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Symposium/Mini-Symposium

The Logic of Developing Neocortical Circuits in Health and
Disease

Ileana L. Hanganu-Opatz,1 Simon J. B. Butt,2 Simon Hippenmeyer,3 Natalia V. De Marco García,4

Jessica A. Cardin,5 Bradley Voytek,6,7 and Alysson R. Muotri7,8
1Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg,
20246, Germany, 2Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, OX1 3PT, United Kingdom, 3Institute of Science
and Technology Austria, Klosterneuburg, 3400, Austria, 4Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medicine,
New York, New York 10021, 5Department of Neuroscience and Kavli Institute for Neuroscience, Yale University, New Haven, Connecticut 06520,
6University of California San Diego, Department of Cognitive Science, Halıcıoğlu Data Science Institute, Neurosciences Graduate Program, La Jolla,
California 92093, 7University of California San Diego, Kavli Institute for Brain and Mind, La Jolla, California 92093, and 8University of California
San Diego, School of Medicine, Department of Pediatrics/Rady Children’s Hospital San Diego, Department of Cellular & Molecular Medicine,
Center for Academic Research and Training in Anthropogeny, La Jolla, California 92037

The sensory and cognitive abilities of the mammalian neocortex are underpinned by intricate columnar and laminar circuits
formed from an array of diverse neuronal populations. One approach to determining how interactions between these circuit
components give rise to complex behavior is to investigate the rules by which cortical circuits are formed and acquire func-
tionality during development. This review summarizes recent research on the development of the neocortex, from genetic
determination in neural stem cells through to the dynamic role that specific neuronal populations play in the earliest circuits
of neocortex, and how they contribute to emergent function and cognition. While many of these endeavors take advantage of
model systems, consideration will also be given to advances in our understanding of activity in nascent human circuits. Such
cross-species perspective is imperative when investigating the mechanisms underlying the dysfunction of early neocortical cir-
cuits in neurodevelopmental disorders, so that one can identify targets amenable to therapeutic intervention.
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Introduction
The mammalian cerebral cortex is made up of billions of neu-
rons. In our endeavor to understand normal function and,
conversely, dysfunction of this region of the CNS, researchers
have documented and probed distinct properties of the

constituent neurons, such as morphology, patterns of local
and long-range connectivity, gene expression, and intrinsic
physiology. Understanding how these neurons acquire their
identities and form circuits during development is likely to
provide insight not only into how these circuits function, but
also how they malfunction in various neurological conditions.

The cortex is made up by two major neuronal classes: excita-
tory projection neurons (representing ;80% of all cortical neu-
rons) and inhibitory interneurons (;20%) (Fishell and Rudy,
2011; Harris and Shepherd, 2015; Lodato and Arlotta, 2015). The
development and assembly of cortical circuits is a highly regu-
lated process. In brief, during early embryonic development,
excitatory projection neurons are born from neural stem
cells (NSCs) in the dorsally located neuroepithelium, while
inhibitory interneurons emerge from the ventrally located
ganglionic eminences (Lim et al., 2018). Nascent projection
neurons migrate radially from the ventricular zone toward
the pia to sequentially (i.e., inside-out) build up the distinct
cortical layers (Silva et al., 2019). Inhibitory interneurons, on
the other hand, migrate tangentially from their place of origin
in the ventral forebrain to reach the emerging cortical plate
(Fishell and Rudy, 2011; Lim et al., 2018; Silva et al., 2019).
Once at the correct target site, migrating inhibitory neurons
enter the cortical plate to form local connections with excita-
tory projection neurons. According to the complex connec-
tivity rules enacted during development, these classes and
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subclasses of neurons are interconnected into cortical cir-
cuits, where synaptic inputs are integrated to produce appro-
priate outputs. The resulting balance between excitation and
inhibition (E/I balance) is thought to be critical for physiolog-
ical cortical circuit function.

Neocortical circuits are capable of dynamically changing
throughout life, yet maintaining a fine-tuned balance between
stability and plasticity. How neurons assemble into circuits that
encode inputs, representations, behavioral states, and actions is
still poorly understood. Advances in technologies to monitor,
control, and manipulate early neuronal activity have only
recently enabled researchers to dissect the contribution of dis-
tinct neuronal populations to the functional wiring during de-
velopment and, consequently, to nascent behavior across
species. Because of these advances in the last few years, many of
the key questions can now be addressed. For instance, how
does cortical cell-type diversity emerge during embryonic de-
velopment and how does cell-type diversity contribute to the
physiology of nascent circuits? What are the mechanisms that
ensure and govern the formation of interwoven excitatory and
inhibitory circuits and E/I balance during neocortical develop-
ment? Are these mechanisms general for all neocortical areas or
do they differ in relationship to the function/inputs? How do
the early patterns of coordinated activity in neocortical areas
map onto cortical topography? How does E/I imbalance during
development result in life-long miswiring and dysfunction?
While most insights originate from rodent models, which are
highly amenable to early investigation and genetic interven-
tions, recent advances in human induced pluripotent stem cells
(hiPSCs) have the potential to bridge the gaps in our knowledge
and help resolve the mechanisms necessary for human brain
development in utero.

