 xi, xj ∈ OOB(m),

0 otherwise

(4.12)

i.e. IOOB is the tree-level indexing function of when xi and xj are

simultaneously OOB in a given RF.

(b)

K1(xi, xj) = exp(−‖〈pi, IOOB(xi, xj)〉 − 〈pj, IOOB(xi, xj)〉‖2

σ
) (4.13)

(c)

K2(xi, xj) = exp(−‖〈ti, IOOB(xi, xj)〉 − 〈tj, IOOB(xi, xj)〉‖2

σ
) (4.14)
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(d)

K3(xi, xj) =

exp((
1∑

IOOB(xi, xj)

M∑
m=1

T∑
t=1

I(xi, xj ∈ Rt(θm))IOOB(xi, xj)m)− 1)

(4.15)

(e)

K(xi, xj) = 3

√
K1(xi, xj) ◦K2(xi, xj) ◦K3(xi, xj) (4.16)

with the same notation and σ calculations as in (4.6)-(4.9).

3. AKLIMATE’s MKLmetalearner has two elastic-net hyperparameters (λ1, λ2)

that require tuning. We do so by generating a random set of (λ1, λ2) pairs

and ranking them based on a K-fold (default K = 5) cross-validation fit

metric with OOB RF kernels as input. To improve generalization, we use

a simplified version of the overfit correction procedure in [108] - instead of

selecting the hyperparameters that produce the best CV fit, we choose the

ones corresponding to the 90th percentile of the distribution of the CV fit

metric.

4.5.7 AKLIMATE algorithm

Let our training set be (X, Y ) = {(Xi, Yi) : Xi = Xi1 ∪ · · · ∪Xid, i = 1 . . . N,

d = 1 . . . D} where we have N data points and D data types with feature member-

ships {Ci}Di=1 respectively. Furthermore, let there be S feature sets, each contain-

ing a list of features P (s). We can now formally define AKLIMATE (Algorithm

1):
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Algorithm 1: AKLIMATE
for s ∈ S do

P̂ (s) = ∪Dd=1(P (s) ∩ Cd) ; // list of available features

RFs(P̂ (s), Y ) ; // Train respective base learner

Ŷ s = RFs(P̂ (s), Y )(X) ; // Compute OOB predictions
τs = Fit(Y, Ŷ s) ; // fit statistic based on OOB predictions

end
Sort {RFs(P̂ (s), Y )}Ds=1 by {τs}Ss=1

for n ∈ N do
BestRFn = {{RFk(P̂ (s), Y )}Kk=1 : Ŷ s

n = Yn & τ1 ≥ τ2 · · · ≥ τk ≥
max({τs}Ss=1 \ {τ1, . . . , τk})} ; // pick top k (ranked by τs) RFs
that predicted data point n correctly

end
BestRFs = ∪Nn=1BestRFn
Sort BestRFs by τs
for r ∈ BestRFs do

Kr = RF OOB Kernel(r)
end
Koob = {Kr}Rr=1

(λ∗1, λ
∗
2) = MKL CV(Koob, Y ) ; // Tune hyperparameters

for r ∈ BestRFs do
Kr = RF Kernel(r)

end
Kfull = {Kr}Rr=1

Ψ = MKL(Kfull, λ
∗
1, λ
∗
2, Y ) ; // Train MKL metalearner

The BestRF selection step in algorithm 1 describes AKLIMATE’s behavior

for a binary/categorical Y (a classification task). If Y is continuous (regression

problem) the predictions and labels cannot be directly compared for equality. One

approach is to take the mean squared error of the prediction-label differences and

use that metric to re-rank RFs for each sample - in our experience this leads to the

selection of suboptimal RFs due to overfitting. Instead, we propose a more robust

scheme that shows better results in practice - we binarize the vector of predictions
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{Ŷ s
n }Ss=1 for each data point into matching and non-matching predictions and

then apply the standard classification case selection rule. The binarization of the

prediction of a particular RF for data point n is done as follows:

Ŷ s
nbin

=


1 if |Ŷ s

n − Yn| ≤ quantile({|Ŷ s
n − Yn|}Ss=1, q),

0 otherwise
(4.17)

where q is a user-specified quantile of the empirical distribution of {|Ŷ s
n −

Yn|}Ss=1 (default q = 0.05). Our setup prioritizes RFs that perform near-optimally

on individual data points and optimally when the training set is considered as a

whole.

