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THE PHYSICS OF FLt:IOS VOLUME i, NU:l-IBER 4 APRIL 1964 

Test Particle Method in Kinetic Theory of a Plasma 

NORMAN ROS'l'O.IO;R* 

John Jay Hovkins Laburalury for Pure and Avplied Science 
General Atomic Di11ision of General Dyna1m:cs Corporation, San Diego, Cal1fomia 

(Received 22 November 1963) 

A test particle of coordinaLes X = (x. v) is surrounded by a shield cloud of field partides of coordi
nates X' characterized by a conditional prQbability function P(XIX't). A relationship has beeo found 
between this function, the one-particle function f(X, t) :md the t"·o-particle correlation function 
G(X, X'; t). It is 

G(X, X'; t) = f(Xt)P(X I X't) + f(X't)P(X' I Xt) + nf dX" f(X", t)P(X" I Xt)P(X" I X't). 

The first two terms indicate that each of the two particles involved is a test particle as well :i,s part 
of the shield cloud of the other particle. The last term corresponds to the two particles shielding a 
third particle. This relat.ion has been established without solving explicitly f(>r anything and has 
none of the usual restrictions such as spatial homogeneity, adiabatic time beh:i.vior, etc., usually 
necessary for obtaining explicit solutions. It is useful because the problern of kinetic theory is reduced 
t.o determining P which involves only the Vlasov equation. In addition, superposition principles for 
fluctuations, etc., are apparent nt the outset. 

I. INTRODUCTION 

WE consider a gas of charged particles inter
acting only through Coulomb forces . The 

system may be deseribed by the Liouville equation 

{:t + ~ v,· a!, - : [ F •• (X,t) 

It bas previously been shown that Eq. (2) cau be 
solved1 approximately by expanding in a parameter 
g =: 1/nLJ where n is the density and Ln is the 
Debye length. Alternately one may expand in the 
discreteness parameters e, m, and 1/ n considered 
as being of the same order. To first order one finds 

+ ta!, [x, ~ x;IJ a!}D(Xt) = o, (1) 

X, = (x,, v,) the posit.ion and velocity of the ith 
particle, and X = (X11 X 2 • • • X.v). F.x(X;t) = 

E •• (x;t) + (1/c) v, x B •• (x,t) where E.x and B.,. are 
externally applied fields. Infinite mass randomly dis
tributed ions are assumed leaving only electrons of 
charge - e and mass m. This restriction is easily 
relaxed. 

The system can also be described by the Bogoli
ubov-Born-Green-Kirkwood- Yvon heirarchy which 
is obtained by taking moments of Eq. (1) 

{
() • iJ e[ 
at + ~ v.-;-: - - F •• (X,t) 

1-1 v X 1 m 

+ t _}_ 1 J ·_}_}t 
i>'i OX; Ix. - xd av i • 

- 'M2 :t J ~ 1 . i:Jf-+1 dX .. , = 0, 
m 1-1 ax, Ix, - X.+11 av, (2) 

where 

f.(X 1 • • • X,; t) = V' f D(Xt) dX.+1 · · · dXN· 

* Permanent Address: University of California, San Diego, 
La Jolla, California. 

. 
f.(Xi · · · X.; t) = Il f(X;t) 

1 N [ N J + 2 ~ ,!f" f(X;t) G(X;Xk; t), (3) 

provided that f (Xt) and G(X, X'; t) satisfy the 
following equations 

af i:Jf e at 
at + v· ax - m F.v(Xt)- av 

'M
2 J a 1 a = m ax[x - x'J"avG(X,X';t)dX', 

a at G(X, X'; t) + [O(Xt) + O(X't))G(X, X'; t) 

(4) 

= ~ ..£._ 1 , ·[/(X't) af(Xt) _ f(Xt) af(X't)] 
m ax. Ix - x I av &v' 

(5) 
where 

J a I 
F .v(Xt) = F •• (Xt) +ne ax Ix_ x'Tf(X'l) dX'; 

O(Xt) is an operator that involves differentiation 
and integration, i.e., 

1 N. Rostoker and M. N. Rosenbluth, Phys. Fluids 3, 1 
( 1000); R. Balescu, Phys. Fluids 3 , 52 (1960); R. L. Guernsey, 
dissertation, University of Michigan (1960); A. Lenard, Ann. 
Phys. (N. Y.) 10, 390 (1960). 
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492 NOR MAN ROSTOKER 

