
UC Davis
IDAV Publications

Title
Electronic Proceedings of the Workshop on Hierarchical Approximation and Geometrical
Methods for Scientific Visualization

Permalink
https://escholarship.org/uc/item/5cv209nd

Publication Date
2000

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5cv209nd
https://escholarship.org
http://www.cdlib.org/

�������� ������	��

��
����
��� ����� ��������

��

������������ ������������� ��� �����������

 ������ !�� �������"� #��$���%�����

������&����� 	��!������ 	�����

����� 	��'(���!�����()*�*�*

+���&�� ,-.,/(0111

�������� 	�2	�����3

���� ��4��()��5�����6�� 7��������$����(������'

������
����(���%��� �����)��5�����'(�����()*�*�*

����� ������()��5�����' �! 	���!�����(��5��()*�*�*

���������	�
����

��� �������	
������ ��
������� ��
�� ��� ��� ���������� �� ������ ����� �
������� � �������
�������� ���������� �����������	 ���
�	������� �������� ��� �������� ��	� !���"�� #$%#& '(((
�� ���)���	�"����� *��������� *����� ��� "��
��� �������� 	������ �+����� ����	����� ����������
��	 ���� ��������������,�����+������� ������� ���� ���	�������� �� ������� ���� �+�	������� ���
���
�	�������� -����������	 ������� ����������� ����������	 ���������� ���� �� ������
	�� ���������
���� �	�������� ���
���� �������� ��� ��+������� �"������� ���� ��� ������������� ��	������ ����
������
����� ��� ��� �	�� �
"������ ������	 �������� �"������� ��� ����� �
"�������� ���� ������
��� �������������

��� �������� ������������ ���� ���������� ��������� ��� ���	��� �������������� ���	
����
� 	���� ���������� �� ������������	 ��		��� ��� .���� ��
����� ���������� �� ���
�� ���������� ���
�������������� ������� ��� ����������� �+�	������� �� ������� �������/� ���� ����� ��� ��������
��������� �
��������	 ��� ��
���	 0
������� ���� ����������� ��� ������ ������ 1
������� ���������
"� ��� �������� ���	
���2 3��� ��� ����������� ������� ��� ��� �Æ����� ������
����� �� �������
�����������	 ���� �������,��������������� ��� ���� 	���� ���� ����4 -�� ��� ���
��	��� ����� �������
��� ����������� ���� �+�	�������4 3��� ��� ��� ��0
�������� ��� ��	
���� ���������� ��� ��		�"�������
��� ������ ���
�	������� ������������4 -�� ��� �����������	 ������� ���"	� ���� �Æ����� ���
�5������ ���� �+�	������� �� ����
�	 ��� ��������� ������������4 -�� ��� ����������	 ����������
"�
��	���� ��� �+������ �� ��	� ��	�� ���� �� ��� �������� ���"	��� �� ������� ���� �����������
��� ����	�/������4

!�� �� ��� ���� ���	� �� ��� �������� ��� �� ����	�� �������	 ��
����� ��� ������������	
��		���� ��� �������� ��� �	�� � ����� �
����� �� ���� ������2 6"�
� ��	� �� ��� ��	�� ���� ���������
"� ��
����� ��� ���������� 3����
� ��� �
����� �� ��� �
� ��� ��� ���� �+������ �������� ��
	�
��� ���� "��� �����"	�� 3� ����� "��� ���������

)���	� �� ����� 6������
���� 7��������� ����� 7�
�6�
-��� -���� 7��������8�� 9������	�
����)������
:���� -����� 7��������� �� *�	������� ����� 7�
�6�

�

���� �� �����	�
���	�

���
��� ���������
���

� ������� ������������� ���� �����	
���
 �
������
��� ����� ���������

�
���� !" ������� ������� �����	
���� ���� ������ �������� ��

�#

�������� �� ��������
�� $
����
%��
�� �& ���'�#����� ()���
�
����#

��)�
��� ���
��������

� *������ �" !�)� �����	
��� �� ������	���� ����

 +�
�' ������&��� �������

&�� $
����
%
�' ���
�� (�,��� �) ����
���
��� �����
���

� -��'��) �" 	
������ �	����� ����� �����	
���
 ����
�������
�� ������

�)
����
�� �
��
�'

�����
����� ���.�

�
��
��
������ �	����� ����� �����	
���� ���� �	��� ��	�� ��� ��
��!��

"�����

����
�� ����
�
�
�� ������� &�� ��
��'���� ������

� ����
� /������� �����	
��#�� $��
�	
�����	�� �	!���� ��� %��	��&� %���	�

!�	� '��(�) %�*)� ���� +�	�� ,�!���� $������ �) -��� ���	��� $������ ���

,��
 ,����
 �����
� �����
�' +�
�' $�����
 �
������
��

� ����#�
�� /������ �����	
��� �� ,������	� �	!���� ��� �����	
��� �� ����

���	���� ����
� ���� .����	 $	����
� +�	�� ,�!���� ��� �	����/	�&� �����	

�
���
,���
�� �� ���'�0 ������ ��
��'������ ���&���� +�
�'
���
�

���������

� ���#��
 ����'� ����� �����	
��� �� '�� 0�	� �� ����� +	���� ���� �!���*�

1�	
���� ��� 2) -�3	�� �
 �
������
��� ���'�#����� ��� ���)'��#

����� ������
�' &�� ���'�#����� $
����
%��
���

� ����� �
'���
� �/���'"� ������ ���� %���� �� ���	����� ����� 4������� /�	�&�

������ ��� "�*�	�� �&������
 $����� $
����
%��
�� �& ���'� �������#

���� ������ �� �� #���� ����&����

� ���.
" (����
����� %��	��&� %���	!�	� '��(�) %�*)� ���� 4�	��� +�	�	�!�

$������ �) -��� ��� +�	�� ,�!���
 �����
�� $
� #��������� ���
�
%�#

�
�� �& /
��
��#��
��'�� ������&����

� /1���� ���.��� /��&���	�&� ��&)
 �������
�'#����� ����
�������
������#

��� &�� ��
���
,� $
����
%��
��

��

� ������� ��	�
�� ��� �����	�
���
������� ���	 ���� ����� ��� ������

������ ���
 ���� ��������� � ������� ���������� ���� ���
��

� ����� �� �������
�� ������	������ ��������� �� ���	������� ���	 ����� ��

������ ��� �!��� ���"��� ��������	���� ���� ��������� �� �����

���
�� !���� "����
�� "�����
���� ��� "�������

� ������ ������ #��$������ ��
��������� ���"���� ���	 �	�"�� ����� "���

#
�$������ �� ��������� %����
����
 ���
��

� &
���� ���'
��� #��$������ �� %���������� &�$��� ��� '������� (�������)��*��

'�!�� ���	 ����+'�� �� ��� (���� ��"���� (�����	���� ��������� ��

��	�����'����
 �
������� ���� �� ��
��#
�)���
� �� ����
�����

� ���� *�)����� #��$������ �� %���������� &�$��� ��� '������� '�$��"���)��*��

'�!�� �Æ����� ����� *�
��
����� ��� ��
������
����� �
��� ����
�

�+�����

� %���' ,�)����-�� '������� (�������)��*�� '�!�� ���	 (���� ,��
��������

��	� ��
	���� ����	�� -�!��� ��� (���� ��"���� � ��������- ��� ��

���
�+��� �������
���
 *��#��������

� ,���� ��'��� ��������..�
���� #��$������� ���	 ����� (���� (���� ��"����

������	 �� ���� ��� /��	�� �� 0����� ��	���� ��������� %��
��.��� ���

)��������
� /��������
 ���� "���

� �
���� (�������� '������� '�$��"���)��*�� '�!�� ��
�������
����� 0��

������ ��� &���������� ���#���� %�������
 �� ����
�� 1����

� (
�
�# ,� �
����� #��$������ ��)�� ��".�	���� ���	 � &����� (�������

��� ��� ��
.���� � ���� ����
 ��� ��
������
����� "������$� ����

������������

� ��	��� "�
������� ��1+2�����+��������� ��� %�".����
�������
���!�3������

���"���� ���	 '��� ��!!��� ��� ����+2����
������ 1�������� ������� ��

0�����
�� ���
�� !���� ���
 �������
���

� ����2�� "
��� 0	��
���� #��$������� ���	 #���.�� &���� (�������� �����

���
���
)0* ��� ����� ���
� ����
�+�����

� ����� �� "������ '�� /��"��)��*�� '�!�� ���	 (��4�"�� 5� ���������� ��	�

�� /"!�������� ������ ���	�"� ���� /� &��	������� (���� ��"���� ���

������	 �� ���� �##�����������������
 0��������� ������ �������
���

���� "��#
�$������

� 1������� "�'
������ /��
���
���� #��$������� ���	 ������ 5����� *����)���

���������� ���� 3� %������
���� ���
��

���

� ������ ������	�� ���������	
� �
������
������ ����
�	� ���� ����� ��������

�
��� �
�� �
����
�� �����
� ��
����
�����
 �	� ������
� ��
���

�������
����������� ������ ������

� ����� �� ������� �
��
�������� ���������
� ����
�
�	� ���� !���� �
�
���

������� �" #
	�
�� $
��� %" ����������
������������ �� �����	�����

���	�� ����
 � ��������� ���� ������

� !���	�� "�#��� ���������	
� �
������
������ ����
�	�
�� &
������ !�����

��	 %
�'�" &
("� ����)����� ���	�
�� ���	 #" &��
���� #
�� �" ��
��� �
��

�
����
�� !���� �
�
��� $���%����� ����������� ��� &�' (���

� (���� �� "����� ���������	
� �
���
���
� $
����
�� &
������ &�����
��

%
�'�" &
("� ���� �
���� !����
�� !��*
��� +" #
��
�
�� !���� �
�
���

)������	���� *��� +�����
����� &����,�������

��

� � � � � � �
 � � � � � � � � � � � � � � � ! � �

% ' (% ' + - / % 0 2 (' 5 6 6 % '
7 8 : < 5 + % ' > ? @ % 6 ? % D E 5 F % G 6 @ H % ' 2 @ + K

L 6 + O @ 2 + Q 0 F R % ? 8 6 2 @ / % ' + O % ? 8 : < 5 + Q + @ 8 6 Q 0 < ' 8 (0 % : 8 X % Y + ' Q ? + @ 6 \ Q 6 / % Y < ' % 2 2 @ 6 \
+ O % 2 + ' 5 ? + 5 ' % @ : < 8 2 % / 8 6 Q : Q 6 @ X 8 0 / (K Q e 8 ' 2 % X 5 6 ? + @ 8 6 / % f 6 % / 8 H % ' + O Q + : Q 6 @ X 8 0 / i

j Q F % X 8 ' % Y Q : < 0 % Q + % ' ' Q @ 6 2 < % ? @ f % / (K Q 2 : 8 8 + O O % @ \ O + X 5 6 ? + @ 8 6 m n o q r t 8 H % ' + O %
u w 2 < O % ' % x % i \ i + O % 2 5 ' X Q ? % 8 X + O % % Q ' + O { i j O % | } ~ � ~ | � � � � ~ � � � 8 X m Q ' % : @ 6 @ : Q D 2 Q / / 0 % 2 D

Q 6 / : Q Y @ : Q D Q 6 / + O % @ ' 2 + Q (0 % Q 6 / 5 6 2 + Q (0 % : Q 6 @ X 8 0 / 2 / % ? 8 : < 8 2 % o q @ 6 + 8 + O % ? % 0 0 2 8 X
R O Q + R % ? Q 0 0 + O % � � } � � | � � � � � � 8 X o q Q 6 / m i � < Q ' + X ' 8 : ? 8 6 2 + ' 5 ? + @ 6 \ + O Q + ? 8 : < 0 % Y D
R % Q ' % @ 6 + % ' % 2 + % / @ 6 / % f 6 @ 6 \ Q 6 / ? 8 6 2 + ' 5 ? + @ 6 \ Q O @ % ' Q ' ? O K D R O % ' % R % O Q H % Q e 8 ' 2 %
? 8 : < 0 % Y X 8 ' % Q ? O 2 ? Q 0 % 0 % H % 0 i � % H % 0 2 Q ' % / @ 2 + @ 6 \ 5 @ 2 O % / (K : % Q 2 5 ' @ 6 \ + O % < % ' 2 @ 2 + % 6 ? % 8 X
? ' @ + @ ? Q 0 < 8 @ 6 + 2 Q 6 / 2 5 < < ' % 2 2 @ 6 \ + O % 8 6 % 2 R @ + O < % ' 2 @ 2 + % 6 ? % 0 % 2 2 + O Q 6 + O % 0 % H % 0 + O ' % 2 O 8 0 / i

L 6 Q 6 5 + 2 O % 0 0 D + O % < % ' 2 @ 2 + % 6 ? % 8 X Q : Q Y @ : 5 : @ 2 @ + 2 O % @ \ O + Q / H Q 6 + Q \ % 8 H % ' + O % O @ \ O % 2 +
2 Q / / 0 % Q ' 8 5 6 / @ + D + O % < % ' 2 @ 2 + % 6 ? % 8 X Q : @ 6 @ : 5 : @ 2 @ + 2 / % < + O Q / H Q 6 + Q \ % 8 H % ' + O % 0 8 R % 2 +
2 Q / / 0 % Q ' 8 5 6 / @ + D Q 6 / + O % < % ' 2 @ 2 + % 6 ? % 8 X Q 2 Q / / 0 % @ 2 + O Q + 8 X @ + 2 Q 2 2 8 ? @ Q + % / : @ 6 @ : 5 : 8 '

: Q Y @ : 5 : i e Q + O % : Q + @ ? Q 0 0 K D R % ? Q 6 @ : Q \ @ 6 % ? 0 @ : (@ 6 \ 5 < @ 6 + O % O @ % ' Q ' ? O K (K Q 6 6 @ O @ 0 Q + w
@ 6 \ ? ' @ + @ ? Q 0 < 8 @ 6 + 2 @ 6 < Q @ ' 2 i 7 8 : < 5 + Q + @ 8 6 Q 0 0 K D R % : Q K / 8 % Y Q ? + 0 K + O Q + (K Q < < 0 K @ 6 \ Q
0 8 ? Q 0 2 : 8 8 + O @ 6 \ 8 < % ' Q + @ 8 6 D 8 ' R % : Q K ? O 8 8 2 % + 8 2 @ : < 0 @ X K (K Q < < 0 K @ 6 \ + O % ? 8 ' ' % 2 < 8 6 / @ 6 \
0 8 ? Q 0 + ' Q 6 2 X 8 ' : Q + @ 8 6 + 8 + O % e 8 ' 2 % ? 8 : < 0 % Y i

j O % < ' 8 � % ? + 8 5 + 0 @ 6 % / Q (8 H % ' % � 5 @ ' % 2 6 % R @ / % Q 2 8 6 Q 6 5 : (% ' 8 X < ' 8 (0 % : 2 D Q 6 / @ +
@ 2 < ' 8 (Q (0 K (% 2 + + 8 / % 2 ? ' @ (% + O % 2 % < ' 8 (0 % : 2 Q 6 / + O % @ ' 2 8 0 5 + @ 8 6 2 @ 6 @ 2 8 0 Q + @ 8 6 D Q 6 / + 8
? 8 : (@ 6 % + O % < @ % ? % 2 @ 6 + O % % 6 / i j O @ 2 + Q 0 F @ 2 Q (8 5 + R 8 ' F @ 6 < ' 8 \ ' % 2 2 i � 8 ' 2 8 : % 8 X + O %

< ' 8 (0 % : 2 R % O Q H % ? 8 : < 0 % + % 2 8 0 5 + @ 8 6 2 @ 6 ? 0 5 / @ 6 \ 2 8 X + R Q ' % D Q 6 / X 8 ' 8 + O % ' 2 R % / 8 6 8 + i j O %
< @ % ? % 2 R % 5 2 % + 8 X 8 ' : Q ? 8 : < 0 % + % 2 8 0 5 + @ 8 6 Q ' %

� ¡ % + + @ 6 5 : (% ' 2 X 8 ' f 0 + ' Q + @ 8 6 2 i

¡ £ % ' 2 @ 2 + % 6 + O 8 : 8 0 8 \ K \ ' 8 5 < 2 Q 6 / ¡ % + + @ 6 5 : (% ' 2 i

7 > @ : 5 0 Q + @ 8 6 8 X 2 : 8 8 + O 6 % 2 2 8 6 Q < @ % ? % R @ 2 % 0 @ 6 % Q ' : Q 6 @ X 8 0 / i

E 7 8 : (@ 6 Q + 8 ' @ Q 0 Q 6 / 6 5 : % ' @ ? Q 0 e 8 ' 2 % ? 8 : < 0 % Y % 2 i

¤ % + O @ 6 F R % 5 6 / % ' 2 + Q 6 / £ ' 8 (0 % : 2 � Q 6 / ¡ ? 8 : < 0 % + % 0 K D Q 0 2 8 X 8 ' f 0 + ' Q + @ 8 6 2 8 X + O ' % % w
/ @ : % 6 2 @ 8 6 Q 0 2 @ : < 0 @ ? @ Q 0 ? 8 : < 0 % Y % 2 @ 6 o § i j O % 2 % ' % 0 Q + % / + 8 e 8 ' 2 % X 5 6 ? + @ 8 6 2 ¨ n o § r t D
Q 2 < ' 8 / 5 ? % / (K e © L Q 6 / 8 + O % ' / % 6 2 @ + K : % Q 2 5 ' @ 6 \ / % H @ ? % 2 i j O % 6 5 : % ' @ ? Q 0 ? O Q 0 0 % 6 \ % 2
@ 6 £ ' 8 (0 % : 2 7 Q 6 / E 2 % % : 2 @ \ 6 @ f ? Q 6 + 0 K : 8 ' % / @ ª ? 5 0 + + O Q 6 X 8 ' O % @ \ O + X 5 6 ? + @ 8 6 2 8 H % '

u w : Q 6 @ X 8 0 / 2 D (5 + R % Q ' % 8 < + @ : @ 2 + @ ? + O Q + + O ' 8 5 \ O + @ \ O + ? 8 5 < 0 @ 6 \ 8 X ? 8 : (@ 6 Q + 8 ' @ Q 0 Q 6 /
6 5 : % ' @ ? Q 0 ? 8 : < 5 + Q + @ 8 6 2 R % ? Q 6 ? 8 6 2 + ' 5 ? + 2 + ' 5 ? + 5 ' % 2 + O Q + Q ' % Q + + O % 2 Q : % + @ : % + 8 < 8 w
0 8 \ @ ? Q 0 0 K ? 8 6 2 @ 2 + % 6 + Q 6 / 6 5 : % ' @ ? Q 0 0 K : 8 2 + < 0 Q 5 2 @ (0 % i

Approaches to Interactive Visualization
of

Large-scale Dynamic Astrophysical Environments

Andrew J. Hanson Philip Chi-Wing Fu

Indiana University, Bloomington, Indiana, USA
Email: fhanson, cwfug@cs.indiana.edu

Abstract

Dynamic astrophysical data require visualization meth-
ods that handle dozens of orders of magnitude in space
and time. Continuous navigation across large scale ranges
presents problems that challenge conventional methods of
direct model representation and graphics rendering. The
frequent need to accommodate multiple scales of time evo-
lution, both across multiple spatial scales and within single
spatial display scales, compounds the problem because di-
rect time evolution methods may also prove inadequate.

We discuss systematic approaches to building interac-
tive visualization systems that address these issues. The
concepts of homogeneous power coordinates, pixel-driven
environment-map-to-geometry transitions, and hierarchical
antialiased moving-object representations are suggested to
handle large scales in space and time. Families of tech-
niques such as these can then support the construction of
a virtual dynamic Universe that is scalable, navigable, dy-
namic, and extensible. Finally, we describe the design and
implementation of a working system based on these prin-
ciples, along with examples of how our methods support
the visualization of complex astrophysical effects such as
causality and the Hubble expansion.

Keywords: visualization, virtual reality, astrophysics,
cosmology

1 Introduction

Exploring large-scale data sets that have a time compo-
nent requires special attention to spatial and temporal scal-
ing as well as representation issues. We describe a mul-
tilevel approach to static data sets that are not necessar-
ily large in the quantity of data, but are large in the num-
ber of orders of magnitude of spatial scale required in the
representations, as well as addressing the additional chal-

lenges of animation and time evolution, visualizing dynam-
ics across many time scales, and integrating the resultant
displays with large spatial scale ranges.

1.1 Challenges of Large-scale Dynamic Astro-
physics Visualization

To navigate through large-scale dynamic astrophysical
data sets, we must overcome difficulties such as the follow-
ing:

� Spatial magnitude. Our data sets sweep through huge
orders of magnitude in space. For instance, the size of
the Earth is of order ��� meter while its orbit around
the Sun is of order ��

� meter. However, the bright
stars in the night sky, the stars in the galaxy near our
Solar System, go out to about ���� m, while the visible
Universe may stretch out to ��

�� m. Having a unified
system to navigate through all these data sets is diffi-
cult.

� Temporal magnitude. Besides huge orders of magni-
tude in space, we encounter huge orders of magnitude
in time. It takes one day for the Earth to rotate once
on its axis, while it takes one year to orbit around the
Sun, and Pluto takes almost ��� years. In contrast,
our galaxy takes ��� million years to complete one ro-
tation. Thus, handling motion and animation timing
properly in astronomical visualization requires special
attention.

� Reference Frames. There is no absolute reference
center for the Universe. We cannot have the same ref-
erence frame fixed to the Earth as it moves around the
Sun and to the Sun as it moves through the Milky Way.
In a dynamic astronomical environment, nothing is at
rest. Neither the Ptolemaic Model nor the Coperni-
can model is adequate to simulate the dynamic interac-
tion among data sets because we can place the observer
anywhere.

In the next three sections, we discuss techniques for deal-
ing with the above problems: large spatial scale, large time
scale, and consistent navigation in dynamic large-scale en-
vironments. Then, we present our system design and imple-
mentation that addresses these issues.

2 Large Spatial Scales

2.1 Homogeneous Power Coordinate in Space

To handle large spatial scales, we use the homoge-
neous power coordinates in . Points and vectors in three-
dimensional space, say P � �X�Y� Z�, are represented by
homogeneous power coordinates, p � �x� y� z� s�, such that

s � logk jjP jj

�x� y� z� � �X�ks� Y�ks� Z�ks�

where k is the base. In practice, k is normally ��.
In this way, we can separate the original physical repre-

sentation into its order of magnitude, the log scale (s), and
its unit-length position (or direction) (x� y� z) relative to the
original representation. This formulation helps us not only
to avoid hitting the machine precision limit during calcula-
tion, but also gives us a systematic way to model data sets
at different levels-of-detail (LOD) and position them in our
virtual environment relative to the current viewing scale.

2.2 Navigating Large-scale in Space

In our system, we define the navigation scale, snav, as
the order of magnitude at which we are navigating through
space; that is, one unit in the virtual environment is equiv-
alent to ��snav m in our real Universe. Consequently, trav-
eling through one unit in the virtual environment gives the
sensation of traveling through ��snav m in the physical Uni-
verse. We can thus adapt the step-size to an exploration of
the Earth, the Solar System or the whole galaxy. Note that
we typically ignore the distortion effects of special relativ-
ity, but not the causal effects, during such navigation; this
is consistent with rescaling the speed of light to the current
virtual scale.

2.3 Levels-of-detail in Space

Besides assisting navigation, we employ snav to select
different levels-of-detail (LOD) in space. The use of LODs
to select rendered graphics objects relative to a display pixel
has been explored by Hitchner, Astheimer, Maciel, and
Reddy. . , under certain conditions when the scale of a
data set is greater than snav, the data set can be represented
as an environment map with minimal perception error.

On the other hand, when the scale of a data set is small
compared to snav, we can pick up a smaller scale space-
LOD and use that to represent the data set. In addition,
when the object size is smaller than one pixel on the screen,
we can ignore its rendering unless it is for some reason
“flagged” as an important object that warrants an out-of-
proportion icon (this is a classic map-making strategy). De-
tails concerning space-LODs and their relation to snav are
given in the Rotating Scale algorithm of section 4.

3 Large Time Scales

3.1 Representing Large Scale Ranges and Steps
in Time

To handle large scales in time, we developed a log scale
technique based on the same general concepts as our spatial
scaling. In parallel to the spatial scale snav, we can define
an animation scale, tnav; quantitatively, this time variable
specifies the equivalence between one second of observer’s
screen time (the wall clock) and ��tnav seconds in the sim-
ulated Universe. That is, if tnav is ������, we could observe
the Earth in the virtual Universe going around the sun once
each second. Using this rule, we can determine the observ-
able period of motion, t� (in seconds), for a specified tnav
with the formulas:

t� � ��tmotion�tnav

Consequently, if we want to visualize the rotation of the
Earth on its axis, we can reduce tnav from ������ to ���	
�,
which corresponds to a time scale of one day.

3.2 Levels-of-Detail in Time

For a given value of tnav, the Earth will orbit too slowly
around the Sun in viewer time, while the moon will orbit too
fast. In the former case, we still want to visualize Earth’s
direction of motion even if there is no apparent movement;
in the latter case, we still want to see the subset of space (the
orbit) occupied by the moon over time, and we still want to
see the other planets move in screen time. To have a richer
visualization for these “too slow” and “too fast” situations,
we can once again make use of tmotion and tnav. To handle
“too fast” motions, we represent the path as a comet tail.
For “too slow” motions, we display a little arrow indicating
its direction of motion.

Motion Blur Model. Certain common astronomical mod-
els such as planets and moons not only move in their orbits,
but spin on their axes. When the object’s surface is rep-
resented by a complex texture, this rotation creates a tex-
ture representation problem exactly analogous to the too-
slow/too-fast orbit problem. Whenever the textured object

2

reaches a time scale where the texture is moving by a large
amount in a unit of screen time, the motion loses smooth-
ness and undesirable effects such as stroboscopic aliasing
become apparent. We handle this problem by adopting a
texture-based motion blur method (see Figure 3) that gives
the object a smoother appearance as it speeds up as well
as eliminating stroboscopic effects. For very fast rotation
speeds, the texture turns into blurred bands exactly analo-
gous to the satellite trails.

4 Modeling our Virtual Universe

Using our scalable representations for space and time
variables, we are able to model the full range of physical
scales in our virtual Universe. In this section, we first ex-
amine the concept of scalable data sets, and then show how
we connect scalable models together to form our principal
internal data structure, the Interaction Graph. This graph
enables us to represent a dynamic virtual Universe that is
scalable, navigable, and extensible.

Sun

Galaxy lock

lock

EarthMercury Venus

orbit

orbit orbit orbitorbit

lock

CMB

Local Galaxies

lock

Pluto

Far Galaxies

Nearby Stars

Moon Satellite

orbit orbitorbit

Shuttle

Figure 1. Interaction Graph for the Universe
data set collection.

In the interaction graph, each data set is a node and node-
node interactions are represented as edges. Figure 1 depicts
a typical interaction graph. Note that this interaction graph
differs from the scene graph structure (the tree structure tra-
versed in the rendering process). No particular data set is
singled out as the root node; the interaction graph serves
mainly to 1) organize the data sets by their interactions, 2)
facilitate scaling, and 3) allow cascaded animation update.

5 Results

Time-Adjusted Representations. Figure 2 in the color
plate section shows a series of Solar System models for dif-

ferent values of tnav. Going from Figure 2(a) to Figure 2(c),
we can see that the length of comet tails (Pluto, Neptune
and Uranus) shorten as tnav goes from ���� down to ���; fi-
nally, when tnav reaches ���, these planets move too slowly
to have apparent motions in user time, and the comet tails
are replaced by arrows representing long-term motion. Note
that all images were captured during real-time system oper-
ation.

Motion Blur Representations. In Figure 3 we show a
family of representations of a rotating textured object, in
this case the Earth. For rotation speeds that are commensu-
rate with screen time, the full detailed texture is appropri-
ate. However, when the animation speeds up, the detailed
texture would exhibit undesirable stroboscopic effects; pro-
gressively motion-blurring the texture creates an intuitively
appealing visualization of the animation.

The Lightcone Clock. Finally, we introduce the Light-
cone Clock, which symbolizes the visible volume of a sin-
gle view frustum of spacetime; since the velocity of light is
finite, each slice in distance is also a picture taken at one
particular instant of time. The correspondence between the
time when the currently-observed light was emitted from
each disk and the emitter’s distance from us in comoving
coordinates motivates our describing this visualization as a
clock.

In order to provide a more effective summary viewpoint
of the datasets in the Lightcone Clock, we have adopted
a logarithmic scale. The canonical viewing origin on the
Earth is at the bottom tip of the Lightcone, and the fi-
nal upper surface is the event horizon for the first visi-
ble radiation, the Cosmic Microwave Background. Fig-
ure 4(a) shows the shape of the Lightcone when we use
comoving coordinates. When we take the Hubble expan-
sion into account by incorporating the effective radius a�t�,
the Universe in physical coordinates shrinks with the size
of a�t�; at the upper (CMB) end of the Hubble-corrected
Lightcone Clock, the Universe was less than 1/1000 of its
present size. Figure 4(a-e) illustrates the morphing from
the comoving-coordinate Lightcone to the a�t�-rescaled
physical-coordinate Lightcone.

This research was supported by NASA grant number
NAG5-8163. We are grateful for the extensive help and
participation of Eric A. Wernert and the generosity of the
Indiana University Advanced Visualization Laboratory. We
thank P.C. Frisch, S. Carroll, D. York, D. Eisenstein, and E.
Kolb of the University of Chicago for their assistance with
astrophysics and cosmology issues.

3

(a) tnav � ���� (b) tnav � ��� (c) tnav � ���

Figure 2. “Too fast” representations at (a) roughly 300 years per screen second and (b) roughly 30
years per screen second. (c) The “too slow” representation for the motion of planets in our Solar
System at a scale of approximately 10 days per screen second.

(a) tnav � ��� (b) ��� � tnav � ��� (c) ��� � tnav

Figure 3. Motion Blur Representation : (a) Normal texture. (b) Texture blur for one rotation in two
screen seconds. (c) Texture blur for one rotation in less than one screen second.

(a) (b) (c) (d) (e)

Figure 4. Morphing the Lightcone from Comoving Coordinates to a�t�-rescaled Physical Coordinates.

4

Using Isosurface Methods for Visualizing
Solids defined by Multivariate Functions.

Kenneth I. Joy∗

Center for Image Processing and Integrated Computing
Department of Computer Science

University of California, Davis

Abstract

We present a method for calculating the envelope sur-
face of a parametric solid object swept along a path in
three-dimensional space. The boundary surface of the solid
is the combination of parametric surfaces and an implicit
surface where the Jacobian of the defining function has a
rank-deficiency condition. Using the rank deficiency con-
dition, we determine a set of square sub-Jacobian determi-
nants that must all vanish simultaneously on the implicit
surface. When the generator of the swept surface is a
trivariate tensor-product B-spline solid and the path is a
B-spline curve, we can give a robust algorithm to deter-
mine the implicit surface. This algorithm is based upon the
“marching tetrahedra” method, which is adapted to work
on 4-simplices. The envelope of the swept solid is given by
the union of the parametric and implicit surfaces.
Keywords: swept surface; envelopes; boundary surface de-
termination; trivariate B-Spline solids; Jacobian determi-
nant; marching tetrahedra.

1 Introduction

Geometric modeling systems for computer graphics and
visualization applications allow the construction of complex
models of objects based on simple geometric primitives. As
the needs of these systems become more involved, it is nec-
essary to expand the inventory of geometric primitives and
design operations and to adapt rendering methods to han-
dle these new primitives. The primary primitive for com-
plex surface definition is the bivariate patch. While complex
interfaces have been developed that allow manipulation of
these patches, they are not sufficient to describe many sur-
face types. There is a need to investigate alternative repre-
sentation schemes that use multivariate techniques to define
shape.

∗joy@cs.ucdavis.edu

In this paper, we examine solid types: the trivariate B-
spline solid, and the solid generated by sweeping an object
along a curve. We find that the boundary surfaces of these
solids, neccesssary to render the solids accurately, can be
generated similarly. In short, the boundaries are a combi-
nation of parametric surfaces (the images of the boundaries
of the domain space) and an implicit surface that is defined
where the Jacobian of the defining function has rank <=
two.

The parametric surfaces are trivial to render directly, as
they are just B-spline patches. It is the implicity surface that
is difficult to define, and this is the subject of this paper.

Our algorithms use interval methods to bound the de-
terminants of 3 × 3 Jacobians. These interval methods are
discussed in Section 2. Methods for the trivariate solids are
given in Section 3. Extending these methods to swept solids
is then straightforward, and are given in Section 4. In each
case, the implicity surface is defined as an “isosurface prob-
lem”.

2 Cone Approximations to Jacobian Deter-
minants

Given a trivariate B-spline function p(u, v, w), the Jaco-
bian of p is defined to be

J (p(u, v, w)) =

∣∣∣∣∣∣
Dup(u, v, w)
Dvp(u, v, w)
Dwp(u, v, w)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∂x
∂u (u, v, w) ∂y

∂u (u, v, w) ∂z
∂u (u, v, w)

∂x
∂v (u, v, w) ∂y

∂v (u, v, w) ∂z
∂v (u, v, w)

∂x
∂w (u, v, w) ∂y

∂w (u, v, w) ∂z
∂w (u, v, w)

∣∣∣∣∣∣
= Dup(u, v, w) · (Dvp(u, v, w) ×Dwp(u, v, w))

We will be interested in the values of u, v, and w where
J (p(u, v, w)) = 0. It is straightforward to show that this
happens if and only if the triple scalar product

Dup(u, v, w) · (Dvp(u, v, w) ×Dwp(u, v, w)) = 0

1

Figure 1. A cone approximation to a set of unit
vectors.

or, equivalently, when the three vectors Dup(u, v, w),
Dvp(u, v, w), and Dwp(u, v, w) are co-planar (i.e., linearly
dependent).