In this article, we review evidence that has accumulated dur-
ing the last few years regarding the dynamic role of neuronal
populations in the development of functional neocortical ensem-
bles, with particular emphasis on the cellular hubs of disease-
related miswiring. First, we review recent data on how highly
diverse populations of projection neurons emerge. Second, we
extract the principles of connectivity development and circuit
function as assessed by early patterns of electrical activity (e.g.,
network oscillations). For this, we focus on the whisker barrel
cortex, arguably the best understood developing sensory cortical
area in rodents, before switching to prefrontal cortex (PFC), the
core of limbic circuitry underlying higher cognitive abilities.
Third, we discuss how deviations from these principles cause
aberrant network activity and disease-relevant dysfunction.
Finally, we introduce pioneering work that aims to translate our
understanding in rodents to human brain development, which
has, over the centuries, been less accessible to research.

Generating cellular diversity in the developing cerebral
cortex
The cerebral cortex is composed of an extraordinary number of
neurons and glial cells. Recent work has highlighted a remark-
able heterogeneity in pyramidal cells and interneurons (Ecker et
al., 2017; Lein et al., 2017; Zeng and Sanes, 2017). In this section,
we mainly focus on principles driving the generation of the for-
mer, which are projection neurons (i.e., they often send their
axons for long distances), but we refer the reader to a number of
recent reviews discussing interneuron heterogeneity (Wamsley
and Fishell, 2017; Lim et al., 2018).

The cerebral cortex emerges from neuroepithelial stem cells,
which initially amplify their pool but then transform into radial

glial progenitor (RGP) cells. RGPs are the major neural progeni-
tors in the developing cortex and their division dynamics along
temporal lineage progression determine the final number of neu-
rons in the mature cortex (Taverna et al., 2014; Lodato and
Arlotta, 2015; Beattie and Hippenmeyer, 2017). The develop-
mental programs controlling projection neuron genesis need to
be precisely implemented and regulated. Impairments in NSC
proliferation lead to alterations in the cortical cytoarchitecture,
which is thought to be an underlying cause of neurologic diseases
(Barkovich et al., 2015; Silbereis et al., 2016).

NSCs differ from most other stem cell niches in that they are
required to create a huge variety of distinct neuronal subtypes in
a temporally and spatially controlled manner. While the defini-
tion of the complete extent of cellular diversity awaits deeper
sequencing, recent efforts using single-cell RNA sequencing have
started to establish a comprehensive cell atlas of the cerebral cor-
tex (Rosenberg et al., 2018; Saunders et al., 2018; Zeisel et al.,
2018). To produce this diversity, NSCs undergo temporal
changes across multiple time scales. Within hours, they can react
to extrinsic signals, which change their fate in a concentration-
and time-dependent manner. Within days, they pass through
distinct intrinsic temporal identities to generate different neuro-
nal subtypes over time (Telley et al., 2019).

Although major efforts in the past have established a rough
framework describing NSC lineage progression and the genera-
tion of cortical cell-type diversity, the precise cellular and molec-
ular mechanisms that underlie this process are still mostly
unknown (Holguera and Desplan, 2018). What is the quantita-
tive and qualitative output of a single cortical NSC and how is
the output potential modulated during development, across evo-
lution, and in disease? Which genetic, epigenetic, and niche-
derived factors regulate cortical stem cell lineage progression?
And on a more general level, how do progenitor stem cells
instruct the overall fate of distinct lineages, which may on their
part contribute locally to establish specificity of neuronal connec-
tivity in defined cortical circuits?

