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Abstract

The current regression models for interval-valued data ignore the extreme nature of the
lower and upper bounds of intervals. We propose a new estimation approach that considers the
bounds of the interval as realizations of the max/min order statistics coming from a sample
of nt random draws from the conditional density of an underlying stochastic process {Yt}.
This approach is important for data sets for which the relevant information is only available
in interval format, e.g., low/high prices. We are interested in the characterization of the latent
process as well as in the modeling of the bounds themselves. We estimate a dynamic model
for the conditional mean and conditional variance of the latent process, which is assumed to be
normally distributed, and for the conditional intensity of the discrete process {nt}, which follows
a negative binomial density function. Under these assumptions, together with the densities of
order statistics, we obtain maximum likelihood estimates of the parameters of the model, which
are needed to estimate the expected value of the bounds of the interval. We implement this
approach with the time series of livestock prices, of which only low/high prices are recorded
making the price process itself a latent process. We find that the proposed model provides an
excellent fit of the intervals of low/high returns with an average coverage rate of 83%. We also
offer a comparison with current models for interval-valued data.

Key Words: Interval-valued Data, Order Statistics, Intensity, Maximum Likelihood Estimation.
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1 Introduction

Since the work on symbolic data by Billard and Diday (2003, 2006), a variety of regression mod-

els have been proposed to fit interval-valued data, see the survey article by Arroyo, González-

Rivera and Maté (2011) for an extensive review. A first approach proposed by Billard and

Diday was to regress the centers of the intervals of the dependent variable on the centers of the

intervals of the regressors. Subsequent approaches considered two separate regressions, one for

the lower bound and another for the upper bound of intervals (Brito, 2007), or one regression

for the center and another for the range of the interval (Lima Neto and de Carvalho, 2010).

None of these approaches guarantees that the fitted values from the regressions will satisfy the

natural order of an interval, i.e., by ŷl ≤ ŷu, for all observations in the sample. A solution

came from Lima Neto and de Carvalho (2010) who modified the previous regression models

by imposing non-negative constraints on the regression coefficients of the model for the range.

González-Rivera and Lin (2013) argued that these ad hoc constraints limit the usefulness of

the model and proposed a constrained regression model that generalizes the previous regression

models for lower/upper bounds or center/radius of intervals, and naturally guarantees that the

proper order of the fitted intervals is satisfied.

A common thread to these approaches is that they consider the lower and upper bound as

distinct stochastic processes. In this paper we propose an alternative approach and argue that

there is only one stochastic process, say {Yt}, that generates the upper and lower bounds of

the interval. When we analyze interval-valued data, we only observe the bounds and these are

extreme realizations of a latent random variable. This is our conceptual setup. At a fixed time

t, we consider a random variable Yt with a given conditional density function from which we

draw randomly nt realizations. The lower and upper bounds of the interval, i.e. (ylt and yut)

are the realized minimum and maximum values coming from the set of realizations associated

with the nt draws. As such, our interest moves towards the analysis of these two order statistics

and their probability density functions. As an example, consider a time series of daily prices.

In a given day t, from opening to closing time, there are nt transactions, each one generating

a market price. If we consider the daily number of trades as the nt random draws, their

corresponding intra daily prices are the realizations of the random variable daily price Yt, and

the highest/lowest prices are the realizations of the max/min order statistics of Yt. Observe that

we are not interested in the dynamics of the intra daily prices; only the lowest/highest prices

carry information on the daily market activity. To start the modeling exercise, we require a

set of assumptions regarding the density of the underlying stochastic process and the density
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of the number of draws. We will assume that the first process is continuous and it follows

a conditional normal density function, and that the second process is naturally discrete and

it follows a negative binomial density. Under these assumptions, we will obtain the expected

values of the lower and upper bounds of the interval.

Furthermore, this modeling approach will also provide information on the latent process

because we will be able to model its conditional mean and conditional variance. This is an

advantage in those instances in which there are no records of opening or closing prices, typically

the object of analysis, or when those prices are not very representative of the state of the market.

In this paper, we model such a time series: agricultural and livestock prices provided by the

US Department of Agriculture. We look into beef sales prices; the daily information provided

is low price, high price, weighted average price, number of trades and total pounds traded. We

could model the weighted average price but this is not very informative for potential sellers

and buyers. Instead, we construct the daily interval-valued time series of low/high beef prices,

which we manually dig from several archives provided by the US Department of Agriculture,

and implement our approach to discover the characteristics of the latent price as well as the

expected values of the low and high prices.

The paper is organized as follows. In Section 2, we discuss the key ideas of our modeling

approach and its implementation under a set of assumptions. In Section 3, we use Monte Carlo

simulation to investigate the properties of the proposed maximum likelihood estimator. In

Section 4, we model the dynamics of the daily beef sales and prices. In Section 5, we compare

our proposed model with some existing approaches on modeling interval-valued time series using

both simulated and real data. Finally, in Section 6, we conclude by summarizing our findings.

2 General Framework

We assume that there is an underlying stochastic process for the interval-valued time series,

and in a given time t, e.g. day, month, etc. the high/low values of intervals are the realized

highest and lowest order statistics based on the random draws from the conditional densities of

the underlying stochastic process. Formally,

Assumption 1. (DGP) Let {Yt : t = 1, · · · , T} be the underlying stochastic process. The latent

random variable Yt at time t has a conditional probability density function f(yt|Ft). At each

time t, from the conditional density of Yt we draw nt observations. The number of draws has

a discrete density function h(nt|Ft). Let ylt and yut be the smallest and largest value of the
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random sample St ≡ {yit : i = 1, 2, · · · , nt}:

ylt ≡ min
i
St = min

1≤i≤nt

{yit},

yut ≡ max
i
St = max

1≤i≤nt

{yit}.

Then, {(ylt, yut, nt) : t = 1, · · · , T} forms the observed interval time series and number of

random draws, and Ft ≡ {(yls, yus, ns) : s = 1, · · · , t − 1} is the information set available at

time t.

At time t, the low and high observations (ylt and yut) are the lowest and highest ranked

order statistics of the random sample St formed by the nt draws or trades. The joint conditional

probability density of (ylt, yut) given nt and information set Ft is,

g(ylt, yut|nt,Ft) = nt(nt − 1) [F (yut|Ft)− F (ylt|Ft)]nt−2

×f(ylt|Ft)f(yut|Ft)

where F (·|Ft) is the cumulative distribution function corresponding to the conditional density

f(·|Ft). Then, the joint probability density of (ylt, yut, nt) conditional on information set Ft is,

p(ylt, yut, nt|Ft) = g(ylt, yut|nt,Ft)h(nt|Ft).

We still need to specify the conditional densities f(yt|Ft) and h(nt|Ft) and their dependence on

the information set. Therefore, we have Assumptions 2 and 3.

Assumption 2. (Distributions) The conditional densities of the underlying stochastic process

{Yt} and of the number of random draws nt are normal and negative binomial respectively, i.e.,

f(yt|Ft) ≡
1√

2πσ2
t

exp

{
−(yt − µt)2

2σ2
t

}
,

h(nt|Ft) ≡
Γ(nt + d− 2)

(nt − 2)!Γ(d)

(
d

λt + d

)d( λt
λt + d

)nt−2

,

where µt and σ2
t are the conditional mean and conditional variance of Yt; and λt and d are the

intensity function and dispersion parameter of the discrete process nt.

In the absence of any information about the underlying stochastic process, it seems sensible

to assume normality as the most innocuous density. We could also rely on results provided by

extreme value theory, which claim that maximal and minimal order statistics (properly normal-

ized and centered) generated by distributions such as normal, exponential, Weibull, gamma,
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log-normal etc., weakly converge to the same Gumbel distribution as the number of random

draws increases. Therefore, asymptotically the distribution of the order statistics from under-

lying normal is the same as that from many other types of underlying distributions up to some

affine transformations. In this sense, the normality assumption on the underlying stochastic

process that generates interval-valued time series is not too restrictive, at least asymptotically,

i.e. as nt gets large.