Given a set of unit vectors �v1, �v2, ..., �vn, we can bound
these vectors by a cone C, defined by an axis a and a
“spread” angle α, such that the angle between each vector
�vi and the axis a is less than α . A cone gives an “interval”
approximation to a set of unit vectors. Each cone can be
associated with a region on the unit sphere – the intersec-
tion between the cone, with its apex at the origin, and the
unit sphere. The construction of a cone that satisfies these
properties was described by Sederberg and Meyers [7], and
an example is shown in Figure 1. For a general set of vec-
tors, with varying lengths, we determine a cone bounding
the unit vectors, which are determined by dividing each of
the vectors by its length.

Given two cones C1 and C2, we define the scalar product
C1 ·C2 to be the interval defining the range of scalar products
for pairs of vectors taken from C1 and C2, respectively. We
can also define the cross product of two cones to be the
smallest cone surrounding all cross products of vectors from
C1 and C2, respectively (see [7], and Figure 2).

The convex hull property holds for trivariate B-spline
solids, i.e., the solid is contained in the convex hull of its
control points. This implies that for a given cell B in the
domain, the cones Cu, Cv , and Cw, constructed from the con-
trol points of Dup, Dvp, and Dwp, respectively, bound the
range of directions of the respective partials. This implies
that a bound on the Jacobian determinant over B is given by

J (p) = Dup · (Dvp ×Dwp) ⊆ L (Cu · (Cv × Cw)) (1)

Figure 2. The cross-product cone. The blue
cone is the smallest cone that surrounds the
cross products of vectors in the two green
cones. This cone can be directly calculated
by bounding the four vectors that form the
normals to the four great circles of the unit
sphere tangent to the green cones. The yel-
low region is the actual region spanned by
the cross products calculated from vectors in
the two cones.

where L is an interval with positive entries1, defined to be

L = [Lmin, Lmax]

where

Lmax = max {|�vu||�vv||�vw| : �vu ∈ Cu, �vv ∈ Cv, and �vw ∈ Cw, } , and

Lmin = min {|�vu||�vv||�vw| : �vu ∈ Cu, �vv ∈ Cv, and �vw ∈ Cw, } .

The quantity L (Cu · (Cv × Cw)) is an interval product, and
produces an interval bounding the range of values of J (p)
over B. If L is interval with positive components, it is clear
that if 0 �∈ Cu · (Cv × Cw) then J (p) �= 0 in B. Therefore,
given a cell B, and a trivariate B-spline solid p defined over
B, we can state that the implicit boundary surface is not
contained in B if

0 �∈ Cu · (Cv × Cw)

where Cu, Cv , and Cw are the bounding cones for Dup,
Dvp, and Dwp, respectively.

3 The Boundary Surfaces of Trivariate Solids

Let p(u, v, w) be a trivariate solid, where 0 ≤ u, v, w ≤
1. To generate the implicit boundary surface, we adaptively

1We assume none of our vectors have zero length.

2

subdivide the domain space, isolating rectilinear cells in the
domain where the isosurface J (p) = 0 lies. We then use
an adaptation of an isosurface algorithm We use a priority
queue of domain cells, ordered by decreasing values of the
widths of the intervals Cu·(Cv × Cw). The full domain space
is initially placed on the queue.

When a cell B is removed from the queue, it is subdi-
vided into eight cells B1, ..., B8 via planes through the cen-
ter of the cell and parallel to the uv, uw, and vw plane. For
each Bi, the cone approximation Cu · (Cv × Cw) is calcu-
lated, yielding an interval. If zero is contained in this inter-
val, the cell is inserted into the queue. If zero is not con-
tained in the interval, the cell is discarded. By this process,
we construct a set of cells, keeping the relevant cells in a pri-
ority queue. This process is continued until the widths of the
intervals of all cells in the queue are less than a prescribed
minimum, or the number of cells in the queue reaches a pre-
determined number.

If the queue becomes empty, then the implicit boundary
surface does not exist over the domain space, and the para-
metric boundary faces represent the boundary surface of the
solid.

4 Swept Objects

The definition of a swept object depends on three factors:
the specification of the generator – the object to be swept
; the specification of the trajectory – the sweeping path ;
and the specification of the orientation of the generator as it
progresses along the trajectory. Thus, given a trivariate B-
spline generator g(u, v, w), a B-spline trajectory curve c(t),
and a 3 × 3 coordinate frame transformation R(t), defined
over the same domain as c, the swept object s is defined to
be the set of points where

s(u, v, w, t) = c(t) + R(t)g(u, v, w) (2)

for some t in the domain of the curve c and some (u, v, w)
in the domain of g. The swept objects defined by this def-
inition are actually quite general. They allow an arbitrary
trivariate solid to be swept along a univariate curve, utiliz-
ing an arbitrary coordinate frame transformation to define
the orientation/distortion of the solid at a point of the curve.
If the coordinate frame transformation is expressible in B-
spline form, we can utilize both B-spline subdivision and
the convex hull property of splines.

If we assume that the domain space for our solids is a
4-dimensional rectangle defined by 0 ≤ u, v, w, t ≤ 1, then
a superset of the surfaces that make up the boundary of s
includes the following:

• The boundary surfaces of the solid s(u, v, w, t), which
are the images of the boundaries of the domain space
0 ≤ u, v, w, t ≤ 1.

• The surface defined where the rank of the “Jacobian”
of s is less than or equal to two.

In our case, the Jacobian is a 4 × 3 matrix defined by


∂x
∂u

∂y
∂u

∂z
∂u

∂x
∂v

∂y
∂v

∂z
∂v

∂x
∂w

∂y
∂w

∂z
∂w

∂x
∂t

∂y
∂t

∂z
∂t




Abdel-Malek and Yeh [1] have shown that the rank-
Jacobian condition is equivalent to the vanishing of the de-
terminants of the four possible 3 × 3 sub-Jacobians of J .
These sub-Jacobians, J123, J124, J134, and J234 are defined
as follows:

J123 =

∣∣∣∣∣∣
∂x
∂u

∂y
∂u

∂z
∂u

∂x
∂v

∂y
∂v

∂z
∂v

∂x
∂w

∂y
∂w

∂z
∂w

∣∣∣∣∣∣

J124 =

∣∣∣∣∣∣
∂x
∂u

∂y
∂u

∂z
∂u

∂x
∂v

∂y
∂v

∂z
∂v

∂x
∂t

∂y
∂t

∂z
∂t

∣∣∣∣∣∣

J134 =

∣∣∣∣∣∣
∂x
∂u

∂y
∂u

∂z
∂u

∂x
∂w

∂y
∂w

∂z
∂w

∂x
∂t

∂y
∂t

∂z
∂t

∣∣∣∣∣∣

J234 =

∣∣∣∣∣∣
∂x
∂v

∂y
∂v

∂z
∂v

∂x
∂w

∂y
∂w

∂z
∂w

∂x
∂t

∂y
∂t

∂z
∂t

∣∣∣∣∣∣
A point s(u, v, w, t) is on the surface of the envelope, if

J123 = J124 = J134 = J234 = 0

at (u, v, w, t).

5 The Algorithm

Assuming the s(u, v, w, t) is given in a B-spline form,
we can use a subdivision algorithm to generate the implicit
boundary surface of s where

J123 = J124 = J134 = J234 = 0.

Assuming that the domain space is defined by a four-
dimensional rectangle where 0 ≤ u, v, w, t ≤ 1, the al-
gorithm proceeds as follows:

• Using subdivision on u, v and w, find a set of cells
where J123 = 0. This can be done by analyzing the
trivariate generator g, using the algorithm of Section 3.

3

(a) (b) (c)

Figure 3. A swept object

• Using subdivision on t, refine the remaining cells, re-
moving those cells where the sub-Jacobians cannot be
simultaneously zero.

• Split each four-dimensional cell into 24 4-simplices
using CMK-splits, see [5, 6].

• For each 4-simplex, determine a set of tetrahedra that
approximates the points where J123 = 0, see

• For each tetrahedron, determine the isosurface corre-
sponding to J124 = J134 = J234 = 0.

The triangles generated through this process define the im-
plicit surface bounding the swept solid s.

We use cone approximations to the partial derivative vec-
tors to get bounds on the individual Jacobian determinants.
The strategy is to use subdivision and continually refine the
approximations, throwing out those cells where the Jaco-
bian determinants cannot be simultaneously zero. In this
way, we obtain a set of small cells in which the envelope
surface lies and can use the isosurface methods of the fol-
lowing section to determine the surface.

6 Results

Figure 3 illustrates a cylinder that has been tumbled 180◦

as it is swept along a linear path. The cylinder has been
approximated by a trivariate B-spline, and the coordinate
frame vectors have been approximated by B-spline curves.

7 Conclusions

We present an algorithm that generates the boundary sur-
faces of both trivariate solids and a swept trivariate solids.
This algorithm generates the boundary through a combina-
tion of parametric and implicit surfaces. Generation of the

implicit surface is accomplished through an isosurface rou-
tine. We have found that this algorithm can be used to gen-
erate a variety of solids. The algorithm depends on the B-
spline representation only to calculate Jacobian bounds on
each cell and to use subdivision to isolate the cells.

This method generates a superset of the actual boundary
of the swept solid, generating some surfaces on the interior
of the solid. In future work, we will identify these inte-
rior points and eliminate them from the description of the
boundary.

References

[1] K. Abdel-Malek and H. Yeh. Geometric representation of
the swept volume using jacobian rank-deficiency conditions.
Computer-aided Design, 29(6):457–468, 1997.

[2] J. Conkey and K. I. Joy. Using isosurface methods for visual-
izing the envelope of a swept trivariate solid. In Proceedings
of Pacific Graphics 2000, pages 272–279, Oct. 2000.

[3] K. I. Joy and M. A. Duchaineau. Boundary determination
for trivariate solids. In Proceedings of Pacific Graphics ’99,
pages 82–91, Oct. 1999.

[4] C. Madrigal and K. I. Joy. Generating the envelope of a swept
trivariate solid. In Proceedings of the IASTED International
Conference on Computer Graphics and Imaging, pages 5–9,
Oct. 1999.

[5] D. Moore. Subdividing simplices. In D. Kirk, editor, Graph-
ics Gems III, pages 244–249. Academic Press, 1987.

[6] G. M. Nielson. Tools for triangulations and tetrahedrizations
and constructing functions defined over them. In G. M. Niel-
son, H. Hagen, and H. Müller, editors, Scientific Visualiza-
tion: Overviews, Methodologies, and Techniques, pages 429–
525. IEEE Computer Society Press, 1997.

[7] T. Sederberg and R. Meyers. Loop detection in surface patch
intersections. Computer Aided Geometric Design, 5(2):161–
171, 1988.

4

Multiresolution Models
by

Adaptive Fitting

Gregory M. Nielson

Abstract

The value of multiresolution models in Scientific Visualization and CAGD is
well established. This talk will survey the use of adaptive fitting techniques
for computing these types of models. The scope of the talk will include the
three application areas of height field modeling, volume modeling and
surface modeling. We will discuss techniques and show examples of top-
down and bottom-up approaches to all three application areas.

�������� �	
�������
 ������� ��� ����
�	��� ������

������ ������ ����	
 �����
����
��� ���
��

������� ����� ����������� ����� �� �������� !
"���	# ������$��
%�

 &����# '(�) *!� ��+ ��,# '(�) *!� ����%

-.��/�� �� �

��������

�� ���� �� ���� 	��
 �
 �
�
��	� �
 ��� �	� �� 	������	��
 ����
����	 ��

���� ������
� �
� �
������
� ���� ���� ����

�	� �� � ���		 �� 	�
����	 ������
	������	��
 	�
����	� ���	� ���� ��
� ����
����	 ���
 �
������
�� ��
 �
��
��
� �����
�� ��	���
� ������ 	�
����	� ������	��
 	�
����	 ��	��� ���
�		
��� �		��	
������ �� �����
�	������
!
�"
���
�! 	���������� �
�
��
�	�
�����

�� ��	��	� #�
� 	�����	 ���� ���
 �
�
������ ���� ��$� � ���
	� ��	� �
�

�"
� �� �	�
� 	������	��
� ���� ��
 �� ���
�� ���		�"�� �	 %��
�&�����
� �
�
 ����� ��� �
���
�� ���
	� ��	� �	
�� �
�	�
���! �
 '
��
������
� � ���
��

��� 	������	��
 ��
��	 ���
�"
�� ��	� �� ��		 ��
���� ��� �
���
�� ���
�	 ��
��� ���
	� ��	�� ��� 	�����	 �	�� ��
 �
��
����
 ��	��	 �
� ���
�� ��� (���
	�����! ����� �	 ���
�&�����
� �

���
� �
� ��� #���"�� �����
)� 	�����
����� �	 �
��
������
�� ������	��
 	�����	 �
� ��	� �
��
	��� �� �����
 �����	 ��
	������	��
� '
 ���	 ����
 �� �
�
����� ��� ������	 �� �������� 	������	��
 ��

�
��
����
 ��	��	 ���� ��$� �	� �� ��� (��� 	����� �
 ��� #���"�� �����
)�
	����� �� ��� ���
�&�����
� �
 �
��
������
�
�	���	
�	���������� ���
�	���	
�
� �����
�� �� � ����
 ��	� ���
 �����
�� ���� ���	� �����
�� ��
�����

	������	��
 	�����	� ��� "
	� ������ �	�	 ��� �����
�� �
��� �� ������� �

�������� ������ �� 	������	��
� ��� ����
 ������
����	 �
 �	�
 �
���! ����!
��� �	�
 	����"�	 ����� ��
�	 �� ��� ��	� 	����� �� 	���������� ���	 �
���		
��
 �� ��������� �� 	����
�����
 ����
����	! ��
 �&����� ����
	��� 	����
�
�����
! �� ��� ��� �
��	 �
 ��� ��	� ����
��� �� �� 	���������� *� �����
�
��
 ������	 ��
 ��
���	 �
��
����
 ��	��	 �
� �
�	�
� ��

�	���	�

� ���������	��

���� �����		 ��
 �	���
�� ��
 ��� ��
 �����
�� ���	����
 ����� ������ 	���	�
�

���� ������ ���� ���
������� ���	
 �� ���
 �� ���������	� �� �� �� ����� ���
 ��
��
��� ��� �������� �� ��
�	��� ��
 ���������� � ��� ���� ���
 �� � 	���� ������ ��
����� ���
������! ���������	 ��
�	��� ���� �� "#$# %�&! ' ()*�#+, -�& ��

����
���	������ ��������
*�� ����� �
�� �����
 ���
������� ��� �� �����
 �� ��� ���� �� �� ��� 	��� .&�
��
 ���	� /&� ���� (�
� 0��� ���
 ������ ������� ��
������� ������ �������
 � ������ ����� ��� ���	������� �� ���
������� �������� ��� ����� �� ��� 1�	
 ��

�

�������� ��	�
��� 	
� �������� 	���� ��������� �����
������ �	�
�� ���	��� ��
�	���� 	�������� �
� ������ �	���� �� ��������������
 ���

����� �� 	������ �
� �
	��
��
��� �	���� ��� ������
� ������� ��������� �
� ����������
 ��
���� �
��������
�� �	����� 	
� ��	�� !" 	
� ��� 	
� #	��
 $" ��� �
� ��
� ��� ��
�� ��
���� ��
�����% 	
� ��
���� ���� &��� '"()�����*� +" 	
� ,���-��)�����*� !."(/������
 ."
	�� ������ �����	�� �
��� ��
���� 	�� �
��*� ��	���-�� 	� ���
�� 	�������	��
�
�(%
��� �
� �����
	� �������� 	��
�� ���	�
�� 	�
�%�� ������ �� ����������
(��
�
������	��
�(%
��� ����������
 �	��� ���� �
	� �
� �����
	� �������� 	�� �	�����
���� �� �
�
��� ����� �� ����������
� �
� ����#	��
(�	���������	�� 	
� &���
��
���� 	�� 	�������	��
� 	
�)�����*�(,���-��)�����*� 	
� /������ ��
����
	�� �
������	��
��
0� �� ���
 �
	� 	�� �
� ��
���� ������� 	 ������� �� ����	� ��-
���
� 	� ����� �����
�� ����������
� �
�� �	
 ��	� �� 	
�	�� ������	���
	� ��	� 	�
��
�� ������ ��
����������
� 1�� ��	����(�� �� �������� �
	� �
 �
� &��� ��
��� ����� ����� ��
����������
 �
���	��� �
� ���	
���	� ���
� �� ����� 0� �� 	��� �������� �
	� ���
���� ����	��� �
��� 	�� �����
� �
	� ������ ��	��
	��� �����
 	���� ��% ������ ��
����������
 	
� �
�� ����	�
 	��	� �� �
� ����	�� %
��� �
��� �� 	
��
 ����	����
�
	
��
���
��
 ����������
 ������ �� �	�� �� �����
� 0� �
������� ��
�� ���	� ��

	�� 	 ����	� ����������
 ��
��� ���
� 	������ 	� ����� ������ ��	����� #���������

	��� 	� �������
� 	 ���	� ����������
 ���� �
	� �����
� %�	�
�� ��
�� 	 ����
 �	��
�
 	 ���

���� �� �� ���������� 	� �
�
��� ����� �� ����������
�

� �������� �	�
���

,������ 2" �������� 	
 	�	����� ������� ��� �	��������	�� 	
� ����#	��
 ��������
���
 ��
����� 0

�� ���
�� �
� 	�	����� ��-
���
� �� ��
������� �� �
� �������� 	�
����� ����� �� ����������
� �
� 	�������	���
 �� �	����� �� 	
 ����� �	����	��� 	�
����� ������ �� �
� �����
	� ���
 ������ �� �� ����������� �
�� ����� �� �
� ����	
��
���%��
 �
� �������� �� �
� �����
	� ���
 	
� �
��� ����� ���
�� ��� �
� ��������
�
	� ��� �
 �
� ����� �	
�� 	�� �	����� ��3���
��� 	
� �����	� ����� 	�� 	������ ���
���������
� 	 ������
 %
�
 �� ��
�	�
� �
� �� ���� �� �
��� �	����� ���������
4� 	
� /�
�� !$" ������� 	
 	�	����� ����������
 ��
��� �	��� �
 �
� ����#	��

��
���� 0
 �
��� ���
�� �
� 	�	����� ��-
���
� �� ��
������� �� �
� �	��� �� �
�
�����
	� ���
� 1	��� 	�� �	����� 	� ����� �� ���� �� �
��
	�� �� �� ���������� ��

��� �
� �	����
� �� �	��� �
 �
� ��
���	� 	
��� ���� �
� 	
��� ���%��
 �
�
���	�
������� �� 	�5	��
� �	��� 	
� 	 �����	
�� ����� ��� �
�� 	
��� �� ���� 0� 	 �	�� �	���-��
�
� ��� �����	
�� �
�
 �� �� �	����� 	� ��	� 	
� ����
�� ��-
���
�� 	�� ������� ���
�
	� �	���
/������
	� ��������� 	�	����� ��-
���
� ��� ���

�� /������ ��
��� 	
�
�%��
�
��������

�
+ ����������
 6"� 7�� ��-
���
� ���	���� �	 	��� ��
����� 	���
� �
�

�	���� 0
 ���

�� ��
���� 	�	����� ��-
���
� �����
�� 	 �	�� ��	���
� �������(
��������� �	��� �
 �
� �	���(�
	�
� ������ �� ���
� 	 �����
	���
 �� ���
 �	�	
��
�
	
� �
� 8����

���� ���
�� /������ ��
��� 	
� ���
��

�
+ ����������

� ���� 	

�����
	���
 �� ��	��� ��-
���
�(���
 �	�	
��
� 	
� �	� -��
� �� ������	��
���	
��� �	
�� �
�� ������� �� %��� �
�%
 �
 �
� -
��� �����
� �����
��� �
��� �
�

$

���� ��������� ��	���
���	��
����
���	� ��� ��� ���� ��������� �����	�� ��������� �������	�� 	�
���� ����� ���� ����
���	�	���� �������	��� ���� ���
	�� � �����	� �
���� �� ����	��� 	� ��� ��	���������
�� ����� ����	��� ����
����� �� �����	�� �
��	�	�	�� �� �� �������� ���	� �������
���� ���� 	���������� �� ��� ��� �������
!� ������� ���� ��� �����	�� �������	�� ��� �� ��������� 	� ��� ����� ���� ��
�����	��	�� ��	�� ����	��� ���� �� �� �
��	�	��� "�����# ��	�� ������	�� �� ��� ��#�
�����$� �� ���� �� 	����	��	�� ����� ����� ���� ���
�� �� �
��	�	��� "���� ���	� �� ���
��#� �����$�

� ��� ���� ����	�

��� ��� ������ 	� � �	���� �����#	���	�� ��������	� ������ ��� ��	���
��� ������
�������� �� %������ ���
&����� ������ 	� ����� �� ��� ��	���
��� ���	���
�'��
��	�� ����
��� %� � ����	�
�
� �
������ ���� ���
��� ������� (���
��� ���� 	� �
���� ��	�� ��� �� ������������	 ����	���� (�����# 	� ��� �#������	���� 	� � ��	���
�
��� ���� 	� 	� ��� �	# ��)����� ����	���� 	� ���� ����� ���� ��� �����# ��� � �������
�� �	#� ��� ��� ������ ����
��� �
������ ���� ��� %� � ����	�
�
� ����������
�#���� �� �#������	���� ����	���� �� �#���	��� ����	�� ����� ��� ��� ����	��� ���� ��
��� ���� � ������� �� �	#� ����� ���� ��� %� � ����	�
�
�� (��
����� �����# 	�
���
��� �� ���� 	� 	� ��� � ������� �� ����� ��� 	� �#������	���� ��� ��� ����� ��������
��� ���*� ��� ��� ��� ������ ��� ����� 	� +	�
�� �� +�� ��
����	�� ����	�� �
���
���
���� ����� �
��� ����
�� � �
�	� ���	�� �
��� ����� ��� ��
������ ��� �
���
���� ������� �� ������� ��	��� �� ��� ��
������ ��� ������ ���*� �� �������

� ��� ����� ��	�	��� �����# � ��� �����#"��� �����#$ 	� ����
����� �� ����
���	��
� ���� ��
��	�� "�$� ����� � 	� ��� �
���� �� ��)����� ����	��� ��� ��� �����#�
��� ���	�� ��� �
	����� ���Æ�	���� ��� ��� ��)����� ������� ��	��� �� �����
	� +	�
�� ,�

� ��� ����� ���� 	� ��� ��	�	��� ���� � ��� �����#"���� �����#$ 	� ����
����� ��

�	�� ��� ���* ����� 	� +	�
�� ��

� ����� ��	����� 	� ��� ��	�	��� ���� �	��� �	�� �� �	# ��� ����	���� ����� ����
��	�	��� ����	��� ��� ����� ���� ��	�	��� ������ ����� �	# ����	��� ���)�	��� ��
�	�� ��
� ��� ��	�������

-� +	�
�� �� � 	� ��� �� �� ��)����� ����	��� ��� � �	��� �����# ��� � ��� �� ������
��

� . ���
�
��/� "0�/ 1 ��,���2���$�

�
"�$

��� ���
� ��� �
&� ��� �� ��
�� ���� ��� ���
��	�� �
����� 	� %� � ����	�
�
� �� ���
�#������	���� ��	���� +�� ���
��� ����	��� ��� ���Æ�	���� ��� ����
���	�� ��� ���
����	��� ��� ����	��� �� �
���	�
�	�� � �� �	# 	� ��� ���* ��� ���� ����	��� ����� 	�
+	�
�� ��

0

3
8

3
8

1
8

1
8

1-k
Interior

Boundary

a. Masks for odd vertices b. Masks for even vertices

1
2

1
2

1
8

3
4

1
8

������ �� �	
�
 �
� �

�
�����

� ��� �����	

�� ��
��

 ��� ����
�
 �� �	�� �����
��� �
� ��� ����

�

� 	�	�������
��������

��� ��
��
 �����	��� �� ��� �

�
������ ��� ��
� ����
� �
 �	
��
� �����������

����� �	��
 	�� ��� 	�� ��
�

���
���	��� ��
� ���������
 �	
��
� ��� ��
����

���

� ���
� ��
 ������
���� �	��
� ��
��
�� ����
� �
 �	
��
� �
�� �����	���
�!

����� ��� �
�� �	�
����� 	��	

� ��� ��
� ����� ���������
 	�� �	��	�����

��� ������	
 	��
�
�����

��� ��
� ����
� �
 �	���� ��� ������	� 	���� ����
� ���	�
� �� �
�
 ��� 	����

������� �
��	�

� 	 �	�� ���� 	�"
����� �	�� �
��	�
 �
 ��������� �� ��� �	�� ����

�
 ��
���������
� �
�� #� ��� 	����
 	�� ������

�� �
������� ����� ���� ��

��	

��� ��� �	�� 	
 $	�� %�	����� ��
��

 ����
����
 ��	����� ������� �	��
 	��

���	���� �	�
 	�� ����
����� �

��� ���
 ��
����� �� �	�� �	��
� ��� ��	�����

��
���� ��
��
����� �� 	 ��
��

� ��������� ��	� �	��
 ���
 	��
��� ��� �	����

� ��� 	�"	���� �	��
 ���
�� ������� 	 ����� �	��� �� ��
��

 �

�
�� �� ������ &�

�� ����
���� 	� 	�	����� ������ � ��	� �
���
�
 ��� �
������� ����� �
� ��� 	����

������� ��� �
��	�
� �� �	����
��
����� �
��
 �
 ����� 	
 �
��
�
�

� '
��	� �
� �	�� �	�� �
 �	����	���

� �
� ����� �	�� ��� 	���� ������� ��
 �
��	� 	�� �
��	�

� 	�"
����� �	��
 	��

�	����	���

� #� 	�� 	����
 ��� ���
� 	 ����	�� ����
�
�� ���� ��� �	�� �

�� �
 �� $	�

(

� ��� ����� ���� � 	�
��� �� ���
���� ����� �� ���
����� �� �	���
�

 ����� ����
��� ���� �� ���� ��� ������� ����� ��� ���� 	�
��� ��
 �� ����� �
	 ��
����

���� �� ����� ����	 �
 ��� 	�
��� �� ���
���� ���
���
� �� 	�
� �� ����
 �

��
��� ��

Flat

Flat Flat

Flat

Flat Flat

n=1

n=2

n=3

Degree of flatness Refinement

��
��� �� ��� ���
���
� ����	 �
 ��� 	�
��� �� ���
���

��� ������	�
� �
�����

!� �� ���
 ���� ��
� ������ �� �	�"���� ���
���
� "��	��� 	�
�
����� ����

���#

���
 �
	 ���������� �� ��

��� ���� ����� � ����� �� �	�"���� ���	������
 � ��������

�����

��
� �� ����

��� �����	 �� 	�
�� $����

��
� �
���	���� ���� ���� ���#

"������
 �
	 �� �"��	 �� ��"����
� �
��	 ������
� ����	 �� �� �����
��� ������

�	�"���� �
	
����� ���	������
 �����	�� %�
�� ��&� � �� � ��� �
	 ���"��� ���

�	�"���� ������ ���� ���
����� �""��������

 ������ �� ��� ������ �� ���	���#
���
� ��
��� ' ����� ��� ���"�����
 �� ���
����� (��" ������ �� ��� ������)����*

�
	 ���

 ��� �	�"���� ������ �
	 ���
 �""���

 ��� (��" ������ �� ��� ������ ��

���	������
)��
��*�

��� ���
���
� �
��
����	
� �
��
�

��� ���
 	������& ���� 	���	��� �

�� �����	 �� ���� �� ���� �
 ��� ����� ����
�
	
��� �����
� � ��� �� ���"������
 �� �	�
���� ��� ����

�� ��"�� �
	 �
	 �����

	�
��� �� ���
���� !� ����� ����	 �� � ��� ���� ��� ���� �	�
����� ��� ��
��
� �
 �

���� ����
��	� �� �� ���	���	�	 ���
 ����� ���"������
� ��
 �� ����	�	� ����

�����	 ���������
���� ��
���� �� ��� ���� �
	 �� ���� ���"�� �

������ !� ��&� ���

+

������ �� �	�
� ������
�

���
�
����� ���� 	������	��
 ������ �

 �
� �
�

���� ��
�� �
 ��� ���� �	
���
� 	������	��

� ��� �
� �
 ��� ����� �	 	���������

�
�������

�	�� �� ���
�
��
	 �
 ��� ��	� ��
�
��� ���� ���
���
�

� ��� ���� 	����� �	

������ �� ���
�

�
����� ��	�
� ���
��� ������ ��� �	�� �����
�	� ��
��� ��
��� ������ �� �����
� ���	�
��
	 ���� ��
� ��

����
��� �����		� ����
�
���

�� ��	��	 ��
�	 ���� 	����
��
� ��	��	 �
	�� �
 ����� ��������

� �� �
� ��
�
�
���	��� 	����
�
���
 !"# �� ��

 �$������ ����
�%�� �� ������ ������
�
�����
	������	��
� & ����� ����

���
 �� ��� �
���	��� 	����
�
���

�������� �	
	
������	�

� '	���
��
 ������ ��
����

� �
�� ������ �� ��� ��	�� ��� ������ ��
����

�	�� �	 ��� ����
���� �
����
���
� ��� �������

� (
	�� �
 ��� ������ ��
����
� ��� �������	 ���	� ����
���� �	 ��		 ��

 ���
����
����	 �� ��	
�������	 �	 �
�����
	
 ��
��
�

� ���� ����� ������ ��
� �	
��
 ��
��
�
 ����
 �	 	�
� �
 ��� ��������
 �� ��	

������� ���� ����	� ����
����� ��� ����
 	���	 ���
 �� ���	
 ��
��
� ���
��
��
 �	 ������ �
�� ����� ������ �
 ��� ����
	 �
���

� ���
 ��� ����

	���	 ����� ��
��
 �	�
���	��	 ��	 ��
 �����
�

�)����
� �� �����
	 �	 ��������� �� ���� 	
��	�� ����
�
 ��
�����
	 �� 	����
����

	 ��	������ �
 !"#�

���
�
����� 	�����
�� ����	
	 ������	�

*

� ����� ������ 	���
��
�
 �� � ����

 �

� ���� � �
�
�����
 �

������� �

�
���
�� �
����� ��� �
�
�
 ��
������
��� ��

������

� ��
����� �
����
 �
��� ��
 ���
�
�
�

��
������� �
�����

� ���� �����
 ����� ��
 �������� �
��

�

��
��
� �
����
� ��� ���� ���

�������

 ���� ������� ��

 �����
�

� �
���
 �� � �������
 ���

���� ������ ��
� ��
 ����
� �� �����
�� �������

 ��

��
 �������

 �� ��
 �������� ��� ���� ��

 �������

�

� ��������
 ���� ��
 ����
� �������

�

��� �������� 	
 ���
���

�����

���
 ��
 �

���
 �� �������
��
���������� �
����
 ������� �

� �� � ��

����� !�
 ��
�
 �� �
"�
�
�� ����
� �� �
 ��
 ��
�
 ��
�
 ��
 ��������
 �����

��� ��

 ���
 �

� ��
���"
� �� ��
 �

� ��� ��� �����

 ��
��������� �
 ����
��

�����
 �
 �
����
� �� ��
 �

� �� ��
 �
�� �� �����
 � !�
 �

���
 ��� � ���������
�
���� �
�� "�
 ��

���� �� �����
 #� �� ���
 "�
 ��
 �

� �
"�
� �����
 ���
 �

�

����
� �� ���
�
�
�

��
������� ��� ���
 ��� �
 ��
�
� �
 �� �������
� ����

�

!�
 "���
 ��
�
���
 � �������
�� ��
���������� ��
 ���� �
�� �������� �� 	���

������
���$�
��%�
�������
 �� �� ���
���� ����

������
���$�����
% ��� ���
�
�
�

�
����$�����%� �� ��� �

� ���� ��� ���� ���� ��
 � ��� �� ��������
 �����

 ���

���
�������� ��
 ���
���� ����
 �
���� �
 � �
��
� ��� �� �������

������
��� �
 ��

����
 �

� �
 "��
� ���� ���
��������

 ��� � ����

 ���
 ���
�
�
�

��
�������

����� ���
 �� ������
 ��� ��
 ������
 �
����
� �������
 �����������
 ����� �
 ��

�
����� ���
���� ��
�
 �
 "�� � ��� �� ���
�������� �� ��
 ����� �� ��

 ��
�

��
 �
����
 ��� �
 ����
� ����
�

 ��� ��
�
 �����
 �� ��������
 �
 ���
�
�
�� �

��
������� ��������
����� �
 �����
� �� �
� ��
�
� �

���
 �
 ��
 �������������
����
 �� ��
 ���
���� ����
 �
���� ����� �
 � ����
�� �������
 �����������
 �����

�
 �

�

 �

� �� �������
� ��������� ��� ����
����� �

��� ��������

�

�����
 & �
��� �������
�

��
������� �
���� ��� � ��

 ���� "�
� ����
 �� ��

�
�� �
 ��
 ��

�

� ���� �����
 ����
�� ��
 �� ��
 �����
 �

 	���
������
��� ���

��
 ��
 �� ��
 ����� �

�������
� �������
��

'

������ �� �	
����
	� 	� �	�
��
������
�	�� �������� ����� ��������
������
�	�
��� �����
��� ��������
������
�	� ������� 	� �	 � �	�� ���� ���

� ����������	�
 �	�
����

�� �	
���� ��� �	
� �	�
�������	�
 	� ��� ��	
���
�
 �� ���

����	�� �
 ��
��

��
������� �� ����� ����� 	� ��� �		�
���
� ��� ��
��� 	� ��������
 ��������� ������
�

�� � ����	� 	� �	��� �	� ��� ��
���
 	������� �� ��������
���
��
�	�� �� ������
�� ��� ��
�
�
� 	� ��� �	�
�
�
 	� !" ��������
 ��� �
��	�� ����� �		�
����#
��
�	� ��	����
 !$ " ��������
 �
 	��	
�� �	 ���% ��������
 ��	����� �� ��������

������
�	��
�	� ��� ��
���
 	������� �� ���	
����
��
������	�
���	��
�	�� �� ����� �� ���
��
�
�
� 	� ��� �	�� ���� �	�
�
��� 	� �� ��������
 ��� �
��	�� ����� �		�
������#

�	� ��	����
 �&" ��������
� ��	� ����� �����
���
��
������	� �
 �
�� �	 ��������
��� ����	�
� �	�������� ���� �		�
������
�	� ��	����
 "''" ��������
 �� ��� �	����
����� �
 	��	
�� �	 %$%� ��������
 ��	����� �� ��� ���	
����
��
������	�
���	��
(� ��� ��
��� ���� ����
����� �� ���
�)� 	� ���
�
� �
 �	�
�������� ���� ����� �
���
��� ��������
���	� ��� �� ��
	
�
� �� �	��� ���� ��� ��������
���	� ����	� ��
������� ��
����

�	�� �� ��
	 �	�� ���� ���� ���
�
� �
 ���������� �� ������ ����
�	� ���� �	�
�
���� �� ��������� ���� �
��� � ��������� ��
�� �
�� ������ ��	��

��*� �����
���
��
������	� ���� �	� ��
��� �� �	�
��������
�����
 ��
�
�
�)��

 ������ ���� �	� ��	�
����	�

(� ���
 ����� �� ���� ���
����� ��������
���
�
 �	� ����������
�
��
 ��� 	�� ��#

���
 ���� ���� ��
�� 	� ��� �		�
���
�� +��
� �	��� �� ���� ���� ������� �	 ���
,	����� -�����.�
���
�� +��
�
���
�
 �	��� ��
	 �� ���� ���� �/������ �	
��#
����
�	�
���
�
 ���� �	�* 	� �	���	���
�
��
 ��*� ���
���#����* ��� 0		#1�����
2��
���	�
 ��� �
���� ��	
 ���
���	�
 ��	�	
�� �� 3�4�3$�4 ����� ��� ������	���
�	�
������
 ��� �	

		����� ��5���� �/���
�	���� �	� ��
�	���� ��������
� 2��
��
�
���	� ����
 �	 ��������� �	�
�� ��� ��������
������
�	� �	 ����� ��

		��#
��� ��	������
 �	 ��� ��
������
������� �	� � ���
	����� ����� �	������� ��� ��
���

	������� ��� �� ���	������ �	 ��� ��
���
 	������� �� �	�
�� �		�
������
�	��

"

��� ������ 	�
���
����
�
���� ���� ��
����
���
����� �� ����
��� ��
��������
����	� �� �������� �
 �� ����
��
 ��
�	�
���
�� ��
����
���
� � ������� ���� ��
���
���� ���	��
�
���
����� �� ���� �����
�� ������� ��
������ ���	��
�
��� ��������
	����� ��
� � �������
�� �	���
 �� ������
���� ����� �� � ����
���� �� �� ����
����
��� ��
�������� ��� ���� ������ ��
�������� ������� ��
�������� �
 ����� ������
���
� �������� ��
� ���� �����
� ���	�� ��
��������� ��
�������� �������
�
���� � ������ 	��� ��
�������
� ���	�� ���� ����	� ���
�� ������ ��� ���������
� �������
�� ������
���� �� ��
������ ������
�	 �� ��� ���
� ��

�� ����
� ��

��
������� �� ������� ���	��
�� �� ����� ����� �����
��
������� ���
�� ����
���� ��
������� �

�� ��!
 ������ �� ��
��������� �� ���� �� �������� ���	��
�
���
����� ��
� ��
�������� ��� � ��
 �� ���	��� ��� ����� ��
��
��� ��� ��
��� ���������

����������

"#$ %� &�
	��� ��� '� &����� (���������� ������
��
������� �������� �� ��
�
����

���������� 	������ �������� �	
�
 ���	
�� #)*+,)-+,,� #./0�

"1$ 2� 2�� ��� 3� ��
��� 4�������� �� ��������� �������� �������� ���� �!
�������
���� ����
�� �������� �	
�
 ���	
�� #)*+,5-+5)� #./0�

"+$ 6� 2��� '� 7������� ��� 2� ������ 8
�

��9� ��
�������� ����	� ��� �������
��
������
��� ��
�
������ ���
���� ��� ������ ������� .*#5)-#5.� #..)�

":$ �� ;�

��
� ��
������
��� ��
�������� �� ���� ��������
���� ��
� ��
� ��
�
����

�������� ������
	�
� �� ����
����	���� :).�:1)� #..5�

",$ �� ;�

��
�
�
+ ��
��������� �������� �����	�� ������
	�
��� ��77(8<�

1)))�

"5$ &� ����� �	��
� ��
�������� ��������
���� ��
��������� ������� ����	���
=�������
� �� =
��� 2��
� �� 3�
��	�
���� #.0/�

"/$ 8� 3����� ��� (� ���
����� <��
�
������ +2 	����� ����� ��
������ ���	���

�
���� ���� ��������	��� �� �	����	���	�� ��
 �������� �����	��� +)0�+1#�
��
����� #...�

"0$ �� 3������ ��� (� '�������� 8���
��� ��
�������� ������ ��� �������� ������
�
	�
� �� �������� �����	�� ��������	���� �� � :0�,0� #..0�

".$ '� <�
��� ��� =� (���� �� ��	����
 ��
�������� ����	� ��� �	��
���� �������
���� ��� ������ ���!"#$%�� #../�

"#)$ �� ������� <���� ���	� ���
��������� 4��������� �����	�� ����� 	� ���	&�

�����	���5#�##1� #../�

"##$ 3� >�������� ��� 2� ��?�������� 8���
��� 	����� ��� ������* ���������
�����
����
���� ������
����
��� ��� ������������ ��
��������� ������
	�
� �� ��� ����

����� �	�	�� ��
 ������� '���
�	�	�� �����������01.�0+1� #..1�

.

���� �� �� �	
 �� ��	
��

������ ���	���	�� �	 ���
������	 ��������� ����������
	
� �

� ����� ������ ��� ������ �������� �����

���� �� ����	� ��
������	 �	
 ��!������!����	 ������� �������	�����	�� ��� ����	���
"�!���#� $���
�	�� ���%�

���� �� ����	� $� �#��
��� �	
 &� '�!
�	�� (�����!���) ���
������	 ��� ���#��
'��# ��������* ����!�)*� �������� �
� ���
���	���� ��)�� �+������ ���,�

��-� �� ����	� $� �#��
��� �	
 &� '�!
�	�� (��������� ��!������!����	 ���#
�
���)� �������� �
� ���
���	���� ��)�� �-���,+� ���%�

�.

Terrain Modeling using Voronoi Hierarchies

Martin Bertram
� � �

Bernd Hamann
�

Ken Joy
�

Shirley Konkle
�

Hans Hagen
�

Abstract. We present a new algorithm for terrain modeling
based on Voronoi diagrams and Sibson’s interpolant. Starting with
a set of scattered data sites in the plane with associated function
values defining a height field, our algorithm constructs a top-down
hierarchy of smooth approximations. We use the convex hull of
given sites as domain for our hierarchical representation. Sibson’s
interpolant is used to approximate the underlying height field based
on associated function values of selected subsets of the data sites.
Therefore, our algorithm constructs a hierarchy of Voronoi dia-
grams for nested subsets of the given sites. The quality of approx-
imations obtained with our method compares favorably to results
obtained from other multiresolution algorithms like wavelet trans-
forms. Our Approximations for every level of resolution are

� �
-

continuous, except at the selected sites, where only
� �

-continuity
is satisfied. The expected time complexity of our algorithm is	 �
 � � �
 �

for

sites when applying simple acceleration methods.
In addition to a hierarchy of smooth approximations, our method
provides a cluster hierarchy based on convex cells and an impor-
tance ranking for sites.

1 Introduction

Clustering techniques [7] generate a data-dependent partitioning of
space representing inherent topological and geometric structures of
scattered data. Adaptive clustering methods recursively refine this
partitioning resulting in a multiresolution representation that is re-
quired for applications like progressive transmission, compression,
view-dependent rendering, and topology reconstruction. For ex-
ample, topological structures of two-manifold surfaces can be re-
constructed from scattered points in three-dimensional space using
adaptive clustering methods [6]. In contrast to mesh-simplification
algorithms, adaptive clustering methods do not require a grid struc-
ture connecting the given data points. A cluster hierarchy is built in
a “top-down” approach, so that coarse levels of resolution require
less computation times than finer levels.

In this paper, we present a Voronoi-based adaptive clustering
method for terrain modeling. Arbitrary samples taken from large-
scale terrain models are recursively selected according to their rel-
evance. Continuous approximations of the terrain model are con-
structed based on the individual sets of selected sites using Sib-
son’s interpolant [10]. We have implemented this algorithm using
a Delaunay triangulation, i.e., the dual of a Voronoi diagram, as
underlying data structure. Constructing a Delaunay triangulation
requires less implementation than constructing the corresponding
Voronoi diagram, since a lot of special cases (these where Voronoi
vertices have a valence greater than three) can be ignored. A ma-
jor drawback of Delaunay triangulations is that they are not unique,
in general. This becomes evident when the selected sites are sam-
pled from regular, rectilinear grids such that the diagonal for every
quadrilateral can be flipped, resulting in random choices affecting
the approximation. The corresponding Voronoi diagram, however,
is uniquely defined and can instantly be derived from a Delaunay
triangulation. Sibson’s interpolant is also efficiently computed from

1University of Kaiserslautern, Germany
2University of California at Davis

bertram@informatik.uni-kl.de

f
�

i

p� i

� �
�� �

� �

Figure 1: Scattered points with associated function values.

a Delaunay triangulation. The advantage of our method compared
to Delaunay-based multiresolution methods [5] is that our approxi-
mations are unique and

� �
-continuous almost everywhere.

2 Adaptive Clustering Approach

Adaptive clustering schemes construct a hierarchy of regions, each
of which is associated with a simplified representation for the data
points located inside. We assume that a data set is represented at
its finest level of resolution by a set � of

points in the plane with

associated function values, � " $ & $ (((:� , � - / $ 1 / � 3 - / 4 6 8 $ 1 / 4 6 $ 9 & $ ((($
 > (
This set � is sampled from a continuous function 1 @ B D 6

,
where B F 6 8

is a compact domain containing all points
- /

. The
points

- /
define the associated parameter values for the samples1 /

. We do not assume any kind of “connectivity” or grid structure
for the points

- /
. For other applications than terrain modeling, the

points G /
can have H dimensions with � -dimensional function values1 /

, see Figure 1.
The output of an adaptive clustering scheme consists of a number

of levels I J $ L " $ & $ (((, defined as

I J , � O JP $ R1 JP $ S J P � 3 T & $ ((($
 J > $
where for every level with index L , the tiles (regions) , O JP WB 3 T & $ ((($
 J >

form a partitioning of the domain B , the
functions R1 JP @ O JP D 6

approximate the function values of points
located in the tiles

O JP , i.e.,

R1 JP � - / � Z 1 / \ - / 4 O JP $
and the residuals S J P 4 6 _ " estimate the approximation error. In
principle, any error norm can be chosen to compute the residuals S J P .
We note that the error norm has a high impact on the efficiency and
quality of the clustering algorithm, since it defines an optimization
criterion for the approximations at every level of resolution. We
suggest to use the following norm:

S J P
`a
b &
 J P de f h i jk

3 R1 JP � - / � l 1 / 3 m n pq
rs

$ G 4 u & $ w y $ (1)

Figure 2: Planar Voronoi diagram and its dual, the (not uniquely
defined) Delaunay triangulation.

where
� � � � � � � � � 	 ��
 �

is the number of points located in tile	 �� . In the case of � � � the residual is simply the maximal error
within the corresponding tile.

A global error � � with respect to this norm can efficiently be
computed for every level of resolution from the residuals � � �

as

� � � ��� �� � ��� � � �� � � �" � #$ �� % � � ') $ � � * + ,- ./
� 1 �� � ��� � � � � � 3 � � � 5 * 6 ./ 7 (2)

Starting with a coarse approximation 8 9 , an adaptive clustering
algorithm computes finer levels 8 � ; � from 8 � until a prescribed
number of clusters or a prescribed error bound is satisfied. To
keep the clustering algorithm simple and efficient, the approxima-
tion 8 � ; � should differ from 8 � only in cluster regions with large
residuals in 8 � . As the clustering is refined, it should eventually
converge to a space partitioning, where every tile contains exactly
one data point or where the number of points in every tile is suffi-
ciently low providing zero residuals.

3 Constructing Voronoi Hierarchies

In the following, we describe our adaptive clustering approach
for multiresolution representation of scattered data: a hierarchy of
Voronoi diagrams [2, 9] constructed from nested subsets of the orig-
inal set of points.

The Voronoi diagram of a set of points
� � < > � � < 7 7 7 < �

in the
plane is a space partitioning consisting of

�
tiles

	 �
. Every tile

	 �
is

defined as a subset of
B C

containing all points that are closer to
� �

than to any
� � < E G� > , with respect to the Euclidean norm.

A Voronoi diagram can be derived from its dual, the Delaunay
triangulation [1, 3, 4, 5], see Figure 2. The circumscribed circle
of every triangle in a Delaunay triangulation does not contain any
other data points. If more than three points are located on a such a
circle, then the Delaunay triangulation is not unique. The Voronoi
vertices are located at the centers of circumscribed circles of De-
launay triangles, which can be exploited for constructing a Voronoi
diagram. The Voronoi diagram is unique, in contrast to the Delau-
nay triangulation.

A Delaunay triangulation is constructed in expected linear time,
provided the points are evenly distributed [8]. Figure 3 illustrates
the adaptive construction process in the plane. For every point in-
serted into a Delaunay triangulation, all triangles whose circum-
scribed circles contain the new point are erased. The points be-
longing to erased triangles are then connected to the new point,
defining new triangles that automatically satisfy the Delaunay prop-
erty. Point insertion is an operation performed in expected constant

Figure 3: Construction of Delaunay triangulation by point inser-
tion. Every triangle whose circumscribed circle contains the in-
serted point is erased. The points belonging to removed triangles
are connected to the new point. I J

K
J

L

Figure 4: Computing Sibson’s interpolant at point � by inserting �
into a Voronoi diagram and using the areas cut away from every tile
as blending weights.

time, provided that the triangles to be removed are identified in ex-
pected constant time, which requires the use of some acceleration
method. For applications in

M
-dimensional spaces

% M P Q '
the De-

launay triangulation consists of
M

-simplices whose circumscribedM
-dimensional hyperspheres contain no other point.

The adaptive clustering algorithm uses Sibson’s interpolant [10]
constructing the functions #$ �� . Sibson’s interpolant is based on
blending function values $ �

associated with the points
� �

that define
the Voronoi diagram. The blending weights for Sibson’s interpolant
at a point

� � B C
are computed by inserting

�
temporarily into the

Voronoi diagram and by computing the areas S �
that are “cut away”

from Voronoi tiles
	 �

, see Figure 4. The value of Sibson’s inter-
polant at

�
is defined as$ % � ' � U � S � $ �U � S � 7

Sibson’s interpolant is
V �

-continuous everywhere except at the
points

� �
. To avoid infinite areas S �

, the Voronoi diagram is clipped
against the boundary of the compact domain W . A natural choice
for the domain W is the convex hull of the points

� �
.

In the following, we provide the clustering algorithm in pseu-
docode. The algorithm performs these steps:

(i) Construct the Voronoi diagram for the minimal point set defin-
ing the convex hull of all points

� � < > � � < 7 7 7 < �
. The tiles

of this Voronoi diagram define the cluster regions
	 9� of level8 9 .

(ii) From the functions #$ �� , defined by Sibson’s interpolant and
from error norm (1)

% � � Q '
, compute all residuals � 9 � . To

avoid square root computations,
% � 9 � ' C

is stored.

(iii) Refinement: 8 � _ 8 � ; � . Let a be the index of a maximal
residual in 8 � , i.e., � � b c � � � d M � � < 7 7 7 < � � . Among all� � � 	 �b , identify a data point

� b f g
with maximal error

No. Voronoi Tiles Error
� � � � �

[%] Error
� � � � �

[%]
100 31.6 3.13
200 17.1 1.96
300 16.3 1.55
400 13.9 1.33
500 11.9 1.21

1000 10.8 0.80

Table 1: Approximation errors in percent of amplitude for Crater-
Lake terrain data set. Figure 5 shows the different levels of resolu-
tion.

	 �
 � � � � �� � � �� �� � � � " � � #
. Insert

� � % '
into the Voronoi

diagram.

(iv) Update (� * +� % ' and all residuals associated with tiles adjacent
to the new tile

, � * +� % ' with center
� � % '

. (All other clusters
remain unchanged, i.e.,

, � * + � , �
, �� � * + � �� �

, and (� * + �
(�

.)

(v) Compute the global approximation error (� using the error
norm (2). Terminate the process when a prescribed global
error bound is satisfied or when a prescribed number of points
has been inserted. Otherwise, increment . and continue with
step (iii).

4 Numerical Results

We have applied the Voronoi-based clustering approach to approxi-
mate the terrain data set “Crater Lake”, courtesy of U.S. Geological
Survey. This data set consists of 159272 samples at full resolution.
Approximation results for multiple levels of resolution are shown
in Figure 5 and in Table 1.

The quality of approximations obtained with our method com-
pares favorably to results obtained from other multiresolution algo-
rithms like wavelet transforms. A standard compression method,
for example, is the use of a wavelet transform followed by quan-
tization and arithmetic coding of the resulting coefficients. Using
the Haar-wavelet transform for compression of the Crater-Lake data
set (re-sampled on a regular grid at approximately the same resolu-
tion) results in approximation errors

� � � � �
of 0.89 percent for a

1:10 compression and 4.01 percent for a 1:100 compression [2]. We
note that for a Voroni-based compression method also the locations
of the samples need to be encoded.

In addition to a hierarchy of smooth approximations, our method
provides a cluster hierarchy based on convex cells and an impor-
tance ranking for sites. Future work will be directed at the explicit
representation of discontinuities and sharp features.

5 Acknowledgements

We thank Mark Duchaineau, Daniel Laney, and the members of the
Visualization Group at CIPIC at the University of California, Davis
for their helpful ideas and discussions. This work was supported by
the DFKI at the University of Kaiserslautern in Germany, Lawrence
Livermore National Laboratory (Student Employee Graduate Re-
search Fellowship awarded to the first author), the National Sci-
ence Foundation under contracts ACI 9624034 and ACI 9983641
(CAREER Awards), through the Large Scientific and Software Data
Set Visualization (LSSDSV) program under contract ACI 9982251,
and through the National Partnership for Advanced Computational
Infrastructure (NPACI); the Office of Naval Research under con-
tract N00014-97-1-0222; the Army Research Office under contract
ARO 36598-MA-RIP; the NASA Ames Research Center through

an NRA award under contract NAG2-1216; the Lawrence Liv-
ermore National Laboratory under ASCI ASAP Level-2 Memo-
randum Agreement B347878 and under Memorandum Agreement
B503159; and the North Atlantic Treaty Organization (NATO) un-
der contract CRG.971628 awarded to the University of California,
Davis. We also acknowledge the support of ALSTOM Schilling
Robotics, Chevron, Silicon Graphics, Inc. and ST Microelectron-
ics, Inc.

References

[1] M. de Berg, M. van Kreveld, M. Overmars, and O.
Schwarzkopf, Computational Geometry: Algorithms and Ap-
plications, Springer-Verlag, Berlin, Germany, 1997.

[2] M. Bertram, Multiresolution Modeling for Scientific
Visualization, Ph.D. Thesis, Department of Com-
puter Science, University of California at Davis, 2000.
http://graphics.cs.ucdavis.edu/ bertram

[3] G. Farin, Surfaces over Dirichlet tessellations, Computer
Aided Geometric Design, Vol. 7, No. 1–4, 1990, pp 281–292.

[4] L. De Floriani, B. Falcidieno, and C. Pienovi, A Delaunay-
based method for surface approximation, Proceedings of Eu-
rographics ’83, Amsterdam, Netherlands, 1983, pp. 333–350,
401.

[5] L. De Floriani and E. Puppo, Constrained Delaunay trian-
gulation for multiresolution surface description, Proceesings
Ninth IEEE International Conference on Pattern Recognition,
IEEE, 1988, pp. 566–569.

[6] B. Heckel, A.E. Uva, B. Hamann, and K.I. Joy, Surface re-
construction using adaptive clustering methods, IEEE Trans-
actions on Visualization and Computer Graphics, submitted,
2000.

[7] B.F.J. Manly, Multivariate Statistical Methods, A Primer, sec-
ond edition, Chapman & Hall, New York, 1994.

[8] A. Maus, Delaunay triangulation and convex hull of n points
in expected linear time, BIT, Vol. 24, No. 2, pp. 151–163,
1984.

[9] S.E. Schussman, M. Bertram, B. Hamann and K.I. Joy, Hi-
erarchical data representations based on planar Voronoi dia-
grams, R. van Liere, I. Hermann, and W. Ribarsky, eds., Pro-
ceedings of VisSym ’00, Joint Eurographics and IEEE TCVG
Conference on Visualization, Amsterdam, Netherlands, May
2000.

[10] R. Sibson, locally equiangular triangulation. The Computer
Journal, Vol. 21, No. 2, 1992, pp. 65–70.

Figure 5: Crater-Lake terrain data set at different levels of resolution.

Simplification of Large, Closed Triangulated
Surfaces Using Atomic Envelopes

Peer-Timo Bremer, Oliver Kreylos,
Bernd Hamann, Franz-Erich Wolter

October 2, 2000

1 Introduction

Over the past two decades, data visualization has become increasingly important in
several fields, including medical, fluid flow and geographical data. The speed of visu-
alization algorithms has unfortunately not kept up with the speed of developing new
technology producing high-resolution data. Every year, the quality of imaging and
computational simulation technology — including laser scanners, digital cameras and
radar systems — improves substantially. This results in such an increase in the amount
of data that even state-of-the-art computers are stretched beyond their capacities. How-
ever, it has become apparent that, for many applications large parts of data sets are
often not necessary for generating a good picture. The goal was and still is to reduce
data sets in such a way that the pictures generated from a reduced data set are highly
similar to those produced from the original one.

We are concerned with polygonal surfaces and their compression. Examples for
polygonal surfaces are discretized height fields, parametric surfaces, and manifold sur-
faces. We focus on triangulated two-dimensional (2D) manifolds with no boundaries.
For an extensive overview of the field of polygonal surface simplification, we refer to
Heckbert and Garland [2] and Rossignac [6].

We present a randomized algorithm that approximates triangulated, orientable 2D
manifolds without boundaries, using a ”min-#” approach, see �2. The algorithm pre-
serves a specified error bound.

2 Related Work

2.1 Two Approximation Types: Min-� and Min-#

When approximating a polygonal surface using the min-� approach, one has to deter-
mine, for a given number n, an approximation that consists of n vertices and minimizes
the approximation error. Many of the common algorithms use min-� optimization, and
several references are given in [2],[6]. Of special interest is Kreylos and Hamann [4],
since they use a method closely related to the one presented here.

Using a min-# approximation approach, one tries to find an approximation with
the minimal number of vertices that satisfies a tolerance condition [1]. This approach
is relevant for scientific applications. For example, given the size of an object and
the view-point distance, one can compute the error tolerance related to one pixel on
the screen. Approximating the object within this tolerance results in a picture where
each data point is no more than one pixel away from its original location. Computing
min-# approximations can be very complicated and expensive. The error metric one
wants to minimize is the number of vertices, faces or edges. Additionally, one has to
stay inside an error bound. Our algorithm ensures that no point of the approximating
surface deviates more than � from the original surface. This requires us to consider an

1

”offset” around the original surface, and the approximation surface must stay inside
this offset. Such an approach was first proposed by Cohen et al. [1] and was, called
simplifiction envelope. A simplification envelope is a linearized and, in some respects,
simplified version of the exact offset.

2.2 Simplification Envelopes

The simplification envelope of a triangulated surface is constructed in the following
way: For each vertex, one computes its normal n as a combination of the normals
of the surrounding triangles, normalized to length �; one defines two offset vertices,
the (+�)-offset and the (-�)-offset vertices, by adding/subtracting n to/from the original
vertex. This defines a so-called fundamental prism. This approximation of the offset is

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

�
�
�
� �

�
�
�

�
�
�
�

v3

v2
v1

n1

v1-

��

����

����

n1ε

v1+ n1ε

�
�
�
�

����

����

��

��

����

����

��
��
��
��

ε

self-intersection

original
curve offset curve

Figure 1: (a) Fundamental prism; (b) self-intersecting offset curves

close to the exact one, as long as the original surface has low curvature. Our approach
uses this type of envelope, but it provides the option to use better approximations.

The second problem is caused by self-intersections, see Fig. 1b. Cohen et al. [1]
require a simplification envelope that does not self-intersect. They use the global �-
value whenever possible and decrease it in areas of possible self-intersections. Our
approach is not impacted by self-intersections and can handle every �-value at any
given vertex.

3 Atomic Envelopes

To satisfy an a priori error bound, we define atomic envelopes. For each triangle, we
construct an atomic envelope so that the simplification envelope equals the union of
atomic envelopes. Our implementation uses fundamental prisms as atomic envelopes
but different constructions are possible when higher accuracy is desired.

During simplification, we have to decide whether a triangle lies inside the simpli-
fication envelope. To answer this query we first find all atomic envelopes that might
intersect the triangle. Only the top and bottom triangles of these can intersect the trian-
gle in question. We use a bounding box test incorporating an R*-Tree [3] to speed up
calculations. Especially for smaller error bounds, this results in roughly the same set of
triangles one would get using triangulated offset surfaces to describe the simplification
envelope. We intersect all resulting triangles with the triangle being tested. At each re-
sulting intersection point, the triangle might leave the simplification envelope. It leaves
the envelope, if and only if the exit point is not covered by another atomic envelope.
To test this we use the fact that fundamental prism are pentaeder Bézier volumina [5]
and solve the resulting non-linear system of equations.

Cohen et al. [1] define the side faces of a fundamental prism as bilinear patches,
defined by the four corner points. Since we deal with closed triangulated surfaces, we
do not have to consider the side patches. A triangle cannot leave the envelope through
a side patch of a prism: Two neighboring triangles always share one side patch; thus a
triangle leaving a prism through a side patch immediately enters another prism.

2

The same basic algorithm can also be used with more complicated atomic en-
velopes. An example is the construction shown in Fig. 2. This construction does not
only use the vertex normal but also the normal of the triangle to create the atomic en-
velope. Compared to fundamental prisms, we add three bilinear patches to each atomic

(b)

original triangle

vertex normal

unit

unit

(a)

triangle
normal

��

����

�
�
�
�

Figure 2: Different atomic envelopes (a) solid view; (b) transparent view

envelope, which can all have possible exit points. Furthermore, to test whether an exit
point is covered by an atomic envelope is a consequently slower operation. However,
this new atomic envelope approximates the exact non-linear offset much better, espe-
cially in regions of high curvature.

4 Simplification

We simplify the given surface using a simulated annealing algorithm, also called Metropo-
lis algorithm. Simulated annealing models the state transition from fluid to crystalline
state of metals. From the algorithmic view-point, this process is an optimization pro-
cess with extremely high dimension. For our application, we interpret the configuration
of a polygonal surface as the configuration of metal molecules. Our internal energy is
represented by a target function, and the random heat movement of molecules is repre-
sented by random changes in the configuration.

The target function describes the quality of an approximation. Furthermore, the
target function should not only prefer configurations that consist of few vertices but
also configurations that lead to vertex removals. We use the sum of the square roots of
the angles between triangle normals as target function. This function is highly related
to the number of vertices. It also prefers planar surfaces, since a large number of small
angles has a higher target function value than a smaller number of large angles. This
leads to near-planar platelets of triangles, where we can delete vertices. This target
function is also easy to compute and can be recomputed locally after local changes.

To change a configuration, we use the method of Kreylos and Hamann [4], adapted
to our problem. We use three different operations: edge rotation, vertex removal, and
vertex movement. The edge rotation only changes the triangulation of two neighbor-
ing triangles. To move a vertex we randomly choose a new position inside a small
sphere around the original one. To check the validity of the resulting triangulation we
project all involved triangles onto the plane defined by the vertex normal of the chang-
ing vertex. This can lead to degenerate triangles or triangles with wrong orientations.
We resolve these conflicts by swapping the appropriate edges. To remove a vertex we
collapse the shortest edge emanating from it.

3

5 Future Research

The main drawback of our algorithm is its lack of computational efficiency. Especially
the simulated annealing is expensive. However, it provides a mean to use any point
inside the envelope as a possible vertex position. Future work will be done to replace
the simulated annealing approach, while keeping this advantage.

Figure 3: The original drill bit data set (1964 vertices).

Figure 4: The drill bit data set simplified using 1/4% error bound.

References

[1] J. Cohen, A. Varshney, D. Manocha, G. Turk, H. Weber, P. Agarwal, F. Brooks, W.
Wright. Simplification Envelopes. Proceedings SIGGRAPH 1996 pp. 119-128.

[2] P. S. Heckbert and M. Garland, Survey of polygonal surface simplification algo-
rithms, Multiresolution Surface Modeling Course, SIGGRAPH 1997.

[3] S. Klopp. Implementation von ��-B”aumen als benutzerdefinierte Indexstruktur
in Oracle 8i. Studienarbeit, Fachbereich Mathematik und Informatik, Universität
Hannover 14. Dec. 1999.

[4] O. Kreylos, B. Hamann. On Simulated Annealing and the Construction of
Linear Spline Approximations for Scattered Data. Proceedings of the Joint
EUROGRAPHICS-IEEE TVCG Symposium on Visualization, Vienna, Austria, May
1999, pp. 189-198.

[5] D. Lasser. Bernstein-Bézier-Darstellung trivarianter Splines. Dissertation, Fach-
bereich Mathematik, Technische Hochschule Darmstadt, Germany, 1987.

[6] J. Rossignac. Interactive Exploration of Distributed 3D Databases over the Internet.
SIGGRAPH Proceedings pp. 324-335, 1998.

[7] Web pages of the Department of Computer Science at Stanford University,
http://www.graph- ics.stanford.edu/data/3Dscanrep/

4

Hierarchical Image-based and Polygon-based Rendering for Large-Scale
Visualizations

Chu-Fei Chang� Amitabh Varshney � Qiaode Jeffrey Ge�

Abstract

Image-based rendering takes advantage of the bounded display res-
olution to limit the rendering complexity for very large datasets.
However, image-based rendering also suffers from several draw-
backs that polygon-based rendering does not. These include the in-
ability to change the illumination and material properties of objects,
screen-based querying of object-specific properties in databases,
and unrestricted viewer movement without visual artifacts such as
visibility gaps. View-dependent rendering has emerged as another
solution for hierarchical and interactive rendering of large polygon-
based visualization datasets. In this paper we study the relative ad-
vantages and disadvantages of these approaches to learn how best to
combine these competing techniques towards a hierarchical, robust,
and hybrid rendering system for large data visualization.

1 Introduction

As the complexity of the 3D graphics datasets has increased, dif-
ferent solutions have been proposed to bridge the growing gap be-
tween graphics hardware and the complexity of datasets. Most of
algorithms which effectively reduce the geometric complexity and
overcome hardware limitations fall into the following categories:
visibility determination [7, 9, 2, 1, 8, 6, 10], level-of-detail hierar-
chies [5], and image-based rendering (IBR) [3]. IBR has emerged
as a viable alternative to the conventional 3D geometric rendering,
and has been widely used to navigate in virtual environments. It
has two major advantages over the problem of increasing of com-
plexity of 3D datasets: (1) The cost of interactively displaying an
image is independent of geometric complexity, (2) The display al-
gorithms require minimal computation and deliver real-time perfor-
mance on workstations and personal computers. Nevertheless, use
of IBR raises the following issues:

� Economic and effective sampling of the scene to save storage
without visually perceptible artifacts in virtual environments,

� Computing intermediate frames without visual artifacts such
as visibility gaps,

� Allowing changes in illumination, and

� Achieving high compression of the IBR samples.