It should be emphasized that the BestRF selection step is the reason AKLI-

MATE can query significantly more kernelized gene sets than MPL. SpicyMKL

and Spicer (see 4.5.10) require all kernels to be pre-computed as MKL optimiza-

tion requires their simultaneous presence. When the number of gene sets is in

the thousands, this can lead to very slow MKL optimization times, even for small

data sets. AKLIMATE’s BestRF step filters the full collection of feature sets

(tens of thousands of entities) down to a subgroup of relevant sets that can be

two or more orders of magnitude smaller in size. It is effectively a parallelizable

univariate feature set relevance ranking. Since it is often the case that only a small

proportion of the feature set collection is truly explanatory for a given prediction

task, filtering out the non-relevant parts of the compendium does not impact neg-

atively the multivariate analysis step (MKL) yet produces a drastic improvement

in computational time.

Finally, the BestRF ranking step allows for the selection of optimal data

types for each base RF - different (user-supplied) data type combinations can
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be considered during learning and evaluated on their OOB performance. This

is particularly useful if some of the queried feature sets are data-type specific.

Furthermore, our RF filtering setup can also allow for individual hyperparameter

tuning (e.g. minimum node size, mtry) for each component RF, although care

should be taken to avoid overfitting..

4.5.8 Feature and feature set weights

Feature set weights wFS,
∑

iw
FS
i = 1 are recovered directly from the optimal

MKL metalearner Ψ∗(Eqn.(4.4)). Feature weights can then be calculated as wFi =∑
k∈P̂ (·)i

wFSk m(RFk, i) where P̂ (·)i = {P̂ (s) : i ∈ P̂ (s), s = 1, . . . , S} is the set

of all feature sets s that have i as its member, and m(RFk, i) is an RF -specific

feature score computed from the kth RF with feature i among its input features.

The simplest way to computem(RFk, i) is by averaging the improvement in the

splitting criterion over all nodes that used feature i as splitting variable. For the

often-used Gini impurity measure, this involves computing the mean difference in

impurity before and after each split, with larger mean impurity decreases indica-

tive of more important variables [16]. While fast, this version of m(RFk, i) suffers

from important shortcomings such as bias in favor of variables with more poten-

tial split points (e.g. continuous or categorical with a large number of categories),

particularly when trees train on bootstrapped data [138]. Many alternatives for

m(RFk, i) have been proposed [138][120][2]. For our work, we chose as default

the permutation-based importance calculation described in the original RF paper

[15] - the vector of measurements for feature i is randomly permuted and the

permuted variable is used in the calculation of OOB predictions; the difference in

error rate between the permuted and non-permuted OOB predictions is taken as
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a measure of feature i’s importance. Permutation-based importance is intuitive,

robust and generally performs as well as or just slightly worse than newer more

complex m(RFk, i)’s. Its biggest drawback is the higher computational cost. In

cases where compute time is the main constraint, we recommend the actual im-

purity reduction (AIR) metric [106] - an extension of the pseudodata-augmented

approach in [120]. It is similar in speed to pure Gini impurity importance, but re-

tains the desirable properties of perturbation-based methods. While AIR can lead

to a small prediction accuracy penalty due to the way it integrates variable im-

portance computations in the RF trees construction, in our experience this effect

has been negligible for classification tasks (for regression tasks we still recommend

permutation-based importance).

4.5.9 AKLIMATE hyperparameter settings

We ran AKLIMATE with the same gene set collections across all prediction

tasks (see 4.4.4). To increase robustness, we discarded gene sets that had fewer

than 15 features across all data types considered - since different tasks use different

number of data types, such thresholding causes the number of eligible gene sets

to be task-specific.

In addition, we used the same AKLIMATE hyperparameters in all case studies.

AKLIMATE component RFs used sampling without replacement, with each tree

trained on a randomly selected 50% subsample of the training set. We chose this

subsampling scheme both because it reduces computational time and because it

performs as well as bootstrapping in predictive accuracy benchmarks [50]. In

addition, the trees in each RF base model had minimum leaf size set to 1% of

the size of the cohort (i.e. they were nearly fully grown trees). For the RF base
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model ranking step (see 4.5.7) each forest contained 500 trees, while for the kernel

construction step the forests grew to 2000 trees.