We assume negative binomial distribution for nt as a robust alternative to the Poisson

distribution because the additional dispersion parameter d will capture potential over dispersion

in the data. When d goes to infinity, the negative binomial converges to Poisson.

Assumption 3. (Dependence) The conditional mean, variance and intensity of the underlying

random processes yt and the discrete process nt are parametric functions of the information set,

i.e.,

µt(α) = fµ(wt; α), (2.1)

log σ2
t (β) = fσ(wt; β), (2.2)

λt(γ) = fλ(wt; γ). (2.3)

The functions fµ(·), fσ(·), and fλ(·) represent the dependence on the information set, and the

parameters α, β, and γ will be estimated. The random vector wt is a subset of information set

Ft, i.e., wt ⊂ Ft.

The information set w will consist of past low/high intervals and past number of draws

(trades). With this information, it makes sense to model the conditional mean µt(α) mainly

as a function of the past centers of the intervals, i.e. (yl + yh)/2 and the conditional variance

σ2
t (β) as a function of the past ranges of the intervals, i.e (yh− yl). The conditional intensity λt

will be a function of the past number of draws. It is also possible that there will be interactions

among the three functions, for instance, the number of trades (volume) may influence volatility.

Eventually, the final specifications will be driven by the characteristics of the data.

Let θ1 ≡ (α, β) and θ2 ≡ (γ, d). Given Assumptions 2 and 3, the joint density of (ylt, yut, nt)

can be explicitly written as,

p(ylt, yut, nt|wt; θ) = g(ylt, yut|nt,wt; θ1)h(nt|wt; θ2)

= nt(nt − 1)

[
Φ

(
yut − µt(α)

σt(β)

)
− Φ

(
ylt − µt(α)

σt(β)

)]nt−2

× 1

σt(β)
φ

(
ylt − µt(α)

σt(β)

)
1

σt(β)
φ

(
yut − µt(α)

σt(β)

)

4



×Γ(nt + d− 2)

(nt − 2)!Γ(d)

(
d

λt + d

)d( λt
λt + d

)nt−2

, (2.4)

where φ(·) and Φ(·) are the standard normal probability density and cumulative distribution

functions.

The estimation of the model proceeds by maximum likelihood (ML). For a sample {(ylt, yut, nt) :

t = 1, 2, · · · , T}, the log-likelihood function is

L(θ|yu,yl,n) = L1(θ1|yu,yl,n) + L2(θ2|n)

where

L1(θ1) ≡
T∑
t=1

log g(ylt, yut|nt,wt; θ1)

=

T∑
t=1

log nt +

T∑
t=1

log(nt − 1)− 2

T∑
t=1

log σt(β)

+

T∑
t=1

(nt − 2) log

[
Φ

(
yut − µt(α)

σt(β)

)
− Φ

(
ylt − µt(α)

σt(β)

)]

+

T∑
t=1

log φ

(
yut − µt(α)

σt(β)

)
+

T∑
t=1

log φ

(
ylt − µt(α)

σt(β)

)
(2.5)

and

L2(θ2) ≡
T∑
t=1

log h(nt|wt; θ2)

=

T∑
t=1

log Γ(nt + d− 2)−
T∑
t=1

log Γ(d)−
T∑
t=1

log(nt − 2)!

+d

T∑
t=1

log

(
d

λt + d

)
+

T∑
t=1

(nt − 2) log

(
λt

λt + d

)
. (2.6)

and the ML estimator θ̂ML is the solution that maximizes the log-likelihood function, i.e., θ̂ML =

arg maxΘ L(θ|yu,yl,n). The estimation procedure may be simplified when the parameters in

their respective conditional densities are exogenous from each other, and the ML estimator

θ̂ML that maximizes the joint log-likelihood function L(θ|yu,yl,n) is equivalent to the ML

estimators θ̂1 and θ̂2 that maximize L1(θ1|yu,yl,n) and L2(θ2|n) separately. When the two set

of parameters are exogenous for each other, the estimation and properties of θ̂2 are standard

and have been extensively studied within the standard Negative Binomial Generalized Linear
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Model (GLM) with link function λt(γ).1

Under general settings, the asymptotic properties of the ML estimator θ̂1 have been stud-

ied for cross-sectional data in Newey and McFadden (1994) and for dependent processes in

Wooldridge (1994). Under regularity conditions stated in Theorems 5.1 and 5.2 in Wooldridge

(1994), the ML estimator is weakly consistent and asymptotic normal, i.e.
√
T (θ̂1 − θ∗1)

d−→

N(0,V−1), where V ≡ − limT→∞ T
−1E(∇2

θ1
L1(θ1)|θ1=θ∗1

). We believe that a quasi-ML esti-

mator is not feasible for the following reason. According to Gourieroux, Monfort and Trognon

(1984) and White (1994), for correctly specified conditional mean and variance models and

under some regularity conditions, the consistency of QML estimators is guaranteed when the

density function belongs to the quadratic exponential family regardless of whether or not the

true underlying density lies within that family. Though we assume that the underlying process

{yit}nt
i=1 is normal and, as such, it belongs to the quadratic exponential family, we build the

log-likelihood function for the only observed data we have, which is the maximum and minimum

values of a collection of draws. The function ((2.5)) contains the following term

log

[
Φ

(
yut − µt(α)

σt(β)

)
− Φ

(
ylt − µt(α)

σt(β)

)]
,

which cannot be written as a quadratic function of (ylt, yut). Therefore, the joint density of the

ordinal statistics does not belong to the quadratic exponential family.

Given the model specification and the density of the order statistics, and by calling the law

of iterated expectations, we obtain the conditional means of the lower and upper bounds of

interval, µlt and µut respectively, as follows

µlt ≡ E(ylt|Ft) = E[E(ylt|Ft, nt)|Ft]

= E

[
nt

∫ +∞

−∞
s

(
1− Φ

(
s− µt(α)

σt(β)

))nt−1 1

σt(β)
φ

(
s− µt(α)

σt(β)

)
ds

∣∣∣∣∣Ft
]

=

∞∑
nt=2

[
nt

∫ +∞

−∞
s

(
1− Φ

(
s− µt(α)

σt(β)

))nt−1 1

σt(β)
φ

(
s− µt(α)

σt(β)

)
ds · h(nt|Ft)

]

and

µut ≡ E(yut|Ft)

=
∞∑
nt=2

[
nt

∫ +∞

−∞
s

(
Φ

(
s− µt(α)

σt(β)

))nt−1 1

σt(β)
φ

(
s− µt(α)

σt(β)

)
ds · h(nt|Ft)

]
(2.7)

1In R, there is a package glm.nb that provides estimates of θ̂2.

6



Similarly, the conditional variances of lower and upper bounds of the interval are as follows,

σ2
lt ≡ E(y2

lt|Ft)− E(ylt|Ft)2

=
∞∑
nt=2

[
nt

∫ +∞

−∞
s2

(
1− Φ

(
s− µt(α)

σt(β)

))nt−1 1

σt(β)
φ

(
s− µt(α)

σt(β)

)
ds · h(nt|Ft)

]
− µ2

lt

and

σ2
ut ≡ E(y2

ut|Ft)− E(yut|Ft)2 (2.8)

=
∞∑
nt=2

[
nt

∫ +∞

−∞
s2

(
Φ

(
s− µt(α)

σt(β)

))nt−1 1

σt(β)
φ

(
s− µt(α)

σt(β)

)
ds · h(nt|Ft)

]
− µ2

ut

After estimation, we plug the ML estimates θ̂ into expressions (2.7) – (2.8) and obtain

the estimates of conditional means and conditional variances of the lower and upper bounds,

denoted as ŷlt, ŷut, σ̂
2
lt, and σ̂2

ut, which in turn permits the construction of confidence bands for

the bounds. 2

3 Simulation

We perform Monte Carlo simulations to assess the finite sample performance of the proposed

maximum likelihood estimators. The data generating processes (DGP) satisfy Assumptions 1-3

and the conditional moments are specified as follows

µt = α0 +
∑
i

αliyl,t−i +
∑
i

αhiyh,t−i +
∑
i

αni log nt−i, (3.1)

log σ2
t = β0 +

∑
i

βri log(yh,t−i − yl,t−i)2 +
∑
i

βni log nt−i, (3.2)

log λt = γ0 +
∑
i

γri log(yh,t−i − yl,t−i)2 +
∑
i

γni log nt−i. (3.3)

In Table 1 we summarize all the DGPs specifications. We consider three specifications for each

conditional moment, mean, variance, and intensity. DGP1 has no dependence in yt or in nt.