To address some of the above issues we have developed a
multi-layer image-based rendering system and a hybrid image- and
polygon-based rendering system. We first present a hierarchical,
progressive, image-based rendering system. In this system progres-
sive refinement is achieved by displaying a scene at varying res-
olutions, depending on how much detail of the scene a user can

�Department of Applied Mathematics, State University of New York,
Stony Brook, NY 11794, chchang@cs.sunysb.edu

�Department of Computer Science, University of Maryland, College
Park, MD 20742, varshney@cs.umd.edu

�Department of Mechanical Engineering, State University of New York,
Stony Brook, NY 11794, ge@design.eng.sunysb.edu

comprehend. Images are stored in a hierarchical manner in a com-
pressed format built on top of the JPEG standard. At run-time, the
appropriate level of detail of the image is constructed on-the-fly us-
ing real-time decompression, texture mapping, and accumulation
buffer. Our hierarchical image compression scheme allows storage
of multiple levels in the image hierarchy with minimal storage over-
head (typically less than 10%) compared to storing a single set of
highest-detail JPEG-encoded images. In addition, our method pro-
vides a significant speedup in rendering for interactive sessions (as
much as a factor of 6) over a basic image-based rendering system.

We also present a hybrid rendering system that takes advantage
of the respective powers of image- and polygon-based rendering for
interactive visualization of large-scale datasets. In our approach we
sample the scene using image-based rendering ideas. However, in-
stead of storing color values, we store the visible triangles. During
pre-processing we analyze per-frame visible triangles and build a
compressed data-structure to rapidly access the appropriate visible
triangles at run-time. We compare this system with pure image-
based, progressive image-based system (outlined above), and pure
polygon-based systems. Our hybrid system provides a render-
ing performance between a pure polygon-based and a multi-level
image-based rendering system discussed above. However, it allows
several features unique to the polygon-based systems, such as direct
querying to the model and changes in lighting and material proper-
ties.

2 Multi-Level Image-Based Rendering

In this section, we present an image-based rendering system. This
system composes a scene in a hierarchical manner to achieve the
progressive refinement by using different resolution images. Pro-
gressive refinement is achieved by taking advantage of the fact that
the human visual system’s ability to perceive details is limited when
the relative speed of the object to the viewer is high. We first discuss
the pre-processing and then the run-time navigation.

2.1 Image Sampling and Collection

Data sampling and collection plays a very important role in an
image-based rendering system. It directly affects the storage space
and the real-time performance of the system including image qual-
ity, rendering speed and user’s visual perception. Different sam-
pling strategies can be applied depending on the purpose of the sys-
tem.

Environment Setting In our system the model is placed at the
center of a virtual sphere.bc 360/ Viewer (camera) is positioned on
the sphere with the viewing direction toward the origin. The viewer
can move around the sphere along longitude and latitude. The cam-
era takes one snapshot every �� degree along longitude and ��
degree along latitude. Due to the symmetry of sphere, we will have
������ � ������ camera positions. The sampling density of
camera positions may be adjusted by changing the values of ��
and ��. In our implementation, �� � �� � �

Æ, to achieve a
reasonably smooth and continuous motion with ��	� images.

2.2 Multi-Level Image Construction Algorithm

The algorithm computes � different levels of resolutions of images
as the basis for building the system image database. Our algorithm
has the following steps:

Step 1: Decide the number � of progressive refinement levels in
the system and the resolution of the display window, say � �� ,
where � � ��, and � � �.

Step 2: Dump a Level � image, say ��, at the display window
resolution (� ��).

Step 3: Construct Level � � � image (resolution � ������ �
������), say ����. The RGB values of level �� � image are con-
structed from the RGB values of level � image by the following
equations:

����
��� � ������

����� � �
�
�������� �

�
�������� �

�
���������� (1)

����
��� � ������

����� � �
�
�������� �

�
�������� �

�
���������� (2)

	���
��� � ����	�

����� � 	
�
�������� 	

�
�������� 	

�
���������� (3)

where � � �� ��

 � � � �. For example, ����
��

is computed by
������

��� �
�
��� �

�
��� �

�
���. We repeat this step until ���� image

is computed.

Step 4: Compute ���� � ���� resolution image �� from
������������� resolution image ���� as follows. Display ����
on a ���� ����� resolution window using texture mapping and
dump the displayed window image as ��. Compute image differ-
ence �� as:
�� � �� � ��� � � �� ��

 � � � �
Repeat this step until ���� image difference is computed, see

Figure 1.

Step 5: Store ����, ����, ����, . . . , �� in JPEG format as
the database images.

Level 1

 Level n-i

Level n-2

Level n-1

I

I

I

I

I

n-i

n-2

n-1

 0

 1

D

 D0

1

D

D

 n-1

 n-2

Level 0

Figure 1: Multi-Level Image Construction

This algorithm works well since texture mapping hardware pro-
vides speed and antialiasing capabilities over OpenGL function
glDrawPixels(). Also, image differences compress better
than full images and provide an easy way to generate progres-
sive refinement. For compression and decompression we use the
public-domain JPEG software [4] in our implementation. It sup-
ports sequential and progressive compression modes, and is reli-
able, portable, and fast enough for our purposes. The reason we

take the minimum value in equations 1–3 is so that we can store all
RGB values of �� as positive values and save a sign bit in storage.

2.3 Progressive Refinement Display Algorithm

Let us define �
������� as the image by texture mapping image
���� on � �� resolution window, and define �
����� as the
image by texture mapping image �� on��� resolution window,
where � � �� ��

 � � � �. At run time, level � image is displayed
by accumulating images �
�������, �
�������, �
�������,

, �
�����, where � � �� ��

 � � � �. If � � � � �, we only
display image �
�������, which has the lowest detail. We add
�
����� image onto �
�������, where � � � � �� � � ��

 � �,
to increase the image details. Level � image, which is �
������������

���
�
�����, has the highest detail. Notice that all images are

decompressed before texture mapping. The implementation is done
by OpenGL accumulation buffer and texture mapping.

In a real-time environment, the progressive refinement can be
achieved by displaying different levels of images, depending on
how much detail of the scene the user needs to see. If the user
moves with high speed, we can simply display lowest detail. As the
user speed reduces, we can raise the level of detail of the displayed
image in a progressive fashion.

2.4 Our Implementation and Results

In our implementation, we use three different image resolutions,
���� ���, �	
� �	
, and 	��� 	��, for progressive refinement.
We use sequential mode with quality setting �� for JPEG compres-
sion, which gives us an unnoticeable difference from the highest
quality setting of ���. We observed that the composite image qual-
ity in our system is not only affected by the lossy JPEG compres-
sion, but also by the error from image difference and the geometric
error from texture mapping. Table 1 shows the JPEG image reduc-
tion from full images � to image differences �.

�
�� is the sum of

storage for all the �� (level �) images. Similarly,
�

�� is the sum
of storage for all the �� (level �) images. The total storage is com-
puted as

�
��� ��� ����. Note that the total storage compares

quite favorably to original (non-progressive) storage requirements
(
�

��).

Model Level � Level � Level � Total�
��

�
�� �

�
��

�
�� �

�
�� (MB)

Bunny 10.70 21.39 10.70 53.11 31.34 52.74
Submar. 19.35 40.54 29.63 112.53 70.13 119.11
EHydr. 21.29 37.88 21.31 107.34 46.26 88.86
Dragon 12.19 25.73 21.15 64.70 42.61 75.95
Buddha 10.70 20.15 14.22 47.22 30.86 55.78

Table 1: Storage for ��, �� and the total system

Image
Level

Decompression Rendering Speed Image
Time (msec) Time (msec) (fps) Error

�� ��� ��� 98.6 23.8 7.99 0.435
�� ��� 25.4 16.6 23.80 0.077

�� 6.3 9.4 63.96 0.079
�� 20.9 10.1 32.31 0.025
�� 78.9 17.4 10.37 0.0

Table 2: Multi-Level Image Rendering Comparison

Table 2 shows the decompression time, rendering time, and
frame rate on different image levels. All numbers in this table are
the average numbers over different models. ��, � � �� �� � are full
images of 	�� � 	��, �	
 � �	
, and ��� � ��� resolutions, re-
spectively. ��, � � �� � are the image differences we discussed in

Section 2.2. The image error is the root-mean-squared difference
between the two images. The errors reported are with respect to the
�� image.

3 Hybrid Rendering

Image-based rendering is a two-stage process. The first stage is off-
line preprocessing that includes sampling of the necessary scene
information and setting up data structures, possibly with hierarchy
and compression, to reduce access times. The second stage deals
with real-time rendering of pre-processed image data which may
include image interpolation and warping. Like conventional image-
based method, our hybrid method also has two stages and the key
difference is that, instead of using three- or four-channel color val-
ues for each image, we compute the exact visibility of each triangle
for each viewpoint, and only the visible (displayed) triangles are
stored for each viewpoint.

3.1 Preprocessing

We adopt the same environment settings as we did in the JPEG
image-based rendering system, see section 2.1.

3.1.1 Encoding Triangle IDs

In order to compute the visibility for each triangle, we assign each
triangle a unique id when we load the dataset. We then decompose
the number, in binary format, into three consecutive bytes and as-
sign them to R, G, and B in order. During the dumping process,
we render the whole dataset with the given RGB value for each
triangle as its color. Notice here that in order to render all col-
ors correctly, the illumination and antialiasing function in OpenGL
should be turned off. We then read the color buffer of this image
to get the color for each pixel and compose the R, G, B back to
the id. We currently use unsigned char for each single color value,
which means, with a one-pass encoding process, we can encode as
many as ����� � �� million triangles. For larger datasets, multiple-
pass encoding processes may be needed. In our method we dump
triangles for each camera position ��� �� by using the dumping pro-
cess we discussed in Section 2.1 into a occupancy bit-vector, say
TriMap(�� �).

3.1.2 Compression Process

Two types of compression are relevant in an image-based naviga-
tion of virtual environments: single-frame compression and frame-
to-frame compression. We have only worked with single frame
compression at this stage; the multiple frame compression, which
needs more analysis and work, will be dealt with in future. For rep-
resenting the visible triangles in a single frame we use an occupancy
bit vector (an unsigned char array) in which each bit represents the
triangle id corresponding to its position in the vector. The bit is � is
the triangle is visible in that frame, � otherwise.

As the size of 3D datasets increases and the resolution of image
space remains fixed, the number of dumped triangles will saturate
around the display resolution. In our results, the million triangle
Buddha model has on an average only � � �� visible triangles
for a ��� � ��� resolution window. It means that most bits in a
bit vector would be � and consecutive-�-bit-segment cases occur
frequently. This result inspires us to use run-length encoding and
Huffman compression.

3.2 Run-time Navigation

At run time the 3D dataset and precomputed information in com-
pressed format is loaded first. The precomputed information not

only includes the visible primitives for each frame but also includes
the viewing parameters including viewing angle, distance, and so
forth. The run-time viewing parameters should be exactly the same
as those used in the dumping process. In the system, each camera
position has a frame pointer pointing to the corresponding frame in
compressed format. A Huffman tree, which is used for decompres-
sion, is also constructed for each frame.

At run time the viewer moves around in a virtual environment
following discrete camera positions at 	�, 	� increments which
were used in the dumping process. For a given viewer positon, we
can locate the corresponding frame by following its frame pointer
and decompress the frame by retracing the Huffman tree.

The rendering speed of system highly depends on the number
of visible triangles and the decompression time. In our implemen-
tation, the decompression function doesn’t have to go through a
whole data frame, it breaks the decompression loop immediately
whenever it detects that all dumped triangles have been found and
sends them to the graphics engine. However, the decompression
time still depends on the size of the frame (the size of object model)
and the number of visible triangles in the frame.

4 Results

We have tested five different polygonal models on SGI Challenge
and Onyx2. All models are tested on ���� ��� resolution window
with ��
� images. We describe our results in this section.

Bunny, Dragon, and Buddha are scanned models from range im-
ages from the Stanford Computer Graphics Lab. Submarine model
is a representation of a notional submarine from the Electric Boat
Division of General Dynamics. The E. Hydratase Molecule (Enoyl-
CoA Hydratase) is from the Protein Data Bank. All models have the
vertex coordinates ��� �� �� in floating-point format, and all trian-
gles are represented by their three vertex indices (integer). Sub-
marine has RGB color for values (unsigned char) for each triangle.
The E. Hydratase Molecule has a normal vector for each vertex. All
models are stored in OFF binary format.

Table 3 has the average compression ratios on all models. The
average dumped tris % is the average percentage of dumped trian-
gles over ��
� images.

Model
Avg Dumped Run Length Huffman Total

Tris % Ratio Ratio Ratio
Bunny 35.68 % 1.47 1.29 1.82
Submarine 2.83 % 6.27 1.46 9.16
E. Hydratase 11.21 % 3.54 1.24 4.38
Dragon 7.79 % 1.68 1.60 2.69
Buddha 4.04 % 2.32 1.75 4.07

Table 3: Compression Ratios for the Hybrid Method

In Table 4, P refers to conventional Polygonal rendering, H refers
to the Hybrid rendering system discussed in Section 3, I refers to
the Multi-level Image-based rendering system discussed in Section
2. The Image Error is the root-mean square error with respect to
the images rendered from the conventional polygonal rendering.
Dcmprs is the time for decompression. As can be seen, the Hybrid
method has consistently low image errors. Multi-level image-based
rendering has the highest image error amongst these methods, since
JPEG compression, image differences, and texture mapping all con-
tribute to the final image error. For the Hybrid method, all visible
triangles are stored in a bit vector and compressed by two steps:
run length encoding and Huffman compression. The decompres-
sion and rendering speeds are highly dependent on the displayed
frame size and the number of dumped triangles in that frame. The
rendering speed on the Submarine is much slower than other models

because we do the coloring for each rendered triangle. Without col-
oring, the Polygonal method has the average rendering speed about
�� � frames/sec and the Hybrid method is over �� frame/sec.

The traditional polygon rendering has the best quality amongst
all methods and least storage, but it has the lowest rendering speed.
The hybrid method which only renders visible triangles has very
good rendering speeds, but needs much more storage than tradi-
tional polygon rendering. Multi-level JPEG provides progressive
refinement and has the lowest rendering complexity, but needs a lot
of storage. Figure 2 shows the images displayed by these methods
on various models.

(a) Polygonal: 376,436 tris (b) Hybrid: 5,201 tris

(c) JPEG Level 0 (d) JPEG Level 2

Figure 2: Different Rendering Methods on the Submarine

Time and Speed
Model System Storage Dcmprs Render Speed Image

MB (msec) (msec) (fps) Error

Bunny
69K tris

P 1.54 0.0 61.3 16.39 0.0
H 12.35 10.8 81.7 10.79 2.02E-4
I ����� 83.6 28.2 8.94 2.66E-2

Submarine
376K tris

P 12.85 0.0 3549.0 0.28 0.0
H 13.32 11.1 118.1 7.73 7.29E-3
I 136.20 107.8 27.1 7.40 1.42E-1

EnoylCOA
Hydratase
717K tris

P 14.95 0.0 777.4 1.28 0.0
H 37.93 32.1 177.8 4.76 4.15E-4
I 88.86 108.6 28.9 7.26 2.69E-2

Dragon
871K tris

P 19.19 0.0 1306.9 0.76 0.0
H 104.98 87.8 223.45 3.10 4.82E-4
I 75.95 102.2 28.7 7.63 2.45E-3

Buddha
1087K tris

P 23.92 0.0 1638.3 0.61 0.0
H 86.56 69.4 191.9 3.82 5.14E-4
I 55.78 95.9 27.9 8.07 9.60E-2

Table 4: Comparison Results for Different Methods

5 Conclusions

In this paper we have presented a hybrid method as well as a pro-
gressive refinement image-difference-based rendering method for
high-complexity rendering. Our hybrid method takes advantage of
both conventional polygon-based rendering and image-based ren-
dering. The hybrid rendering method can provide rendering quality
comparable to the conventional polygonal rendering at a fraction
of the computational cost and has storage that is comparable to the
image-based rendering methods. The drawback is that it does not
permit full navigation capability to the user as in the conventional
polygonal method. However, it still retains several other useful fea-
tures of the polygonal methods such as direct querying to the un-
derlying database and ability to change illumination and material
properties. In future we plan to further explore compression issues
for the hybrid method by taking advantage of frame-to-frame co-
herence in image space and view-dependent geometric hierarchical
structures.

6 Acknowledgements

This work has been supported in part by the NSF grants: DMI-
9800690, ACR-9812572, and IIS-0081847.

References

[1] Daniel Cohen-Or and Eyal Zadicario. Visibility streaming for
network-based walkthroughs. In Graphics Interface, pages
1–7, June 1998.

[2] S. Coorg and S. Teller. Real time occlusion culling for models
with large occluders. In Proceedings of 1997 Simposium in
3D Interactive Graphics, pages 83–90, 1997.

[3] P. Debevec, C. Bregler, M. Cohen, L. McMillan, F. Sillion,
and R. Szeliski. SIGGRAPH 2000 Course 35: Image-based
Modeling, Rendering, and Lighting. ACM SIGGRAPH,
2000.

[4] Independent JPEG Group. ftp://ftp.uu.net/graphics/jpeg/.

[5] D. Luebke, J. Cohen, M. Reddy, A. Varshney, and B. Watson.
SIGGRAPH 2000 Course 41: Advanced Issues in Level of
Detail. ACM SIGGRAPH, 2000.

[6] M. Panne and A.J. Stewart. Effective compression techniques
for precomputed visibility. In Springer Computer Science,
Rendering Techniques ’99, pages 305–316, 1999.

[7] S. J. Teller and C. H. Sequin. Visibility preprocessing for
interactive walkthroughs. In Computer Graphics Proceed-
ings(SIGGRAPH 91), pages 61–69, 1991.

[8] Y. Wang, H. Bao, and Q. Peng. Accelerated walkthroughts
of virtual environments based on visibility preprocessing and
simplification. In Eurographics, pages 17(3): 187–194, 1998.

[9] R. Yagel and W. Ray. Visibility computation for efficient
walkthroughs of complex environments. In Presence, pages
5(1):45–60, 1995.

[10] H. Zhang, D. Manocha, T. Hudson, and K. Hoff. Visibility
culling using hierarchical occlusion maps. In Proceedings of
SIGGRAPH ’97 (Los Angeles, CA), Computer Graphics Proc-
cedings, Annual Conference Series, pages 77–88. ACM SIG-
GRAPH, ACM Press, August 1997.

������ �������	�
��� ��
���� ��
�������� ������

��
�� ���
 ���
�����

����� ��������� 	
��� �
 ���
������ ����� ��������� ��
��� ������� ���

�� ���������

� �������� 	�
��
�������� 	���������������� � ��������� ��������� 	���� ���������

� ������������ 	� ����������� � ������� 	���������������� � ��� �����!� 	� "��� ��

� �������� ����
 � ��������� ��������� 	���� ���������

��������

�� ���� ����	
 �� �	����� �� ����	����
� ������ ��	
����
��������� �� ��	�������������� �����	 ������ ��� ������
��� ���� �������� �� �	��	 �� �
�	���� ���� �� ���
�	������ ����� ��
�	� ��	��
����� ���� ����� ���
������� �������� �������� �� �Æ����� �����	���������
���� ��	����	� ����� �� � ���	����	�� ������ ��������
������� ��� ���� �� �� 	����	�� ��� �� �������
��� 	��
���� �
�	 �	��� ���� ��� ���	 �������	� ��	� �	������
 ��
��� ����� �� �����	 ����
����� �	 ������ ���������� ���
������ �����	�� ����	��� 	����	��� ����������
 ���� ��
�����	���� ������ ��� ��	��� ����� !����	��� "� !#�

� �	��
����

	

$���� 	����	������ ��� 	����	��� ���� ��	 � ���	����
�	�� ���� �	� �	���	������ �� ��� 	���������
 ����
 �� ���
������� �� ��� ���	����	�
 ���
 ����
 �� ��� ������� ��
��� ����	����� ����� ���� %��� � ���	����	�� ���� ��
��� ��	��
 ���� ������������� ��� �� ���� �� �	��	 ��
�	��� �� �� � ��	� ���������� ���� �	��	 ��
���������
���� &'
 (
)
 *
 +
 ((,�
�� ���� �����
 �� ��
�	� ������ �� ����� �������������

�������
���
 ����
 ���� �� � ��	���� �� ��� ������
 �	 ����
�� ��� �	������� �� ����	������ ����
������ ���� �	�����
�� ������� ������ ��������� ���	�
�	��
-��� �������������
 ����
�	
 �� ��� ��������������

�� �� ��	��	��� �� ����� . ��	� 	����� ���	���� ����
����� �� ���������� ��� ������������� ����� �	�� ���
�������
� 	�������� ������ ���� ��� ��� �� �����	����
������ ������
 ����� ��
� ���� ��
������ �� ��� ����
����������� ���� ��	 �	������ ������ "���
 ����
 � ��	�

�� �� &/,#� 0��������
 ���� ������ ������ ��� �������
������� ����� �� � ��	���� �	��	
 �	�� ����� �
�	���
���� ���������� ��� �� ������ �� ����	��� 1�
��� 2� ���
���� "12��# ��� �� ���	�����
 ����� �� �Æ����� �	���
�	�
�	��� ��	��������
3�	�
 �� �	����� �
�����
������������ ������

������ ���� "�����
���� �	������ 4#
 ����� �� ����� ��
� �����	��������� ����� ����� ����������� ��	 ��� ��	��
����������� ���� ��� ����� �	������ �� &5
 6,
 ������ ���
����������������	 "-�#�

���� �������� 	���
 �� ��
���� ����� ����� ��	��

������ �����������������	��

���� �����!���� "�� ���#� $�!�%�� ��	��
 ������

����
������

���������������������

���� �������� 	���
 �� ��
���� ����� ����� ��	��

������ 	���	
�������������������	��

���� �������� �����	��������� ��� ���� ��	 	�������
���� ���������� �����	���
 ��� ���� ��	
�	���� ��� 	���
������� ��	���� ���� ������� $������
� 	�������� ���
�� ����� �����	 �� ��� ��
��� �� ��� �����	����� �� ��
	����	��
 �	 �� � ������� �������� ������ ��� �������
����� �����	�� ����� ��� ���	 �� ����� �� ����� �	���
���� �	� �������	�� ��	� �	�������
2�� �� ��� ��7�	 ��7����
�� �� ���� �� �� ������ � ���

���� 89 ������	� �� ��	��	� ����� ���:� ���� �	� �����
���� ��� 	���� �� ��	� ������ �	������ ��	:��������� %�
������ � 89 �	��������	� �������� ���� /(4-0 !.-
��� � �	������ ���	� ��
��� � ��������� ��	�������
�� ����� �� (- ������ �	�������;���� %� �������	 ��
����������� ����� ������� �������� ����� �� � ������

����� ����
�������	 �� ��� '� �����
 ���� �����	 ����
���������� ���� ��� ���� ������	�
 ��� �����	�� ��	���

����� !����	��� "� !#
 �����	���� ������ ��� �	����
����� 	����	��� �� � 	��������� ���	�� �� ����	����
��� "(<
���#� =���	 ��� ���
� �����������
 � ������	�
�����

������������ ������ ����� ���� ��	: ���� � ���� ���
��������� �����	 '/<>
�	����� ���� ����� �����	����
	����	���
 �	 '>
�	����� ���� ����� � ! "��� &4, ��	
�������#� 2� ��� ����	�	�
 ���� ��� ������ ������ ��
�� �� (4-
�	����� �� ����� ���	��	�
�� �������
� 	�����
���� �	��	 ��
������������� . ��	� �������� ����	���
����
 �	�������� ���� ��� ����	����� ���� ��	����	� ���
��� �������
� 	�������� ���������� �� ����� ���� ��
�����
 ��� �� ����� �� &4,�

� ��� ���� ������

��� �	��������	� �� ��� ���� "���	����	� .������	 4#
������ ��� ���� �������� �� �
�	���� ���� �� ��� �	���
���� �	����� ����	����
�
����������
�	� ��	��
�����
���� ����� ��� �������� ������� �� ���� �� ����� �� �
�����	��������� ��	����	� ���� ����	���� ��� ����� ����
��� �� �� �������� ���
�	� ������� ���
 ��� �����	��
�������
� 	�������� �Æ������� &4,� ?	�� ���� ��	����	�

������	 ������� �� ���� �	� ���	����� ��� 	����	��� ���
������ �� ���� ���	����� ��	 	����	��� ��� ����	 ��
��
�� 	��������� "��������
�	����� �
�	 ��� ������# �	� ���
������ �� ���� � ��� �� ��
� ��� ��	���� ���� ���� ��� ��
	����	�� ����	 ��� ��
�� ���� ��� 	����	�� �����	������
��� ������ ��� ���� ����������� �� 9@@ ��� 	���
����	 ���� %������ ��� 1�����
���� ������ �	�
���� ����
������������ ��	���� ����

��	�����
 �	��� �������� ��� ��	��� ����� !����	���
"� !# �� �	����
 �	 �������� ���� �� �����	���� 	���
��	��� ����
 ��� �	 ��	� �����	����� ��� �� ���������

�� � ����� ���� ���	�
���� ��
 �� �
������ �� �
����	��
�
����� ������
 �
�
�� ���� ���	�� ��� ��� ��� ��������
������� �� ����� �
 � �����������
� �
� � ����������

�� ����������
 ��

� !"# !$%�

&
 �

 ��
����
� ����
����� �����	������# ����� �
�
��
�
� ����# �������
�� ���������� �	�� �� ��
��� �
�
���
�����
�� ��
	�� ��� �������
�� �� ���
� �� � 	����
��'
�� �������� ���	
��� ����� ��� ���
���� �	
����

��'
�� ��('�
� ��
	�� ��� ������ �
�� ��
�� �
� ���
��
����
�� ��
	�� ���� (�

 �� 	��� �
 ��
����
�� ��� ��
�� ��'
�� �
 ����� �� �)*+ �����
�
�� ����	��
�
���
�
�����
����
 �� ��� �)*+ ��
	�� �����'�� �� ��� 	���
�� � '
��� ��� �� '�
� ��
	��� ��� ������ ��
���
� �
���	�
 �
��������� ���
 ��� �����
� ���
���� �	
����
� ����
���	�� $��

��� ���� �� �	�
���
��	
��� ��
���
�� ��

��

,����
 ��� ������# � �������
��
�������
��� ��
�
�
��	
���# ��� -	
��������
����
 �-��# �� ���
���
��#
(���� ��������� ��� (��
� ���� ��� �
 �
 ���
���� (���
���� ���� ���	��	�� ��.	���� �

� ���	� �/� ����� ���
�����
� � ����
 ����
� � �������� �� ��� ������� ����
	�
���
�
� ��� �	������
� �

 �	
������
	���
 ��������
��
&
 $%# (� ���(���� ��� -� ��� � ����������
 ������
�� ���	� / (��� ������� �� �����
� 0	�� ��� ���� �� ���
��1��	� ����
	���
 (��� � ���
���� ���� ���	��	���

��� ��� �	����� �� ��
����
�# � 	�����

��� �� ������#
(���� �� ��
�����

� �1������� ���� ��� -� �� ��
����
�
� 0	�� � �	���� �� ��� ����� ��
����
� �� ���������
����� �
 ��� �	���
� ����� ��� �	���
� ���� ��� �
�	����
� ���� �� �� ��
����� (��� ��� ����
��
� ������
�
� (��� �
 �
��������� ����� ����# ����
��
� �
 ���
�	���
� ���(�
� ����
���� ��� ����
	���
 �� ��� �	���
�
���� �� ������ 	
����� �� ������
� ���� ��� �����
�
�
�� �����
 ����� �
 ��� �	���
� ���(�
� ���������� ��
�� �� ������� ��� ������� ������
� .	�
��� �� ����
����
������ (����
 ��� ���� ��
�����
��� &
 ������	
��# ���
������ �	������ ��� ��

�(�
� 	��� �� �	
������
	���
2

� ������
 ���2 ��� ����
	���
 �� ��� �	���
� ����
	��� �
 ��
����
� �� 	
����� ���� ��� �����
 �����
�
 �
 �����1������
 ����� �������
� �����'�� ��
��� 	����

� �������� ��� ����� �� ���
��� ��	�
��� ��
�� ���

���2 ��� 	��� �����'�� ���� �
 ����� �������
�
�
� � ���	� ��
	��# ����# �
 �1����
��
�� ��1� ���
���	� ��
	�� �� 	��� �� � ���� �� �� ���
����
�
�
��� �
 ����� �� �1�
��� � ������� �� �
������
�
����
	���
 �

�
���

��

� �������� ��� ����� �� ���� �����2 ��� �	���
�
���� �����'�� ��� ����� �������
� �����'�� �� ���
	��� 0	�� �
 ���1����� �� ��� ����	����� ��
	�� �	��
��
�
� ��
�����# (��
� ��� ����
	���
 �� ��� ���� �

����� ���� ��
�� ��
���
 �	�� ��
	�� �� ��������

���� ������� �� �
�	� ������ � �
��
 ����������
 ����
�� � -	
��������
����
� ��� ��
���	����
 �� ��� -	
���
�����
����
 �� ��������� �3�
�
� �� �
 �
����
��
� ���
�
������
� (� 	�� � ����
�'�����
 ���� ����� �
 ����
��

���� ��������� �
 !%�

���	�� !2 ��� ���������	�� �� ��� ���� �������

� ������ ��	
���	����

��� ���������	�� �� ��� ���� ������ �� �������� �
 ����
	�� ! �
� ��
����� �� ��1 ���	
�� (���� ��� ���������
�
 ��� ��

�(�
� ����������� ��� ��� ������� �� ���
���
���
� ��� ��
����
� �

)4&���
���� ����� �� ��� ����
��� �
�������# ��
���
� 	��� �
��������
�
� '
����
�
�

 	��� �
�	�� ������ �����
� ���� �� ����� ���	
���

��� �
������� �� ����# ���(
 �
 ���	�� $# ��
�����
�� �
� ���
 (�
��(�	�������� �
�� �(� �����
�� ���
���� ������ ��
 ���
���� �� ������� �� ��� ���	�
������

�� ��� �������� ��� �� ���
� ���	�
���� �
 ��� ���(���
���
 �� ��
���� �� ��� ��������� ������� ��� ��������
���	
��� ������ ��
 ��� ������ ����� �
 �

������� 	
��
'��)4& �����(��5 ��� ��� �
��������� �����
� �� ���
�	���
� ��# ��� ��
�����
 �� ����	����� �������
��# �
�
��� ��
�����
 �� ��� ����� �������
� ��� ���� �1�������

���� ��� -��

��� �������� ���	
��� ������ ��
���
� � ���	�
 ������
�� �
���������
� �����
 �� ������ ��� �	���
� ��# �� ���
	� ��� ���������� ��� ��� ��
�����
 �� ����	������ �
�
��� ��� �1�������
 �� ��� �	���
� ���� ���� ��� -��
6��
��� �� ������ ��� ��# �� ��� ����	����� ��
	��# ��
��� ����� �������
�# ��� ��
���� �� ��� �������� ���	�

��� ������� (��� ��� ��
� �� ��� ���
�������
��� ���
���� �
� �� ��� �����
 ����� ��������
��� 	���
��� �
������ ������� ��

���� �

 ������
����� ��� �� ��� 	���# (���� ��� ��
���� �� ��� �	���
�
��# �� ��� �	���
� ����	����� ��
	��# �
� �� ��� �	���
�
����� �������
�� ��� ���
���� �	
����
 -�
���� ����
�� � '
��� ���� ��������� ��� 	��� �����'�����
� �� ���
����������� ���	
�� (���� ��
�
� �����
��� �
�����
��
���� ������ �� �����
 �� �
������
����
� ��
��	
���
� ������ ��� ��
�
� �� ��� �	���
�
����� �������
� �
 ��� ���
���� �	
����
 �����
 �� ���
)4&# �� ���
�������
�� �� (����� �������� �� ��
���
��� ������
 ���	� �����
� ��� !�" ������� ����	�

������ �
� ���
��� �� ��� �������� ���	
��� �������#
(���� �
 �	�
 �
��5�� ������
�������
��� ������� *����
�
 ���
�(����� �������
�# ��� ���
�������
��� ������
�1������ �
�(���� ���� ��� -� �
� ��
�� �� �� ���
 �����
 ����� ��������

��� ������� ����	 �
�
��� �� ������� �� ��� 	
��

�	��� �� ��� ������� 	����
 ���
	��
��� 	����
���
����
����
� 	��� ��
� ������ ��� 	����
� ����
����
���	 ��� ��� �������� ���� �
�
 ������ �� �
����� ���
��
���
���� 	��
������ ����� �������
���� ������� ����� ��
����� ������ �� 	
���
��� ��� ��������������� 	�����
��� �
�
���
�� ������ ��	 ���� ��� �������
��� ��
��		
�� �� ��� 	���
��� �
������ �������� �� ���
����� �������� ��������
 ��� ��!����� �� ��� ��� ����
����� ����� � �
��� ����
�� 	�����
�� 	
���
���� ��
��� �
����� ����� ��������
��� ��������� ������ �����	� ��������
 ������ ��
�������
���� �� �������� �� ��� �
�
 ��� � ������� �����
�
"#$��
%� ��� ��
	 �� �� &�
��� '�
 ������	 ���������� 	���

�
� ���� ����
���� ���� ������ �����
 ����� ���������
�� ��� ��� �������� ���� ��� 	�������������� ����
�����
�
������
�� ����� ��(����� �������
���
�� �����
��
�������� ������� �����
 �� ��� ����� �������
�� �
�����
������ ��
����� ���� ��� 	��� �����
�� ����
���

� �������

%� ���� �������� �� ���� �	

��
�� �����	
��� ��
����
���� ���
���� ���	 ��� ���� �����	 �� ��� �������
�	
�� �
�
��� �)*+�,-. ��������� .,+�.,+ ����
����
��

 ���������
� 	��� �������� �� /#0 %��� �����
����
��
���� �� 1�2� 0�

���� ������� 3�
�� ��
 �
���� �
�
�
�
�
���� ����������� ����
����
 	
�� ��
����
�� �����
������ �
���
 ���� ����	��� %� ����
��� 4)�-'* �����
��
������ /� ����	
�� �� ���
���

� ���� �� ��� �������
���
����� �� ���� �
�
 ��� �
� ���� ��	 ���� �� ����������

���� ���� �
���� �!�
��� ����������� �� ��� �
�
��� ����
�
�
�� ��� ����	
���
���

� ���� ��
���� ,*5 �
��� ��
�������
���
������
� ������	 ���������� �
�� ���� ����
����

���	 ��� 	�������������� �� ������
���� �� ��� �������
�
�
���
�������
 ��
 �����
�� ����� ���������� ���
����� �� ���� 	�����
�� �� ����� �� �
���)� �����
��� ����� �
��� �� 	�
�����
�
 ������

� �� ��� ����
�
�
�� �
���) ����
���
��� ������� �� �������
��
����
�
���� ���	 �������� ��� 	����� ����������� �� ��� �
���
�� ��� ���� �
���� ��� �
��� �� ��� ���������� �������
��� ���� �� 	��� ����
����� �� 6 *�� *�)
��)�*�
��
	�
�����
� ������

�� �� ��� �
�
��� ���� �
�
�7 ���
������ �����
 	��� �����
��
��� �� ������ %� �
� �� ��
����� ��
� �� ��� �
�
��� ����
���
� �������
�� �����
����������
 �
�
� ��	��� �� 	��� ������ ���� ��� ����
��� �����
 �������� ��� �
���� �� ���� �������� /�
��
	 �� �� ������� �� ��� �������� ��� 	��� ������
� �����
 �� ���
����� �������
�� �� �
���)+*�'8
�� ��

� ����� � 6 *� ���� �
���)�� %� ���� �
��� ��� 9���� ���
��
 ������
���
�� ��

������ ��������
��� �������

����� �
� �	 ���� �
�
 ��������� �

��������� :����
����� ��� ����
��
���� ���������
���� �� 6 *�� �������
�
��6)+*�'8� �� ���
��
 �������� ��� 	��� ��	 ����
�� 4,;5 ������ �� �
� �
���� ������
 �� ������
���� ��
�	
���� ���� ��� ��� �
�
� �� 8*5 ������ �� �������
 ��

 ��	
�� �������	�� ��� 	�������������� ����
�����
��	� �� ��
����
� ��
��� �����
������
&��
���� �	

�� �� ��������
 ��� ����� ��� ��������

	��
������
�� �� &�
���� ;
�� .� %� ��� ���� ���� ��
����
 ����� �
�� ����
���� ����

 �������� ��� �4*�
����� ��� �� ��� ���
��
� .,+�� �����
 ���������� �����

��������� � 6 '<� %� ��� �
����� �� ����
 ������ "#$
�	

� �����
�
��� �������
��� ��� "#$� �� ��� �
	�
�������� ����

� �	
�����	
�

��� ���� �����	 �� ���� ��������
 �� �
�
���� ��
�

��
���� ��� ��	�� �
�
�� ��
� ����� ��
� ����� �� ��
	�	��� ����
 ��
������
� �����	�
�� ���	 ;* �� 4***
��	�� �
�
�� ��
� ����� ��
� ����� �� ����
����� ������

������� ��� �����
 �� ������� ��
�� ����
 �������
��
��������
 �� "#$��
�� ��� �������
�� ���� �� ��� ���� 	��������������

����	� ����
���
���� �����	
��� �� ��
� ���� ����
��
�
�
�
����
�� ���������� ��	
��� �Æ��������

��
���
���

��� �� ����	��
 �� �	�
����
 �� �	�
���
 �� �	������
 ���

�� ��	����	� ���������
�	� 	�
�
�������� �	���� ��
� ��

����
� ���	� ������
�	�� !� ����������	
��� ��	
���������

����
 ���� �� ������ "�� �����
 #�
	$�� % �& '(((�

�'� �� ����	��
)� �� *�	�����
 �� ������	
 +� ����	
 ���

�� ��	����	� ���� ���������
�	� 	� ����� ��������� �	����

��
���
�� ,�������� ���	�
 �!�! ,� (((%
 �!�!
 -�����

��
. 	� /��	�� 0!
��.1
 '(((� 0��$��

�� �����1�

�&� �� ����	��
)� �� *�	�����
 �� �	�
���
 +� ����	
 ���

�� ��	����	� ���
����	��
�	� �	������ ��� ��������� 	�

�	���� ��
� $���� 	� ���������� �	����2��� !� ����������	

���� �����	�
� �� ���
�� ��	
���������
 ����� �34'5�

"�� �����
 #�
	$�� �% �6 �337�

�7�)� �� *�	�����
 �� ������	
 ��� +� ����	� 8������� ���

��������� � ������� �
 �����$�� ���	��
�	�� !� ��������

���	
��� ��	
��������� ��
 ����� �(&4��(
 ��	���2
 "9

0-�"1
 #�
	$�� �33%�

�:� �� /������� ���
����	��
�	� �	������; �����. < ��
���

	��	�
���
���� !� �
���������	 ��� � ����� � ��� !�� "��

����	
 ����� ���4�&�
 �333�

�5� ��=� /�	�� ��� #�/� �
���
� ��	��������
�
�����������

�	��� !� ����������	
��� ��	
�����������#
 ����� &3%4

7('
 �������� ,������� ���>
 ?�
 �336� !+++ �	��� �	��

������

�%� �� /�	��	 ��� /� /������� =����������� ������ �	� �	����

��
�� !� ����������	 $%
��#
 =���	���
 /�����.
 @���

'' '5 �336�

�6� @� �	�	��� ��� =� =	���� ��	�������� ���������� �	����2���

!� !$& $���
��� %������	 ����������	' !��
�� $�� ���

���� �����	' (�
%%"!�) ���*
 ����� '�%4''7
 �33%�

�3� +� ����	� A����$�� ���	��
�	�
������ ��������� !� ����

�������	 ����� $������� $�� ������ �� $���
��������

%�������
 ����� '('4'�(
 #

���
 ������
 "����
 �' �:

�335�

��(� �� ������. ��� "� ,������� " �	�.�	��� ����	2���
�	�
	

�����
 ������ �	���� ���������� $���
��� %������	 (���

+���� ,��-	��� �� ���
�� ��	
���������*
 '70:1;5&4%(

?	���$�� �33(�

���� !�@� ,�	

�
 8� =�����
 ��� B�!� @	.� ���������
�	� 	�

�
�������� ������ ��
� ���	� $	�����
��� .���	������	

�� ��	
��������� ��� $���
��� %������	
 :0&1;''74'&%

�333�

��'� ��)� C�������� A���$���
. 	������� 	� ������ �	�.������

!$& .���	������ �� %������	
 ��0'1;�(&4�'5
 "���� �33'�

�������

�������� �����	
��� ��
��� 	������ �����	
��� ��
���
����	����� �
�
�� ����	��� �
�
�� ����	��� �
�
�� ����	��� �

�������
 ���� ���� ���� � �� ���
 �����
������ �� ������� ������ ��� �� ���� ������ �� ����� ������ ��� ����� �
������ �� ������ � ����� ��� ������ ������ �� ��� � � ���� ��� �������
������ �� ������� ������ ��� ������� ������ �� ���� � ��� � ��� � �� �
������ �� ������� ����� ��� ����� ����� �� ������ ����� ��� ������
������ �� ������� ����� ��� ����� ����� �� ��� �� ��� � ���� ������

����� �� ���	�
� ��
�����
��
 ����	������
���	
�
�� ��
���
��� �� ������ �
 �������� �����	
��� ����
�� �	��

������	
��� ��������
�
��� ��
�� �	����� ��
���
� ��� ����� �� ����	��� �� � ������
�
� ��
�� ���� ���
�� ���
������� ��
�� �	����
 �����
�� ����	������ ��
 �� � � ��
�
������� ���
���	
��

�
�� ����	����� ������ ��� ����� ��
�
���
�
��������� ���

 � ���	��� ��� ��!�� �� ������ �
 ���	
�� �����	
��� ��
���
�� ����
�� �	�
������	
���
��������
�
��� ��
�� �	����� ��
���
�

"�
	�� #� ��� ���� ���� ��
�� ���� ���
���
��� ����	������ ��� � ��$� ���� ����	
�� �� � ����
	
��
������ ����
�����
 �%&'
�
�������� ��
���
��
����
�� �	�
������	
��� ��������
�
��� ��
�� �	�����
��
���
�

"�
	�� &� (� ���
� �� � �	����� ��������
�� �)*+
������ � , #-� �
� � ����� ������

"�
	��)� (� ���
� �� � �	����� ��������
�� ����
�./+ ������ ��
���
�� 	���� ���������
��� ����� � ,
��- ��
�� ��
����� ��
�� ���	� ��
���� ��� �����
� , �*- ��
�� ��
����� �������

"�
	�� /� (� ������ 01� ���
�
��
�� ����	������ ��	�
01�� ���
� �� � �	����� ��������
�� �)*+ ������ � ,
#-� �� ��� ��

Dataflow and Remapping for Wavelet Compression and Realtime
View-Dependent Optimization of Billion-Triangle Isosurfaces

Mark A. Duchaineau� Serban D. Porumbescu��� Martin Bertram� Bernd Hamann� Kenneth I. Joy�

Figure 1: Shrink-wrap result for ��% of a terascale-simulation surface. This conversion from irregular mesh to a semi-regular form enables
wavelet compression and view-dependent optimization.

Abstract

Currently, large physics simulations produce 3D fields whose in-
dividual surfaces, after conventional extraction processes, contain
upwards of hundreds of millions of triangles. Detailed interactive
viewing of these surfaces requires powerful compression to mini-
mize storage, and fast view-dependent optimization of display tri-
angulations to drive high-performance graphics hardware. In this
work we provide an overview of an end-to-end multiresolution
dataflow strategy whose goal is to increase efficiencies in prac-
tice by several orders of magnitude. Given recent advancements
in subdivision-surface wavelet compression and view-dependent
optimization, we present algorithms here that provide the “glue”
that makes this strategy hold together. Shrink-wrapping converts
highly detailed unstructured surfaces of arbitrary topology to the
semi-structured form needed for wavelet compression. Remapping
to triangle bintrees minimizes disturbing “pops” during realtime
display-triangulation optimization and provides effective selective-
transmission compression for out-of-core and remote access to
these huge surfaces.

1 Background

Terascale physics simulations are now producing tens of terabytes
of output for a several-day run on the largest computer systems.

1Center for Applied Scientific Computing (CASC), Lawrence Livermore
National Laboratory, P.O. Box 808, L-561, Livermore, CA 94551, USA,
duchaineau1@llnl.gov

2AG Computergraphik und Computergeometrie, Universitt
Kaiserslautern, Postfach 3049, D-67653 Kaiserslautern, Germany,
bertram@informatik.uni-kl.de

3Center for Image Processing and Integrated Computing (CIPIC),
Department of Computer Science, University of California at Davis,
Davis, CA 95616-8562, USA, fhamann,joyg@cs.ucdavis.edu

An example: the Gordon Bell Prize-winning simulation of a
Richtmyer-Meshkov instability in a shock-tube experiment [5] pro-
duced isosurfaces of the mixing interface with 460 million unstruc-
tured triangles using conventional extraction methods. New paral-
lel systems are three times as large as when this run took place,
so billion-triangle surfaces are to be expected shortly. Since we
are interested in interaction, especially sliding through time, sur-
faces are precomputed (if they were not, the 100 kilotriangle-per-
processor rates for the fastest isosurface extractors would result in
several minutes per surface on 25 processors). Using 32-bit val-
ues for coordinates, normals and indices requires 16 gigabytes for
a single surface, and several terabytes for a single surface tracking
through all 274 time steps of the simulation. This already exceeds
the compressed storage of the 3D fields from which the surfaces
are derived, and adding additional isolevels or fields per time step
would make this approach infeasible. With the gigabyte-per-second
read rates of current RAID storage, it would take 16 seconds to read
a single surface. A factor of 100 compression with no perceptible
loss would cleanly solve both the storage and load-rate issues. This
may be possible with new bicubic subdivision-surface wavelets [1].

Another bottleneck occurs with high-performance graphics hard-
ware. The fastest commercial systems as of this writing can ef-
fectively draw around 20 million triangles per second, i.e. around
1 million triangles per frame at 20 frames per second. Thus almost a
thousand-fold reduction in triangle count is needed. This level of re-
duction is too aggressive to be done without taking the interactively-
changing viewpoint into account. As the scientist moves close to a
feature of interest, that feature should immediately and seamlessly
be fully resolved while staying within the interactive triangle bud-
get. This can be formulated as the optimization of an adaptive tri-
angulation of the surface to minimize a view-dependent error mea-
sure such as the projected geometric distortion on the screen. Since
the viewpoint changes 20 times per second, and the error measure
changes with the viewpoint, the million-element adaptation must be
re-optimized continuously and quickly. The fastest theoretic time

Figure 2: Shrink wrapping steps (left to right): the full-resolution isosurface, the base mesh constructed from edge collapses, and the final
shrink-wrap with subdivision-surface connectivity.

that any algorithm can perform this optimization is O��output�,
an amount of time proportional to the number of element changes
in the adaptation per frame. The ROAM algorithm achieves this op-
timal time using adaptations built from triangle bintrees [3]. With
this approach in a flight-simulation example, around 3% of the ele-
ments change per frame, resulting in a thirty-times speedup in op-
timization rates. This is critically important since the bottleneck
in fine-grained optimizers is processing time rather than graphics
hardware rates.

The wavelet compression and view-dependent optimization are
two powerful tools that are part of the larger dataflow from 3D sim-
ulation to interactive rendering. These are by no means the only
challenging components of a terascale visualization system. For
example, conversion is required to turn irregular extracted surfaces
into a form appropriate for further processing (see Figure 1). Be-
fore turning to our focus on the two surface-remapping steps that tie
together the overall dataflow, we give an overview of the complete
data pipeline for surface interaction.

2 End-to-End Multiresolution Dataflow

The processing steps required to go from massive 3D field data to
the interactively-changing optimal triangulations sent to graphics
hardware involve six steps:

Extract: get unstructured triangles through accelerated isosurface
extraction methods or through material-boundary extraction
from volume-fraction data [2].

Shrink-wrap: convert the high-resolution unstructured triangula-
tion to a similarly detailed surface that has subdivision-surface
connectivity (i.e. is semi-regular), has high parametric qual-
ity, and minimizes the number of structured blocks. This uses
three phases: (1) compute the signed-distance transform of
the surface, (2) simplify the surface to a base mesh, and (3)
iteratively subdivide, smooth and snap the new mesh to the
fine-resolution surface until a specified tolerance is met.

Wavelet compress: for texture storage, geometry archiving, and
initial transmission from the massively-parallel code runs, use
high-order wavelets based on subdivision surfaces for nearly-
lossless compression.

Triangle bintree re-map: re-map the shink-wrap parameter-
ization to be optimal for subsequent view-dependent op-
timization (this is different than being optimal for high-
quality wavelet compression). This involves piecewise-linear

“wavelets” without any vanishing moments, but where most
wavelet coefficients can be a single scalar value in a derived
normal direction, and where highly localized changes are sup-
ported during selective refinement.

Selective Decompress: asynchronously feed a trickle of com-
pressed detail where the view-dependent adaptation is most
likely to find missing values during selective refinement in the
near future. This trickle can be efficiently stored in chunks for
efficient I/O or network transmission.

Display-list optimization: perform the realtime optimization of
the display-list adaptive triangulation each frame, making
maximal use of frame-to-frame coherence to accelerate frus-
tum culling, element priority computation, and local refine-
ment and coarsening to achieve the optimum per-view geom-
etry.

The six processing steps occur in the order listed for terascale
surface visualization. The first three steps—extraction, shrink-wrap
and wavelet compress—typically occur in batch mode either as a
co-process of the massively parallel physics simulation, or in a sub-
sequent parallel post-processing phase. Given the selective access
during interaction, and given the already existing wavelet hierarchy,
the remapping for ROAM interaction can happen on demand given
modest parallel resources. Because the ROAM remapping works in
time O�output� in a coarse-to-fine progression, the amount of com-
putation per minute of interaction is independent of the size of the
physics grid or the fine-resolution surfaces. The ROAM remapper
is envisioned as a runtime data service residing on a small farm of
processors and disks, that reads, remaps and feeds a highly compact
data stream on demand to the client ROAM display-list optimizer.
This server-to-client link could be across the campus LAN or over
high-speed WAN to provide remote access. the ROAM algorithm
works at high speed per frame to optimize the display triangulation,
and thus will reside proximate to the graphics hardware.

The remainder of this paper focuses on the two remapping steps
in this dataflow. The first prepares a surface for wavelet compres-
sion, the second for ROAM triangle bintree optimization.

3 Shrink-Wrapping Large Isosurfaces

Before subdivision-surface wavelet compression can be applied to
an isosurface, it must be re-mapped to a mesh with subdivision-
surface connectivity. Minimizing the number of base-mesh ele-
ments increases the number of levels in the wavelet transform, thus

Figure 3: Before (left) and after the remapping for triangle bintree hierarchies. Tangential motion during subdivision is eliminated.

increasing the potential for compression. Because of the extreme
size of the surfaces encountered, and the large number of them,
the re-mapper must be fast, work in parallel, and be entirely auto-
mated. The compression using wavelets is improved by generating
high-quality meshes during the re-map. For this, highly smooth
and non-skewed parameterizations result in the smallest wavelet
coefficient magnitudes, yielding small outputs after entropy cod-
ing. In addition, we would like to allow the new mesh to optionally
have simplified topology, akin to actual physical shrink-wrapping
of complex 3D objects with a few connected sheets of plastic.

The algorithm we propose for this shrink-wrapping is an elab-
oration of the method described in [1]. That method was used to
demonstrate wavelet transforms of complex isosurfaces in a non-
parallel, topology-preserving setting. The algorithm takes as input
a scalar field on a 3D mesh and an isolevel, and provides a sur-
face mesh with subdivision-surface connectivity as output, i.e. a
collection of logically-square patches of size ��n � �� � ��n � ��
connected on mutual edges. The algorithm at the high level is orga-
nized in three steps:

Signed distance transform: for each grid point in the 3D mesh,
compute the signed-distance field, i.e. the distance to the clos-
est surface point, negated if in the region of scalar field less
than the isolevel. Starting with the vertices of the 3D mesh el-
ements containing isosurface, the transform is computed us-
ing a kind of breadth-first propagation. Data parallelism is
readily achieved by queueing up the propagating values on the
boundary of a subdomain, and communicating to the block-
face neighbor when no further local propagation is possible.

Determine base mesh: To preserve topology, edge-collapse sim-
plification is used on the full-resolution isosurface extracted
from the distance field using conventional techniques. This
is followed by an edge-removal phase (edges but not vertices
are deleted) that improves the vertex and face degrees to be as
close to four as possible. Parallelism for this mode of simplifi-
cation is problematic, since edge-collapse methods are inher-
ently serial using a single priority queue to order the collapses.

To allow topology reduction, the 3D distance field is sim-
plified before the isosurface is extracted. Simplification can
be performed by using wavelet low-pass filtering on regular
grids, or after resampling to a regular grid for curvilinear or
unstructured 3D meshes. The use of the signed-distance field
improves the simplified-surface quality compared to working
directly from the original scalar field. To achieve the analog
of physical shrink-wrapping, a max operation can be used in
place of the wavelet filtering. This form of simplification is
easily parallelized in a distributed setting.

Subdivide and fit: The base mesh is iteratively fit and the pa-
rameterization optimized by repeating three phases: (1) sub-
divide using Catmull-Clark rules, (2) perform edge-length-
weighted Laplacian smoothing, and (3) snap the mesh vertices

onto the original full-resolution surface with the help of the
signed-distance field. Snapping involves a hunt for the near-
est fine-resolution surface position that lies on a line passing
through the mesh point in an estimated normal direction of
the shrink-wrap mesh. The estimated normal is used, instead
of e.g. the distance-field gradient, to help spread the shrink-
wrap vertices evenly over high-curvature regions. The signed-
distance field is used to provide Newton-Raphson-iteration
convergence when the snap hunt is close to the original sur-
face, and to eliminate nearest-position candidates whose gra-
dients are not facing in the directional hemisphere centered
on the estimated normal. Steps 2-3 may be repeated sev-
eral times after each subdivision step to improve the quality
of the parameterization and fit. In the case of topology sim-
plification, portions of surface with no appropriate snap target
are left at their minimal-energy position determined by the
smoothing and the boundary conditions of those points that
do snap. Distributed computation is straightforward since all
operations are local and independent for a given level of reso-
lution.

The shrink-wrap process is depicted in Figure 2 for approxi-
mately ����% of the 460 million-triangle Richtmyer-Meshkov mix-
ing interface in topology-preserving mode. The original isosurface
fragment contains 37,335 vertices, the base mesh 93 vertices, and
the shrink-wrap result 75,777 vertices.

4 Re-Mapping for ROAM

The Realtime Optimally Adapting Meshes (ROAM) algorithm typ-
ically exploits a piecewise block-structured surface grid to provide
efficient selective refinement for view-dependent optimization. A
triangle bintree structure is used. This consists of a hierarchy of log-
ically right-iscoceles triangles, paired across common base edges at
a uniform level of subdivision. A simple split operation bisects the
common base edge of such a pair, turning the two right-isosceles tri-
angles into four. Merging reverses this operation. This is depicted
in Figure 3.

The shrink-wrapping process that we have described produces
meshes that are technically in this form, but cause large tangential
motions of the mapping during refinement even in regions of flat
geometry. To correct for this, we have devised a new remapping al-
gorithm that eliminates tangential motion altogether whenever pos-
sible during ROAM refinement, but never causes the mapping to
become degenerate or ill-defined. In effect, the surface is defined
by a series of neighborhood height (normal) maps, allowing details
to be stored with a single scalar rather than a 3-component dis-
placement vector. Our method is similar to the independent work
of Guskov et al. [4], differing primarily in the driving goal (effi-
cient view-dependent optimization with crude wavelet compression
in our case) and the details of mesh structure, subdivision scheme
supported, intersection acceleration an so on.

split

merge

T

TB

TL TR

T� T�

TB�TB�

Figure 4: Split and merge operations on a bintree triangulation. A
typical neighborhood is shown for triangle T on the left.

The normal-remapping works from coarse to fine resolutions,
remapping a complete uniform level of the hierarchy at once. The
vertices of the base mesh are left fixed at their original positions.
For every edge-bisection vertex formed in one subdivision step, es-
timated normals are computed by averaging the normals to the two
triangles whose common edge is being bisected. For every ver-
tex that has been remapped, its patch and parameter coordinates in
the original map are kept. During edge bisection, the parametric
midpoint is computed by topologically gluing at most two patches
together from the original mesh, computing the mid-parameter val-
ues in this glued space, then converting those parameters back to
unglued parameters. Given the constraints on our procedure, it is
not possible for bisecting-edge endpoints to cross more than one
patch boundary. A ray-trace intersection is performed from the
midpoint of the line segment being bisected, in the estimated nor-
mal direction. Since we expect the intersection to be near the para-
metric midpoint in most cases, it is efficient to begin the ray in-
tersection tests there for early candidates. Since the surface be-
ing ray-traced stays fixed throughout the remapping, the construc-
tion of typical ray-surface intersection-acceleration structures can
be amortized and overall offer time savings (reducing the time from
O�N log�N�� to O�N� for N mesh vertices). Interval-Newton and
finally Newton-Raphson iterations can be performed for the final
precise intersection evaluation. Intersections are rejected if they are
not within a parametric window defined by the four remapped ver-
tices of the two triangles being split, shrunk by some factor (e.g. ��)
around the parametric midpoint. The closest acceptable intersection
is chosen. If none exist or are acceptable, the parametric midpoint
is chosen.

The result of remapping is shown in Figure 4 for a test object
produced by Catmull-Clark subdivision with semi-sharp features.
The original parameterization on the left is optimal for compres-
sion by bicubic subdivision-surface wavelets, but produces extreme
and unnecessary tangential motions during triangle-bintree refine-
ment. The remapped surface, shown on the right, has bisection-
midpoint displacements (“poor man’s wavelets”) of length zero in
the flat regions of the disk, and displacements of minimized length
elsewhere. We note that while the main motivation for this pro-
cedure is increasing accuracy and reducing the “pops” during re-
altime display-mesh optimization, the typical reduction to a single
scalar value of the displacement vectors (wavelet coefficients) gives
a fair amount of compression. This is desirable when the re-map
from high-quality wavelet parameterization and compression is too
time-consuming such as on the client end of the server-client asyn-
chronous dataflow described earlier.

We note that the ROAM algorithm naturally requires only a tiny
fraction of the current optimal display mesh to be updated each
frame. Combined with caching and the compression potential of
the remapping, this promises to provide an effective mechanism for
out-of-core and remote access to the surfaces on demand during
interaction.

5 Future Work

Several pieces of the terascale dataflow strategy have been realized
to date, but many challenges remain to create a full capability:

1. For topology-preserving simplification, the inherently serial
nature of the queue-based schemes must be overcome to har-
ness parallelism.

2. Transparent textures or other means must be devised to han-
dle the un-mapped surface regions resulting from topology-
simplifying shrink wrapping.

3. The shrink-wrapping procedure can fail to produce one-to-
one, onto mappings in some cases even when such mappings
exist. Perhaps it is possible to revert to expensive simplifi-
cation schemes that carry one-to-one, onto mappings only in
problematic neighborhoods.

4. Shrink-wrapping needs to be extended to produce time-
coherent mappings for time-dependent surfaces. This is a
great challenge because of the complex evolution that surfaces
go through during physics simulations.

Acknowledgments

This work was performed under the auspices of the U.S. Depart-
ment of Energy by University of California Lawrence Livermore
National Laboratory under contract No. W-7405-Eng-48. We thank
LLNL for support through the Science and Technology Educa-
tion Program, the Student-Employee Graduate Research Fellow-
ship Program, the Laboratory-Directed Research and Development
Program, the Institute for Scientific Computing Research, and the
Accelerated Strategic Computing Initiative.

References

[1] Martin Bertram, Mark A. Duchaineau, Bernd Hamann, and
Kenneth I. Joy. Bicubic subdivision-surface wavelets for large-
scale isosurface representation and visualization. Proceedings
of IEEE Vis00, October 2000.

[2] Kathleen S. Bonnell, Daniel R. Schikore, Kenneth I. Joy, Mark
Duchaineau, and Bernd Hamann. Constructing material inter-
faces from data sets with volume-fraction information. Pro-
ceedings of IEEE Vis00, October 2000.

[3] Mark A. Duchaineau, Murray Wolinsky, David E. Sigeti,
Mark C. Miller, Charles Aldrich, and Mark B. Mineev-
Weinstein. ROAMing terrain: Real-time optimally adapting
meshes. IEEE Visualization ’97, pages 81–88, November 1997.
ISBN 0-58113-011-2.

[4] Igor Guskov, Kiril Vidimce, Wim Sweldens, and Peter
Schröder. Normal meshes. Proceedings of SIGGRAPH 2000,
pages 95–102, July 2000.

[5] Arthur A. Mirin, Ron H. Cohen, Bruce C. Curtis, William P.
Dannevik, Andris M. Dimits, Mark A. Duchaineau, Don E.
Eliason, Daniel R. Schikore, Sarah E. Anderson, David H.
Porter, Paul R. Woodward, L. J. Shieh, and Steve W. White.
Very high resolution simulation of compressible turbulence on
the IBM-SP system. Supercomputing 99 Conference, Novem-
ber 1999.

������ �����	

�����
���� ����

��� �����
 �
���
� ���
� ���

��� ���������� �� �����

���
���

�	��
���� !����" #�	
�����	�
��� #�
$�"� %�� �����
�&� '����	�(�
���

�� ���� �������	��
�� 	 ������
 ��	���
�� �
� ���
��	��
�
� ����	�
��
	� �	�	 ���������	�
��
�� �
� 	����
	��
�� �� �
������
 ����	���	��
� �� ���
������ ��� ��	���
�� �� �	���
�

���������� ���
� �� 	 ����	����	� ��
������ ��
�	���
	� �	�	 	�	����� 	�� ��	�����
�� ���
�	�
� ��������
� ���
�����������	��� 	���
	
� �
� ���

�����
��
�
� ����	�
��
	� ������
����	��
�� �
� ���� �	��� �
������
 �	�	 ���� �� ��� �������	� 	����
	������� �� ����� �� �����
���
� �����
�� ��

����	��
� ���� 	������� �	�	������
� ���
��������� ��

���� ���
����
������ ����
�
	� �� ���� �
 �
��� 	 ���� �	���
� ��
����� �� �
������
 ����	���	��
� 	��
����	�
��
	� �	�	 �!��
�	��
�� "�	��	��
��
� ��� �����	�
��������� ��	���
�� ���� ������

��� 	�� ���� �
� ��� ���
��
 ����
���
� #�$ ��	���� �!��	
��
� ��
� �
�������
 �	�	 ����%
#��$ ����	
� ��

�����
��
� ��
� ���������&�
	����
���
��% #���$ �������
	��
�&

	�������

� ����	
� ������% #��$ �������
	��
�
� ��
�
� ���� �	�	 �� �������������
�	� ��	
�% 	��
#�$ �������
	��
�
� �
	�	� ���� �	�	 �� �������������
�	� ��	
��

���
��������� ��	���
�� ����
��� ���

�����
��
�
� �	�	 ����	�
���� �
� 	��

��
�
��� ��

������� ���
���� �	�	 �
��	�� ���� ���
���
�� �
������
 	�� ����������� 	�����

	��
��� ���� ��
����� �	�	 ���� ����� ������ 	� 	 ���
� �
���� ����
�� 	��

���
������
���
��	��
� #�
	������ �	�	$ 	� ���� 	� �	�	 ������
�
�	���
	� ����� �������&����� ����
�����
� ������ #��
������	� �������
��������	� ������� ������
����� ������� ���	����	�
	�� ����	����	� ������� ��
�$ ��� �����	� 	����
	������
� ��� 	���
	
� �	��� �� �����
��
� �
 �
��
���� �!������ ����
�� ���� �
�	� �
� ���

�����
��
�
� ����	�
��
	� �	�	
���������	��
���

���
�����
� ���
��������� ��

���� ��� ������� �����
	� �� ���� �
� ��������������
	�� 	�	����� ���������� '������������� 	�� 	�	����� ��������� ��

�
����� ���� ���
������	��
�
� �� ����� �	�	 ���
����
� ������ �� �� ����� ����
��
� 	 �	�	 ��� �
 �� ���
��	������ "� 	

�������
��
�� �	� �
 	

��� �
��� ��
� �� ����� ������
� ���
������
���� �
 ��	��� ��������� 	� �� ����� ���
����
�� �� �� ����� ����
�� �� ��	
�� ��

������
��� ��������������&	�	����� �	�	���� ���� 	 �
	�	��� ���������	��
�
� ��� ����	�
���
�������� ��

���� �� �� �
������ �

��	�� 	�� �����	
������ �!��
�� ���� �	��� �
������
 �	�	
����	�
���� �� ���	��� ����
�� ����
��� ������

(

��� ������� �� 	
��
��������� �� ��������� ���� �����
� ������� �� ������
���� ������
��������� ��������
��
��������� ���������� ���� ��
������ �� ������
��
���������� �� ����
������ ��
����
� ����� ��
��������� ������� ��� ���������� ��
��
��������� ����������
�� ���
��������� ���� ���
��
�� ���������
��� ����� ������ �� ������ ��� ����
��� � �
��
���
�� �� ������������ ��������� �������� ��� ���� �� ��
���� � ��������� �
��������
��� ������������
��
��������� �� ��������� ���� �����
� ���������� �� ����� ��������
���
� ����� ��� � ���� ����� ��� ���
���� �� �������� �� ���� ����! ������� �� ��
�������
��
�
��������� ���������� ��� ������� ���� ���
��
���� �� "��� ���
��
��������� ������� ��������
�� ��� ������� �� ������ ��������� ��������� ����� ����� �� ������ �����"�� � ������ ��������
����� ��������
���� #���� �� ���� ��������� �� ��
� ������� � ��� �������� ��� "��� ���
������
����� ���
���������� �� ��������� ���� ������������ $� �� ��� ��������%����"����
����� ��������
��� �
���� ��������� ����������� ��� �� �� ��&
��� � ���� �� "� �����
����� �� ��
����� �� ���������
� ���� � ��������� ������� ��������� � ��������� 	���������
���� ����������

$� ����������� ���
��
� �� �������� ������������
��
��������� ��� �����������������
������ ���
����� ���� ���� ����� ��� ��������� ����
��
��������� ������� ��������� ���
&
���� ����� ���������� ���� ����� �������� ����� �� ��� ����
�� ������ �Æ������� "�
������
����� ��������� ��������� ���� ����� ��������� ����� ��� ���������� ���� ��������
����� �"������ ���� �������� ����� ���� �����
� ��������
��� ������������ ��� ��������
�������� ��� ��������� ������
����� ��� ������� �� � ������� �������Æ������

$� ������
�� ��� ������� �� ������������	
����

���� �
������ ����������� �
�������
�������� ��� ����� ������� ������ "��� ��� &
����� �� �� ����� ������� �� � �
������ "�
����������� ��� ��
������ �� ��� ����� ������� ��� ��� �
������ "���� ����� ������ ��
��� �����%������ �
�� ����� ���� ��� ������� '� ��� ����� � �� ���� ����� ������� ��
�
��� ��� �
������ ��
��
��������� �� ����� ������� ����
�� ��� 	����� ������� &
������
����� "� �����������! �� ����� ������� �� ���� �������� �������� ��������� ���� ��� �� �
���� ����� ������� ���� ���
��
���������� �� ��� ����� ������� ��� ��� �������� ����
��� ����� ���������� #� ������������ �
���� ��� ����� �� ��������� ������
������ ���
��
�
��������� ������� ���� ���� �
���
���� "�
��� ��� ���������� �� �� �����"�� �� ������
�� �

��
�������������������������� ���� ��������� (�����
��
��������� ���� ����� ��� "���
�����"��
��
��������� �� ���� ��
�� �� �����
�����

)

Mesh Edge Detection

Andreas Hubeli, Kuno Meyer, Markus Gross

Department of Computer Science, ETH Zurich, Switzerland

Abstract
We present a framework to extract line-type features from

unstructured two-manifold meshes. Our method computes a col-
lection of piecewise linear curves describing the salient features of
the mesh, such as edges and ridge lines. Our algorithms are semi-
automatic, that is, they require the user to input a few control
parameters and to select the operators to be applied to the mesh.