To approach the above fundamental questions, lineage trac-
ing in combination with genetic manipulations can provide
conceptual and mechanistic insights. A unique strategy ena-
bling the analysis of NSC lineage progression is Mosaic
Analysis with Double Markers (MADM) technology (Zong et
al., 2005; Contreras et al., 2020). MADM offers a genetic
approach to visualize and concomitantly genetically manipu-
late single clones and small subsets neurons, and it provides
single-cell resolution of progenitor division patterns and
potential in vivo. Recent MADM-clonal analysis suggests a
deterministic nature of RGP behavior (Gao et al., 2014;
Beattie et al., 2017) (Fig. 1A). RGPs initially undergo symmet-
ric divisions, which increase the RGP population, then switch
to asymmetric divisions, which produce one committed neu-
ron and one RGP. The neurogenic potential of individual
RGPs, as they switch from symmetric proliferative division to
asymmetric neurogenic division, is fixed, with a unitary out-
put of ;8 or 9 neurons per individual RGP (Fig. 1A). Upon
completion of neurogenesis, a defined fraction of individual
RGPs proceed to gliogenesis in which ;1 in 6 neurogenic
RGPs produces glia. Interestingly, while the unitary RGP out-
put is fixed, the laminar distribution of projection neurons
within a single clone can vary significantly. While ;50% of
clones include projection neurons in all cortical layers, the
other 50% display more heterogeneous distribution patterns
(Llorca et al., 2019). These findings raise the question of
whether clonal diversity relates to functional properties in
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cortical microcircuits (Fig. 1B). In this regard, subtle quanti-
tative differences in clonal architecture could be physiologi-
cally relevant (Fang and Yuste, 2017). Based on the above
foundations, it will be important in the future to determine
the precise role of cell lineage in the assembly of cortical
microcircuits (Li et al., 2012; Ohtsuki et al., 2012; Yu et al.,
2012; Maruoka et al., 2017) and how cell-type diversity at the
single-cell transcriptome level affects physiological proper-
ties in canonical cortical microcircuits (Cadwell et al., 2020)
(Fig. 1B).

Wiring of cortical circuits and emergence of oscillatory
activity: lessons from sensory cortices
Once generated, the highly diverse cortical neurons densely con-
nect with each other, forming circuits. One of the key steps in
the assembly of the canonical cortical circuit is the emergence
of coordinated excitatory and inhibitory activity, mediated by
pyramidal cells and local GABAergic interneurons, respec-
tively, to enable efficient information processing throughout life
(Froemke, 2015; Maffei, et al., 2017). This is made even more
challenging by the fact that pyramidal cells and GABAergic inter-
neurons arise from distinct neurogenic niches (Greig et al., 2013;
Marin and Muller, 2014; Wamsley and Fishell, 2017). Assembly
of the earliest circuits of neocortex is thus dependent on numer-
ous molecular mechanisms that regulate the migration and

integration of these cell types in the developing cortical plate (see
previous section) throughout early life (Kriegstein and Noctor,
2004; Jabaudon, 2017). Once neurons reach their destination,
they begin to establish synapses to form circuits; these early steps
are guided by interactions between genetically defined molecular
programs and neural activity driven by sensory input.

To date, fundamental research using genetically modified
mice has largely focused on the circuits that underpin emergent
perception in primary sensory areas because these are malleable
to external influences and can readily be used to dissect the con-
tribution of genetics and environment to development. The
rodent somatosensory system in particular has been used as a
model for circuit assembly (Fig. 1). The diversity of neuronal
components and broad timeline for the maturation of the corti-
cal circuit in this area are well understood (Erzurumlu and
Gaspar, 2012; Yang et al., 2018). One of the key reasons for this
is the prominent relationship between the whisker receptive
fields in the periphery and the topographic representations of the
vibrissae at every stage of the subsequent sensory pathway from
the brainstem to the thalamus, and ultimately in the barrel cortex
(Petersen, 2007) (Fig. 1C). This topography develops during
early development through the interplay of genetic programs
and neuronal activity.

Initial studies in rodents revealed that the barrel cortex dis-
plays patterned activity in vivo well before the onset of active