DGP2 has higher persistence than DGP3 but with less number of lagged regressors.

2 For the infinite integral, we use the built-in R function integrate for the one-dimensional infinite inte-
grals.The function performs a globally adaptive interval subdivision in connection with extrapolation by Wynn’s
Epsilon algorithm and using the Gauss-Kronrod quadrature as a basic step. The infinite sums are approximated
by finite summations. In the summation, we let nt take value from max(2, bλt− 5νtc) to dλt + 5νte where λt and
ν2t = λt + λ2

t/d are the conditional intensity (mean) and variance of random variable nt respectively. According
to Chebyshev’s inequality, the interval [max(2, bλt − 5νtc), dλt + 5νte] provides a coverage of at least 96% of the
outcomes of nt.
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The simulated data, {(ylt, yut, nt)}Tt=1, for each DGP are obtained by the following proce-

dure:

1. Choose some arbitrary initial past values to {yl,0, yl,−1, · · · , yl,−L}, {yu,0, yu,−1, · · · , yu,−L},

and {n0, n−1, · · · , n−L}, such that L is larger than the maximal lag in the autoregressive

specifications of the conditional mean, variance, and intensity.

2. At time t = 1, using the DGP specifications and past values of the variables, generate the

conditional mean µ1, conditional variance σ2
1, and conditional intensity λ1.

3. Generate a random number n′1 from the negative binomial distribution NB(λ1, d), and

use n1 = n′1 + 2 as the simulated number of random draws.

4. Generate n1 random numbers from the normal distribution N(µ1, σ
2
1). The simulated

interval is obtained as

(yl,1, yh,1) ≡
(

min
1≤j≤n1

{yj1}, max
1≤j≤n1

{yj1}
)
,

5. Repeat steps 2 to 4 to obtain a sample size of T + 100 times, and discard the first 100

simulated observations as the “burn-in” period.

For each DGP, we consider both small (T = 200) and large (T = 2, 000) sample sizes.3 Finally,

we replicate each DGP 5,000 times.,

[TABLE 1] [TABLE 2]

In Table 2, we report the average of the absolute bias of the ML estimates and their average

mean squared error (AMSE). For all DGPs, the average absolute bias is very close to zero even

for small samples, and it goes to zero when the sample size increases from 200 to 2,000. As

expected, the AMSE decreases with sample size. We observe that for DGP2 and DGP3, the

estimates of the constant terms i.e., α0, β0, and γ0, are much less accurate (large AMSEs) than

those of the slope coefficients, in particular for small samples.

We also test the normality of the ML estimates (with 5000 replications) by implementing

the Anderson-Darling (AD) test and the popular Jarque-Bera test (JB). The AD test asseses the

distance between the empirical distribution function Fn(x) and the hypothesized distribution

3When generating the sample, we produce additional 100 observations and use only the last 200 or 2,000
observations as the effective sample for estimation.
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function F0(x) under the null hypothesis, i.e.,

AD = n

∫ ∞
−∞

(Fn(x)− F0(x))2

[F0(x)(1− F0(x))]
dx.

The asymptotic distribution of the AD statistic is nonstandard and its critical values or p-values

are available in Pearson and Hartley (1972, Table 54). Stephens (1974) found that the AD test

is a powerful statistic to detect most departures from normality.

[TABLE 3]

In Table 3 we report both the AD and JB statistics with their p-values. Those statistics with

p-values less than 1% are written in bold. For DGP1 both statistics fail to reject normality for

all estimates in small and large samples except for the dispersion estimate in small samples.

For DGP2 and DGP3, there is rejection of normality for a few estimates when the sample size

is small but, as the sample becomes large, both statistics fail to reject normality. Overall, AD

and JB reach the same decision. These results are in agreement with the asymptotic properties

of the ML estimators discussed above.

4 Modeling Interval-valued Beef Prices

The Agriculture Marketing Service (AMS) within the United States Department of Agriculture

(USDA) provides current, unbiased price and sales information to assist in the orderly marketing

and distribution of farm commodities. Its daily market news reports include information on

prices, volume, quality, condition, and other market data on farm products in specific markets

and marketing areas. Reports cover both domestic and international markets.

4.1 Description of the Data

The specific data set that we analyze is the national daily boxed beef cuts negotiated sales

prices. The historical data are archived and it is downloaded from the following website:4

http://goo.gl/76WYQ. The name of the daily beef report is “Boxed Beef Cutout & Cuts-

Negotiated Sales PM CSV”, coded as “LM XB403”. In the daily report, sales prices of different

parts (choice cuts) of beef are provided, and we select item “109E”. The available information

includes number of trades, total pounds, low price, high price, and weighted average price,

where prices reflect U.S. dollars per 100 pounds.

4We shorten the original url by Google url shortener.
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There is not special reason to work with this particular commodity. Our interest is to show

that there are time series for which the relevant information is not given by a single number,

in this case, a daily price. The weighted price is not very informative for potential sellers and

buyers as it includes sales volume and it is not representative of any given transaction. If we

are interested in the forecasting of beef prices, we are bound to work with the low and high

prices, and thus the importance of modeling the interval. To this end, we apply the estimation

methodology proposed in the previous sections. There are other areas within economics and

other sciences where the relevant and only format of the data is the interval format. For

instance, electricity prices, fair market price within real estate markets, bid/ask prices in the

bond markets, low/high temperature records in a given location, blood pressure measurements

in health records, etc. all these are examples of data sets where a point-valued format does not

exist because in most cases it would be meaningless.

The AMS archives are very data rich and, as we did with beef prices, sales data on any

other livestock or farm products can be retrieved, though it requires a non-trivial manual effort.

We construct a daily time series that ranges form January 4th, 2010 to September 30th 2013

for a total of 950 observations. In Figures 1a and 1b, we plot the time series of daily low/high

prices and number of trades, respectively.

[FIGURE 1a] [FIGURE 1b]

The prices are nonstationary, they have an upward trend, thus we need to work with returns.

To preserve the interval format, we calculate daily returns with respect to the previous day

weighted average price, that is,

rht =
Phigh,t − Pavg,t−1

Pavg,t−1
× 100%

rlt =
Plow,t − Pavg,t−1

Pavg,t−1
× 100%.

In Figure 1c, we plot the low and high returns. In Table 4, we report the descriptive statistics

for the three series: low percentage change rlt, high percentage change rht and number of trades

nt. The median low return is -3.41% and the median high return is 5.83%. Both series have

similar standard deviation of about 3.5%, and both are skewed and leptokurtic. The median

number of daily trades is 30. We observe that over dispersion is present, i.e. the variance

166.92 is much larger than the mean 31.54, so that the assumed negative binomial distribution

for number of trades is a plausible assumption.

[TABLE 4]
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In Figures 2 and 3, we plot the autocorrelation and partial autocorrelation functions for each

of the three times series. Both returns series, rlt and rht, exhibit moderate but significant

autocorrelation, in contrast with the zero autocorrelation customarily found in financial returns.

The dependence observed in the series log nt is predominantly weekly seasonality (5-day week).