Our mesh edge detection algorithm can be used as a preproces-
sor for a variety of applications including mesh fairing and
smoothing.

1 Introduction
Recent advances in acquisition systems have resulted in the

ready creation of very large, densely sampled surfaces, usually
represented as triangle meshes. The impossibility of real-time
interaction with these large models has motivated many research-
ers in the computer graphics community to design advanced mesh
processing methods including subsampling, restructuring, fairing
and others. The early approaches, such as the vertex removal algo-
rithm of W. Schröder [7] or the progressive mesh algorithm of H.
Hoppe [4], use local error norms to construct multiresolution
approximations of meshes by iteratively removing information
from the input mesh.

More recent representations are based on the generalization of
fairing techniques from signal processing [8], [6], [5]. They use
multiresolution algorithms to improve the mesh approximation. In
this paper we investigate a related problem: mesh edge detection.
Our goal is to extract line-type features from meshes which can be
used to construct more sophisticated multiresolution representa-
tions. The most important advantage of using line-type features is
that we can force fairing algorithms to retain feature information,
such as sharp edges or ridge lines - much in the same way it was
accomplished for subdivision surfaces. We achieve this goal by
generalizing well known computer vision techniques, such as [1],
to meshes with arbitrary connectivity.

The paper is organized as follows: in section 2 we present the
first major component of our framework, the set of classification
operators. In section 3 we introduce the second component of our
framework, the detection operators. In section 4 we describe some
of the experimental results we obtained using this technique.
Finally, we discuss some work in progress.

E-mail: hubeli@inf.ethz.ch
meyerk@student.ethz.ch
grossm@inf.ethz.ch

Address: Department of Computer Science
ETH Zentrum
CH - 8092 Zurich

2 Classification Phase
The classification operators basically assign a weight to every edge
in the mesh. The weight is proportional to the importance of the
edge: ideally, edges close to or on line-type features should be
assigned large weights whereas all remaining edges should get
small weights. The weights will then be used to extract the subset
of the “most important” edges, the so-called feature edges. They
are employed in the detection phase to construct the line-type
mesh features.

In the following subsections we will describe some of the classi-
fication operators we designed and tested.

2.1 Second Order Difference (SOD)
This most simple operator assigns a weight to every edge in the

mesh proportional to the dihedral angle defined by the normals of
its two adjacent triangles. The idea is similar to the second order
difference operator constructed by Guskov et al. in [2] which was
used to fair meshes of arbitrary connectivity. The operator,
described by equation (1), is locally bound and can be evaluated
efficiently.

(1)

and correspond to the normals of the two triangles that
share edge .

This technique is well suited for coarse, pre-optimized meshes.
SOD however, performs poorly on very smooth or noisy meshes,
since all computations are carried out within a small region of sup-
port.

The results in figure 5.a were generated using this operator.

2.2 Extended Second Order Difference (ESOD)
With only a little effort we can build a simple extension to the

previous operator. Instead of using the normal of the two neighbor-
ing triangles, we take the average normals computed from the one-
ring of the vertices opposite to the edge and apply them to equation
(1). This is shown in figure 1.

The increase in the size of the support has the expected impact:
the influence of noise on the classification process is significantly
attenuated. However, as a drawback, ESOD does not perform that
well on coarse meshes.

Figure 1: Support of the extended second order difference operator

w e()
ni

ni

n j

n j
----------⋅ 

 
1–

cos=

ni n j
e

ni
n j

x jxi

e

2.3 Best Fit Polynomial (BFP)
In this approach all the vertices used to evaluate the classification

operator on an edge are projected onto a two-dimensional parame-
ter plane. The projected vertices are then interpolated with a best
fit polynomial of degree n. Finally the curvature of the (pla-
nar) polynomial is evaluated at the edge position , as described
by equation (2):

(2)

The major difficulties of this approach are the definition of the
parameter plane and the proper projection of the initial vertices
from 3-space. An intuitive definition of the parameter space is
given in figure 2:

We propose to set the parameter plane to be perpendicular to the
edge being considered. In addition, the midpoint of the edge is
defined to lie on the plane. The points used in the best fit process
are computed from the intersection of the plane with a set of neigh-
boring triangle edges. The most important advantage of this strat-
egy is that the support of the operator can be chosen freely. That is,
we can even adapt it locally for each edge. Furthermore, the degree
of the fitting polynomial can be adjusted to the size of the support.

Both figure 5.b and figure 5.c were generated with variations of
this operator.

2.4 Angle Between Best Fit Polynomials (ABBFP)
The last operator is an extension to the previously introduced

polynomial fit. As in the previous case, polynomials are fitted
through the parameter plane of every edge. This operator actually
fits two polynomials: one for the vertices that lie on one side of the
edge, and one for the vertices lying on the other. The weight
assigned to the edge is then chosen to be proportional to the angle
between the two curve tangents evaluated at the edge position. It
yields according to equation (3):

(3)

All the results in figure 6 were generated using this operator and
with support sizes ranging from 0.25% (figure 6.a) to 4% (figure
6.c) of the size of the object bounding box.

3 Detection Phase
As previously discussed, the classification operators are used to
assign a weight to every edge in the mesh. The larger the weight,
the “more important” the edge. In a second phase, proper feature
lines need to be constructed. This is accomplished in three steps:
• First, a subset of feature edges is constructed. Only edges in this

set will be further considered to compute the final set of line-
type features.

• Next, the feature edges are clustered into patches. These patches
define mesh regions where line-type features are present.

• Finally, the line-type features are extracted using a skeletonizing
algorithm that reduces the patches to piecewise linear curves.

3.1 Selection of Feature Edges
This process is heavily mesh and user dependent, since the num-

ber of feature edge candidates depends both on the size and geom-
etry of the mesh and on the user’s intention. Hence, we require the
user to select appropriate threshold values. We propose the follow-
ing two different strategies for thresholding:

Standard Thresholding
The most simple thresholding approach analyzes every edge sep-

arately. Based on a user-provided parameter it decides whether an
edge is a feature edge. The user can specify the threshold parame-
ter both in percentage of edges that must be preserved, or as the
minimal weight that an edge must have to be included into the sub-
set of feature edges.

Hysteresis Thresholding
This type of approach uses two threshold values serving as a

lower and an upper bound of a hysteresis. If the weight associated
with an edge is larger than the upper value, the edge is automati-
cally defined as a feature edge. If the weight is smaller than the
lower bound, then the edge is automatically discarded. The
remaining edges, whose weights lie between the lower and upper
bounds, are only defined as feature edges if one or more of their
neighbors are feature edges. The advantage of this approach is that
it constructs smoother patches in regions where feature edges are
present.

3.2 Construction of the Patches
The patches are generated from the subset of feature edges using

the following approach:

• every edge that shares both of its vertices with feature edges is
inserted into the subset of feature edges.

As an example consider the figure 4. The results illustrated in
figure 4.b demonstrate that the patches are filled with feature edges
and that the size of the patches is clearly bound.

Figure 2: Illustration of the parameter plane used for the BFP method (top view)

Figure 3: ABBFP operator

p u()
e

w e() p'' e()=

Support = 5

e

w e()
1 pl' e(),()
1 pl, ' e()()

1 pr, ' e()()
1 pr, ' e()()

------------------------------⋅ 
 

1–
cos=

?

ProjektionsebeneProjection plane

Figure 4: Construction of the patches:
a) Subset of feature edges computed by the hysteresis thresholding scheme
b) Set of patches generated using the method of section 3.2

a) b)

3.3 Skeletonizing
As described the output of the previous step is a set of patches.

As such, a patch is a collection of edge features describing the
neighborhood of one or more line-type features. The final step of
the detection phase is to reduce these patches to a set of line-type
features. We accomplished this using the following two skeletoniz-
ing strategies:

Triangle Based Skeletonizing
This approach reduces patches to lines of a thickness smaller or

equal to 2 by removing triangles from the patch - one at a time. In
order to get the correct result, we have to impose constraints on the
removal strategy. The drawback of this approach is that it might
break up larger line-type features into multiple disconnected seg-
ments. The advantage is that can be computed very efficiently. A
more detailed description has to be omitted for brevity.

Vertex Based Skeletonizing
In the second approach, we use potential fields to remove verti-

ces from the patch. In a first step, a potential field is defined for
every vertex whose strength is proportional to its distance from the
patch boundary. Next, we discard all the vertices that have at least
one neighbor with a larger potential. As a result we obtain a surviv-
ing subset of disconnected vertices. These vertices are subse-
quently glued together using certain assumptions on the potential
fields. Again, further details have to be omitted.

4 Results
In this section we will present and discuss experimental results
obtained on different meshes. We used both well known meshes,
such as the bunny, mannequin, motor part, and the golf club, as
well as a simple, smooth geological surface. Most of the meshes
have an arbitrary connectivity, and they exhibit some sharp line-
type features. The geological surface is the only exception, being a
regular grid and not having any salient features.

In the first sequence of pictures presented in figure 5 we compare
some of the operators defined in section 2. On this mesh we
obtained the best results by using operators with small support.
This is due to the fact that the model is only sparsely sampled. As a
consequence, operators with large support include information that
is geometrically too far away from the edge. This problem was
addressed by constraining the support of the BFD operators. Both
the SOD operator and the BFP operators generated good results.

In the second sequence illustrated in figure 6 we capture the
influence of the support of the ABBFP operator. From left to right
we show the influence of increasing the support from 0.25% to 4%
of the size of the bounding box. In figure 6.a the support is too
small, and as a consequence, the noise of the mesh corrupts the
performance of the classification operator. At the other extreme, in
figure 6.c the support of the operator is too large. Hence, the
marked edges are clustered around only a few of the prominent
mesh features. The best results have been achieved by setting the
support to an intermediate value of 2%, as shown in figure 6.b.

Finally, figure 7 depicts the results obtained on different meshes
by combining the classification and detection operators appropri-
ately. Interestingly, the line-type features of the head mesh of fig-
ure 7.a include the outlines of the eyes, mouth, ears, nose and
eyebrows - as we would expect it from a feature extraction algo-
rithm. The features of the golf club mesh of figure 7.b have been
recognized correctly, and all the sharp edges have been captured.
Our last image in figure 7.c shows a geological surface. Although
the surface does not contain any salient edges, our framework
extracted a few features. By comparing these results to the actual
structure of the surface, we found that the algorithm extracted local
ridges and valley lines in the mesh.

5 Conclusions and Future Work
In this paper we presented a framework for the detection of line-
type features in meshes of arbitrary connectivity. We proposed a
two-stage process consisting of a classification phase and a detec-
tion phase. In order to handle a variety of different meshes, we
provide a set of operators with different properties.

As already mentioned, the user must select the operators as well
as a few parameters for the classification and detection steps. As
such, the process is not fully automatic. It still requires manual
assistance and tuning for optimal performance. We do not consider
this as a major drawback, since all algorithms can be computed
efficiently.

The presented results are encouraging, and we expect some
major improvements in the near future. The most important ones
include:
• Computational efficiency: although the operators are fairly effi-

cient, it still takes a few seconds (up to a few minutes for very
large meshes) to compute the features. This is certainly a draw-
back for interactive applications where a user might try different
operators to optimize the results.
We will tackle this problem by designing a multiresolution rep-
resentation of the mesh. Since the multiresolution representation
effectively strives towards maintaining model features, we can
identify efficiently which edges need to be considered for the
computation.

• Improved classification strategy: the most important problem
encountered in the classification phase is that features are not
necessarily high frequency information. This is well known
from image edge detection. Although, intuitively, we tried to
capture low-frequency information by extending the support of
the operators improvements might be obtained by mesh decom-
position [3].
The advantage of such settings is that one could start the classifi-
cation process on a coarse, low-frequency approximation and
progressively improve the results while refining the mesh.

• For computational efficiency, our current skeletonizing strate-
gies are based on topological distance. Taking geometric dis-
tances instead might further improve the performance of the
framework.

• Our final goal is, of course, to provide a mesh analysis sophisti-
cated enough to automatically determine the optimal operators
and parameters.

Literature
[1] J. Canny. “A computational approach to edge detection.” In IEEE

Transactions on Pattern Analysis and Machine Intelligence, Vol.
PAMI-8, No. 6, pages 679-696, Nov. 1986.

[2] I. Guskov, W. Sweldens, and P. Schröder. “Multiresolution signal
processing for meshes.” In SIGGRAPH ’99 Proceedings, Computer
Graphics Proceedings, Annual Conference Series. ACM SIG-
GRAPH, ACM Press, Aug. 1999.

[3] M. Gross and A. Hubeli. “Eigenmeshes.” Technical Report ETH Zur-
ich, Mar. 2000.

[4] H. Hoppe. “Progressive meshes.” In H. Rushmeier, editor, SIG-
GRAPH 96 Conference Proceedings, Annual Conference Series,
pages 99–108. ACM SIGGRAPH, Addison Wesley, Aug. 1996.

[5] A. Hubeli and M. Gross. “Fairing of non-manifolds for visualiza-
tion.” In Visualization 2000 Proceedings, Oct 2000.

[6] L. Kobbelt, S. Campagna, J. Vorsatz, and H.-P. Seidel. “Interactive
multi-resolution modeling on arbitrary meshes.” In M. F. Cohen, edi-
tor, SIGGRAPH 98 Conference proceedings, Annual Conference
Series, pages 105–114. ACM Press and Addison Wesley, July 1998.

[7] W. Schröder, J. Zarge, and W. Lorensen. “Decimation of triangle
meshes.” In SIGGRAPH 92 Conference Proceedings, Annual Con-
ference Series, pages 65–70, July 1992.

[8] G. Taubin. “A signal processing approach to fair surface design.” In
R. Cook, editor, SIGGRAPH 95 Conference Proceedings, Annual
Conference Series, pages 351–358. ACM SIGGRAPH, Addison
Wesley, Aug. 1995.

Figure 5: Results computed on a motor part using different operators:
a) Line-type features computed using the SOD operator
b) Line-type features computed using an extension to the BFP operator
c) Line-type features computed using an extension to the BFP operator

Figure 6: Results computed on the bunny model using the ABBFP operator:
a) Edges detected using a support of 0.25% of the size of the object bounding box
b) Edges detected using a support of 1.0% of the size of the object bounding box
c) Edges detected using a support of 4.0% of the size of the object bounding box

Figure 7: Mesh edge detection applied to other models:
a) A mannequin head. Feature lines detected: eyes, nose, lips, ears, eyebrows
b) A golf club. All the sharp features have been detected correctly
c) A geological surface. Some interesting feature-lines could be extracted from this very smooth surface

a) b) c)

a) b) c)

a) b) c)

1

Critical Points at Infinity: a missing link
in vector field topology

Issac Trotts, David Kenwright, Robert Haimes

Massachusetts Institute of Technology

This paper presents an improved technique for
extracting singular streamlines that extends the
capabilities of vector field topology. Singular
streamlines are a unique set of tangent curves that
connect singular or critical points. In prior work
[Ken99], we demonstrated that vector field topology
(a well-known technique for extracting singular
streamlines) failed to identify a class of singular
streamlines because they did not originate from
critical points inside the computational domain. In
this paper, we show that singular streamlines that
originate from critical points at infinity are the
missing link and account for the previously
undetectable “open” singular streamlines.

1. Background
Automated feature extraction is an emerging field of
research in which meaningful features or structures
are automatically extracted from large-scale
computational simulations. The aim of feature
extraction is to develop data analysis tools that
automatically deduce the location, shape, and
strength of specific features without human
intervention, and do so in substantially less time than
their human counterpart. Feature extraction
algorithms are programmed with domain-specific
knowledge, so they do not require a-priori knowledge
of places to look for interesting behavior. By
extracting only the salient features from a vector
field, computational datasets can be distilled by a
factor of 105 [Ken99]. The level of data reduction can
be increased beyond 106 by fitting curves to the raw
geometry that is produced by feature extraction
algorithms. By employing feature extraction as either
a co-processing [Hai95] or post-processing [Ken99]
data analysis tool, it is possible to interactively
visualize a terascale data set using inexpensive
desktop computers.

The long-term objective of this research is to develop
feature extraction tools to construct the entire vector
field topology, consisting of singular points, lines,
and surfaces, for 3-D and 4-D computational
simulations. We are primarily interested in large-

scale vector fields in computational fluid dynamics
(CFD) where these features are commonly called
critical points, separation lines, and separation
surfaces respectively. The same geometric features
can be found in other scientific fields such as
electromagnetics, geomorphology, and quantum
chemistry, although they given different names
[Rot00].

Singular stream-lines and -surfaces are immensely
useful geometric features because they partition
vector fields into topologically-like regions in which
the streamlines and stream surfaces have a
qualitatively similar behavior. They help scientists
and engineers understand the mechanisms of flow
separation, vortex genesis, and the formation of
turbulence. Scientists often resort to hand drawn
pictures to explain these phenomena because of the
lack of automated tools. At present, there are no
robust computational methods to extract a complete
set of singular streamlines and stream surfaces from
numerical simulations of fluid flows.

One of the early and most prominent feature
extraction techniques is based on the classification of
critical points. A critical point is a local feature that
occurs where the velocity vector field is zero. In 2-D,
the topology of a vector field, u, consists of critical
points and the tangent curves (instantaneous
streamlines) that connect these points. Critical points
are in fact degenerate streamlines, and therefore the
only points in vector fields where other streamlines
may start or end, except for the boundary. Because
the velocity at a critical point is zero, the velocity
field in the neighborhood of the critical point is
determined by the Jacobian tensor u∇ . Critical points
are classified, to a first-order approximation, by the
eigenvalues and eigenvectors of u∇ .

The two-dimensional topology of a vector field is
constructed by finding the set of streamlines that start
or end at critical points. Helman and Hesselink
[Hel91] and Globus et al. [Glo91] showed that
(closed) separation lines could be generated by

2

integrating outwards from the “saddle” critical points
in the real eigenvector directions. These tangent
curves were classified as either separation or re-
attachment lines based on the sign of the eigenvalues:
positive (repelling) for attachment, and negative
(attracting) for separation. The vector field topology
conveys the essential behavior of a 2-D flow field by
leaving out some geometric details about the flow in
these regions.

The concept behind vector field topology is to divide
the flow into closed regions in which each of the
streamlines is “similar” to its neighbor. Closed
separation lines are defined as singular streamlines
that start and end at singular points. Experimental
results from wind- and water tunnels revealed another
type of singular streamline that did not start or end at
a singular point. These “open” separation lines were
not detectable by vector field topology methods that
originated from “saddle” critical points. Kenwright et
al. [Ken99] developed a technique to extract open
separation lines using local phase-plane analysis. The
approach successfully extracted both open and closed
separation lines but had two drawbacks: it could not
detect singular streamlines near vortices, and it was
inaccurate in regions where the vector field was
highly non-linear.

Much of the work in vector field topology employs
linear expansions of the field in the neighborhood of
critical points. However, this approach fails to
capture the behavior of fields containing critical
points with index other than 1 or –1. Scheuermann et
al. introduced techniques to identify high-index
critical points in 2-D [Sch98] although they did not
address the issue of open and closed separation lines.
Much of the existing work assumes a field domain of
finite extent, whereas recent simulations of fluid
flows using Lagrangian (particle based) methods can
have domains of infinite extent.

For vector fields defined on an infinite domain, it is
crucial to consider the "point at infinity" as an
additional critical point [Nee97]. In 2-D, this idea
has recently allowed us to find both open and closed
separation lines by extending the ideas in vector field
topology.

2. Vector field representation
To better understand such nonlinear vector fields, we
have implemented a vector field designer based on
the representation given by Scheuermann et al.
[Sch98]. The user specifies the positions and
topological indices of critical points in the plane,
building up a Geometric Algebra polynomial vector
field of the form:

∏ ∏
=

+

+=
−−=

1 21

11 1
111)()()(

N

j

NN

Nj

n
j

n
j

jj zze xexeexu iϕ

where: 1N is the number of positive critical points;

2N is the number of negative critical points; },{ 21 ee

is an orthonormal basis for the plane; `21eei = is the
unit pseudoscalar (or unit imaginary number) of the
plane; jx is the location of the j’th critical point in

the plane; jjz xe1= is the 2D spinor (or complex

number) taking 1e to jx (i.e., jj xxee =11); jn is

the (integer) absolute value of the j’th critical point
index; ϕ is a user-specified angle by which every

vector in u is rotated; and z denotes the conjugate of
z for any 2D spinor z. This vector field representation
causes numerical overflow for large values of || x , so
it is necessary to find a more stable representation.
Rewriting in polar coordinates, we obtain:




 −

=

+

+=

∑∑

=

+
+==

∏ ∏
)()(

1

1 1

)()(
1

21
11

1
1

1 21

1

))(())(()(

xxii

xixii

e

xxexu

j
NN

Nj j
N
j jj

jjjjjj

nn

N

j

NN

Nj

nn
j

nn
j

ee

erere

θθϕ

θθϕ

α

where)(xjθ denotes the angle in radians from 1e to

jxx − , and ||)(jjr xxx −= . The last formula is

theoretically equivalent to normalizing all of the non-
zero vectors of u, which amounts to nothing more
than re-parameterizing all of u’s solution curves.
This formula allows us to freely sample the vector
field in large regions, without overflow. A
comprehensive introduction to Geometric Algebra
can be found in [Hes98].

3. Feature detection
The first phase of our feature detection algorithm
involves integrating in critical directions from finite
multisaddles (critical points having negative
topological index), just as in [Sch98]. The second
phase detects trajectories going to and coming from
infinity by stereographically projecting the plane onto
the unit sphere (Figure 3) and regarding the north
pole as an additional critical point, the so-called point
at infinity [Nee97, pp. 139-148].

The Poincare-Hopf theorem then asserts that:

χ==−=+∞ 222 gII T

3

where: ∞I is the index of point at infinity;

∑∑ +
+== −= 21

1

1

11

NN

Nj j
N

j jT nnI is the sum of all the

indices of finite critical points; g=0 is the genus of
the sphere; and χ is the Euler characteristic of the

sphere [Nee97, p. 464]. We may then solve for ∞I .
If it is zero, then the vector field has a total index of
two and behaves like a dipole when viewed from
infinitely far away. We therefore integrate two
critical trajectories “from infinity”, starting at a large

positive and a large negative multiple of ϕie e1 . If

∞I is negative, then the point at infinity is a multi-
saddle and we integrate from large multiples of

je
ϕi

e1± , where j=0,…,- ∞I and

)/()(∞−+= Ijj ϕπϕ . Otherwise, the point at

infinity is a node, center, focus, or multipole (a
critical point having index of at least two), so we
have already found its critical trajectories by
integrating from finite multisaddles.

4. Results
Using our geometric algebra vector field designer,
several complicated 2-D vector fields were generated
that contained both open and closed separation lines.
One of these vector fields is illustrated in Figure 2.
Singular streamlines originate from four finite critical
points and one infinite critical point, i.e., the critical
point at infinity. The attracting and repelling singular
streamlines (separation and attachment lines in fluid
dynamics) are colored green and red respectively.
These are superimposed on normalized vector arrows
that indicate the local direction of the vector field.
The index of each critical point and their relationship
to other critical points is illustrated in the topology
graph in Figure 1.

Figure 1. A topology graph that shows the
index and relationship of every critical point
in the test vector field.

Figure 2. Singular streamlines extracted from a
complicated 2D vector field containing low and
high index critical points. Three techniques are
shown: conventional vector field topology
(upper), local phase plane analysis (center), and
global vector field topology with critical point at
infinity (lower).

4

Singular streamlines were extracted from the
analytical vector field using one of three techniques.
The first was linear vector field topology [Hel91], the
second was local phase-plane analysis [Ken99], and
the third was global vector field topology (Section 3).
The results shown in Figure 2 exemplify the
differences between these techniques. The linear
vector field topology method only identifies singular
streamlines that originate or terminate at saddle
points within the computational domain. The local
phase-plane analysis technique extracts considerably
more lines including both open and closed singular
streamlines. However, some those lines prematurely
end as they approach spiral foci because the phase
plane algorithm does not have a local definition for
singular streamlines where the eigenvalues of u∇
are complex numbers.

The global vector field topology shown in Figure 2,
which includes singular streamlines originating from
the critical point at infinity, produces a complete set
of singular streamlines. The new algorithm clearly
improves on the local phase-plane method because it
is not limited to regions where the eigenvalues are
real numbers. The 5th-order Runge-Kutta-Fehlberg
numerical integration scheme also produces more
accurate results in non-linear regions than the
analytical linear methods employed in the phase
plane algorithm.

5. References
 [Glo91] A. Globus, C. Levit, T. Lasinski, A tool for
visualizing the topology of 3-D vector fields. In
Proceedings of IEEE Visualization ’91, pp. 33-39,
San Diego, CA, October 1991.

[Hai95] R. Haimes, Unsteady Visualization of Grand
Challenge Size CFD Problems: Traditional Post-
Processing vs. Co-Processing, Proceedings of
ICASE/LeRC Symposium on Visualizing Time-
Varying Data, Sept. 1995.

[Hel91] J. Helman and L. Hesselink, Visualizing
vector field topology in fluid flows, IEEE Computer
Graphics and Applications, Vol. 11, no. 3, pp. 36-46,
May 1991.

[Hes98] D. Hestenes, Synopsis of Geometric
Algebra, 1998.
http://modelingnts.la.asu.edu/pdf/NFMPchapt1.pdf

[Ken99] D.N. Kenwright, C. Henze, and C. Levit,
Feature extraction of separation and attachment
lines, IEEE Transactions on Visualization and Comp-

Figure 3. A stereographic projection of the
vector field onto a unit sphere provides a “big
picture” view of all singular lines that originate from
infinity as well as those from finite critical points. Two
views of the same sphere are shown to illustrate all
five critical points. The singular point at infinity lies in
the center of the sphere in the upper image.

ter Graphics, IEEE Computer Society Press, vol. 5,
no. 2, pp. 135-144, April-June 1999.

 [Nee97] T. Needham, Visual Complex Analysis,
Oxford University Press Inc., New York (1997).

[Sch98] G. Scheuermann, H. Kruger, M. Menzel,
A.P. Rockwood, Visualizing non-linear vector field
topology. In IEEE Transactions on Visualization and
Computer Graphics, vol. 4, no. 2, pp. 109-116, 1998.

[Rot00] M. Roth, Automatic Extraction of Vortex
Core Lines and Other Line-Type Features for
Scientific Visualization, Ph.D. Dissertation, Swiss
Federal Institute of Technology Zurich, May, 2000.

Simplification of Nonconvex Tetrahedral Meshes

Martin Kraus, Thomas Ertl

Visualization and Interactive Systems Group
Universität Stuttgart, Germany

�

Abstract

We present a new solution to the well-known problems of edge col-
lapses in nonconvex tetrahedral meshes. Additionally, our method
is able to handle meshes with topologically non-trivial boundaries
and to control the modification of the topology of the mesh’s bound-
ary.

1 Introduction

In order to visualize today’s huge data sets, hierarchical represen-
tations are often employed. The production of such representations
of tetrahedral volume meshes requires a simplification of the orig-
inal mesh. One way of performing this simplification is to apply
a sequence of edge collapses, which are discussed in some detail
in section 2 with an emphasis on the problems of edge collapses in
nonconvex meshes.

Our solution to these problems consists of two parts: A prepro-
cessing step—originally suggested by Peter Williams in the context
of sorting nonconvex meshes—is briefly described in section 3.

The second part—edge collapses in the resultant meshes—is dis-
cussed in section 4 with special attention being paid to modifica-
tions of the topology of the mesh’s boundary.

Section 5 presents our conclusions and plans for future work on
this subject.

2 Background and Related Work

2.1 Edge Collapses

In the following we will discuss edge collapses in fair tetrahedral
meshes, i.e. each face of a tetrahedral cell is either part of the bound-
ary of the mesh or shared by (at most) two cells. Intersections of
cells are not allowed; in fact avoiding them is our primary concern.
As edge collapses in triangular meshes in two dimensions are very
similar to the three-dimensional case of tetrahedral meshes, we will
illustrate our method with triangular meshes in Figures 1-8 before
presenting the method in three dimensions in Figures 9-13.

It is useful for the description of our method to define some par-
ticular terms. We call a tetrahedron a vertex neighbor of a vertex
if the vertex is shared by the tetrahedron. A tetrahedron is an edge
neighbor of an edge if the edge is shared, and a vertex neighbor of
an edge if one of the vertices of the edge is shared. Finally, a tetra-
hedron is a face neighbor of another tetrahedron if the tetrahedra
share one face. The definitions of vertex and edge neighbors can
also be applied to triangles in triangular meshes.

The effect of an edge collapse (see Figure 1 for a two-
dimensional example) is to remove all edge neighbors of the col-
lapsing edge and to join the two vertices of the collapsing edge in a
new vertex. Figure 1 also indicates the inverse operation, which is
called a vertex split.

�
Universität Stuttgart, IfI, Abt. VIS, Breitwiesenstr. 20-22,

70565 Stuttgart, Germany; E-mail:
�
Martin.Kraus � Thomas.

Ertl � @informatik.uni-stuttgart.de .

edge collapse

vertex split

Figure 1: An edge collapse and the inverse vertex split.

Edge collapses are one of the most powerful tools to simplify
triangular or tetrahedral meshes. They can be employed to remove
vertices or edges (see [4]) and also to remove triangles or tetrahedra
by successive edge collapses (see [5]).

Moreover, a sequence of edge collapses can be used to produce
hierarchical representations of triangular and tetrahedral meshes as
demonstrated in many publications, for example [3, 4, 5].

2.2 Avoiding Intersections of Cells

As demonstrated in Figure 2 an edge collapse can cause an inter-
section of cells in a triangular or tetrahedral mesh. In order to avoid
such self-intersections of a mesh, edge collapses are tested before
they are performed (see [4, 5]).

edge

collapse

Figure 2: An edge collapse, which causes several intersections of
cells and one inversion of a cell (dark gray).

In convex meshes, i.e. meshes the boundary of which are convex
polytopes, the test for intersections is particularly simple because
any intersection of cells is accompanied by an inversion of at least
one cell, i.e. a sign flip of the signed volume of a cell. (The inverted
cell is marked gray in Figure 2.) Therefore, it is sufficient to test
all vertex neighbors of a collapsing edge for inversions in order to
avoid self-intersections. This test is local as only vertex neighbors
are involved.

However, if a collapsing edge in a nonconvex mesh has vertex
neighbors that are cells at the boundary (i.e. one of the faces of the
cell is part of the boundary of the mesh) then the edge collapse can
cause self-intersections of the mesh without causing an inversion of
a cell as shown in Figures 3 and 10.

4 SIMPLIFICATION OF CONVEXIFIED MESHES 2

edge

collapse

Figure 3: An edge collapse,which causes an intersection of two
cells without causing an inversion of any cell.

A naive procedure to avoid such intersections is to test the ver-
tex neighbors of the collapsing edge for intersections with all other
cells of the mesh. As the time complexity of this global test depends
linearly on the number of cells in the whole mesh, it is usually too
expensive to be performed without additional auxiliary data struc-
tures. A more elaborated implementation of this test is discussed in
[4] while the system described in [5] tries to preserve the boundary
of the tetrahedral mesh.

However, performance issues are not the only problem of edge
collapses in nonconvex meshes. Additional problems occur in dis-
connected meshes as edge collapses are obviously not able to join
clusters of disconnected meshes in order to simplify them. More
generally spoken, it is desirable to modify the topology of the
mesh’s boundary in a controlled way when performing edge col-
lapses.

Before presenting our approach to solve these problems in sec-
tion 4, we describe the necessary preprocessing step in the follow-
ing section.