The number of features randomly selected to try at each node (mtry) was set

to 25% of the size of the queried gene set. It is generally recommended to keep

mtry low - e.g.
√
P (P - total number of features) for classification or P

3
for

regression problems [92]. Lower values of mtry tend to reduce correlation among

predictions of individual trees at the expense of increased variance of error esti-

mates. However, due to the averaging effect of ensembles of decorrelated models,

they tend to reduce the error variance of the ensemble RF [94]. That effect is

somewhat negated by an increase in the bias of RF error estimates, but gener-

ally speaking the more decorrelated the trees the better the RF performance [94].

AKLIMATE, however, is an ensemble of ensembles - variance reduction through

base model decorrelation can also be achieved by selecting RFs that describe inde-

pendent gene sets. As a consequence, we can prioritize bias reduction within RFs

- we recommend mtry values in the 25-75% range, similar to or higher than what

is normally recommended for RF regression tasks (33%)[92]. In our experience,

AKLIMATE’s default setting of 25% is computationally fast and causes negligible

loss of performance.

Finally, we use two different importance metrics for the calculation of feature

and feature set relevance - actual impurity reduction (AIR) [106] and permutation

analysis [15] (see 4.5.8). The latter is robust and applicable across all prediction

tasks, which is why we recommend it as a default setting. AIR, however, performs

just as well in classification problems, with a noticeable reduction in computation

time - for that reason we used it for our microsattelite instability and metabric

survival analyses.
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4.5.10 Implementation

We use the R package ranger [171] for calculations involving AKLIMATE’s

base RF learners, including permutation-/AIR-based variable importance. We

chose ranger for its flexible handling of multiple splitting rules, variable impor-

tance approaches, and learning tasks; it is also one of the fastest RF algorithms

currently available, particularly in problems where the number of features is much

larger than the number of data points.

For our MKL learner we ported SpicyMKL [145] to R. We chose SpicyMKL be-

cause its proximal minimization formulation guarantees super-linear optimization

convergence - the boost in speed makes it possible to handle 1, 000’s of kernels.

Furthermore, SpicyMKL’s elastic-net regularization allows maximum flexibility in

terms of the number of kernels included in the optimal solution. Our R imple-

mentation of SpicyMKL called Spicer is available at https://github.com/Vlado

Uzunangelov/Spicer.

Finally, an R implementation of AKLIMATE is available at https://github

.com/VladoUzunangelov/AKLIMATE.
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Chapter 5

Future Directions

Chapter 4 demonstrated AKLIMATE’s flexibility in dealing with various com-

binations of clinical and molecular data. In this chapter, I highlight AKLIMATE’s

extensibility. I briefly describe three ways in which AKLIMATE can be augmented

(one of which is already developed) as well as outline how AKLIMATE can be

used to construct the pathway-pathway dependency map that my MPL shRNA

knockdown analysis (Chapter 3) was building towards.

5.1 Multiclass AKLIMATE

AKLIMATE can be easily extended to handle multiclass classification prob-

lems. In fact, the only modification of its standard binary classification setup is

the extension of the MKL metalearner to multiclass analysis. Multiclass MKL

can be approached in several ways. One can implement a multiclass logit loss

function as suggested in [151] and solve a version of the Dual Augmented La-

grangian problem in [145]. Alternatively, one can construct a wrapper around

a binary classification MKL that trains a separate submodel for each pair of
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label classes then aggregates the results of all such submodels. I chose the

latter option - my implementation of multiclass MKL is available at https:

//github.com/VladoUzunangelov/Spicer.

5.1.1 Minimal Feature Predictors of TCGA Subtypes

Multiclass AKLIMATE can be applied to the development of minimal fea-

ture predictors for patient subtypes across TCGA projects. TCGA subtypes were

discovered through the analysis of well-curated multi-modal data. However, at

present it is difficult to use them clinically - to classify a new patient into an ex-

isting subtype a physician will need measurements for tens of thousands of genomic

and transcriptomic features, which is currently both time consuming and costly.

If accurate predictive models for TCGA subtypes existed, they could pinpoint the

most discriminative features and greatly reduce data collection cost. To this end,

the TCGA Tumor Molecular Pathology working group (TMP AWG, of which I

am a member) aims to create predictive models for TCGA subtypes that maintain

high accuracy but depend on a minimal number of features (preferably ∼ 1000,

shared by TCGA subtypes across all 33 working groups). Ideally such models

will be simple and easy to interrogate - for example, the gastric adenocarcinoma

subtypes [107] can be accurately recapitulated with only 4 features (although 2 of

them are composites aggregating information from whole data types, Fig. 5.1).