[FIGURE 2] [FIGURE 3]

4.2 Model Selection and Estimation

Taking into account the information provided in the previous section, we propose a specification

search going from a rather general to a more parsimonious model. The general model involves

an autoregressive representation for the conditional mean, conditional variance, and conditional

intensity. The starting most general specification is as follows,

µt = α0 +

p1∑
ξ=1

αlξrl,t−ξ +

p1∑
ξ=1

αhξrh,t−ξ

+s1µ log nt−5 + s2µ log nt−10 + s3µ log nt−15

+
(
1 + s1µL

5 + s2µL
10 + s3µL

15
) p2∑
ξ=1

αnξ log nt−ξ (4.1)

log σ2
t = β0 +

q1∑
ξ=1

βrξ log(rh,t−ξ − rl,t−ξ)2

+s1σ log nt−5 + s2σ log nt−10 + s3σ log nt−15

+
(
1 + s1σL

5 + s2σL
10 + s3σL

15
) q2∑
ξ=1

βnξ log nt−ξ (4.2)

log λt = γ0 +

k1∑
ξ=1

γrξ log(rh,t−ξ − rl,t−ξ)2

+s1λ log nt−5 + s2λ log nt−10 + s3λ log nt−15

+
(
1 + s1λL

5 + s2λL
10 + s3λL

15
) k2∑
ξ=1

γnξ log nt−ξ, (4.3)

According to the information contained in the autocorrelation functions, the number of

trades exhibits marked weekly seasonality of order 2 or 3 5. As a starting point, we choose

order 3 and we include the non-seasonal and seasonal component (in a multiplicative fashion)

of the number of trades as regressors in the conditional mean and variance. In the conditional

mean, we also include the past centers of the interval in an unrestricted format, i.e. rl,t−ξ and

rh,t−ξ separately. The conditional variance and conditional intensity are assumed to be functions

5Since we consider a 5-day week, autoregressive seasonality of order 1, 2, and 3 means a 5-period, 10-period
and 15-period lag, respectively i.e., L5, L10, L15.
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of the past ranges of the intervals. Note that the range is also an estimator of volatility, so that,

a priori, we claim that past volatility may affect the intensity of trades, and vice versa, i.e.

information of past number of trades may affect volatility. The specification of the conditional

variance and conditional intensity are in logs to avoid imposing positivity restrictions in the

parameters of such equations. Our task is to find the order of the several polynomial lags in

the three equations.

We estimate jointly by maximum likelihood the mean and variance equations, (4.1) and

(4.2). The order of the polynomial lags are restricted to the following large set

p1, p2, q1, q2 ∈ A ≡ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9},

The preferred model is selected by minimizing the Bayesian Information Criterion (BIC). The

optimal orders are p1 = 7, p2 = 9, q1 = 5, and q2 = 1. Similarly, we estimate by MLE the

intensity equation (4.3) with lag orders (k1, k2) to be chosen from the following set

k1, k2 ∈ B ≡ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

By minimizing the BIC, the optimal orders are k1 = 0 and k2 = 4, which seems to indicate that

there is no volatility effect on the intensity of trading. We provide the estimation results of the

three equations in Tables 5, 6, and 7.

[TABLE 5] [TABLE 6] [TABLE 7]

We implement a stationary block bootstrap procedure to obtain the standard errors of the

ML estimates, which are reported in the third column of each table. We also report the 95%

bootstrapped confidence intervals in the fourth and fifth columns of each table, and test whether

the ML estimates are statistically significant. The ML estimate that are statistically significant

at the 5% significance level are written in bold.

For the conditional mean equation, we observe that neither the seasonal nor the non-seasonal

components of trading activity have any effect in the mean. The relevant dynamics are short

and mostly confined to the first lag of the lower and upper bounds of past intervals. Given this

result, we will entertain additional more parsimonious specifications with p1 = 5 (SPEC2), and

p1 = 1 (SPEC3). For the conditional variance, the dynamics of the past ranges are important

and to a lesser extent, past trading activity, which is negatively correlated with volatility. For

the conditional intensity equation, only the seasonal component is most relevant.
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4.3 Performance Evaluation

We compare three specifications: SPEC1 chosen by BIC (p1 = 7, p2 = 9, q1 = 5, q2 = 1, k1 = 0,

and k2 = 4) and two more parsimonious models, SPEC2 (p1 = 5 , p2 = 5, q1 = 5, q2 = 1,

k1 = 0, and k2 = 4), and SPEC3 (p1 = 1 , p2 = 1, q1 = 5, q2 = 1, k1 = 0, and k2 = 4).

First, we check the autocorrelation of the residuals of the three models. Since the true

conditional mean and variance of the latent stochastic process rt are unobservable, we use center

values ct = (rlt+ rht)/2 and squared ranges (rh,t− rl,t)2 as proxies for realized conditional mean

µ̂t and variance σ̂2
t . Then, we construct the following two pseudo-Pearson residuals

ε̂1t =
ct − µ̂t
σ̂t

, ε̂2t =
(rh,t − rl,t)2

σ̂2
t

and check whether these “standardized residuals” are uncorrelated. In Table 8, we report the

p-values of Ljung-Box tests for the pseudo-Pearson residuals.

[TABLE 8]

For SPEC1 and SPEC2, the residuals ε̂1t do not show any autocorrelation but for SPEC3, we

reject the null hypothesis of no autocorrelation at any significance level. We conclude that the

conditional mean return has significant dynamics at least of order 5. This is very different from

financial returns which are basically a white noise. For SPEC1 and SPEC2, the residuals ε̂2t

show a bit of autocorrelation at the lower lags 1 and 2 but the magnitude of the autocorrelation

coefficients is very small, much less than 0.1. On the contrary, SPEC3 generates autocorrelated

residuals ε̂2t at any lags. In summary, SPEC1 and SPEC2 have very similar performance in

capturing the dynamics of center values and squared ranges and they are preferred to SPEC3.

Secondly, we evaluate the performance of the three models by computing several measures

of fit for interval-valued data. For a sample of size T , let [ŷlt, ŷut] be the fitted values of the

corresponding interval yt = [ylt, yut] provided by each model. We consider the following criteria:

(i) Root Mean Squared Error (RMSE) for upper and lower bounds separately.

RMSEl =
√∑T

t=1(ŷlt − ylt)2/T and RMSEu =
√∑T

t=1(ŷut − yut)2/T ;

(ii) Coverage Rate (CR) and Efficiency Rate (ER) of the estimated intervals (Rodrigues and

Salish, 2014).

CR = 1
T

∑T
t=1w(yt ∩ ŷt)/w(yt), ER = 1

T

∑T
t=1w(yt ∩ ŷt)/w(ŷt), where yt ∩ ŷt is the

intersection of actual and fitted intervals, and w(·) is the width of the interval. The

coverage rate (CR) is the average proportion of the actual interval covered by the fitted
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interval, and the efficiency rate (ER) is the average proportion of the fitted interval covered

by the actual interval. Both rates are between zero and one and a large rate means a better

fit. Given an actual interval, a wide fitted interval implies a large coverage rate but a low

efficiency rate, on the contrary, a tight fitted interval implies a low coverage rate but a

high efficiency rate. Therefore, we take into account the potential trade-off between the

two rates by calculating an average of the two, i.e., (CR+ ER)/2.

(iii) Multivariate Loss Functions (MLF) for the vector of lower and upper bounds (Komunjer

and Owyang, 2011).

We implement the following multivariate loss function Lp(τ, e) ≡ (‖ e ‖p +τ ′e) ‖ e ‖p−1
p

where ‖ · ‖p is the lp-norm, τ is two-dimensional parameter vector bounded by the unit ball

Bq in R2 with lq-norm (where p and q satisfy 1/p+1/q = 1), and e = (el, eu) is the bivariate

residual interval (ŷlt − ylt, ŷut − yut). We consider two norms, p = 1 and p = 2 and their

corresponding τ parameter vectors within the unit balls B∞ and B2 respectively, MLF1 =∫
τ∈B∞(|el|+ |eu|+ τ1el + τ2eu)dτ , MLF2 =

∫
τ∈B2

[
e2
l + e2

u + (τ1el + τ2eu)(e2
l + e2

u)1/2
]
dτ .