3 Convexification of Nonconvex Meshes

More than eight years ago Peter Williams proposed in [6] to con-
vert nonconvex meshes to convex meshes by triangulating all voids
and cavities and marking the cells generated by this triangulation as
imaginary. (Virtual is today’s more fashionable word for the same
idea.)

Figure 4: A step-by-step convexification of the mesh shown in the
left-hand side of Figure 3. From left to right: the convex hull (thick
line), the nonconvex polygon (thick line) between the convex hull
and the boundary of the mesh, and the mesh together with imagi-
nary cells (white) generated by the triangulation of the nonconvex
polygon.

Figures 4 and 11 summarize the basic steps of this process.
Firstly, the convex hull of the mesh is computed; then all voids and
cavities are identified and triangulated; finally, the new imaginary
cells are attached to the existing mesh. (As will be shown in sec-
tion 4 the number of imaginary cells generated by the triangulation
is not relevant in the context of edge collapses. An optimal algo-
rithm (with respect to the number of generated tetrahedra) for the
tetrahedralization of nonconvex polyhedra was published in [1].)

We call this preprocessing step a convexification of a nonconvex
mesh as it allows us to apply (slightly modified) algorithms for con-
vex meshes to a nonconvex mesh. (In this sense the convexification
might be called a meta-algorithm.) The following section shows
how to overcome problems of edge collapses introduced by non-
convexities (including non-trivial topologies of the boundary) with
the help of this preprocessing step.

4 Simplification of Convexified Meshes

4.1 Geometric Tests

As mentioned in section 2 and shown in Figure 3, edge collapses in
nonconvex meshes can cause intersections of cells without causing
an inversion of any cell. In convexified meshes, however, such edge
collapses will always cause an inversion of at least one imaginary
cell as shown in Figure 5 for the same edge collapse as in Figure 3
in a convexified version of the same triangular mesh.

edge

collapse

Figure 5: The edge collapse of Figure 3 in the convexified mesh
from Figure 4 causes an inversion of an imaginary cell (dark gray).
(Compare also with Figure 2.)

Therefore, convexified meshes allow us to test for self-
intersections of cells by simply testing all vertex neighbors (in-
cluding imaginary cells) of the collapsing edge for sign flips of the
signed cell volume, which is a local, geometric test as in the case
of convex meshes. Thus, the total number of new imaginary cells
generated by the convexification is not relevant for the efficiency of
this test.

4.2 Preservation of the Convex Hull

Not only are edge collapses in nonconvex meshes more complicated
than in convex meshes, they can also transform a convex mesh into
a nonconvex mesh.

edge

collapse

Figure 6: An edge collapse, which could generate a nonconvex-
ity. Two new imaginary cells are inserted in order to preserve the
original convex hull.

An example is depicted in Figure 6, which also shows our solu-
tion: Instead of recomputing the convex hull (a global operation if
implemented naively), we insert imaginary cells between the new
vertex and the convex hull in order to preserve the original convex
hull. (The effect can also be seen at the bottom of Figure 12.)

5 CONCLUSIONS AND FUTURE WORK 3

This is an efficient, local operation. However, it will also in-
sert some� new edges; therefore, a simplification process might run
into an endless loop by collapsing edges which are instantly recon-
structed by the insertion of imaginary cells. In order to avoid this
problem, a simple test for edge collapses has to be added. Edge
collapses are avoided if the following three conditions are met: All
edge neighbors of the collapsing edge are imaginary, one vertex is
part of the boundary of the mesh, and all vertex neighbors of this
vertex are imaginary. (For an example see the edge between the
new imaginary cells in the right-hand side of Figure 6.)

4.3 Topology Preservation

Edge collapses in convexified meshes are considerably more pow-
erful than edge collapses in the original meshes. For example, dis-
connected meshes can be joined in order to be simplified, tunnels in
the boundary of a mesh can be closed, bridges between meshes can
be broken, etc. (Figure 12 shows a new connection between orig-
inally disconnected parts of the mesh in the top-right corner and a
disconnection of cells at the bottom.)

However, not all of these features are always welcome; instead, it
is more appropriate to have full control over the modifications of the
topology of the mesh’s boundary. Here we present two very simple
tests for edge collapses in order to avoid topological changes of the
mesh. Both tests involve only vertex neighbors of the collapsing
edge. Before presenting these topological tests, we have to define
some basic terms.

Def.: The type of a cell is either imaginary or non-imaginary.

Def.: A cell � � is connected to a cell � � of the same type if the cells
share a vertex (direct connection), or if � � is connected to a
third cell � � of the same type that is connected to � � (indirect
connection).

Def.: Two cells are disconnected if they are not connected.

edge

collapse

Figure 7: An edge collapse, which connects two non-imaginary
cells (gray).

Figure 7 shows an example of an edge collapse that establishes
a new connection between two non-imaginary cells. In general, the
collapse of an edge � between two vertices 	 � and 	 � can connect
two previously disconnected cells if all of the following three con-
ditions are met: All of the edge neighbors of � are of the same type�
; at least one of the vertex neighbors of 	 � is not of type

�
; and at

least one of the vertex neighbors of 	 � is not of type
�
. This is a nec-

essary condition; therefore, it is sufficient to avoid edge collapses
that fulfill it in order to avoid new connections between cells. The
test is the same for triangular and tetrahedral meshes.

Edge collapses are also able to disconnect cells; an example is
presented in Figure 8. In order to formulate a test for disconnecting
edge collapses, we need one more definition:

Def.: An edge neighbor � of type
�

of an edge � is isolated if none
of the faces of � that do not share � are shared by a face
neighbor of � of type

�
.

edge

collapse

Figure 8: An edge collapse, which disconnects two non-imaginary
cells (gray).

Using this definition we can state that the collapse of an edge �
can disconnect two previously connected cells if at least one of the
edge neighbors of � is isolated. This is again a necessary condition,
which works for triangular and tetrahedral meshes. (Note that the
faces of a triangular cell are its edges.)

These two topological tests allow us to avoid new connections
and/or disconnections simply by avoiding edge collapses that fulfill
the conditions stated above. An example with a topological non-
trival mesh is given in Figure 13, which should be compared with
Figure 12, where these tests were not applied.

5 Conclusions and Future Work

An idea of Peter Williams to convert nonconvex into convex meshes
was successfully applied to solve the problems of edge collapses in
nonconvex tetrahedral meshes with topologically non-trival bound-
aries, which may be non-manifolds. Intersections of cells, new non-
convexities of the boundary, and modifications of the topology are
identified and avoided by efficient, local tests. Therefore, the partic-
ular problems of simplifying nonconvex meshes by edge collapses
are in principle solved.

However, many problems are still open: an efficient and robust
computation of the convex hull of an arbitrary tetrahedral mesh;
an efficient and robust computation of the tetrahedralization of an
arbitrary polyhedron; more elaborated definitions of topology pre-
serving edge collapses (see [2]); and, of course, applications to real-
world data sets.

References

[1] Bernard Chazelle and Leonidas Palios. Triangulating a
Nonconvex Polytope. Discrete & Computational Geometry,
5:505-526, 1990.

[2] Tamal K. Dey, Herbert Edelsbrunner, Sumanta Guha, and
Dmitry V. Nekhayev. Topology Preserving Edge Contraction.
Publ. Inst. Math. (Beograd) (N.S.), 66:23-45, 1999.

[3] Jovan Popović and Hugues Hoppe. Progressive Simplicial
Complexes. In Computer Graphics Proceedings (SIGGRAPH
’97), pages 217-224, 1997.

[4] Oliver G. Staadt and Markus H. Gross. Progressive Tetrahe-
dralizations. In Proceedings of IEEE Visualization ’98, pages
397-402, 1998.

[5] Issac J. Trotts, Bernd Hamann, Kenneth I. Joy, and David
F. Wiley. Simplification of Tetrahedral Meshes. In Proceed-
ings of IEEE Visualization ’98, pages 287-295, 1998.

[6] Peter L. Williams. Visibility Ordering Meshed Polyhedra.
ACM Transactions on Graphics, 11(2):103-126, 1992.

REFERENCES 4

Figure 9: The nonconvex tetrahedral
mesh that is the starting point for the
calculations depicted in Figures 10-13.

Figure 10: The tetrahedral mesh from Figure 9 after one edge collapse, which
causes two self-intersections of the mesh. One of the self-intersections is shown
in detail.

Figure 11: (Intermediate) results of the convexification of the mesh shown in Figure 9. From left to right: the convex hull of
the mesh; the nonconvex polyhedron between the convex hull and the boundary of the mesh, which has to be tetrahedralized;
and the mesh together with imaginary tetrahedra generated by the tetrahedralization (only edges of imaginary cells are shown).

Figure 12: The result of a simplification of the convexified
mesh depicted in Figure 11 without topological tests. The
geometric tests guarantee that there are no self-intersections
and hamper further edge collapses.

Figure 13: Topological tests in a simplification of the mesh
from Figure 11 guarantee the preservation of the connec-
tivity. Therefore, the simplification process is halted earlier
than without these tests.

A Multi-Resolution Interactive Previewer
for Volumetric Data on Arbitrary Meshes

Oliver Kreylos∗ Kwan-Liu Ma∗ Bernd Hamann∗

Abstract

In this paper we describe a rendering method suitable for
interactive previewing of large-scale arbitary-mesh volume
data sets. A data set to be visualized is represented by a
“point cloud,” i. e., a set of points and associated data val-
ues without known connectivity between the points. The
method uses a multi-resolution approach to achieve interac-
tive rendering rates of several frames per second for arbitrar-
ily large data sets. Lower-resolution approximations of an
original data set are created by iteratively applying a point-
decimation operation to higher-resolution levels. The goal of
this method is to provide the user with an interactive nav-
igation and exploration tool to determine good viewpoints
and transfer functions to pass on to a high-quality volume
renderer that uses a standard algorithm.

1 Introduction

Current visualization methods for arbitrary-mesh, volumet-
ric data sets do not allow interactive rendering, or even low-
quality previewing, of large-scale data sets containing several
million grid points. In most cases, a scientist creates or mea-
sures such a data set without a-priori knowledge of where to
find the features she is looking for; sometimes, even without
knowing what those features are. Volume visualization has
proven to be a very helpful tool in these situations. But
without interactive navigation and exploration tools, find-
ing features in a very large data set and highlighting them
using customized transfer functions is very difficult and time-
consuming.

If images of a data set could somehow be rendered at inter-
active rates, even at relatively poor quality, the navigation
process could be sped up considerably.

1.1 Related Work

There are several basic rendering methods for arbitrary-
mesh volumetric data sets that are geared towards gener-
ating high-quality images at the expense of rendering time.
These methods include the ray casting algorithm described
by Garrity [2], the cell projection algorithm discussed by
Lichan and Kaufman [5], the plane-sweep modification of
the ray casting algorithm invented by Silva et al. [7], the
adaptation of the splatting algorithm for non-rectilinear vol-
umes developed by Mao [3], the polygonal approximation to
ray casting presented by Shirley and Tuchman [4], and the
slicing approach described by Yagel et al. [6].

Researchers have tried optimizing these algorithms follow-
ing different approaches. Probably the easiest optimization
is subsampling in image space, by generating small images

∗Center for Image Processing and Integrated Comput-
ing (CIPIC), Department of Computer Science, University of
California, Davis, One Shields Avenue, Davis, CA 95616–8562,
{kreylos,ma,hamann}@cs.ucdavis.edu

and duplicating pixels using some reconstruction filter. A
more sophisticated approach is utilizing graphics hardware
for volume rendering. This has been a major success for rec-
tilinear data sets, where 3D texture mapping can be used
to generate images at interactive rates [8]. Yagel et al. [6]
developed a similar method that generates slices of tetra-
hedral mesh data sets and uses hardware-assisted polygon
rendering to generate images of and composite these slices.
There has also been a considerable amount of work on uti-
lizing massively parallel supercomputers to speed up volume
rendering [1, 9, 11].

1.2 Interactive Previewing of Large-Scale Volume
Data Sets

We describe a new rendering method for irregular volume
data sets that uses multiresolution approximations to trade
off image quality against rendering speed. This method does
not use the topology information contained in irregular data
sets, but attempts to reconstruct images of a data set by
looking at the data values at grid vertices only. Obviously,
this method only generates approximations, but experiments
show that the quality of the generated images, combined
with the fact that these images are generated rapidly, is
more than sufficient to allow the user to detect and high-
light features in a data set quickly, see section 5. After good
viewpoints and transfer functions have been determined in
the previewing phase, those are passed on to either a high-
accuracy rendering method [10] or a high-performance ren-
dering method [11].

1.3 Throwing Away the Topology

To allow rapid rendering of approximations of an arbitrary-
mesh data set, our algorithm does not take the topology of
a given grid into account. Instead, it treats the data set as a
cloud of points (with associated data values) without known
connectivity. Of course, doing so radically decreases the im-
age quality: without knowledge of the vertex connectivity,
any rendering can only be an approximation of the correct
image. On the other hand, rendering a point cloud has the
following benefits:

1. Since it is only an approximation to begin with, one can
select a convenient approximation method that utilizes
graphics hardware.

2. The algorithm described in section 2 can easily be par-
allelized for shared-memory, multi-processor graphics
workstations.

3. It is comparatively easy to decimate a point cloud to
generate a hierarchy of approximations at multiple lev-
els of resolution.

Using these optimizations, and selecting the appropriate hi-
erarchy level for the user’s demands, allows to create an

algorithm that renders approximations of arbitrarily large
data sets at interactive frame rates.

2 Point-Based Volume Rendering

The major problem of point-based volume rendering is to
generate a continuous image. Rendering all points in the set
independently, e.g. using a splatting method, usually does
not work. In many irregular data sets, the distances between
neighbouring points vary over several orders of magnitude;
drawing the point cloud with a fixed-size splatting kernel
would induce holes in the image in sparse regions and over-
painting in dense regions of the data set.

Using variable-shape splatting kernels could solve the
problem, but finding out the correct shape to use for a given
point is a major task in itself when the connectivity of the
points is unknown.

2.1 Rendering a Point Cloud

Our algorithm follows the following basic idea to “fill in”
pixel values between neighbouring points:

1. A given point set is transformed such that the viewing
direction is along the negative z-axis. This step, called
“transformation,” is an additional step to optimize later
stages of the algorithm.

2. The point set is subdivided into thin “slabs” that are
orthogonal to the viewing direction, i. e., each slab is
of nearly constant z value. We refer to this step as
“slicing.” Slicing is done adaptively to take the varying
point density in a data set into account.

3. The slabs are converted into a continuous representa-
tion (a triangle mesh) by creating the Delaunay trian-
gulation of all points included in the slab. We call this
step “meshing.”

4. The meshes associated with each slab are rendered
and composited in back-to-front order using hardware-
accelerated polygon rendering and alpha blending. This
step is appropriately called “rendering.”

These four steps describe a four-stage rendering pipeline,
shown in Figure 1.

Slicing Meshing Rendering
Transfor-
mation

Point
Cloud

Transformed
Point Cloud

Slabs Triangulations Image

Figure 1: The four-stage rendering pipeline defined by our
algorithm.

2.2 Visible Artifacts

The major cause of visible artifacts in resulting images is the
fact that each of the slabs generated by the slicing process
is triangulated and rendered independently. This can lead
to the effect that the image of one triangulation is not in-
fluenced by a point that is very close to the triangulation in
object space, but happens to be inside a different slab, see
Figure 2.

Since the two slabs depicted in Figure 2 are rendered in-
dependently, the color and opacity values are interpolated
linearly between points P1 and P2. In a correct rendering,
the values would have to be interpolated between points P1

and P3, and then between points P3 and P2. But, because
point P3 is located in a different slab, the algorithm is obliv-
ious to this fact.

Slab 1

Slab 2
P1

P2

P3

Linear Interpolation

Viewing Direction

Figure 2: Potential artifacts in resulting images. Inside
slab 2, color and opacity values are wrongly interpolated
between points P1 and P2.

These artifacts are especially visible when a slab contains
only a small number of points, or when all points are clus-
tered in a small region of the triangulation’s intersection
with the bounding box of the point set. In these cases, the
meshing process connects the points to the vertices on the
triangulation’s boundary, and the resulting long and thin
triangles will “smear out” the color values all the way to the
boundary.

The distinct appearance of these visual artifacts is, in
some sense, beneficial: it is hard to misinterpret them as
features in a data set. Since detecting and emphasizing fea-
tures present in a data set is the major goal of our algorithm,
it is usable in spite of these distortions. The images pro-
duced are not intended to be used “as is,” but they provide
help in navigating through a large data set, and in finding
interesting viewpoints and transfer functions to pass on for
subsequent high-quality renderering.

3 Parallel Rendering

The serial implementation of our algorithm, as described in
section 2, is already capable of rendering small data sets
(consisting of several thousand points) on a standard graph-
ics workstation, e. g., an SGI O2, at interactive rates of sev-
eral frames per second, see section 5.

To improve the efficiency of the algorithm, we decided
to parallelize it for use on multi-processor shared-memory
graphics workstations, like SGI Onyx2 workstations. To
distribute the workload among the processors, we exploit
both functional parallelism inside the rendering pipeline and
object-space parallelism.

3.1 Functional Parallelism

To exploit functional parallelism, we decouple the rendering
pipeline as shown in Figure 1 by creating separate threads
for each stage and connecting the stages by request queues.

The first pipeline stage is handled by a single thread, be-
cause it requires only a very short amount of time, and paral-
lelizing it would incur too much overhead. The second and
third pipeline stages are represented by a pool of worker
threads. The final pipeline stage is also done by a single
thread, because the triangulated slices have to be rendered
in order, and the OpenGL implementation available to us
does not support concurrent rendering into a single frame
buffer. The overall structure of our parallel pipeline is shown
in Figure 3.

Point
Cloud

Image

Transfor-
mation Slicing

Slicing

Slicing

Meshing

Meshing

Meshing

Rendering

Slicing
Request
Queue

Meshing
Request
Queue

Rendering
Request
Queue

Figure 3: The parallel rendering pipeline defined by our al-
gorithm.

One detail of our parellel rendering pipeline is not shown
in Figure 3: in order to parallelize the inherently recursive
slicing process, a slicer thread can also place a slicing request
to the slice request queue. If a slicer thread determines that
a slab is thin enough or contains few enough points to render,
it will put an entry into the meshing request queue. If, on
the other hand, the slab has to be subdivided further, it
splits the slab and places two new slicing requests, one for
each of the two generated slabs, to the slicing request queue.
By following this strategy, we achieve good load balancing
between the slicing threads.

3.2 Object-Space Parallelism

The threads in the slicing and meshing pipeline stages op-
erate independently of each other. Therefore, we achieve
object-space parallelism: as soon as a slab is subdivided into
a “front” and a “back” portion, those can be processed in
parallel. In the meshing process, all slices are independent
of each other and can be created in parallel.

3.3 Comparison with the Serial Algorithm

As to be expected, the parallel version of our algorithm is
considerably faster than the serial version when executed on
a shared-memory multi-processor graphics workstation. We
have compared the runtimes on a four-processor SGI Onyx2
workstation, and the parallel algorithm cuts down rendering
time by a factor of about four, yielding a parallel efficiency
of about 90%.

It is more surprising that even on a single-processor work-
station the parallel version is faster than the serial one. We
believe that the multi-threaded version overlaps the pro-
cesses of mesh creation and mesh rendering. The latter is
done completely in hardware, and in the serial version the
CPU has to wait for the graphics subsystem to finish ren-
dering, whereas the parallel version can continue to work in
the slicing or meshing pipeline stages.

4 Multiresolution Rendering

Even after having parallelized the volume renderer, it is still
not fast enough to render very large data sets containing mil-
lions of points. The reason for this is that the methods used
in parallelization do not scale well beyond small numbers of
processors in a shared-memory system.

To achieve our goal of interactive rendering of very large
data sets, we have to create smaller approximations to those
data sets first and render them instead. When creating a
multiresolution approximation hierarchy, the program (or
the user) can always specify an appropriate resolution level
to trade off image quality against rendering time.

4.1 Creating a Hierarchy of Approximations

To create a hierarchy of approximations, we start with the
point set of the original data set (and call it level 0) and
perform a point decimation algorithm. We call the result
level 1 and repeat the decimation algorithm for level i to
generate level (i + 1), and so forth. This process termi-
nates when the result of the decimation algorithm is a suffi-
ciently small data set. With current computer performance
and interactive rendering in mind, “small” means that the
coarsest-resolution level should contain only a few thousand
points.

4.2 The Decimation Algorithm

Finding a sufficiently good representation of a given point
set using only a fraction of the original points is difficult, es-
pecially when the original points are not aligned on a regular
grid. In that case, the algorithm could just sub-sample the
grid (by only choosing every other point) and would generate
a meaningful approximation (modulo aliasing).

In the case of arbitrary-mesh data sets, points are not
“aligned” and generally do not form a lattice that could be
sub-sampled easily. Even worse, point density might vary
over several orders of magnitude in a single data set.

Therefore, we need an algorithm that resembles the sub-
sampling approach for regular grids, in the sense that it
keeps the relative point densities of an approximation similar
to the relative point densities of the original data set.

The algorithm we chose to preserve point densities is
based on maximum independent sets. To create an approxi-
mation, we first calculate a Delaunay tetrahedrization of the
original data set. This results in a tetrahedral mesh where
each point is connected to all its nearest neighbours by an
edge.

As a second step we invoke a “mark-and-sweep” algorithm
that extracts the maximum set of points such that no two
points in the set are direct neighbours of each other in the
original data set.

5 Examples and Results

We have applied our algorithm to several data sets of
different sizes and recorded the runtimes for each data set.
The original images generated by our algorithm can also be
found under the URL
http://graphics.cs.ucdavis.edu/~okreylos/Research/
VolumeRendering/index.html.

5.1 Measurements

Table 1 lists the rendering times for the parallel implemen-
tation of our algorithm, executed on an SGI Onyx2 worksta-
tion having four MIPS R10K processors running at 195 MHz
and 512 MB of main memory. The rendered data sets are the
ones described on the web page.

Dataset # of points time (sec.)
Mavriplis 438 0.01

2,800 0.02
Parikh 378 0.01

2,425 0.02
15,804 0.12

103,064 0.99
Shalf 6,607 0.05

46,261 0.31
346,087 2.66

2,531,452 27.35

Table 1: Rendering times for various data sets.

6 Conclusion

To evaluate our point-based rendering method for arbitrary-
mesh volumetric data sets, we have implemented an exper-
imental application that allows navigating such data sets
and creating colour and opacity maps to pass on to other
volume rendering programs. Our multi-resolution approxi-
mation technique allows rendering approximations of data
sets of varying sizes at interactive frame rates on a four-
processor SGI Onyx2 graphics workstation.

In our experiments, we found that the rapid rendering
achieved by our approach and implementation is a valuable
help in finding and highlighting interesting features in an
unknown data set quickly. The artifacts described in sec-
tion 2.2 are visible, especially when rendering low-resolution
approximations, but do not hinder the navigation process.
As long as final images are generated by a standard high-
quality volume rendering algorithm, the image distortions
induced by our method are of little concern.

7 Acknowledgements

This work was supported by the National Science Founda-
tion under contracts ACI 9624034 and ACI 9983641 (CA-
REER Awards), through the Large Scientific and Software
Data Set Visualization (LSSDSV) program under contract
ACI 9982251.

We thank the members of the Visualization Group at
the Center for Image Processing and Integrated Comput-
ing (CIPIC) at the University of California, Davis.

We thank Dimitri Mavriplis at ICASE, Paresh Parikh at
ViGYAN, Inc. and Greg Bryan, Mike Norman and John
Shalf at the Laboratory for Computational Astrophysics at
NCSA and Lawrence Berkeley National Laboratory for pro-
viding the data sets used as examples. We thank Gunther
Weber at CIPIC for help with the AMR file format.

References

[1] Challinger, J., Scalable Parallel Volume Ray-Casting for
Nonrectilinear Computational Grids, in Proc. 1993 Par-

allel Rendering Symposium (1993), ACM Press, pp. 81–
88

[2] Garrity, M. P., Raytracing Irregular Volume Data, in
Proc. 1990 Workshop on Volume Visualization, special
issue of Computer Graphics, vol. 24(5) (1990), pp. 35–
40

[3] Mao, X., Splatting of Non-Rectilinear Volumes Through
Stochastic Resampling, in IEEE Transactions on Vi-
sualization and Computer Graphics, vol. 2(2) (1996),
pp. 156–170

[4] Shirley, P. and Tuchman, A., A Polygon Approximation
to Direct Scalar Volume Rendering, in Proc. 1990 Work-
shop on Volume Visualization, special issue of Com-
puter Graphics, vol. 24(5) (1990), pp. 63–70

[5] Lichan, H. and Kaufman, A. E., Fast Projection-Based
Ray-Casting Algorithm for Rendering Curvilinear Vol-
umes, in IEEE Transactions on Visualization and Com-
puter Graphics, vol. 5(4) (1999), pp. 322-332

[6] Yagel, R., Reed, D.M., Law, A., Shih, P. and Shareef,
N., Hardware Assisted Volume Rendering of Unstruc-
tured Grids by Incremental Slicing, Proc. 1996 Volume
Visualization Symposium, ACM SIGGRAPH (1996),
pp. 55-62

[7] Silva, C. T., Mitchell, J. S. B. and Kaufman, A. E., Fast
Rendering of Irregular Volume Data, in Proc. 1996
Volume Visualization Symposium, ACM SIGGRAPH
(1996), pp. 15–22

[8] Meissner, M., Hoffmann, U. and Strasser, W., Volume
Rendering Using OpenGL and Extensions, in Proc. Vi-
sualization ’99, pp. 207–526

[9] Williams, P. L., Parallel Volume Rendering Finite Ele-
ment Data, Proc. Computer Graphics International ’93,
Lausanne, Switzerland, June 1993

[10] Williams, P. L., Max, N. L. and Stein, C. M., A High
Accuracy Volume Renderer for Unstructured Data, in
IEEE Transactions on Visualization and Computer
Graphics, vol. 4(1) (1998), pp. 37–54

[11] Ma, K.-L. and Crockett, T. W., A Scalable Parallel
Cell-Projection Volume Rendering Algorithm for Three-
Dimensional Unstructured Data, in Proc. IEEE Sym-
posium on Parallel Rendering, IEEE Computer Society
Press (1997),pp. 95–104

[12] Guibas, L. J., Knuth, D. E., and Sharir, M. Random-
ized Incremental Construction of Delaunay and Voronöı
Diagrams, in Proc. 17th Int. Colloq.—Automata, Lan-
guages and Programming, vol. 443 of Springer Verlag
LNCS (1990), Springer Verlag, Berlin, pp. 414–431

1

A Framework for Visualizing Hierarchical Computations

Terry J. Ligocki1, Brian Van Straalen2, John M. Shalf1, Gunther H. Weber3,4, Bernd Hamann3

1 Lawrence Berkeley National Laboratory, National Energy Research Scientific Computing Center,
1 Cyclotron Road, M/S 50F, Berkeley, CA 94720, USA, {TJLigocki,Jshalf}@lbl.gov

2 Lawrence Berkeley National Laboratory, National Energy Research Scientific Computing Center,
1 Cyclotron Road, M/S 50A-1148, Berkeley, CA 94720, USA, BVStraalen@lbl.gov

3 Center for Image Processing and Integrated Computing, Department of Computer Science,
University of California, 1 Shields Avenue, Davis, CA 95616-8562, USA, {weber,hamann}@cs.ucdavis.edu

4 AG Graphische Datenverarbeitung und Computergeometrie, FB Informatik, Universitaet Kaiserslautern,
Postfach 3049, D-67653 Kaiserslautern, Germany, weber@informatik.uni-kl.de

1. Introduction

Researchers doing scientific computations are attempting
to accurately model physical phenomenon. When those
physical phenomena take place at a variety of different
scales it can be more efficient and accurate to model them at
different levels of detail in an adaptive manner. Two groups
here in the National Energy Research Scientific Computing
center [NERSC] at the Lawrence Berkeley National
Laboratory [LBNL] are doing just that. One group is headed
by John Bell (the Center for Computational Sciences and
Engineering, [CCSE]) and the other is headed by Phil
Colella (the Applied Numerical Algorithms Group,
[ANAG]). Both are doing computations using similar
adaptive mesh refinement (AMR) techniques. Since the
term “AMR” can mean a variety of things to researchers it
should be clarified that we use it to refer exclusively to block
structured AMR as defined in a paper by Berger and Colella
[Berger].

Given that the researchers have already defined a
hierarchical structure for their data and are performing their
computations using this structure, it has been our job to
provide a visualization tool that accurately represents this
data. This has been a joint effort between ANAG and the
LBNL/NERSC Visualization Group [Vis]. It includes
extending and modifying visualization algorithms (e.g.
isosurface computation, streamline generation) to correctly
generate results while taking advantage of inherent
computational efficiencies in the original AMR data
structure. To this end we have chosen ANAG’s AMR
computational library [Chombo] and built an extensible
visualization tool [ChomboVis] for the data sets Chombo
produces. This tool was built on top of the Visualization
Toolkit [VTK] using one of its interpretive interfaces
[Tcl/Tk]. By using VTK we have been able to use a broad
foundation of existing algorithms and infrastructure while
benefiting from ongoing extensions and improvements to
VTK, e.g. [Norman]. Also, because VTK is an extensible,
object oriented library, we can add functionality to existing
algorithms and add new algorithms relatively easily. The
interpretive interface, Tcl/Tk, has allowed us to rapidly
prototype ideas, add new functionality, benefit from the

work other groups are doing with Tcl/Tk, and give
researchers using our tool the option to directly extend it in
an interactive fashion.

The development of this tool has proceeded in several
directions. First, we have implemented the second version
of ChomboVis, which provides the researchers with many of
the tools they need to view and investigate their data. This
version provides 2D and 3D visualization capabilities
including that ability to look at selected data directly in a
spreadsheet fashion. Second, we have been actively
researching extensions of visualization techniques and
algorithms to AMR data (e.g. seamless isosurface
generation). These extensions can then be integrated into
VTK and ChomboVis. Finally, we have been using recent
extensions to VTK to handle the AMR data sets in a more
natural and efficient manner. We believe that taken
together, this has provided researchers with a tool that meets
their immediate needs, will be extended to meet future
needs, and will benefit from other work being done by the
visualization research community.

2. Overview of Past and Current Work

The following is only a brief description of the AMR data
generated by Chombo. It is intended to give the reader an
idea of the structure of the data but not to be a precise or
complete definition. The AMR data produced by
computations using Chombo consists of a set of regular
grids that are grouped by level. All the grids on a given
level have the same cell size or resolution. All grids on a
given level are completely covered by grids on the next
coarser level. The ratio of the cell size on one level to the
cell size on the next finer level is always an integer. Finally,
the data values are all cell centered and the computations
being done are finite difference approximations to partial
differential equations, PDE's.

There are many approaches to extending visualization
algorithms to AMR data. One of the primary difficulties is
that there may be multiple data values at a given point -
each values coming from a different level in the AMR
hierarchy. There are several approaches that can be taken to
deal with this:

2

1. Treat all the grids (and their values) independently.

2. Use the data value(s) from the finest grid available
and ignore data value(s) from coarser grids.

3. Combine the data together in some way that is
physically meaningful and use the result for
visualization.

Each of these approaches can be useful depending on
what the user is looking for in the data sets. If the user is
debugging computational algorithms the first approach
allows them to look at all the data. If the user is trying to
understand and/or present computations the second or third
approaches may be the best.

2.1 Visualization Tool

We started developing a visualization tool treating all
grids and data independently since it was the most
straightforward to implement and would be of the most
immediate value to ANAG as they worked on the Chombo
library. Also, it would also be of considerable value to the
users of the Chombo library to have some form of
visualization tool that would be extended over time. The
result of this was ChomboVis. The first version was
released at the beginning of 2000 and the second version
was released in late 2000.

ChomboVis was built using VTK and its Tcl/Tk interface.
VTK was chosen because is a freely available library that
includes source code and thus can be modified and extended
directly. ChomboVis contains several new VTK objects –
for example, an object that reads the HDF5 output of
Chombo and converts it into VTK data objects. Tcl/Tk was
used to develop the user interface and to put together the
VTK objects into a working system. In addition, we
envision users directly interacting with ChomboVis via its
Tcl/Tk interface and creating custom extensions in that
manner.

The second release of ChomboVis works with 2D and 3D
data sets and provides the following capabilities (see Figure
1 for an illustration of the tool in operation):

• Data selection by scalar variable and level ranges
• Orthogonal data slicing and display
• Multiple isosurface or contour generation
• Spreadsheet viewing of individual grids
• Selection of grids by pointing into the visualization
• Display of grid bounds, cell size, etc.
• Output in CGM format
• User specified colormaps

These are fairly modest capabilities and yet they required
a substantial amount of development. This was because
VTK (and other widely available visualization packages) do
not directly support multiple grids. Much of the work we
did was to provide a mechanism for sending multiple grids

through a given VTK pipeline and collecting the results for
rendering.

Initially we planned to use some of the recent VTK
extensions to handle groups/arrays of grids [Ahrens]. This
wasn’t possible due to differences between the task the
extensions were addressing (domain decomposition) and our
task (handling overlapping sets of grids). We then turned to
a novel, streaming, out-of-core technique using VTK and
extensions based on work done by Matthew Hall [Hall] in
order to minimize memory requirements and pipeline
overhead.