The combined set of features across all minimal feature predictors can then be

measured on a custom array, providing a cheap and fast method for a clinician to

place a new patient in an existing molecular subtype.

AKLIMATE is well suited for the creation of such predictive models due to

its ability to integrate multimodal data. I will now describe some results from
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Figure 5.1: Minimal Feature predictors of TCGA subtypes. TCGA subtypes
are defined on the basis of tens of thousands of features, sometimes spanning
several different platforms. However, the subtypes can often be characterized
by a handful of covariates that can predict each subtype with a high degree of
accuracy. For example, the four subtypes of gastric adenocarcinoma identified
in the TCGA marker paper [107] can be faithfully recapitulated by two clinical
variables (EBV+, diffuse histological subtype) and two composite features (MSI,
chromosome instability). Figure panels taken from [107].
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the pilot TMP AWG analysis of the liver hepatocellular (LIHC) and cholangio-

carcinoma (CHOL) TCGA cohorts. All data collection and clustering results

were performed by other members of the working group while I contributed the

AKLIMATE analysis.

Since the publication of the LIHC TCGA marker paper [168], the TCGA LIHC

cohort has grown almost two-fold (from 196 to 379 samples). Led by the desire to

create subtypes that are as comprehensive as possible, we repeated the analysis

in [168] with the larger cohort now available. Furthermore, since cholangiocarci-

noma (bile duct cancer) affects another type of liver cells and there is a known

LIHC subtype that is molecularly similar to it, we decided to merge the LIHC

and CHOL[49] cohorts for the purpose of re-running our clustering analysis. We

settled on an iCluster [132] integrative clustering solution for 380 samples based

on 4715 RNA, 4712 CN, 4705 methylation, 81 miRNA, and 691 lncRNA features

(some samples were excluded because they were missing data in one or more of

the component data types). A hierarchical clustering of the iCluster latent vari-

ables identified 7 subtypes - the associated dendrogram allowed us to construct

a decision tree in which more distinct clusters split earlier and less distinct ones

later (Fig. 5.2). We further characterized each cluster by a molecular or composite

feature that was significantly enriched in that cluster and known to be biologically

relevant. Finally, to make our prediction task easier, we eliminated some of the

atypical cluster members by filtering out the bottom 10% by silhouette score [119].

All subsequent classification results describe that filtered clustering solution (334

samples).

Encouraged by the accuracy of the "most salient feature" decision tree ap-

proach in recapitulating gastric subtypes (Fig. 5.1), I attempted to predict
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Figure 5.2: Subtype decision tree for the iCluster integrative clustering solution of
the combined TCGA+CHOL cohort. The decision tree is derived from a hierar-
chical clustering dendogram using iCluster latent variables as features. Numbers
within each node state the size of the sample group available for that split. Earli-
est splitting nodes represent clusters that are most dissimilar from the rest, while
later splits indicate less dissimilarity between groups. Each cluster is named after
a clinical or molecular feature that it is highly enriched for. Figure created by
Ronglai Shen and Esther Drill for the TCGA TMP AWG.
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cluster membership through the use of 8 significantly enriched biomarker fea-

tures that gave the LICH+CHOL clusters their names (CDKN2A silencing; IDH,

TP53, BAP1 and CTNNB1 mutations; alpha feto-protein levels, leukocyte frac-

tion, altered genome fraction). Unfortunately, models limited to the use of these

8 features were insufficently accurate (mean overall balanced accuracy (MBA)

0.717 ± 0.01, Fig. 5.3A). The performance was particularly bad for some of the

later-splitting clusters (AFP-fewer deletions - MBA 0.517 ± 0.019; TP53- low

leukocyte fraction - MBA 0.658 ± 0.021), indicating a need for the inclusion of

additional molecular features.
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Figure 5.3: Performance of predictive models using A) 8 significantly enriched
biomarker features and B) full AKLIMATE models. Models in A) were Random
Forests grown to maximum tree depth, with 5000 trees and default mtry (rounded√

8). Models in B) were AKLIMATE runs with the same hyperparameters, path-
way collections and filtering steps described in Chapter 4. Barplots describe per-
subtype balanced accuracies over 25 repetitions of 5 fold cross-validation (same
folds in A) and B)). Balanced accuracy computed by taking the average of the
sensitivity and specificity for each subtype.