Figure 1. Developing circuits of neocortex. A, A model for NSC lineage progression based on MADM-based lineage tracing experiments. RGPs initially undergo symmetric amplification divi-
sions. The neurogenic potential of individual RGPs, as they switch from symmetric proliferative division to asymmetric neurogenic division, is overall predictable with an output of;8-9 neu-
rons per individual RGP (light blue dotted box). Upon completion of neurogenesis, a defined fraction of individual RGPs proceed to gliogenesis, whereby ;1 in 6 neurogenic RGPs maintains
the potential to produce glia, and establishing the postnatal SCN. E12, Embryonic day 12; L2-L6, layers of neocortex; SCN, stem cell niche. B, NSC-derived pyramidal cells (shaded red) and local
GABAergic interneurons (INs, black) populate the layers of primary sensory neocortex to give rise to the canonical cortical circuit (middle) that underpins sensory information transfer from tha-
lamic input, which arrives predominantly in layer 4 (L4), and onward transmission to L2/3 and output layers. CSD, Current source density plot showing prominent recruitment of L4 neuron of
neonatal somatosensory cortex following stimulation of the vibrissae. C, Topographic representation of the vibrissae is established across the full extent of the whisker somatosensory system
within the first postnatal week, at a time when the vibrissae whiskers are retracted. S1BF, Primary somatosensory whisker barrel field. D, During the first postnatal week, L5 and L1 interneur-
ons contribute to sensory-evoked activity to coordinate circuit maturation. 5-HT3aR, Interneurons defined by their expression of the 5-HT3a receptor. E, At the same time, other GABAergic inter-
neurons contribute to spontaneous activity to ensure the development of appropriate E/I balance. D, E, Color coding of glutamatergic neurons is the same as in A, B.
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whisking in the second postnatal week. Spontaneous oscillations,
termed spindle bursts, are observed even in the absence of tha-
lamic afferents (Garaschuk et al., 2000; Dupont et al., 2006;
Lischalk et al., 2009), suggesting an intracortical origin.
However, accumulating experimental evidence indicates that
the sensory thalamus is spontaneously active at embryonic
stages, and decreasing the excitability of thalamic neurons from
embryogenesis onwards leads to an expansion in barrel col-
umns during the first postnatal week (Antón-Bolaños et al.,
2019). Recent findings indicate that wavelike activity can origi-
nate in the thalamus itself during late embryonic development
(Antón-Bolaños et al., 2019), but it can also originate in the
whisker pad from spontaneous whisker movements and passive
interactions of pups with littermates in the nest (Yang et al.,
2009; Akhmetshina et al., 2016; Dooley et al., 2020) (Fig. 1B).
Regardless, the data indicate that thalamic inputs are funda-
mental for restricting the spread of cortical activity and for the
emergence of functional topography in the somatosensory cor-
tex. However, it is unclear whether sensory-evoked activity
involves the same cortical circuits as those underlying sponta-
neous oscillations. Further exploration of these circuits, in line
with other fields in neuroscience, should make every effort
to be aware of behavioral state. To date, most studies have been
performed under anesthesia with the recognition that the
behavioral repertoire of neonates is limited, and largely domi-
nated by active sleep (Seelke and Blumberg, 2010). However, it is
increasingly apparent that differences are observed in nascent
cortical activity according to the sleep-wake cycle (Del Rio-
Bermudez et al., 2020; Dooley et al., 2020), with active sleep state
providing an ideal environment for sensory signaling.

Behavioral state aside, one key question regarding the pat-
terns of coordinated activity in the developing sensory cortices is
how they map onto specific cell types. In vivo calcium imaging in
combination with genetic strategies has allowed the longitudinal
tracking of activity patterns in defined populations of GABAergic
interneurons and pyramidal neurons. Although the majority of
interneuron classes and pyramidal neurons are spontaneously
active toward the end of the first postnatal week, coactivation and
participation in network events greatly differ among subtypes
(Che et al., 2018) (Fig. 1D,E). For example, interneurons derived
from the caudal ganglionic eminence, including both vasoactive
intestinal peptide (VIP) and layer 1 (L1) interneurons, exhibit
infrequent spontaneous activity. Moreover, although L1 interneur-
ons show low-frequency spontaneous activation at the single-cell
level, these calcium-mediated events are widespread and highly
synchronous. In contrast, VIP interneurons show limited corre-
lated activity at these early stages. The broad recruitment of caudal
ganglionic eminence-derived L1 interneurons is in stark contrast
to the topographic activation of interneurons derived from the
medial ganglionic eminence. Subsets of medial ganglionic emi-
nence-derived interneurons, including parvalbumin (PV) and so-
matostatin (SST)-expressing INs, as well as pyramidal neurons are
organized in spatially and functionally segregated clusters, or
assemblies (Duan et al., 2020; Modol et al., 2020). Synchronous ac-
tivity within these assemblies protects interneurons from apopto-
sis, contributing to the emergence of a balanced ratio of excitatory
to inhibitory neurons (Duan et al., 2020). Assembly organization
in the first postnatal week is most prominent among interneur-
ons that innervate perisomatic regions of pyramidal cells, con-
sistent with the early role for these cells in circuit development
(Anastasiades et al., 2016; Modol et al., 2020). Such an arrange-
ment is not found in supragranular SST and L1 interneurons,
which display minimal assembly organization at these stages.