O(Xt) = v·!x - !. p "(Xt)·j_ 
<J m . av 

where of(Xt) is a. first-order quantity. Thus in Eq. 
(5') /(Xt) can everywhere be replaced by f(Xt). 
O(Xt) differs from O(Xt) only in the fact that 

(6) f(Xt) in Eq. (6) is replaced by /(Xt). Therefore 
0(Xt) == O(Xt) in Eq. (5') and finally we deduce 
that to first order G(X, X'; t) = G(X, X'; t). Equa
tion ( 4') to first order in g becomes 

Our objective is to show the relationship between 
this problem and a test-particle problem. The test. 
particle problem can be formulated simply by assum
ing that there is an additional external electric field 

a e 
E,(x, t) = -;-- I ()I 

uX X - Xo l 

where Xo(t) is the test-particle orbit. Thus Eq. (1) 
becomes 

{
a N a e[ 
!>t + L: V;-;- - - F • .(X,t) 
v 1-1 uX; m 

+ t 3- e ] • _j_}D(X t) 
; ... ax, Ix; - xd av; 

e2 
" a 1 ab 

= m ~ax, jx, - :xo(t) I av, (I') 

The previous procedure for producing a. chain of 
equations and solving it by expansion results in 
the following modifications of Eqs. (4) and (5): 

aJ ?J.. e af 
at+ v· ax - :;;; FM(Xt)- av 

ne
2 J a 1 a 

=: m ax Ix - x'1·av G(X, X'; t)dx' 

+ e2 a/(X t) • .E_ 1 
m, av ax Ix - Xo(t)I ' 

(4') 

a G(X X' ) e2 a 1 a A 
at ' ; t - max Ix - Xo(t)l ·av u(X, X'; t) 

2 

e a 1 a G(X X' ) 
- max' Ix' - Xo(t) l 0 av' ' t 

+ [0(Xt) + O(X't)]G(X, X't) 

= e
2 

.E_ l . [!<X't) a/(Xt) - j(Xt) aj(X't)]. 
max Ix - x' I itv av' 

(5') 

Since we are only concerned with a first order cal
culation in g = e, m, or 1/n, some simplifications 
are permitted. Since (J is already first order, the 
second and third terms of Eq. (5') are second order 
and may be omitted. Furthermore, Eq, (4') differs 
from Eq. (4) only in the second term on the right 
which is clearly a first order quantity being due to 
only one test charge. Therefore we may assume 

J(Xt) = f(Xt) + of(Xt) 

a a e a 
at of+ v· ax of - m FM(X, t)·av of 

- .£.. oF11(Xt)·.E_ f = ~ af(Xt) . .E_ 1 
m J UV m av ax jx - Xo(l)I , 

where 

J a 1 
oFM(X, t) = ne ax Ix _ x'I of(X't) dX' 

and we have made use of Eq. (4). The time de
pendence of of (Xt) can more conveniently be ex
pressed by introducing P(Xo(t) I x, t) = of(Xt) 
in which case 

a a a aP 
at of(Xt) ::: at P(Xo I Xt) + llo · axo p +Vo· Uvo. 

The orbit Xo(l) has thus far not been specified. We 
are free to specify it as we please. Assume that it 
satisfies the equations 

. dvo e 
Vo= dt = - m FM(X0 , t). 

With these definitions the test particle problem 
can be stated as follows: 

a at P(Xo I Xt) 

+ (Vo· a!o - ;i F M(Xo, t) · ~JP(Xo J Xi) 
+ O(X t)P(X 0 l x t) = e2 af (X t) ,.E_ I 

m av ax Ix - xol (7) 

We now proceed to show that a relationship exists 
between the solution of Eq. (7) and the solution of 
Eq. (5). It is 

G(X, X'; t) ::: f(Xt)P(X I X't) + f(X't)P(X' I Xt) 

+ n J dX" f(X"t)P(X" J Xt)P(X" I X't) , (8) 

which is valid to the same order of approximation 
that Eqs. (5) and (7) are valid. Equation (8) has 
the following physical interpretation. There are two 
particles involved in the correlation {unction 
G(X, X'; t). Tho first term corresponds to X' being 
a field particle and X a test particle with the proba-
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bility f (Xt) . In the second term, X' is the test 
particle and X the field particle. In the third term, 
X and X' are both field particles for any third 
particle X" which is a test particle with the proba
bility f(X"t). Equation (8) is of practical significance 
because it replaces the problem of solving Eq. (5) 
by the problem of solving Eq. (7) which is simpler. 
It also makes the solution much easier to interpret. 
In Sec. II the proof of Eq. (8) is given. After 
generalizing the result to include finite mass ions 

we proceed to show the immediate consequences of 
Eq. (8) in terms of superposition principles. 