On the other hand, an AKLIMATE model trained on >65,000 molecular fea-

tures (Table 5.1) achieves an MBA of 0.948± 0.006, with no cluster predicted at
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less than 90% MBA (Fig. 5.3B). As expected, models trained on more extensive

sets of molecular features lead to drastically improved predictive performance. It

is unclear, however, whether the full model accuracy can be achieved with > 8

but << 65, 000 features. To investigate the relationship between the number of

input features and model accuracy, I devised the following experiment:

1. For each full AKLIMATE model in Fig. 5.3B, I created a feature importance

ranking as described in Section 4.5.8.

2. A Random Forest model was trained with the top K most important AK-

LIMATE features, K = 5, 10, 20, 50, 100, 200, 500, 1000, 1500.

3. Each reduced RF model was evaluated by measuring its balanced accuracy

on the test fold not seen by the full AKLIMATE model.

Table 5.1: Number of features used in the full AKLIMATE model, by data type.
Data Type Number Features
mRNA 12,393

methylation 34,139
CN gene level 11,036
CN regions 4,114
mutation 3,481
lncRNA 691

The results of that analysis are summarized in Fig. 5.4. The 5-feature reduced

model with AKLIMATE-recommended features performs marginally better than

the 8-biomarker RF models from Fig.5.3A (MBA 0.724± 0.017 vs 0.717± 0.01).

The difference in performance becomes significant if we move to a 10-feature re-

duced model (MBA 0.794 ± 0.012) or an extrapolated 8-feature reduced model

(MBA ∼ 0.765) suggesting that the AKLIMATE-recommended features are more
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informative than the 8 biomarkers even if the same number of features are consid-

ered. This improvement is even more striking if we take into account that 2 of the 8

biomarkers (leukocyte fraction and altered genome fraction) are composite entities

that aggregate information from several molecular features, making the 20-feature

or even the 50-feature reduced model a fairer direct comparison. A possible expla-

nation for the better accuracy of models with AKLIMATE-recommended features

might be that the 8 biomarkers were selected by univariate significance testing,

whereas the AKLIMATE features are prioritized in multivariate analysis. In ad-

dition, AKLIMATE-recommended features benefit from the strong informative

prior provided by the gene sets AKLIMATE was trained with.

The slope of the graph of reduced model accuracies in Fig. 5.4 is clearly not

constant - the addition of features leads to much larger gains when the number

of input features is small, with improvements flattening out after ∼ 500 features.

This is quite encouraging - a small increase in the number of molecular features

used can produce model accuracy comparable to the one of the full feature set. In

fact, with just 50 features we can achieve MBA of 0.885± 0.01. What is more, as

these features are derived from the full AKLIMATE model, we can still interrogate

the latter for a more complete view of the biological processes they represent.

To understand that interplay, let’s examine Fig. 5.5A. It presents the top 50

most informative features and the top 20 most informative feature sets in the full

AKLIMATE model (these are the same features used in the 50-feature reduced

model). Many of the feature sets are directly related to liver function, the 8 key

biomarkers, or LIHC initiation and progression. For example, the Metabolism

pathway describes one of the main liver functions (metabolism regulation), as

does the Leptin pathway (hunger regulation through adipose tissue signaling).
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Figure 5.4: Comparison of balanced accuracy for full and reduced AKLIMATE
models. The full models are trained on 25 repeats of 5 fold cross-validation splits,
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CTNNB1, a gene that is often mutated in LIHC[168] and one of the 8 original

biomarkers, is also a key component of the WNT signaling pathway. In addi-

tion, WNT/CTNNB1 signaling is strongly involved in EGFR1 regulation in LIHC

[146]. Furthermore, the TGFβ and Inflammation pathways are directly related

to inflammation response, as is leukocyte fraction (another one of the 8 original

biomarkers).