(iv) Mean Distance Error (MDE) between the fitted and actual intervals (Arroyo et al., 2011).

Let Dq(ŷt, yt) be a distance measure of order q between the fitted and the actual intervals,

the mean distance error is defined as MDEq({ŷt}, {yt}) = [
∑T

t=1D
q(ŷt, yt)/T ]1/q. We

consider q = 1 and q = 2, with a distance measure such as D(ŷt, yt) = 1√
2
[(ŷlt − ylt)2 +

(ŷut − yut)2]1/2.

The evaluation results for the three specifications considered are reported in Table 9.

[TABLE 9]

Across the four measures, SPEC1 offers the best fit though it is only marginally better than

SPEC2. Both specifications dominate SPEC3. In summary, SPEC2 (p1 = 5 , p2 = 5, q1 = 5,

q2 = 1, k1 = 0, and k2 = 4) provides a more parsimonious specification than SPEC1 without

sacrificing a good data fit. The following figures offer a visual aspect of the fitting of the data.

Based on the estimation results, we calculate the estimated conditional mean µ̂t, conditional

variance σ̂2
t and conditional intensity λ̂t . In addition, we calculate the estimated expected low

and high returns (r̂lt and r̂ht) and their corresponding estimated conditional variances (σ̂2
lt and

σ̂2
ht) according to expressions (2.7)- (2.8). The time series of all these estimates and of the actual

values are plotted in Figure 4.

[FIGURE 4]

In Figure 4a, we observe that µ̂t lies very much around the center of the actual intervals. The
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estimated expected low and high returns also follow very closely the profiles of the actual low

and high returns. According to their RMSEs, we find a better fit for the upper bounds than

for the lower bounds across the three specifications considered. The average coverage rate is

about 83% and the average efficiency rate about 76%, which is a very good fitting. In Figure

4b, we plot the estimated variance, which shows that there is substantial heteroskedasticity in

the series. The three most prominent bursts of volatility corresponds to those instances where

the ranges of the intervals are the widest. In Figure 4c, we plot the actual number of trades nt

and the estimated intensity λ̂t. Although these two series are not directly comparable, we see

that λ̂t as a measure of the expected number of trades follows very closely the actual number.

5 Comparison with Existing Approaches

We compare our proposed approach with most current models for interval-valued time series.

Specifically, we consider the following six competing models:

• CR: Center-Radius model (Lima Neto and De Carvalho, 2008)

• CCR: Constrained Center-Radius model (Lima Neto and De Carvalho, 2010)

• VAR: Vector AutoRegression model (Garćıa-Ascanio and Maté, 2009; Arroyo, González-

Rivera, and Maté, 2010)

• IAR-TS: Interval AutoRegressive-Two Step model (González-Rivera and Lin, 2013)

• IAR-MTS: Interval AutoRegressive-Modified Two Step model (González-Rivera and Lin,

2013)

• STAR: Space-Time AutoRegressive model (Teles and Brito, 2013).

CR and CCR are autoregressive specifications for the center and radius of the intervals; CR is

unrestricted and CCR restricts the parameters of the radius equation to be non-negative. VAR

is an unrestricted autoregressive specification for the lower and upper bounds. IAR-TS and

IAR-MTS is a restricted autoregressive specification where the bivariate density function of the

upper and lower bound is a truncated function to preserve the natural order of the interval.

STAR is a bivariate linear system of equations for the lower and upper bounds that allows con-

temporaneous correlation between both bounds; it resembles a structural vector autoregression

with constraints.
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Observe that the competing approaches only model the conditional mean of the upper and

lower bounds of the interval. Our proposed model offers a richer structure as we aim to discover

the underlying stochastic process from which the extreme bounds are observed. We analyze

the interplay of the conditional mean, conditional variance, and conditional intensity. In this

sense, the competing approaches are not strictly comparable with our approach. Nevertheless,

we simulate interval-valued data and we use the real data set of section 4 to estimate the

competing models We can only compare the fitted values of the lower and upper bounds across

specifications. Obviously, we cannot compare variance and intensity estimates.

5.1 Comparison Using Simulated Data

We generate time series data, {(ylt, yut, nt)}Tt=1, following the procedure described in section 3.

The sample size is T = 200 and the number of replications is 1,000. For each replication, we

calculate the four measures of fit (RMSE, CR & ER, MLF, MDE) described in section 4.3. Once

we finish the 1,000 replications, we calculate the average of each fit measure across replications

and call them A-RMSE, A-CR & A-ER, A-MLF, and A-MDE. In Table 10, we present the

comparison across models.

[TABLE 10]

Not very surprisingly, the proposed model based on order-statistics, which is correctly spec-

ified, outperforms the other six competing models across all evaluation criteria. It offers similar

interval coverage, A-ER and A-CR, to the competing models but it substantially overperforms

with respect to the other three measures of fit. Overall, CR or CCR are the worst performers.

VAR, IAR-TS, and IAR-MTS deliver almost identical results because there are not binding con-

straints and, in this case, the IAR collapses to an unrestricted VAR. The STAR model performs

worst than VAR-type models and marginally better than CR-type models.

5.2 Comparison Using Real Data

We fit the competing models to the interval-valued time series of beef prices that we have mod-

eled in section 4. Our preferred model is Spec 1 described in section 4.2. For the specification

of the competing models, the BIC selects 4 lags. In Table 11, we report the results. For a given

evaluation criteria, we write in bold the value corresponding to the best performer.

[TABLE 11]
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Overall, there is not a best performer across all the evaluation criteria. As in the case of

simulated data, CR and CCR models are the worst performers. The restrictions on the model

specification (centers are only regressed on past centers and radius only on past radius) seem to

be too stringent. We note that both specifications deliver the same fit across evaluation criteria.

This indicates that the non-negative restriction on the parameters of the radius equation are

not binding.

The rest of the specifications are very similar in performance. VAR, IAR-TS and IAR-MTS

models deliver similar results across all the loss functions. The IAR models impose that the

density of the error term follows a truncated bivariate normal distribution, which guarantees that

the lower and upper bounds do not cross over. However, if the no-crossing-over restriction is not

binding, the IAR models collapse to VARs. Across criteria, IAR-TS offers the best performance

in many instances. The STAR model seems to provide better coverage than the rest. The

performance of our preferred model (Spec 1) is very similar to the STAR and IAR models.

Note that Spec 1 is a highly non-linear specification as it consists of the joint modeling of the

conditional mean, variance, and intensity (see equation 2.7). The estimation of a much larger

number of parameters may disadvantage this model compared to the competing specifications.

Nevertheless, it delivers similar performance to that of more parsimonious specifications. Most

importantly, it provides extra information (variance and intensity) about the characteristics of

the underlying process that generates the interval bounds.

6 Conclusion

By focusing on the lower and upper bound of an interval as two different stochastic processes,

the current literature on model estimation has ignored the extreme nature of such bounds. Our

main contribution is a modeling approach that exploits such extreme property. At the core,

we have argued that there is only one stochastic process {Yt} from which the lower and upper

bounds of the intervals (ylt and yut) are the realized extreme observations (minima and maxima)

coming from the nt random draws from the conditional density of the process. A key point is

to understand that the researcher is interested in the characterization of this latent stochastic

process as much as in the modeling of the bounds themselves. This question is important

because there are time series data sets for which the relevant information is only available in

interval format e.g. low/high prices. Yet in these instances, it is of interest to know the expected

price or any other conditional moment of the price process, e.g. variance. skewness, etc. We

have introduced a data set of daily beef prices and sales for which the opening or closing prices
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are not reported because they are not very informative to potential sellers and buyers, and

consequently we are restricted to work with the interval low/high prices.