II. RELATIONSHIP BETWEEN G(X, X'; t) 
AND P(XIX't) 

Equation (5) is an initial value problem. Assume 
that Eq. (8) is valid at t = O. If we can show that 
Eq. (8) satisfies Eq. (5) for any t, it must be the 
unique solution. Therefore substitute Eq. (8) into 
Eq. (5) and the following assortment of terms results: 

af(Xt) P(X I X't) + af(X't) P(X' I Xt) + n J dX" af(X"t) P(X" I Xt)P(X" I X't) + f(Xt) 2... P(X I X't) at at at at 

+ f(X't) 2... P(X' I Xt) + n J dX" f(X"t)[aP(X" I Xt) P(X" I X't) + P(X" I Xt) aP(X" I X't)J 
at at at 

+ O(Xt)fj(Xt)P(X I X't)] + f(X't)O(Xt)P(X' I Xt) + O(X't)fj(X't)P(X' I Xt)] + f(Xt)O(X't)PX I X't) 

+ n J dX" f(X"t){[O(Xt)P(X" I Xt)]P(X" I X't) + P(X" I Xt)[O(X't)P(X" I X't)} 

(9) 

Now substitute Eq. (7) to eliminate all expressions of the type (a/at) P(X I X't) + O(X't)P(X I X't). This 
produces the following transformation of Eq. (1): 

af(Xt) P(X I X't) + af(X't) P(X' I Xt) + n J dX" af(X"t) P(X" I Xt)P(X" I X't) 
at at at 

- f(Xt{v·:xP(X I X't) - : F"(Xt)·!P(X I X't)J 

- f(X't{v' ·a~' P(X' I Xt) - : F M(X't) ·a:' P(X' I Xt) J + O(Xt)U(Xt)P(X I X't)] 

+ O(X't)lf(X't)P(X' I Xt)] + n J dX" f(X"t)P(X" I X't){-v" ·a!" P(X" I Xt) 

+ !. F (X"t) · a,, P(X" I Xt) + e
2 

af(Xt) .2- 1 } + n J dX" f(X"t)P(X" I Xt) 
m "' av m av ax Ix - x" I 

·{-v"·}-;, P(X" I X't) + !. Fx(X"t)·b P(X" I X't) + e
2 

af(X't)..E_ 1 } = o ax' m av' m av' ax' Ix' - x" I · 

Consider the last expression. The first two terms 
can be integrated by parts and the last term can 
be expressed in terms of O(Xt) defined in Eq. (6). 
Thus it is transformed to 

n J dX" P(X" 1xe{v"·:, - ~FJl(X"t)·O:,] 
·ff(X"t)P(X" I Xt)] + ne

2 

iJf(X't) .-2... 
m iiv' ax' 

J dX" f(X"t)P(X" I Xt) · Ix' - x"I 

= n J dX"f(X"t)P(X" I Xt) 

[ a e a J · v"·---n - - Fu(X"t)•--,, P(X" I Xt) ax m av 

+ n J dX" P(X" I Xt)P(X" I X't) 

[ a e a J · v" ·ax" - m F "'(X"t)-av'' f(X"t) 

- O(X't)[f(X't)P(X' I Xt)] 
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+ [v'·a:' - ;i F;11(X't)·a!,]t<x1t)P(X' I Xt). = ~ L J j_ q; I • .i. G;;(X, X'; t) dX'. (11) 
m, i ax Ix - x I av 

Combine this with the second last expression and The macroscopic field is 
the result is 

n J dX" P(X" I Xt)P(X" I X't) 

·(v"· a:" -
1
:

2 
FM(X"t)· 0:,,)f(X"t) 

- O(X't)[f(X't)P(X' l Xt)]-O(Xt)[f(Xt)P(X I X't)] 

+ [v'·a:' - 1~i F.11(X't)·~,Jucx't)PCX' I Xl)J 

+ [v . .i. - .!!... F,,,(Xl)·
8
° ]t(Xl)P(X I X't) . ax 1n v 

This now cancels many of the previous terms leaving 
the following result: 