An additional benefit of the full AKLIMATE model is that we can easily iden-

tify the core set of features shared among the most informative pathways. This

core set is the nucleus of the dysregulated meta-pathway that AKLIMATE learns

from its collection of available gene sets. It can be discerned from the pathway

membership matrix in Fig. 5.5A, or more easily from the network representation

of the same in Fig. 5.5B. For our LIHC+CHOL subtypes it appears that a key

differentiating biological process revolves around MAPK (MAPK1,MAPK8) and

PI-3 kinase (PIK3CA,PIK3R1) signaling. PIK3CA is a previously known driver of

LIHC progression [168]. Less is known about PIK3R1’s involvement in liver can-

cer, although recent studies suggest it plays a key role in increasing proliferation

and downregulating apoptosis [1].

Finally, we can also use the full AKLIMATE model to suggest features that

contribute to the relevance of the top feature sets but have a slightly lower in-

dividual importance within the model. Such features can be useful substitutes

for their more informative counterparts, particularly if they are highly relevant to

other cancer subtypes - using them instead could help us keep the overall number

of features down at the expense of a small decrease in accuracy for some predic-

tion tasks. Figures 5.6 & 5.7 present expanded views into two of the key LIHC

dysregulated pathways.
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Figure 5.5: A) AKLIMATE results highlighting the top 20 most informa-
tive feature sets and top 50 most informative features for predicting iCluster
LIHC+CHOL subtypes. Feature and feature set weights are averaged over 25
repeats of 5 fold cross-validation. Figure organized as Fig. 4.1. B) Network view
of the top 10 feature sets and the top 50 features. Feature sets encoded as squares,
features as circles, with different colors for different data types. The size of each
node is proportional to the normalized weight assigned by AKLIMATE to the
respective feature/feature set. This is a bipartite graph, with features linked to
feature sets they are a member of. To improve interpretability, each feature set
has a uniquely colored cloud that maps out its member features.
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In conclusion, AKLIMATE can be of great service both as a multiclass classifier

and as a feature prioritizer for minimum feature predictors.

5.2 Non-linear Stacked Learners

AKLIMATE uses a linear MKL as its stacked learning step. However, this

choice is grounded in the desirable theoretical properties of linear combinations of

kernels/base learners rather than any performance considerations. In fact, many

competition-winning stacked learning approaches use a non-linear metalearner.

Non-linear MKL solvers [31][56] or even multi-layer kernel machines (kernel learn-

ing in a deep learning framework) [25] are all very promising avenues to improve

AKLIMATE performance.

Another potentially important upgrade would be the introduction of a joint

learning model in place of the two separate learning steps for base and stacked

models. In fact, if the random forest base learners and the deep learning kernel

meta-learner can be jointly optimized in a manner similar to [83], it will likely

lead to the largest gains in speed and accuracy.

5.3 Logical Dependency Features

While AKLIMATE utilizes prior knowledge in the form of feature sets, it does

so in a "bag of features" way that does not incorporate known feature-feature

dependencies - e.g. the feedback loop of MDM2-TP53 expression downregulation

and TP53-MDM2 expression upregulation. Such very informative links, if explic-

itly modeled, will likely be the most important AKLIMATE improvement. One

possible way to encode them is through feature engineering - we create new fea-
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tures that encapsulate known logical dependencies. In the TP53-MDM2 case this

can be achieved by adding two binary variables - one that is set to TRUE every

time high MDM2 protein levels occur simultaneously with low TP53 expression

and FALSE otherwise, and another one with similar settings for the TP53 protein

- MDM2 transcripts relationship. Such an approach can capture a very diverse

category of dependency structures as it is not limited to pairwise or same-type

feature relationships.

5.4 Pathway-Pathway Dependency Map

Finally, AKLIMATE can be instrumental in constructing the pathway-pathway

dependency map that proved elusive in Chapter 3. The main problem we en-

countered was the pervasiveness of significant feature set overlaps. Such overlaps

confound attempts to compute KD-predictor pathway associations because the

importance of a biologically significant process is partitioned among several gene

sets that contain the key driver features of that process. Since AKLIMATE models

compute both feature and feature set weights, we can use this dual representation

to construct clusters of feature sets (arch-pathways) whose members share driver

features. The introduction of this additional hierarchical level (the arch-pathway)

effectively mitigates the feature set redundancy issue. As a consequence, the de-

pendency map evolves from a bipartite graph with two types of nodes (KD and

predictor pathways) to a quadripartite one with four node types (KD, predictor

and arch-pathways, individual features), making it possible to capture significantly

more sophisticated associations.
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