In addition to exhibiting spontaneous activity, interneuron
subtypes are recruited differentially by sensory inputs (Fig. 1).
During the first postnatal week, these inputs efficiently recruit
both infragranular SST (Marques-Smith et al., 2016; Tuncdemir
et al., 2016) and L1 interneurons (Fig. 1D), the latter through the
activation of NR2B-containing NMDA receptors (De Marco
Garcia et al., 2015; Che et al., 2018). Sensory-driven activation of
L1 interneurons is fundamental for the restriction of ongoing py-
ramidal cell activity and the sharpening of barrel fields.
Decoupling of L1 interneurons from the thalamus leads to
enlarged barrels in L4 and long-lasting defects in sensory dis-
crimination (Che et al., 2018). Thus, direct and indirect (Ghezzi
et al., 2020) thalamic innervation of superficial interneurons pro-
vides an inhibitory gating mechanism to refine sensory maps
(Fig. 1D). In contrast, sensory inputs to supragranular fast-spik-
ing interneurons and pyramidal cells are not prominent in the
first postnatal week (Bender et al., 2003; Daw et al., 2007). In
agreement with these observations, sensory deprivation does not
affect pyramidal cell synchronization, and whisker stimulation
fails to recruit perisomatic-innervating interneurons at postnatal
days 7-9 (Golshani et al., 2009; Che et al., 2018; Modol et al.,
2020). Thus, some interneurons and pyramidal cells show func-
tional topography during spontaneous activity, whereas others
are recruited by whisker stimulation during development.
However, it is unclear how these patterns regulate the fidelity of
interneuron-pyramidal cell connectivity to shape barrel column
organization throughout cortical layers.

Across early development, GABAergic innervation of pyrami-
dal cells in somatosensory cortex is largely confined to the layer
in which the pyramidal cell is located with one prominent excep-
tion: translaminar efferent synaptic connections from L5 inter-
neurons that transiently innervate the subplate/L6b (Ghezzi et
al., 2020), then L4 (Marques-Smith et al., 2016) (Fig. 1D), before
targeting pyramidal cells in L2/3 before the onset of active whisk-
ing (Anastasiades et al., 2016). It has been proposed that SST
interneurons are the main contributors to this transient, sequen-
tial translaminar innervation of cortical layers. This is consistent
with the role of this subtype in local circuit development and
synaptogenesis (Dupont et al., 2006; Oh, 2016; Tuncdemir et al.,
2016). Moreover, SST interneurons originate early during neuro-
genesis and preferentially populate infragranular layers and thus
are ideally suited to direct inside-out formation (i.e., deep layers
before superficial layers) of the mammalian neocortex (Butt et
al., 2005). Silencing GABAergic transmission from SST inter-
neurons during the first postnatal week reduces the occurrence
of spontaneous spindle bursts and associated multiunit activity
in vivo (Baruchin and S.J.B.B., unpublished data) consistent with
delayed thalamic innervation of L4 spiny stellate neurons
observed in vitro (Marques-Smith et al., 2016). Such silencing
also affects the response to sensory stimulation; this does not
occur when VIP interneurons are silenced.

Despite the apparent importance of SST neurons in the devel-
opment of thalamocortical innervation in the barrel cortex, it is
wrong to think that any particular neuronal subtype has a privi-
leged role in early development. Indeed, recent endeavors have
highlighted the contribution of other GABAergic interneurons
to circuit maturation and plasticity. These include VIP interneur-
ons (Miyoshi et al., 2010; Miyoshi and Fishell, 2011), which are
generated at later embryonic ages. As such, it is somewhat sur-
prising that VIP interneurons contribute to the earliest neonatal
circuits, forming synaptic connections onto both infragranular
medial ganglionic eminence-derived interneurons and pyramidal
cells within the first postnatal week, during the critical period for
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plasticity in L4 (Vagnoni et al., 2020) (Fig. 1E). Furthermore, the
soma location of these cells in supragranular layers and their
early synaptic interaction with the infragranular neuronal types
(Fig. 1D,E) identifies the presence of a GABAergic network that
spans the depth of neonatal cortex, providing a template for cir-
cuit development.

Wiring of cortical circuits and emergence of oscillatory
activity: lessons from PFC
The rodent barrel cortex is a highly specialized, topographically
organized columnar circuit. This raises the question of whether
the wiring scheme described across development for this sensory
cortex applies to other neocortical areas. Of particular interest to
our understanding of the mechanisms of neurodevelopment
disorders is the mPFC (Fig. 2A). The rodent PFC, despite the
lack of structural homology, has certain functional homology
with the primate and human prefrontal areas (Carlén, 2017;
Chini and Hanganu-Opatz, 2020). In mammals, the PFC is
considered the core brain circuitry for complex cognitive
processing. Knowledge of how distinct types of prefrontal neu-
rons organize into early circuits and generate early patterns of
activity is more limited than our understanding of developing
sensory circuits. But some information about PFC develop-
ment has been acquired by monitoring prefrontal activity at
neonatal age during sleep and sleep-like conditions mimicked
by some anesthetics (Chini et al., 2020). Discontinuous theta
(4–12Hz) discharges and transient bouts of b -low g (12–
20Hz) rhythmic oscillations, an early prefrontal activity signa-
ture with important functional correlates (Brockmann et al.,
2011; Bitzenhofer et al., 2017b; Chini et al., 2020), have been
detected. This fast activity relies on pyramidal cells residing
within prefrontal L2/3 (Bitzenhofer et al., 2020a, 2020b; Chini
et al., 2020) that are boosted by excitatory drive from the hip-
pocampus (Ahlbeck et al., 2018) (Fig. 2B). This oscillatory
motif persists and smoothly evolves from the first postnatal
week through adulthood, gradually becoming longer, faster
(the average frequency increases from ;15Hz up to ;50Hz),