{[!t + v ·:x - i~i F,11(Xt)·:v]t(Xt)}P(X l X't) 

+ {[:t+v'· a!,- ;i F.1, (X't) · a!' }cx'o}P(X' ! Xt) 

+ n J dX" {[:t + v" a.:" - 1:i F.u(X"t) 

FM(Xt) = F.~(Xl) 

- n L J : I Q; 'I f;(X't) dX'. 
; vX X - X 

The pair correlation function G ;;(X, X'; t) has the 
symmetry property G;;(X, X'; t) = G;;(X', X; t) 
and satisfies the equation 

:t Gu(X, X'; l) + f: O;i(Xt)Gu(X, X'; t) 

0 <x' )G (X X' ) q;q; a l + jl t ii I t = - :;-- t I J 
?n; vX X - X 1 

·[f.(X't) of;(Xt) - f ·(Xf.) of;(X't)J (12) 
I OV ' • av' I 

which is the generalization of Eq. (fi). The operator 
O;i(Xt) is given by 

0 11 (Xt) = ou[ v· :x + ~~; FM(Xl) · ! ] 
- n q;qi af;(Xt).J dX'' 2- 1 ,,- IX"} 

m; av ax Ix - x l ' 
. :,, }cx"t)}Pcx" 1 Xt)P(X" 1 X't) = o. (10) where the function it operates 011 is to be placed 

in the cmly brackets. 
Now referiing back to Eq. (4) we see that 

(:t + v · :x -
1
:i F ,,r(Xt) · !Jt(Xt) 

= 11£

2 J j_ 1 
I .2- G(X X't) dX' 

1n ax Ix - x I av ' ' 

where the right-hand side is a first order quantity. 
Since P(X \ X' t) is also a first-order quantity all 
remaining terms in Eq. (10) are second order. 
Since second-order quantities have already been 
neglected in deriving Eq. (5), we conclude that 
Eq. (8) is the unique solution of Eq. (5) within the 
same limits of approximation that already apply 
to Eq. (5). It is apparent from the derivation that 
there are no limitations on the time- or space
dependence of f(Xt). 

ID. GENERALIZATION TO INCLUDE IONS 

The generalization of Eq. (7) is 

:t P;;(X I X't) 

+ [v·: + f1i__ FM(Xt) · : JP,·;(X I X't) 
oX In; oV 

'""' 0 (X' )P (X l X') q;q; af i a 1 + £...., ii l ;1 l = - 0·0 I I I 
1 1n; vV vX X - X 

(13) 

and 

G;;(X, X'; t) 

= f ;(Xt)P;;(X I X't) + /;(X't)P;;(X' I Xt) 

+n f dX" ~f1(X11 , t)Pu(X11 ! Xt)P1;(X11 IX't). 

(14) 

As an illustration of Eq. (14) consider the case 
If we use the label i to denote the species, q' of thermal equilibrium. Assume that 

for the charge, and m, for the mass, Eq. (4) becomes 

af.(Xt) + v · af; + .<JL F (Xt)· of, 
at ax m; "" av 

f (x-t) - (9 2)-i -»12•;' 
i - -7r1J; e I 

where ?n;V7 = e and F • .(Xt) = o. Since f ;(v) is 
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independent of x, FM(Xt) = 0. For this case Eq. 
(13) simplifies to 

!t P ;;(X I X'l) + ( v · :x + v ' · 0!,)Pu(X [ X't) 

9.L af; " J dX" a 1 P <,. .. I X"t) - n ';' . L,,, q, . :i- I "I " A 'Ill; u V 1 uX X - X 

·{Lek, ~iku) - ~(k, ~iku')J (u' - ~ - io) 

J d ,, 4irnq~ P'i(u")uu' 
- u f= Gk2 (u - it" + io)(ui - u" - io) 

(16') 

_ !l.i.!1i af; .~ 1 
- I I [ I I m; av ax x - x 

(l 5) where u = k ·v/ k, u' = k ·v'/ k1 etc ., and F 1(tt) = 
f f1(v) o[u - (k· v/ k)] dv. To evaluate the integral 

This can be solved by Fourier and Laplace trans- use the following information: 

formation, 

P ;;(X I X't) 