The modeling approach is based on the theory of order statistics. For implementation

purposes, we need to assume a conditional density for the latent stochastic process. We have

assumed normality as a first approximation but this assumption can be refined according to

the researcher’s needs. One advantage of the data set that we have analyzed is that contains

information on the daily number of trades, so that we are able to model the conditional intensity

of trading in addition to the modeling of the conditional mean and variance. The standard

distributional assumption for counts is a Poisson density but we have assumed a more robust

alternative, the Negative Binomial, as it takes into account potential over dispersion of the data.

Given these distributions, we have estimated the model by maximum likelihood. Monte Carlo

simulations indicate that the estimators are well-behaved and, in large samples, they do not

show any apparent biases and they seem to be normally distributed.

The modeling of beef prices shows interesting features. The conditional mean of the corre-

sponding returns exhibits relevant dynamics in contrast to financial returns. The return process

is heteroskedastic and the dynamics of the conditional variance are driven by the range of past

intervals and the past number of trades. The conditional intensity function is mainly driven

by the seasonal component of the number of trades. We have also estimated the expected low

and high returns to construct the fitted intervals. When these are compared with the actual

intervals, we find that the model provides a very good fitting with an average coverage rate of

83% and an average efficiency rate of about 76%.

Finally, we have compared the performance of the proposed approach with other competing

models. Our approach offers much more information about the underlying process that gen-

erates the interval bounds and, in this sense, it is not strictly comparable to current models.

Nevertheless, by only comparing performance based on fitted values of the bounds, our model

is superior to or, in some instances, as good as the IAR-type models.
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[6] Garćıa-Ascanio, C. and Maté, C. (2009). “Electric power demand forecasting using interval

time series: A comparison between VAR and iMLP,” Energy Policy, 38: 715–725.
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Table 1: Specification of Data Generating Processes

Parameters DGP1 DGP2 DGP3

α0 1 1 1
αl1 – 0.6 0.2
αh1 – 0.6 0.2
αl2 – −0.3 −0.2
αh2 – −0.3 −0.2
αl3 – – 0.1
αh3 – – 0.1
αl4 – – −0.1
αh4 – – −0.1
αl5 – – 0.1
αh5 – – 0.1
αn1 – 0.6 0.2
αn2 – −0.3 −0.2
αn3 – – 0.1
αn4 – – −0.1
αn5 – – 0.1

β0 1 1 1
βr1 – 0.6 0.2
βr2 – −0.3 −0.2
βr3 – – 0.1
βr4 – – −0.1
βr5 – – 0.1
βn1 – 0.6 0.2
βn2 – −0.3 −0.2
βn3 – – 0.1
βn4 – – −0.1
βn5 – – 0.1

γ0 5 1 1
γr1 – 0.6 0.2
γr2 – −0.3 −0.2
γr3 – – 0.1
γr4 – – −0.1
γr5 – – 0.1
γn1 – 0.6 0.2
γn2 – −0.3 −0.2
γn3 – – 0.1
γn4 – – −0.1
γn5 – – 0.1
1/d 0.1 0.1 0.1

Sample Size 200/2,000 200/2,000 200/2,000
Replications 5,000 5,000 5,000
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Table 2: Simulation Results

Parameters DGP1 DGP1 DGP2 DGP2 DGP3 DGP3∣∣bias∣∣ amse
∣∣bias∣∣ amse

∣∣bias∣∣ amse
∣∣bias∣∣ amse

∣∣bias∣∣ amse
∣∣bias∣∣ amse

(×10−4) (×10−4) (×10−4) (×10−4)

α0 6.2033 9.8389 0.2491 0.9565 0.0856 10.4447 0.0146 0.9191 0.0463 0.5128 0.0020 0.0438
αl1 – – – – 0.0054 0.0013 0.0005 0.0001 0.0054 0.0029 0.0005 0.0002
αh1 – – – – 0.0066 0.0013 0.0009 0.0001 0.0047 0.0028 0.0003 0.0002
αl2 – – – – 0.0030 0.0011 0.0003 0.0001 0.0010 0.0029 0.0002 0.0003
αh2 – – – – 0.0031 0.0011 0.0004 0.0001 0.0002 0.0028 0.0002 0.0003
αl3 – – – – – – – – 0.0062 0.0031 0.0006 0.0003
αh3 – – – – – – – – 0.0046 0.0032 0.0007 0.0003
αl4 – – – – – – – – 0.0019 0.0028 0.0001 0.0003
αh4 – – – – – – – – 0.0003 0.0027 0.0000 0.0003
αl5 – – – – – – – – 0.0077 0.0029 0.0006 0.0003
αh5 – – – – – – – – 0.0069 0.0027 0.0011 0.0002
αn1 – – – – 0.0083 0.4796 0.0029 0.0437 0.0028 0.0432 0.0001 0.0038
αn2 – – – – 0.0245 0.6436 0.0022 0.0590 0.0042 0.0441 0.0005 0.0039
αn3 – – – – – – – – 0.0040 0.0454 0.0007 0.0041
αn4 – – – – – – – – 0.0008 0.0441 0.0004 0.0040
αn5 – – – – – – – – 0.0031 0.0435 0.0009 0.0040

β0 4.2093 2.3476 1.3849 0.2298 0.0482 0.0715 0.0080 0.0068 0.0275 0.1841 0.0072 0.0157
βr1 – – – – 0.0090 0.0032 0.0014 0.0003 0.0018 0.0031 0.0001 0.0003
βr2 – – – – 0.0044 0.0021 0.0006 0.0002 0.0062 0.0027 0.0006 0.0002
βr3 – – – – – – – – 0.0020 0.0030 0.0004 0.0003
βr4 – – – – – – – – 0.0044 0.0029 0.0008 0.0003
βr5 – – – – – – – – 0.0007 0.0029 0.0001 0.0003
βn1 – – – – 0.0042 0.0026 0.0008 0.0003 0.0080 0.0164 0.0022 0.0016
βn2 – – – – 0.0088 0.0036 0.0010 0.0003 0.0003 0.0166 0.0000 0.0015
βn3 – – – – – – – – 0.0003 0.0170 0.0011 0.0015
βn4 – – – – – – – – 0.0053 0.0160 0.0007 0.0014
βn5 – – – – – – – – 0.0008 0.0162 0.0003 0.0015

γ0 2.5165 5.2969 1.5468 0.5265 0.0057 0.1536 0.0016 0.0141 0.0722 0.1567 0.0067 0.0143
γr1 – – – – 0.0055 0.0071 0.0011 0.0007 0.0000 0.0027 0.0002 0.0003
γr2 – – – – 0.0081 0.0046 0.0010 0.0005 0.0025 0.0022 0.0003 0.0002
γr3 – – – – – – – – 0.0008 0.0025 0.0000 0.0002
γr4 – – – – – – – – 0.0021 0.0024 0.0004 0.0002
γr5 – – – – – – – – 0.0000 0.0025 0.0000 0.0002
γn1 – – – – 0.0122 0.0059 0.0018 0.0006 0.0128 0.0138 0.0009 0.0013
γn2 – – – – 0.0098 0.0076 0.0015 0.0008 0.0080 0.0135 0.0018 0.0013
γn3 – – – – – – – – 0.0081 0.0139 0.0008 0.0013
γn4 – – – – – – – – 0.0108 0.0128 0.0009 0.0013
γn5 – – – – – – – – 0.0121 0.0135 0.0014 0.0013
1/d 4.1933 1.0871 0.6572 0.1130 0.0026 0.0001 0.0003 0.0000 0.0186 0.0013 0.0019 0.0001

Sample Size 200 2,000 200 2,000 200 2,000
Replications 5,000 5,000 5,000 5,000 5,000 5,000
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Table 3: Anderson-Darling(AD) and Jarque-Bera(JB) Normality Tests†