and of higher amplitude (Bitzenhofer et al., 2020a). These ac-
tivity changes parallel the unfolding of inhibitory feedback
and alterations in inhibition dynamics (Fig. 2C). It is conceiva-
ble that inhibition shifts from an early environment in which
SST interneurons dominate the GABAergic landscape, to one
in which PV-expressing interneurons progressively gain rele-
vance, as previously shown in the barrel field (Marques-Smith
et al., 2016; Tuncdemir et al., 2016). Indeed, across the first
three postnatal weeks, the strength of SST to pyramidal cell
synapses decreases, whereas the opposite occurs for PV inter-
neurons. Of note, early bouts of b -g activity are also present
in the rodent barrel (Minlebaev et al., 2011; Yang et al., 2013)
and visual cortices (Hanganu et al., 2006; Colonnese et al.,
2010), yet distinct mechanisms underlie their generation.

Developmental miswiring as disease substrate
Understanding how circuits comprised of excitatory, glutamater-
gic pyramidal cells and locally projecting, inhibitory GABAergic
interneurons come online across the layers of neocortex is the
prerequisite for identifying the key points, both in space and
time, that are particularly vulnerable to perturbations. Severe
pathologies with high clinical incidence have been proposed to
result from developmental disturbance of synaptic connectivity
and E/I imbalance.

In several developmental mouse models of mental disorders,
b -g prefrontal oscillations are impaired from the first few post-
natal days until adulthood (Xu et al., 2019; Chini et al., 2020; Xu
et al., 2020). Severely simplified dendritic arborization, as well as
decreased spine density and firing rate of L2/3 pyramidal cells
underlie these abnormalities. Investigation of the upstream
mechanisms of these deficits highlighted a third cell type, in
addition to pyramidal cells and interneurons, with critical rele-
vance for shaping the developing circuits. Microglia, the profes-
sional phagocytes of the brain, control the developmental
elimination of excess synaptic connections, in a process called
synaptic pruning. But excessive pruning as result of hyperactive
microglia has been identified as the source of structural and

Figure 2. Early oscillations as a hallmark of an emerging network. A, Schematic showing the location of mPFC in the neonatal rodent brain. B, Early oscillations (osc) in L2/3 pyramidal cells
include transient bouts of b -low g (;15 Hz) rhythmic oscillations. C, Development of GABAergic interneurons parallels the emergence of higher-frequency oscillations. D, Brain organoids
derived from hiPSCs provide a model system for exploring early rhythmic oscillations in human networks. E, At 2 months, synchronous single-unit spiking is observed. This gradually becomes
more complex (F), such that at;6 months (G) 2-3 Hz oscillations are observed, followed by (H) complex oscillations with the emergence of GABAergic signaling.
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functional deficits in neonatal mouse models of mental disorders
(Chini et al., 2020; Comer et al., 2020). It is therefore tempting to
speculate that the interplay between activity and microglial phag-
ocytosis might be one of the mechanisms through which early
activity sculpts developing prefrontal circuits (Hughes and
Appel, 2020).

Reduced activity of L2/3 pyramidal cell during development
is deleterious, but the opposite effect is equally detrimental. For
instance, a protracted but subtle increase of L2/3 pyramidal cell
firing across the first two postnatal weeks results in long-term
prefrontal microcircuit disruption and E/I imbalance that wor-
sens over time (Bitzenhofer et al., 2020b). Similar deficits have
also been described in mouse models of autism spectrum disor-
der, which are characterized by increased prefrontal activity
(Richter et al., 2019; Medendorp, 2020).

Abnormal development of neocortical inhibitory neurons is
also relevant to disease. Recent work suggests that the impact of
developmental perturbations in GABAergic interneurons stems
from their dense connectivity with both pyramidal cell and other
GABAergic interneuron populations (Cardin, 2018). GABAergic
inhibition plays key roles in regulating postnatal cortical plastic-
ity by controlling the timing and extent of critical period plastic-
ity in cortical circuits (Hensch et al., 1998; Fagiolini and Hensch,
2000). Inhibitory synaptic plasticity can also constrain plasticity
at excitatory synapses during the initial postnatal period (L.
Wang and Maffei, 2014). In rodent models, the first few post-
natal weeks are thus a key period during which modest perturba-
tions of synaptic inhibition have devastating long-term
consequences for mature cortical circuit function. Indeed, abnor-
mal development of excitatory pyramidal cell and altered pyram-
idal cell-pyramidal cell connectivity have been identified as
consequences of inhibitory dysregulation in several neurodeve-
lopmental disorders, including autism spectrum disorder and
schizophrenia. Disruption of GABAergic signaling through
altered firing of interneurons, loss of GABAergic synapses, or
loss of GABAergic interneurons themselves leads to circuit-
level disruption of pyramidal cells and activity levels.