= ! ;.,,+.,, 11!_ e"' J dk. e;k-cx·- sip . . (k · v I v'p) 
-;co+-, 27ri (211/ ' 1 

l I 

where P,; satisfies 

[p + ik -(v' - v)]P,; - 47r11, L tt ~~ · ~f;, 
I '111.; IC u V 

J " 4irq ·q· af. · dv"r;;(k; v [ v", p) = ·k~ il!:· -
0 

',. 
pm; v 

This can, of course, be solved by dividing by p + 
i'k · (v' - v) and integrating. The solution is con
veniently expressed in terms of t he dielectric 
coefficient 

(k ) = 1 _ " w~; J ik ·(of;/av') / , 
E , p L,,, k2 + :1- , G V ; . p l..K.' V 

= l + I: W~; 1"" dt ie-"te-!•·'>,•t' 
1 

i 0 

(16) 

where w!; = 4?r1lq2 /m; is the plasma frequency of 
species j . Thus the asymptotic solution is 

f>,;(k; v Iv') = lim pP,;(k; v Iv', p) 
p-0 

_ 47rq;q.i (k ·v')f i(v') 1 
- - m;v~ [k· (v' - v) - io] k2E(k , -tk ·v)' (l7) 

which describes the shielding of a particle in thermal 
equilibrium. Assuming 

,.., (X X') _ J dk ;k · <x'-xl G'Y (k· ') 
U;; ..t l - (Z11")3 e i i '> V, V I 

the Fourier transform of Eq. (14) is 

Gu(k; v
1 
v') = f ;(v)P;;(k; v I v') + f;(v' )FMk; v' I v) 

+ n J dv" ~ f1(v11)Pf,.(k; v" I v)P1;(k; v" Iv'). 

After substituting Eq. (17) this becomes 

G;;(k; v, v') = - 4eq//; f;(v)f;(v') 

1 1 
(u - u" - io)(u' - i/' + io) = it - u' + io 

. [ '' l . - " 1, . J u - u - io u - u + ·io ' 

Im E(k, - iku) = 7rU f: 4;l F1(u), 

I: 47rnq~ F,(u) = _.!. Im [!:. 1 J 
1 k20 IE(k, -iku) 12 7r u E(k, - iku) ' 

where P means the principal part. (The imaginary 
part of the quantity in brackets is not singular at 
u = 0, but the real part is.) Dispersion relation can 
be derived from the following integral: 

J
"' du' 1 1 

_., u' - u + io u' + io t(k, -iku') = O. 

This integral vanishes because E(k, - iku') bas 
no poles in the upper half of the u' plane, and 
lim1,.· 1-., E(k, -iku') = 1 for 0 < arg u' < 71". 

Writing out l / (u' - u + io) = P/ (u' - u) -
rio(u' - u), etc., and taking real and imaginary 
parts leads to the following integral dispersion 
relations 

lf I p [p 1 J - dit -,--Re / (k .ku') 7r U - 'Lt U E , -t 

= - Im [~ t(k, ~iku)J + E<;:~) ' 
1/ / p [p 1 J - du -,-- Im / (k .ku') 
71" U - U U E 1 -t 

(17') 

[
p 1 J p 

= Re u E(k, -iku) - UE(O) · 

Returning now to Eq. (16'), 

O;;(k, v, 11') = - 4eqk~ f,(v)f ;(v') 

{ 1 [ u' u J 
. U

1 
- U - io t(k, -iku) - E(/c, :_iku) 
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uu' J d ,, [ 1 
- I • t£ II • 

u - u - io u - u - io 

- u" - ~ + io] ~ Im [:,, E(k, ~iku")J 
Making use of Eq. (17'), the integral can be evaluated 
with the well known result 

A (k· v v') = - 4-irq,q; f,(v)f;(v') · (18) 
l.T(( 1 1 0k2 E(k, 0) 

The point of this calculation is to show that verifi
cation of Eq. (14) or Eq. (8) directly from the ex
plicit solutions is a complicated process even for 
the simplest case.2 It appears to depend on ana
lyticity properties and suggests unnecessary mathe
matical restrictions. This is the case for roost of 
the mathematical manipulations necessary to get 
the results of kinetic theory into a form that can 
be interpreted physically. It is easier to carry them 
out before solving the problem as in the derivation 
of Eq. (8). 