DGP1(S) DGP1(L) DGP2(S) DGP2(L) DGP3(S) DGP3(L)
AD JB AD JB AD JB AD JB AD JB AD JB

α0 0.18 0.33 0.34 0.60 1.05 10.9 0.45 1.92 1.11 18.1 0.31 1.23
(0.92) (0.85) (0.50) (0.74) (0.01) (0.00) (0.27) (0.38) (0.01) (0.00) (0.55) (0.54)

αl1 – – – – 1.56 8.03 0.62 3.24 0.38 0.54 0.31 0.39
– – – – (0.00) (0.02) (0.11) (0.20) (0.40) (0.76) (0.56) (0.82)

αh1 – – – – 1.26 18.7 0.17 0.17 0.19 1.85 0.35 0.65
– – – – (0.00) (0.00) (0.93) (0.92) (0.90) (0.40) (0.47) (0.72)

αl2 – – – – 0.63 3.15 1.17 6.15 0.80 2.57 0.28 1.66
– – – – (0.10) (0.21) (0.00) (0.05) (0.04) (0.28) (0.64) (0.44)

αh2 – – – – 1.79 21.8 0.51 4.87 0.23 0.55 0.28 0.76
– – – – (0.00) (0.00) (0.20) (0.09) (0.80) (0.76) (0.66) (0.68)

αl3 – – – – – – – – 0.44 3.37 0.31 2.64
– – – – – – – – (0.28) (0.19) (0.55) (0.27)

αh3 – – – – – – – – 0.84 7.97 0.32 2.17
– – – – – – – – (0.03) (0.02) (0.52) (0.34)

αl4 – – – – – – – – 0.43 1.82 0.52 2.85
– – – – – – – – (0.31) (0.40) (0.18) (0.24)

αh4 – – – – – – – – 0.20 1.28 0.44 1.25
– – – – – – – – (0.89) (0.53) (0.29) (0.54)

αl5 – – – – – – – – 0.17 0.08 0.81 3.14
– – – – – – – – (0.93) (0.96) (0.04) (0.21)

αh5 – – – – – – – – 0.63 11.37 0.19 0.63
– – – – – – – – (0.10) (0.00) (0.90) (0.73)

αn1 – – – – 0.84 1.77 0.62 3.93 0.18 0.88 0.40 4.20
– – – – (0.03) (0.41) (0.11) (0.14) (0.92) (0.64) (0.36) (0.12)

αn2 – – – – 0.40 3.24 0.34 0.34 0.24 6.04 0.23 1.58
– – – – (0.36) (0.20) (0.49) (0.84) (0.77) (0.05) (0.81) (0.45)

αn3 – – – – – – – – 0.47 1.13 0.42 0.72
– – – – – – – – (0.24) (0.57) (0.33) (0.70)

αn4 – – – – – – – – 0.25 0.50 0.43 1.10
– – – – – – – – (0.76) (0.78) (0.31) (0.58)

αn5 – – – – – – – – 0.92 4.20 0.39 0.44
– – – – – – – – (0.02) (0.12) (0.38) (0.80)

β0 0.40 0.95 0.27 0.44 0.94 12.5 0.27 1.19 1.09 20.64 0.76 1.61
(0.35) (0.62) (0.68) (0.80) (0.02) (0.00) (0.69) (0.55) (0.01) (0.00) (0.05) (0.45)

βr1 – – – – 1.54 15.8 0.70 4.77 0.40 4.87 0.22 1.31
– – – – (0.00) (0.00) (0.07) (0.09) (0.36) (0.09) (0.83) (0.52)

βr2 – – – – 0.59 2.93 0.88 0.99 0.84 25.65 0.56 4.69
– – – – (0.12) (0.23) (0.02) (0.61) (0.03) (0.00) (0.15) (0.10)

βr3 – – – – – – – – 1.25 19.26 0.31 0.64
– – – – – – – – (0.00) (0.00) (0.55) (0.72)

βr4 – – – – – – – – 0.30 1.95 0.64 0.16
– – – – – – – – (0.58) (0.38) (0.10) (0.92)

βr5 – – – – – – – – 0.25 1.26 0.49 4.38
– – – – – – – – (0.76) (0.53) (0.22) (0.11)

βn1 – – – – 0.41 1.54 0.60 1.24 0.74 3.90 1.07 8.68
– – – – (0.34) (0.46) (0.12) (0.54) (0.05) (0.14) (0.01) (0.01)

βn2 – – – – 0.19 1.52 0.41 0.97 0.30 0.48 0.73 6.39
– – – – (0.89) (0.47) (0.34) (0.62) (0.58) (0.79) (0.06) (0.04)

βn3 – – – – – – – – 0.55 2.38 0.60 0.04
– – – – – – – – (0.16) (0.30) (0.12) (0.98)

βn4 – – – – – – – – 0.59 3.66 0.36 1.31
– – – – – – – – (0.12) (0.16) (0.45) (0.52)

βn5 – – – – – – – – 1.15 16.77 0.27 2.69
– – – – – – – – (0.01) (0.00) (0.68) (0.26)

γ0 0.43 2.34 0.44 3.20 0.45 7.70 0.20 0.33 5.65 88.98 0.77 9.59
(0.32) (0.31) (0.30) (0.20) (0.28) (0.02) (0.88) (0.85) (0.00) (0.00) (0.04) (0.01)

γr1 – – – – 0.28 6.13 0.36 0.49 0.71 8.04 0.26 0.70
– – – – (0.65) (0.05) (0.45) (0.78) (0.06) (0.02) (0.71) (0.70)

γr2 – – – – 0.44 1.00 0.18 0.73 0.70 15.76 0.31 0.62
– – – – (0.30) (0.61) (0.92) (0.69) (0.07) (0.00) (0.56) (0.73)

γr3 – – – – – – – – 0.60 7.54 0.31 1.83
– – – – – – – – (0.12) (0.02) (0.55) (0.40)

γr4 – – – – – – – – 0.53 2.77 0.36 1.80
– – – – – – – – (0.17) (0.25) (0.45) (0.41)

γr5 – – – – – – – – 0.48 0.97 0.65 9.43
– – – – – – – – (0.23) (0.62) (0.09) (0.01)

γn1 – – – – 0.32 0.46 0.35 1.00 0.53 0.69 0.23 0.30
– – – – (0.53) (0.79) (0.48) (0.61) (0.18) (0.71) (0.80) (0.86)

γn2 – – – – 0.38 1.08 0.81 2.27 0.30 4.79 0.29 0.53
– – – – (0.41) (0.58) (0.04) (0.32) (0.58) (0.09) (0.61) (0.77)

γn3 – – – – – – – – 0.28 2.07 0.12 0.55
– – – – – – – – (0.63) (0.35) (0.99) (0.76)

γn4 – – – – – – – – 0.58 0.75 0.59 3.26
– – – – – – – – (0.13) (0.69) (0.12) (0.20)

γn5 – – – – – – – – 0.74 5.40 0.54 0.13
– – – – – – – – (0.05) (0.07) (0.17) (0.94)

1/d 1.85 32.3 0.18 2.37 1.22 20.8 0.32 2.84 4.67 50.46 0.80 5.22
(0.00) (0.00) (0.91) (0.31) (0.00) (0.00) (0.53) (0.24) (0.00) (0.00) (0.04) (0.07)

† The p-values are in parentheses. S and L stand for small and large sample size respectively.
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Table 4: Descriptive Statistics

low % change high % change # of trades
Statistics (rlt) (rht) (nt)

Minimum −29.000 −2.984 6
1st Quartile −5.565 3.999 22

Median −3.415 5.832 30
3rd Quartile −1.604 8.211 40
Maximum 24.480 44.750 130

Mean −3.8380 6.3350 31.540
Variance 12.7687 11.7219 166.92

Correlation 0.3750 ——–
Skewness −0.7585 2.0796 0.8657
Kurtosis 11.9538 19.5875 5.9716