Loss of key signaling pathways for GABAergic interneuron
development, such as the Nrg1/ErbB4 pathway, leads to disrup-
tion of synaptic connectivity between inhibitory and excitatory
neurons, increased pyramidal cell firing rates, and abnormal
cortical activity patterns (Fazzari et al., 2010; Wen et al., 2010;
Del Pino et al., 2013; Marques-Smith et al., 2016) as well as dis-
ruption of long-range functional connectivity (Tan et al., 2019).
Likewise, the developmental loss of MeCP2 from GABAergic
interneurons alters local circuit connectivity, elevates cortical
firing rates, disrupts patterns of cortical oscillatory activity, and
causes seizures (Chao et al., 2010; Ito-Ishida et al., 2015;
Mossner et al., 2020). Furthermore, several studies have found
that loss-of-function mutations in the gene for the sodium channel
Nav1.1 specifically in interneurons impairs interneuron excitabil-
ity and leads to disinhibition of pyramidal cells, altered circuit con-
nectivity, and ultimately to seizure (Favero et al., 2018). Ube3a
mutations likewise lead to seizure as a result of E/I imbalance
(Wallace et al., 2012). Interestingly, long-term alteration of the E/I
balance in the adult cortex of genetic models of autism spectrum
disorder may partially reflect compensatory changes to offset the
impact of developmental perturbation (Antoine et al., 2019).

Although past work has largely focused on the developmental
role of the largest population of GABAergic interneurons, the
fast spiking, PV-expressing cells, recent evidence indicates a pre-
viously unappreciated role for other interneuron populations,
the SST-, 5HT3a-, and VIP-expressing cells, in cortical circuit

development (Fig. 1D,E). Loss of SST interneurons following
Satb1 deletion leads to altered cortical synaptic connectivity and
early mortality (Close et al., 2012), further suggesting a critical
function for these cells in early life (Marques-Smith et al., 2016;
Tuncdemir et al., 2016). Perturbation of layer 1 5HT3aR inter-
neurons by deletion of Lynx1 prevents the development of tono-
topy in primary auditory cortex (Takesian et al., 2018). Finally,
disruption of early postnatal activity in the sparse VIP interneuron
population, because of either ErbB4 or MeCP2 mutations, causes
disinhibition of SST interneurons, loss of behavioral state-depend-
ent cortical regulation, and elevated tonic firing of pyramidal
cells, along with disruptions in cortical sensory responsiveness
and g -band oscillations (Batista-Brito et al., 2017; Mossner et
al., 2020). Similar perturbations result from conditional dele-
tion of the transcript factor Prox1 in the same population of
interneurons (Vagnoni et al., 2020). Together, these findings
suggest not only that GABAergic inhibition from multiple sour-
ces is critical for experience-dependent fine-tuning of cortical
circuits during postnatal maturation, but also that perturbation
of these GABAergic circuit components contributes to cortical
dysfunction in neurodevelopmental disease.

Human iPSC-derived cortical organoids as a model for
neocortical oscillatory circuit development
Because most of the mechanistic studies addressing developmen-
tal wiring have been done in animal models, it is unclear how
translatable these observations are to the human brain. Although
significant progress has been made in understanding the devel-
opment of functional brain networks in infants and children, our
understanding of human brain development in utero remains
largely a mystery. Therefore, hiPSCs have been used to develop
brain organoids that mimic early human neurodevelopment at
the cellular and molecular levels (Pas,ca, 2018). Until recently,
however, it has been unclear whether these organoids develop
functionally dynamic neuronal networks (Trujillo et al., 2019).

One clear hallmark of functioning networks is the presence
of neural oscillations (Buzsaki and Draguhn, 2004), which are a
ubiquitous signal across brain regions and species (Bullock et
al., 2003). Interregional coupling of low-frequency (,40Hz)
oscillations facilitates information transfer (Varela et al., 2001)
and temporal spike synchrony (Fries et al., 1997), whereas faster
oscillations are implicated in local circuit processes (Cardin et
al., 2009; X. J. Wang, 2010). Neural oscillations are correlated
with numerous perceptual, cognitive, and behavioral process
(Schnitzler and Gross, 2005); and oscillatory disruptions are
similarly widespread, being present in nearly every major neu-
rologic, psychiatric, and developmental disorder (Voytek and
Knight, 2015). Yet very little is known about the developmental
origins of human neocortical oscillations. Because so many
developmental neurocognitive disorders are associated with os-
cillatory disruptions (Le Van Quyen et al., 2006; Chini et al.,
2020), understanding how oscillations develop, and what might
disrupt that development during early stages of human embryo-
genesis, is critical.