IV. FLUCTUATIONS 

Consider for example the calculation of the en
semble average (A(xt)B(x', t)) where A(xt), B(xt) 
are any observables of the form 

N N 

A(xt) = L a(X, Ix), B(x, t) = L b(X, Ix). (19) 
, _ l i •l 

For example, if a(X, Ix) =a/ax (e/lx - x,I) A(xt) = 
E.(xt), the x component of the electric field. X, = 
(x,, v,) are coordinates and velocities of the particles 
evaluated at time t and the sum is over all particles. 
The ensemble average is defined as 

(A(xt)B(x', t)) 

= J dX D(Xt) ,t-
1 

a(X, I x)b(X; l x'). (20) 

' Integrations over all coordinates but two can be 
carried out with the result 

(A(xt)B(x't)) = n J fi<X1t)a(X1 l x)b(X1 l x') dX1 

+ n 2 J fi<Xi, X2i t)a(X1 l x)b(X, Ix') dX1 dX2. 

The first term comes from i = j in the sum and the 
second from i ~ j. Now substitute MX1, X2; t) = 
f(X1t)f(X2t) + G(X1, X2; t) and Eq. (8) for G. 

2 Some further examples of direct verification are given 
in the previous paper [N. Rostoker, Phys. Fluids 7, 479 
(1964)]. 

(A(x, t)B(x'~ t)) = (A(xt)XB(x', t)) 

+ n J f(X, t)a(Xi I x)b(X, l x') dX1 

+ n2 J f(X,t)P(X1 I X2t)a(X1 I x)b(X2 Ix') dX1 dX2 

+ n2 J f(X2t)P(X2 I X1t)a(X1 l x)b(X2 Ix') dX1 dX, 

+ n3 J f(Xa7t)P(Xa I X1t)P(Xa 1 X2t) 

·a(X1 I x)b(X2 Ix') dX1dX2dXa. (21) 

Instead of the bare-particle quantities a(X1 I x), 
b(X1 I x), define the corresponding quantities for 
quasiparticles, 

d.(X1 l xt) = a(X1 Ix) 

+ n J a(X2 l x)P(X1 I X2t) dX2, (22) 

etc. and substitute into Eq. (21). Thus 

(A (xt)B(x' t)) = (A(xt))(B(x' t)) 

+ n J f(X1t)a(X1 I x)b(X1 Ix') dX1 

+ n J dX1 f(X1t)a(X1 I x)[b(X1 I x')t - b(X1 l x')] 

+ n J dX2 f(X2t)[d.(X2 [ xt) - a(X2 I x)]b(X2 I x') 

+ n J dXa f(Xat)[d(Xa l xt) - a(X3 I x)] 

· [b(Xa l x't) - b(Xa I x')] = (A(xt))(B(x't)) 

+ n J f(X1t)d.(X1 I xt)b(X1 l x't) dX1, 

where 

(A(xt)) = n J f(X1t)a(X1 l x) dX11 etc. 

(23) 

Thus we have established the principle of super
position of statistically independent quasiparticles 
under very general circumstances, i.e., for any ob
servable expressible by Eq. (19) and for any time 
and space variation of fi(Xt). Previously3 such re
lationships have been derived by obtaining explicit 
solutions for specific cases and manipulating them 
into the form of Eq. (23) after a great deal of algebra. 

V. TWO-TIME DISTRIBUTION FUNCTIONS 

In order to calculate correlation functions, it is 
necessary to introduce two-time distribution func-

a N. Rostoker, Nucl. Fusion 1, 101 (1961). 
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tions. For example, D2(X, t; X'f!) dX dX' is the 
probability of finding the system in (X, dX) at 
t and in (X', dX') at t'. D,(Xt; X't') satisfies the 
Liouville equation in (X', t') and the initial condition 

D2(Xt, X't) = D(Xt)8(X - X'). 

We ca.n obtain a BBKGY chain for D 2 and solve 
it approximately by expansion as in the case of 
D (Xt). Since this has been done previously3 we 
simply quote the results. For most calculations we 
require only two moments of D2, namely 

Wu(X,t; XW) = V2 f D2(Xt; X't') 

dX2 ... dXN dX~ ... ax:.,, 

Wu(X.t; X~t') = V2 f D2(Xt; X't') 

dX2 ... dXN dXf dX~ . .. ax:.,. 
In terms of these moment.s the autocorrelation func
tion (A(xt)B(x't')) is 

(A(xt)B(x', t')) 

= J dX Dz(Xt; X't') .t a(X, I x)b(X~ I x') 
tJ • l 

=- ~ J dX, dXfa(X, I x)b(Xf I x')W11(X1 t; Xf t') 

+ n2 J dX1 dX~ a(X1 1 x)b(X~ I x')Wu(X1t; X~t'). 
(24) 

If the para.meter expansion (g = e, m, or 1/n) is 
carried out as discussed in Sec. I, the equations for 
Wu and W12 are as follows: 

{~~' + v~· a!~ - ~ FM(XL t')· a!~} 

and 

W11(X.t; Xft) = Vf(X,t)8(Xf - X 1) 

is the initial condition. 