Table 5: Estimation Results of Conditional Mean Equation

Conditional Mean Equation

95% C.I.
estimate s.e.† lower upper

α0 -1.57 1.82 -5.14 2.31
αl1 -0.35 0.04 -0.41 -0.26
αl2 0.07 0.03 0.00 0.14
αl3 0.06 0.03 -0.01 0.11
αl4 0.11 0.03 0.04 0.15
αl5 0.03 0.03 -0.04 0.07
αl6 0.07 0.03 -0.01 0.11
αl7 0.03 0.04 -0.05 0.10
αh1 0.22 0.04 0.13 0.28
αh2 0.04 0.04 -0.05 0.09
αh3 0.02 0.03 -0.04 0.07
αh4 -0.01 0.03 -0.08 0.05
αh5 0.07 0.03 0.00 0.11
αh6 -0.02 0.03 -0.07 0.04
αh7 -0.03 0.03 -0.08 0.03
αn1 0.18 0.21 -0.29 0.52
αn2 0.12 0.17 -0.29 0.40
αn3 0.19 0.16 -0.24 0.40
αn4 -0.14 0.17 -0.37 0.32
αn5 0.31 0.41 -0.67 0.86
αn6 -0.44 0.23 -0.78 0.11
αn7 0.47 0.22 -0.15 0.74
αn8 -0.08 0.20 -0.43 0.38
αn9 0.46 0.22 -0.11 0.75
s1µ -0.30 0.38 -0.79 0.64
s2µ 0.25 0.23 -0.22 0.69
s3µ -0.29 0.20 -0.52 0.29
†Standard errors are obtained
by stationary block bootstrap-
ping.
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Table 6: Estimation Results of Conditional Variance Equation

Conditional Variance Equation

95% C.I.
estimate s.e.† lower upper

β0 -0.43 0.39 -1.15 0.34
βr1 0.42 0.08 0.28 0.56
βr2 0.08 0.04 -0.01 0.15
βr3 0.08 0.05 0.00 0.18
βr4 0.09 0.03 0.01 0.14
βr5 0.12 0.05 -0.01 0.20
βn1 -0.10 0.06 -0.2 0.02
s1σ -0.21 0.09 -0.37 -0.04
s2σ 0.02 0.07 -0.11 0.15
s3σ -0.11 0.07 -0.20 0.07
†Standard errors are obtained
by stationary block bootstrap-
ping.

Table 7: Estimation Results of Conditional Intensity Equation

Conditional Intensity Equation

95% C.I.
estimate s.e.† lower upper

γ0 1.01 0.25 1.05 1.97
γn1 -0.04 0.03 -0.07 0.02
γn2 -0.04 0.02 -0.08 0.00
γn3 0.02 0.02 -0.03 0.05
γn4 0.08 0.02 0.02 0.12
s1λ 0.37 0.03 0.30 0.42
s2λ 0.18 0.04 0.05 0.20
s3λ 0.11 0.03 -0.02 0.11
1/d 0.10 0.01 0.10 0.14
†Standard errors are obtained
by stationary block bootstrap-
ping.
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Table 8: Ljung-Box Tests for pseudo-Pearson Residuals ε̂1t and ε̂2t

ε̂1t (p-values) ε̂2t (p-values)
lags SPEC1 SPEC2 SPEC3 lags SPEC1 SPEC2 SPEC3

1 0.60 0.62 0.12 1 0.01 0.01 0.00
2 0.82 0.74 0.00 2 0.02 0.01 0.00
3 0.88 0.88 0.00 3 0.04 0.03 0.01
4 0.95 0.95 0.00 4 0.08 0.06 0.02
5 0.98 0.96 0.00 5 0.14 0.10 0.04
6 0.99 0.76 0.00 6 0.21 0.15 0.07
7 0.96 0.75 0.00 7 0.23 0.17 0.08
8 0.98 0.75 0.00 8 0.11 0.08 0.04
9 0.81 0.50 0.00 9 0.12 0.08 0.04
10 0.87 0.60 0.00 10 0.14 0.10 0.05
11 0.61 0.45 0.00 11 0.12 0.08 0.04
12 0.67 0.52 0.00 12 0.15 0.10 0.05
13 0.73 0.58 0.00 13 0.12 0.08 0.04
14 0.69 0.53 0.00 14 0.11 0.07 0.04
15 0.75 0.60 0.00 15 0.08 0.05 0.03
16 0.78 0.61 0.00 16 0.09 0.06 0.03
17 0.71 0.49 0.00 17 0.11 0.08 0.04
18 0.76 0.54 0.00 18 0.14 0.10 0.06
19 0.61 0.41 0.00 19 0.18 0.13 0.08
20 0.66 0.47 0.00 20 0.22 0.16 0.10

Table 9: Measures of Goodness of Fit

RMSE CR & ER MLF MDE

Lower Upper CR ER CR+ER
2 p = 1 p = 2 q = 1 q = 2

Spec 1 3.3226 2.8191 0.8388 0.7648 0.8018 4.5586 18.9874 2.5054 3.0812
Spec 2 3.3385 2.8397 0.8385 0.7624 0.8005 4.5903 19.2095 2.5204 3.0992
Spec 3 3.4431 2.8886 0.8356 0.7568 0.7962 4.7041 20.1987 2.5808 3.1779

Table 10: Comparison with Existing Approaches using Simulated Data∗

A-RMSE A-CR & A-ER A-MLF A-MDE

Lower Upper A-CR A-ER A-CR+A-ER
2 p = 1 p = 2 q = 1 q = 2

CR 6.4701 6.7084 0.9310 0.9172 0.9241 10.2730 87.2878 5.6477 6.5952
CCR 7.1343 7.3709 0.9263 0.9090 0.9176 11.3340 105.8595 6.1847 7.2583
VAR 6.4305 6.6703 0.9313 0.9176 0.9244 10.2163 86.2639 5.6167 6.5564

IAR-TS 6.4183 6.6581 0.9314 0.9182 0.9248 10.1871 85.9428 5.6009 6.5443
IAR-MTS 6.4306 6.6704 0.9313 0.9176 0.9244 10.2165 86.2669 5.6169 6.5566

STAR 6.9327 6.9922 0.9159 0.9128 0.9143 10.8039 98.0272 5.4865 6.9634
Proposed model 5.1801 5.2324 0.9420 0.9348 0.9384 8.0387 54.5267 4.4742 5.2124
∗ Simulated data are generated by DGP2 with 200 observations. Simulation is replicated 1000 times.
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Table 11: Comparison with Existing Approaches using Real Data†

RMSE CR & ER MLF MDE

Lower Upper CR ER CR+ER
2 p = 1 p = 2 q = 1 q = 2

CR 3.5201 2.9698 0.8024 0.7678 0.7851 4.7513 21.2110 2.5920 3.2566
CCR 3.5201 2.9698 0.8024 0.7678 0.7851 4.7513 21.2110 2.5920 3.2566
VAR 3.3440 2.7688 0.8136 0.7793 0.7964 4.5226 18.8481 2.4790 3.0699

IAR-TS 3.3332 2.7687 0.8145 0.7796 0.7970 4.5062 18.7754 2.4697 3.0639
IAR-MTS 3.3426 2.7689 0.8137 0.7793 0.7965 4.5214 18.8399 2.4782 3.0692

STAR 3.1551 2.9975 0.8439 0.8172 0.8306 4.5372 18.9400 2.3186 3.0773
Preferred model∗ 3.3226 2.8191 0.8388 0.7648 0.8018 4.5586 18.9874 2.5054 3.0812
† The real data is the interval-valued time series of beef prices.
∗ Our preferred model is Spec 1 in section 4.2
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Figure 1: Daily Prices and Returns and Number of Trades
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Figure 2: ACF and PACF of Low/High Daily Returns
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Figure 3: ACF and PACF of Logarithm of Number of Trades
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