Recently, it has been found that hiPSC-derived cortical orga-
noids form small-scale, functional, oscillatory networks (Trujillo
et al., 2019) (Fig. 2D–H). Very early in the neural development
phase, cortical organoids exhibit highly synchronous single-unit
spiking, unlike what is seen in healthy, developed neocortex
(Fig. 2E,F). After several months, however, this activity profile
spontaneously develops 2-3Hz oscillations (Fig. 2G) that, like
oscillations seen in rodent data reviewed above, become
more variable in frequency, time, and space with further
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development. This shift toward oscillatory complexity coincides
with the development of inhibitory neuronal populations (Fig.
2H); blockade of GABAergic signaling does not interfere with
overall spiking activity but impairs oscillatory activity. This
establishes a causal role for GABA for the maintenance, but not
initiation, of oscillations and shows that oscillatory network de-
velopment is likely dependent on glutamatergic and
GABAergic interactions. This is consistent with predominant
models for oscillatory generation through E/I interactions
(Buzsáki and Wang, 2012).

The separation of oscillations into different frequency
bands is particularly striking given the important role that
multifrequency interactions play in human neural network
functioning and cognition (Canolty and Knight, 2010).
Specifically, in humans, low-frequency oscillations rhythmi-
cally modulate high-frequency (.100Hz) activity, a surrogate
of population spiking (Mukamel et al., 2005). This phase-ampli-
tude coupling likely plays an important role in human cognition,
including working memory (Johnson et al., 2018) and goal main-
tenance (Voytek et al., 2015). In cortical organoids, similar phase-
amplitude coupling was observed: specifically, the phase of;3Hz
oscillations was comodulated with the power of high-frequency
activity (Trujillo et al., 2019).

Notably, hiPSC-derived cortical organoids appear to recapitu-
late the electrophysiological developmental trajectory seen in
preterm infant EEG. Using a machine-learning model trained to
predict human neonatal age from comparable EEG features, the
developmental timeline of cortical organoids can be predicted
from the presence, absence, and strength of electrophysiological
features, including oscillatory power. While the functional equiv-
alence between human neocortex and cortical organoids cannot
be proved, these results are encouraging: hiPSC-derived human
cortical organoids spontaneously develop neural oscillations that
exhibit spatiotemporal complexity, in which low-frequency oscil-
lations interact with high-frequency activity. The development of
these complex electrophysiological features mimics what is seen
in preterm infant EEG. While these results are far from conclu-
sive, they provide converging lines of evidence that support the
use of cortical organoids as a model for studying early human
neurodevelopment.

Conclusions and open questions
Increasing knowledge of the genetic diversity of cortical neurons
gives us better access and understanding of early neuronal cir-
cuits (Di Bella et al., 2020). However, it will be crucial in future
studies to determine how genetic cell-type diversity translates
into cellular phenotype and physiological function at the micro-
circuit level. Although the existence of activity patterns in the
neocortex has long been observed, evidence that these patterns
dictate emergent connectivity and later function has remained
elusive. Accumulating evidence from sensory and limbic corti-
ces indicates that select neuronal populations participate in sen-
sory-evoked and spontaneous network activity and that these
activity patterns control specific aspects of early cortical devel-
opment. Additional research will be needed to further dissect
the diversity of neuronal, and particularly GABAergic subtypes,
in emergent circuits.

Although RNA sequencing has been instrumental in reveal-
ing early subtype identity (Mayer et al., 2018), gaining genetic
access to these immature populations remains challenging. This
is particularly difficult for fast-spiking interneurons, frequently
identified by their PV expression status, which becomes evident
only in the second postnatal week (del Rio et al., 1994). Early

identity markers, such as Mef2c (Mayer et al., 2018) and Tac1
(Wamsley et al., 2018), hold promise for the intersectional target-
ing of this population. The respective roles of the distinct popula-
tions of GABAergic interneurons in the early postnatal
maturation of cortical circuits remain to be fully elucidated. In
addition, the impact of synaptic interactions among the different
GABAergic populations on cortical maturation has only recently
been identified and remains to be explored. It will be important to
match activity patterns revealed by calcium imaging to those
recorded with microelectrodes in vivo and neurotransmitter
uncaging in slices. Going forward, it will be important to deter-
mine whether spindle bursts, long oscillations, and b -g oscilla-
tions entrain different populations of developing cortical neurons
in functional ensembles and what role they have in the develop-
ment of adult circuit function and behavior. Future investigations
will bring us closer to the understanding the rules governing corti-
cal development.
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