(25) 

Wu(X,t; X~t') = f(X,t)f(X~t') + Gu(X1t; XW), 

where 

G12(X.t; X~t) = G(X,, X~; t). 

The formal solution of Eq. (26), as may be verified 
by direct substition, is 

G12(X.t; X~t') = ~ f dXfWu(X,t;XW)P(Xf IXW) 

+ ~ J ax2 W11CX2t; x~t')P(X2 1 x.t) 

+ ~ f dX3 dX~ W11(X3 t; X~t') 

(27) 

It is clear that this is a fairly obvious generaliza
tion of Eq. (8). Returning now to Eq. (24) and sub
stituting Eq. (27), we obtain 

(A(xt)B(x' I t')) = ~ J ax. dXf Wu(X.t; XW) 

·a(X1 I x)b(X~ I x') + (A(xt)){B(x', t')) 

+ ~ f dX, dX{ W11(X1t; X~t') 

·a(X1 Ix) J dX~ b(X~ I x')P(Xf I X~t') 

·b(X~ r x') J dX1 a(X, I x)P(X, I x.t) 

+ ~ f dXa dX~ Wu(Xat; XH') f dX1 

·a(X1 I x)P(Xa I x.t) f dX~ b(X~ I x')P(X~ I X~t'). 
After making use of the definitions of a(X1 I xt), 
etc., for quasiparticles given by Eq. (22), this re
duces to 

(A(xt)B(x't')) = ~ f dX, dX; W11(X1t, XW) 

·a(X, I xt)5(x: I x't') + (A(xt))(B{x't')). (28) 

The principle of 'Superposition is thus obtained in a 
very general for01. 

In order to include finite-mass ions, Eq. (27) 
must be modified as follows 

{a~' + O(XW)}G12(X.t; X~t') 
= e2 af(X~t'L.j.., .!.. f Wa(X,t; X{t') dXf 

m av~ ax2 V I x~ - x~I 

G"(X,t;X~t') = ~ J dXfW;,(X.t;Xft')P;i(X: I X~t') 
(26) 

and the initial condition is 
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+ ~ J dXa ax~ ~ W11(X3l; X~t') 
·Pu(X3 J X1 t)P1;(X~ J X~t'). (29) 

This is by now an obvious generalization of Eq. (14). 
Not all observables of interest are quite of the form 
of Eq. (19). For example, the electron density is 

N 

n .(xl) = L n.(x,. I x) , (30) 
f • l 

where n.(x ; I x) = o(x - x;) and the sum is only 
over electrons. The quantity (n.(xt)n.(x't')) is of 
interest in connection with the scattering of elec
tromagnetic waves.4 It can be conveniently ex
pressed in terms of electron densities for two kinds 
of quasiparticles, 

ii •• (X, I xt) = n.(x, I x) 

+ n J n.(x2 I x)P •• (X, [ X2t) dX2, (31) 

(32) 

11 •• (X, I xt) means the electron density due to an 
electron quasiparticle at X1; r1r.(X, I xt) is the 
electron density due to an ion quasiparticle at X, . 
The subscripts i, j rim over e, I to denote electrons 
and ions. The desired correlation function is 

• M. N. Rosenbluth and N. Rostoker, Phys. Fluids 5, 726 
(1962). 

(n.(xt)n.(x' l')) 

+ n 2 J clX, dX~n.(x, I x)n.M I x')W •• (X1t; XW). 

(33) 

After substituting from Eqs. (29), (31), and (32), 
this is easily brought to the form 

(n.(xt)n.(x' l')) = (n.(xt))(n.(x' t')) 

+ ~ .L f dX, dX: W;;(X1 t, x:t') 
r • e, 1 

·n,..(X, I xt)n;.(X: I x' t'), 

where 

This resuJt was previously obtained · from the ex
plicit solution for particular cases after a very con
siderable amount of algebra.• 
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