2.2 Visualization Research

While the work on ChomboVis continued we began to
collaborate with researchers at the Center for Image
Processing and Integrated Computing [CIPIC] in the
Department of Computer Science [UCD-CS] at the
University of California, Davis [UCD]. This collaboration
was born of our work with AMR data sets and the work at
CIPIC in hierarchical representations and visualizations of
large data sets. Over the summer of 2000 we began several
projects with professors and graduate students from UCD.
The goal of these projects was to extend visualization
algorithms and techniques to AMR grids. Specifically, the
following areas were investigated:

1. The generation and rendering isosurfaces from AMR
data sets with no artifacts due to overlap, gaps, or
cracks between grids at different levels.

2. The visualization of vector fields defined in AMR
data sets.

3. The visualization of embedded boundaries, EB,
which was being developed by ANAG in conjunction
with their AMR work.

4. Interactive, immersive visualization of large AMR
data sets using techniques that included seeded
isosurface generation.

5. Interactive previewing (fast with artifacts) and high
quality (slower without artifacts) volume rendering
techniques for AMR data sets.

In all cases, one goal was to take advantage of the regular
grid structure wherever possible and only do additional work
where it was necessary. This was one of the general
advantages of this type of AMR representation in scientific
computations. A substantial amount of progress was made
on each of these projects. The accomplishments in each
area were:

1. A technique was implemented for handling multiple,
overlapping grids. It removed portions of grids that
overlapped finer grids, handled the rest using
marching cubes [Lorensen], and then generated
stitching cells and geometry at the boundaries to
create a seamless result.

3

2. Some initial infrastructure was implemented to allow
AMR vector data to be manipulated, some simple
visualization of AMR vector fields was done, and a
technique was implemented to compute integral
curves of an AMR vector field.

3. The infrastructure to represent EB data for boundary
reconstruction and visualization was implemented.
Using this, several techniques for boundary
reconstruction were implemented.

4. Interactive, seeded isosurface software was developed
which worked with regular grids, curvilinear grids,
and general tetrahedral meshes. Time budgets and
work queues were used to guarantee interactivity.

5. Several promising techniques for interactive volume
rendering were explored – including a technique that
ignores much of the detailed structure in AMR data
sets by viewing the data as a 3D point set.

Much work still needs to be done in all these areas and
this will be discussed in the next section.

3. Future Work

We feel there are ample opportunities for continued work
both in the form of direct extensions to current work and
more subtle new directions. For example, some of the
successful visualization research will be integrated into
ChomboVis and use of ChomboVis will suggest new areas
of visualization research.

3.1 Visualization Tool

ChomboVis is a maturing visualization tool for AMR
data sets produced by Chombo. As such, it will continue to
be used by researchers and improved to meet their needs.
There are several aspects to this process. The user
interface(s), documentation, and general usability will be
improved. This can be done by working with users to get a
better understanding of how they use (and abuse)
ChomboVis. The performance of the tool will need to be
improved for large data sets. This will require more
substantial modifications to VTK to handle sets of grids in a
more direct fashion. There is ongoing work in this area by
other users of VTK and we plan to use this work to help us
address performance issues.

Finally, we plan to integrate some of the successful AMR
visualization research we being done into VTK and
ChomboVis to provide users with the most advanced
visualization tool we are capable of creating. Specifically,
the seamless isosurface work, AMR vector visualization
techniques, and interactive volume rendering work are
candidates for integration.

3.2 Visualization Research

As has been said before, each area of AMR visualization
research discussed contains many opportunities for

continued work. Also, all the visualization techniques being
developed could be studied in the interactive, immersive
context being developed. Researchers will be combining
AMR and EB technologies together and thus research in
visualizing AMR and EB data sets will need to be combined
and extended. The computing and visualizing of scalars and
vectors derived from the quantities which were originally
computed is of considerable interest to researchers using
Chombo. Finally, applying and extending all the
visualization tools and research to time varying AMR data
sets provides a difficult challenge.

4. Conclusions

By working closely with researchers doing AMR
computations and developing visualization tools that they
use we have developed a framework for visualizing AMR
computations. This has given rise to a number of
visualization research questions and problems. Work on
these problems has lead to extensions of our original
framework and tools. This, in turn, will lead to more
visualization research.

Acknowledgments

This work was supported by the Directory, Office of
Science, Office of Basic Energy Sciences, of the U.S.
Department of Energy under Contract No. DE-AC03-
76SF00098 and by the National Science Foundation,
through the Large Scientific and Software Data Set
Visualization (LSSDSV) program, and through the National
Partnership for Advanced Computational Infrastructure
(NPACI); the Office of Naval Research; the Army Research
Office; the NASA Ames Research Center through an NRA
award; the Lawrence Livermore National Laboratory under
ASCI ASAP Level-2; the Los Alamos National Laboratory;
and the North Atlantic Treaty Organization (NATO). We
also acknowledge the support of ALSTOM Schilling
Robotics, Chevron, General Atomics, Silicon Graphics, Inc.
and ST Microelectronics, Inc.

In addition, we would like to thank ANAG, the
LBNL/NERSC Visualization Group, and the members of the
Visualization Thrust at the Center for Image Processing and
Integrated Computing (CIPIC) at the University of
California, Davis for their help during the development of
ChomboVis and our visualization research.

References

[Ahrens] James Ahrens, Charles Law, Will Schroeder, Ken
Martin, Michael Papka, “A Parallel Approach for
Efficiently Visualizing Extremely Large, Time-Varying
Datasets”, Los Alamos National Laboratory - Tech.
Report #LAUR-00-1620.

[ANAG] http://seesar.lbl.gov/anag/

[Berger] Marsha Berger and Phil Colella, “Local adaptive
mesh refinement for shock hydrodynamics”, Journal of

4

Computational Physics, 82:64-84, May 1989, Lawrence
Livermore Laboratory Report No. UCRL-97196.

[CCSE] http://seesar.lbl.gov/ccse/

[Chombo] http://seesar.lbl.gov/anag/chombo/

[ChomboVis]
http://seesar.lbl.gov/anag/chombo/chombovis.html

[CIPIC] http://graphics.cs.ucdavis.edu/

[Hall] http://zeus.ncsa.uiuc.edu/~mahall

[HDF5] http://hdf.ncsa.uiuc.edu/HDF5/

[LBNL] http://www.lbl.gov/

[Lorensen] William E. Lorensen and Harvey E. Cline,
“Marching Cubes: A high resolution 3D surface
construction algorithm”, Computer Graphics, 21(4):163-
169, July 1987.

[NERSC] http://www.nersc.gov/

[Norman] Michael L. Norman, John Shalf, Stuart Levy, and
Greg Daues, “Diving deep: Data management and
visualization strategies for adaptive mesh refinement
simulations”, Computing in Science and Engineering,
1(4):36-47, July/August 1999.

[Tcl/Tk] “Tcl and the Tk Toolkit”, John K. Ousterhout,
Addison-Wesley, 1994.

[UCD] http://www.ucdavis.edu/

[UCD-CS] http://www.cs.ucdavis.edu/

[Vis] http://www-vis.lbl.gov/

[VTK] “The Visualization Toolkit, 2nd Edition”, Will
Schroeder, Ken Martin, Bill Lorensen, Prentice-Hall Inc.,
1998.

Figure 1: Visualization of an AMR data set using ChomboVis.

VR-based Rendering Techniques for Large-scale
Biomedical Data Sets

Joerg Meyer
NSF Engineering Research Center (ERC) - Department of Computer Science
Mississippi State University - Box 9627 - Mississippi State, MS 39762-9627

jmeyer@cs.msstate.edu

Ragnar Borg, Bernd Hamann, Kenneth I. Joy
Center for Image Processing and Integrated Computing (CIPIC)

Department of Computer Science - University of California - One Shields Ave. - Davis, CA 95616-8562
Ragnar.Borg@proxycom.no, hamann@cs.ucdavis.edu, joy@cs.ucdavis.edu

Arthur J. Olson
The Scripps Research Institute - 10550 North Torrey Pines Road - La Jolla, CA 92037

olson@scripps.edu

Abstract

VR-based rendering of large-scale data sets is typically
limited by timing and complexity constraints of the ren-
dering engine. Decentralized rendering, such as ac-
cessing a large data repository over a network and
rendering the image on the client side, causes problems
due to the limited bandwidth of existing networks. We
present a combination of octree space subdivision and
wavelet compression techniques to store large volumet-
ric data sets in a hierarchical fashion, and we incorpo-
rate a unique numbering scheme, so that subvolumes
(regions-of-interest) can be extracted efficiently at dif-
ferent levels of resolution.

Keywords: large-scale visualization, biomedical imaging, re-
mote visualization, multiresolution, octree, wavelet, virtual reality

1. Introduction

We present a framework for distributed hierarchi-
cal rendering of large-scale data sets that addresses
two problems at the same time: (i) limited network
bandwidth and (ii) limited rendering resources.
Our goal is to compactify the data set and to break
it down into smaller bricks, while making effec-
tive use of multiresolution techniques. Our system
uses a Windows NT-based server system which is
both data repository and content provider for
shared rendering applications. The client accesses
the server via a web-based interface.

The client selects a data set and sends a request for
information retrieval to the server. The server ana-
lyzes the request and returns a customized Java ap-

plet and the appropriate data. The Java applet is
optimized for a specific rendering task. This
means that the rendering algorithm is customized
for a particular problem set, thus keeping the ap-
plet small by avoiding additional overhead for dif-
ferent cases. The initial data set is also small and
will be refined later upon additional requests by
the client. Our hierarchical rendering techniques
include adaptive space subdivision algorithms,
such as adaptive octrees for volumes, wavelet-
based data reduction and storage of large volume
data sets, and progressive transmission techniques
for hierarchically stored volume data sets. The
web-based user interface combines HTML-form-
driven server requests with customized Java ap-
plets, which are transmitted by the server to ac-
complish a particular rendering task.

Our prototype implementation features 2-D/3-D
preview capability; interactive cutting planes (in a
3-D rendering, with hierarchical isosurface mod-
els to provide context information); a lens para-
digm to examine a particular region-of-interest
(variable magnification and lens shape, interac-
tively modifiable ROI); etc. Complex scenes can
be precomputed on the server side and transmitted
as a VRML2 file to the client so that the client can
render and the user can interact with it in real time.

2. Memory-efficient storage and access

Original data are usually structured as a set of files,
which represents a series of 2-D cross-sections.

VR-based Rendering Techniques for Large-scale Biomedical Data Sets

2

Putting all those slices together, we obtain a 3-D
volume. Unfortunately, when we access the data,
we typically don’t need the implicit coherency
across single slices. This coherency stretches only
across one direction. Instead, we need brick-like
coherency within subvolumes. We present a new
datastructure, which uses a combination of delim-
ited octree space subdivision and wavelet com-
pression techniques to achieve better performance.

We present an efficient indexing scheme, a suit-
able data reduction method, and an efficient com-
pression scheme. All techniques are based on
integer arithmetic and are optimized for speed. Bi-
nary bit operations allow for memory efficient
storage and access.

We use the standard filesystem to store our derived
datastructures, and we use filenames as keys to the
database, thus avoiding additional overhead,
which is typically caused by adding additional lay-
ers between the application and the underlying
storage system. We found that this method pro-
vides the fastest method to access the data. Our in-
dexing scheme in conjunction with the underlying
filesystem provides the database system (reposito-
ry) for the server application, which reads the data
at a low resolution from the repository and sends it
to a remote rendering client upon request. After
the user has specified a subvolume or region-of-in-
terest (ROI), the client application sends a new re-
quest to the server to retrieve a subvolume at a
higher level of resolution. This updating procedure
typically takes considerably less time, because
only a small number of files need to be touched.
The initial step, which requires to read the initial
section of every file, i.e., all bricks, can be sped up
by storing an additional file which contains a re-
duced version of the entire data set.

Our new data structure uses considerably less
memory than the original data set, even if the user
chooses lossless compression (see statistics, chap-
ter 6). By choosing appropriate thresholds for
wavelet compression, the user can switch between
lossless compression and extremely high compres-
sion rates. Computing time is balanced by choos-
ing an appropriate filesize (chapter 3).

One of the advantages of this approach is the fact
that the computing time does not so much depend
on the resolution of the subvolume, but merely on

the size of the subvolume. This is because the
higher resolution versions (detail coefficients in
conjunction with the lower resolution versions)
can be retrieved in almost the same time from disk
as the lower resolution version alone. All levels of
detail are stored in the same file, and the content of
several files, which make up the subvolume, usu-
ally fits into main memory. Since seek time is
much higher than read time for conventional hard-
disks, the total time for data retrieval mainly de-
pends on the size of the subvolume, i.e., the
number of files that need to be accessed, and not
so much on the level of detail.

3. Filesize considerations

The filesize f for storing the leaves of the octree
structure, which is described in chapter 4, should
be a multiple n of the minimum page size p of the
filesystem. p is typically defined as a system con-
stant in /usr/include/sys/param.h). n
depends on the wavelet compression. If the lowest
resolution of the subvolume requires b bytes, the
next level requires a total of 8 · b bytes (worst
case, uncompressed) and so forth.

We assume that we have a recursion depth r for the
wavelet representation. This gives us 8r · b bytes,
which must fit in f. This means:

Both r and b are user-defined constants. Typical
values are b = 512, which corresponds to an
8 x 8 x 8 subvolume, and r = 3, which gives us
four levels of detail over a range between 512 and
83 · 512 = 262144 data elements, which is more
than 2.7 orders of magnitude.

For optimal performance and in order to avoid
gaps in the allocated files, we can assume that

thus

4. Delimited octree and wavelet structure

The enormous size of the data sets (see chapter 5)
requires to subdivide the data into smaller chunks,
which can be loaded into core memory within a
reasonable amount of time [Hei98, Mey97]. Since
we are extracting subvolumes, it seems quite natu-

f n p⋅ 8
r

b⋅≥=

n p⋅ 8
r

b,⋅=

n 8
r b

p
---.⋅=

VR-based Rendering Techniques for Large-scale Biomedical Data Sets

3

ral to break the data up into smaller bricks. This
can be done recursively by using an octree ap-
proach [Jac80, Mea80, Red78]. Each octant is sub-
divided until we reach an empty region which does
not need to be subdivided any further, or until we
hit the filesize limit f, which means that the current
leaf fits into a file of the given size.

Each leaf contains the full resolution. The memory
reduction occurs by skipping the empty regions.
Typically, the size of the data set shrinks to about
20%, i.e., one fifth of the original size (see chapter 6).

Since we want to access the data set in a hierarchi-
cal fashion, we have to convert the leaves into a
multiresolution representation. This representation
must be chosen in a way that the reconstruction can
be performed most efficiently with minimal com-
putational effort. Haar wavelets fulfill these prop-
erties. They also have the advantage that they can
be easily implemented as integer arithmetic. The
lower resolution is stored at the beginning of the
file, thus avoiding long seek times within the file.

Another very useful property is the fact that a vol-
ume converted into the frequency domain, i.e., the
wavelet representation, requires the exact same
amount of memory as the original representation.
This is also true for all subsequent wavelet recur-
sions.The wavelet recursion terminates when we
have reached a predifined minimum subvolume
size b. The lower bound is the size of a single voxel.

Each octant can be described by a number [Fol96,
Hun79]. We use the following numbering scheme
(figure 1): A leaf is uniquely characterized by the
octree recusion depth and the octree path. We limit
the recursion depth to eight, which allows us to en-
code the depth in 3 bits. In order to store the path,
we need 3 bits per recursion step, which gives us
24 bits. 4 bits are spent to encode the depth of the
wavelet recursion. The remaining bit is a flag
which indicates that the file is empty. This pre-
vents us from opening and attempting to read the
file and speeds up the computation. The total num-
ber of bits is 32 (double word).

Each bit group can be easily converted into an
ASCII character by using binary arithmetic, e.g.,
(OCT_DEPTH >> 29) | 0x30) would encode

the octree depth as an ASCII digit. By appending
these characters we can generate a unique filena-
me for each leaf.

In order to retrieve a subvolume, we have to find
the file(s) in which it is stored. We start with the
lower left front corner and identify the subvoxel by
recursive binary subdivision of the bounding box
for each direction. Each decision gives us one bit of
the subvolume path information. We convert these
bits into ASCII characters, using the same macros
as above. The first file we are looking for is
7xxxxxxxx??, where the ’x’s describe the path,
and ’?’ is a wildcard. If this file does not exist, we
keep looking for6xxxxxxx???, and so forth, un-
til we find an existing leaf. If the filename indicates
that the file is empty (last digit), we can skip the
file. The filename also indicates how many levels
of detail we have available for a particular leaf.
This allows us to scale the rendering algorithm. In
order to retrieve the rest of the subvolume, we must
repeat this procedure for the neighboring leaves.
The number of iterations depends on the recusion
depth and therefore on the size of the leaves found.
The algorithm terminates when all files have been
retrieved so that the subvolume is complete.

5. Applications

Our test applications include molecular biology,
medicine, and earthquake simulation. Our proto-
type for the biomedical field was designed to sup-
port three-dimensional visualization of a human
brain, which allows us to study details by moving
tools, such as an arbitrary cutting plane and vari-
ously shaped lenses, across the data set. The vari-
ous data sets are typically between 20 MB and
76 GB, which makes them impossible to transfer
over the internet in real time. The rendering client
operates independently from the size of the data
set and requests only as much data as can be dis-
played and handled by the Java applet.

6. Statistics

Table 1 shows the reduction of memory which is
required to store a large data set, if we use an oc-
tree at two different levels. The column on the
right represents the original data set. The wavelet
decomposition takes about 0.07 sec for a 643 data
set, and 68 sec for a 10243 data set. The recon-

3
oct.depth

3
sub 1

3
sub 8

4
wav.depth

1
em p ty

. . .

VR-based Rendering Techniques for Large-scale Biomedical Data Sets

4

struction can be done more efficiently and usually
takes about 30% of the time (measurements based
on an R12000 processor). For the above data we
assume lossless wavelet decomposition. RLE or
other (lossy) compression/decompression algo-
rithms take an additional amount of time and will
be implemented in a later version. We will choose
algorithms with asymmetric behavior, i.e., com-
pression time is higher than decompression time.

7. Conclusions

We have presented an efficient numbering scheme
and access method for hierarchical storage of sub-
volumes on a regular filesystem. This method al-
lows us to access a region-of-interest as a set of
bricks at various resolutions. The simplicity of the
method makes it easy to implement. The algorithm
easily scales by increasing word length and filena-
me length. Future work includes better wavelet
compression schemes and time-variant data sets.

We are currently working on the integration, adap-
tation and evaluation of these tools in the National
Partnership for Advanced Computational Infra-
structure (NPACI) framework. Integration of San
Diego Supercomputer Center's High-performance
Storage System (HPSS) as a data repository to re-
trieve large-scale data sets, accessing the data via
NPACI's Scalable Visualization Toolkits (also
known as VisTools), and evaluation of particular
applets with NPACI partners, are main goals for
future research efforts.

Acknowledgements

NSF (CAREER Awards: ACI 9624034, ACI 9983641, LSSDSV:
ACI 9982251, NPACI); Office of Naval Research (ONR, N00014-
97-1-0222); Army Research Office (ARO 36598-MA-RIP); NASA
Ames Research Center (NAG2-1216); LLNL (ASCI ASAP Level-2,
B347878, B503159); NATO (CRG.971628); ALSTOM Schilling
Robotics; Chevron; Silicon Graphics, Inc.; ST Microelectronics, Inc.;
Data sets courtesy of Arthur W. Toga, UCLA School of Medicine,
Arthur J. Olson, The Scripps Institute, and Edward G. Jones, Neuro-
science Center, UC Davis.

References

[Hei98] Heiming, Carsten, “Raumunterteilung von Volumendaten,”
thesis, Department of Computer Science, University of Kaiserslau-
tern, Germany, January 1998.

[Hun79] Hunter, G. M.; Steiglitz, K., “Operations on Images Using
Quad Trees,” IEEE Trans. Pattern Anal. Mach. Intell., 1(2), April
1979, 145–154.

[Jac80] Jackins, C.; Tanimoto, S. L., “Oct-Trees and Their Use in
Representing Three-Dimensional Objects,” CGIP, 14(3), November
1980, 249–270.

[Mea80] Meagher, D., “Octree Encoding: A New Technique for the
Representation, Manipulation, and Display of Arbitrary 3-D Objects
by Computer,” Technical Report IPL-TR-80-111, Image Processing
Laboratory, Rensselaer Polytechnic Institute, Troy, NY, October
1980.

[Mey97] Meyer, Jörg; Gelder, Steffen; Heiming, Carsten; Hagen,
Hans, “Interactive Rendering—A Time-Based Approach,” SIAM
Conference on Geometric Design ’97, Nashville, TN, November 3–
6, 1997, 23.

[Red78] Reddy, D.; Rubin, S., “Representation of Three-Dimension-
al Objects,” CMU-CS-78-113, Computer Science Department, Carn-
egie-Mellon University, Pittsburgh, PA, 1978.

[Sch97] Schneider, Timna Esther, “Multiresolution-Darstellung von
2D-Schichtdaten in der medizinischen Bildverarbeitung,” thesis; De-
partment of Computer Science, University of Kaiserslautern, Germa-
ny, December 1997.

Tab. 1: Space subdivision algorithm

Data type MRI CT MRI CT

Pre-processing 56 63 98 97

Depth 4 4 5 5

Memory

3.
99

6.
52

6

3.
83

1.
48

8

2.
35

8.
44

2

14
.8

11
.1

36

14
.5

48
.9

92

14
.8

11
.1

36

14
.5

48
.9

92

5.
41

2.
61

0

Algorithm
level 2level 1

Octree

Fig. 1: Numbering scheme

0 1 0

0 0 0 0 0 1

1 0 11 0 0

1 1 0 1 1 1

0 1 1

b 3 b 2 b 1

b 3
b2

b 10

1 1 1 1 1 0 1 01 1 0 0 0 1 1 0 1 0 0 0 1 0 0 0

Center for Applied Scientific Computing - Lawrence Livermore National Laboratory

Multi-resolution Indexing for
Hierarchical Out-of-core Traversal of Rectilinear Grids

Valerio Pascucci

1 Introduction

The real time processing of very large volumetric meshes intro-
duces specific algorithmic challenges due to the impossibility of
fitting the input data in the main memory of a computer. The basic
assumption (RAM computational model) of uniform-constant-time
access to each memory location is not valid because part of the
data is stored out-of-core or in external memory. The performance
of most algorithms does not scale well in the transition from the
in-core to the out-of-core processing conditions. The performance
degradation is due to the high frequency of I/O operations that may
start dominating the overall running time.

Out-of-core computing [22] addresses specifically the issues of
algorithm redesign and data layout restructuring to enable data ac-
cess patterns with minimal performance degradation in out-of-core
processing. Results in this area are also valuable in parallel and dis-
tributed computing where one has to deal with the similar issue of
balancing processing time with data migration time.

The solution of the out-of-core processing problem is typically
divided into two parts:

(i) algorithm analysis to understand its data access patterns and,
when possible, redesign to maximize their locality;

(ii) storage of the data in secondary memory with a layout con-
sistent with the access patterns observed to amortize the cost of each
I/O operation over several memory access operations.

In the case of a hierarchical visualization algorithms for volu-
metric data the 3D input hierarchy is traversed to build derived ge-
ometric models with adaptive levels of detail. The shape of the
output models is then modified dynamically with incremental up-
dates of their level of detail. The parameters that govern this con-
tinuous modification of the output geometry are dependent on the
runtime user interaction making it impossible to determine a priori
what levels of detail are going to be constructed. For example they
can be dependent on external parameters like the viewpoint of the
current display window or on internal parameters like the isovalue
of an isocontour or the position of an orthogonal slice. The struc-
ture of the access pattern can be summarized into two main points:
(i) the input hierarchy is traversed level by level so that the data in
the same level of resolution or in adjacent levels is traversed at the
same time and (ii) within each level of resolution the data is mostly
traversed at the same time in regions that are geometrically close.

In this paper I introduce a new static indexing scheme that in-
duces a data layout satisfying both requirements (i) and (ii) for the
hierarchical traversal of n-dimensional regular grids. In one partic-
ular implementation the scheme exploits in a new way the recursive
construction of the Z-order space filling curve. The standard index-
ing that maps the input � D data onto a 1D sequence for the Z-order
curve is based on a simple bit interleaving operation that merges
the � input indices into one index n times longer. This helps in
grouping the data for geometric proximity but only for a specific
level of detail. In this paper I show how this indexing can be trans-
formed into an alternative index that allows to group the data per
level of resolution first and then the data within each level per ge-
ometric proximity. This yields a data layout that is appropriate for
hierarchical out-of-core processing of large grids.

The scheme has three key features that make it particularly at-

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 1: (a-e) The first five levels of resolution of the
2D Lebesgue’s space filling curve. (f-j) The first five
levels of resolution of the 3D Lebesgue’s space filling
curve.

tractive. First the order of the data is independent of the out-of-core
blocking factor so that its use in different settings (e.g. local disk
access or transmission through a network) does not require large
data reorganization. Secondly the conversion from the standard Z-
order indexing to the new index can be implemented with a sim-
ple sequence of shift operations making it appealing for a possible
hardware implementation. Third there is no data replication which
is especially desirable when the data is accessed through slow con-
nections and avoids eventual problems of data consistency and mul-
tiple I/O operations when the data ismodified.

Beyond the theoretical interest in developing hierarchical index-
ing schemes for n-dimensional space filling curves the approach is
currently targeted for its practical use in out-of-core visualization
algorithms. Experimental results and theoretical analysis are re-
ported in this paper for the simple case of orthogonal slicing of vol-
umetric data. The results show how the practical performance en-
hancement corresponds to the theoretical expectations. The scheme
is also targeted to perform out-of-core progressive computation of
general slices, for its use in combination with the 3D progressive
isocontouring algorithm [18] and for out-of-core visualization of
large terrains using edge bisection hierarchies [8, 13]. Extensions
are being considered for larger classes of datasets and the combined
use with wavelet representation.

2 Related Previous Work

External memory algorithms [22], also known as out-of-core al-
gorithms, have been rising in recent years to the attention of the
computer science community since they address systematically the
problem of non uniform memory structure of modern computers
(fast cache, main memory, hard disk, ...). This issue is particularly
important when dealing with large data-structures that do not fit
in the main memory of a single computer since the access time to
each memory unit is dependent on its location. New algorithmic
techniques and analysis tools have been developed to address this
problem for example in the case of geometric algorithms [14, 10, 1]
or scientific visualization [7, 3]. Closely related issues emerge in

Center for Applied Scientific Computing - Lawrence Livermore National Laboratory

the area of parallel and distributed computing where remote data
transfer can become a primary bottleneck in the computation. In
this context space filling curves [20] are often used as a tool to de-
termine very quickly data distribution layouts that guarantee good
geometric locality [17, 11, 15]. Space filling curves have been also
used in the past in a wide variety of applications [2] both because
of their hierarchical fractal structure as well as for their well known
spatial locality properties. The most popular is the Hilbert curve
which guarantees the best geometric locality properties [16]. The
pseudo-Hilbert scanning order [5] generalizes the scheme to recti-
linear grids that have different number of samples along each coor-
dinate axis.

Recently Lawder [12] explored the use of different kinds of
space filling curves to develop indexing schemes for data storage
layout and fast retrieval in multi-dimensional databases.

Balmelli at al. [4] use the Z-order space filling curve to navigate
efficiently a quad-tree data-structure without using pointers. They
use simple closed formulas for computing neighboring relations
and nearest common ancestors between nodes to allow fast genera-
tion of adaptive edge-bisection triangulations. They improve on the
basic data-structure already used for terrain visualization [8, 13] or
adaptive mesh refinement [19]. The use of the Z-order space filling
curve for traversal of quadtrees [21] (also called Morton-order) has
been also proven useful in the speedup of matrix operations allow-
ing to make better use of the memory cache hierarchies [6, 23, 9].

In the approach proposed here a new data layout is used to al-
low efficient progressive access to volumetric information stored in
external memory. This is achieved by combining interleaved stor-
age of the levels in the data hierarchy while maintaining geometric
proximity within each level of resolution. One main advantage is
that the resulting data layout is independent of the particular adap-
tive traversal of the data. This improves fundamentally from the
previous schemes since they used the space filling curves only for
computation and dynamic relocation of data layouts for single res-
olution or fixed adaptive resolution meshes.

3 The General Framework

Consider a set
�

of � elements decomposed into a hierarchy � of�
levels of resolution � � � � �
 �

 � � �
 � � �
 �

such that:

� � � �
 � � � � � � � �
 � �
where

� �
is said to be coarser than

� �
iff " $. The order of

the elements in
�

is defined by the cardinality function % ' �)
� * � � �

� , . �
. This means that the following identity always holds:

� 0 % 2 4 6 8 : 4
where the square brackets are used to index an element in a set.

Let’s define a derived sequence � < of sets
� <�

as follow:

� <� � � � = � � �
 � *
 � � �
 � , .
where formally

� �
 � A . The sequence � < �� � <�
 � <

 � � �
 � <� �
 �
is a partitioning of

� �
A derived cardinality

function % < ' �) � * � � �
� , . �

can be defined on the basis of the
following two properties:

E F 4
 H J � <� ' % 2 4 6 " % 2 H 6 N % < 2 4 6 " % < 2 H 6 R
E F 4 J � <�
 F H J � <� ' " $ N % < 2 4 6 " % < 2 H 6 �
If the original function % has strong locality properties when re-

stricted to any level of resolution
� �

then the cardinality function % <
generates the desired global index for hierarchical and out-of-core
traversal.

The construction of the function can be achieved in the follow-
ing way: (i) determine the number of elements in each derived set� <�

and (ii) determine a local cardinality function % < <� � % < Y Z [\ re-

striction of % < to each set
� <�

. In particular if] �
is the number of

elements of
� <�

one can predetermine the starting index of the el-
ements in a given level of resolution by building the sequence of
constants ^ �
 � � �
 ^ � �

with

^ � �
� �
_

� ` �] � �
(1)

Secondly one needs to determine a set of local cardinality functions% < <� ' � <�) � * � � �] � , . �
so that:

F 4 J � <� ' % < 2 4 6 � ^ � c % < <� 2 4 6 �
(2)

The computation of the constants ^ �
can be performed in a pre-

processing stage so that the computation of % < is reduced to the
following two steps:

E given 4 determine its level of resolution (that is the such
that 4 J � <� 6 R

E compute % < <� 2 4 6 and add it to ^ � �
These two steps need to be performed very efficiently because they
are going to be executed repeatedly at run time. The following
sections report practical realizations of this scheme for rectilinear
cube grids in any dimension.

4 Binary Tree Hierarchy

This section reports the details on how to derive from the Z-order
space filling curve the local cardinality functions % < <�

for a binary
tree hierarchy in any dimension.

4.1 Indexing the Lebesgue Space Filling Curve

The Lebesgue space filling curve, also called Z-order space filling
curve for its shape in the 2D case, is depicted in figure 1. In the
2D case the curve can be defined inductively by a base Z shape of
size . (figure 1a) whose vertices are replaced each by a Z shape of
size

d �
The vertices obtained are then replaced by Z shapes of size

e
(figure 1c) and so on. In general the g i level of resolution is defined
as the curve obtained by replacing the vertices of the 2 , . 6 g i
level of resolution with Z shapes of size

d \ . The 3D version of

this space filling curve has the same hierarchical structure with the
only difference that the basic Z shape is replaced by a connected
pair of Z shapes lying on the opposite faces of a cube as shown
in Figure 1f. Figure 1f-j shows five successive refinements of the
3D Lebesgue space filling curve. The l -dimensional version of the
space filling curve has also the same hierarchical structure where
the basic shape (the Z of the 2D case) is defined as a connected pair
of 2 l , . 6 -dimensional basic shapes lying on the opposite faces of
a l -dimensional cube.

The property that makes the Lebesgue’s space filling curve par-
ticularly attractive is the easy conversion from the l indices of
a l -dimensional matrix to the 1D index along the curve. If one
element m has l -dimensional reference 2

 � � �
 o 6 its 1D refer-
ence is built by interleaving the bits of the binary representa-
tions of the indices

 � � �
 p . In particular if �

is represented
by the string of q bits r s

� s d� � � � s i� t
(with $ � .
 � � �
 l) then

the 1D reference of m is represented the string of q l bits % �r s

 s

d � � � s

o s d
 s dd � � � s do � � � s i
 s id � � � s io t
. Figure 2 shows this inter-

leaving scheme in the 3D case.

2

Center for Applied Scientific Computing - Lawrence Livermore National Laboratory

Figure 2: Construction of the 1D index from the
Lebesgue’s Z-order space filling curve. In the 3D case
the original index is a set of three bit-strings. The 1D
index is formed by interleaving the bit of the three se-
quences into a single bit-string.

(a)

(e)

(i)

(b) (c)

(f)(d)

(g) (h)

Figure 3: The nine levels of resolution of the binary tree
hierarchy defined by the 2D space filling curve applied
on a � � � � �

rectilinear grid. The coarsest level of res-
olution (a) is a single point. The number of points that
belong to the curve at any level of resolution (b-i) is dou-
ble the number of points of the previous level.

The 1D order can be structured in a binary tree by considering
elements of level � those that have the last � bits all equal to 0.
This yields a hierarchy where each level of resolution has twice
as many points as the previous level. From a geometric point of
view this means that the density of the points in the � -dimensional
grid is doubled alternatively along each coordinate axis. Figure 3
shows the binary hierarchy in the 2D case where the resolution of
the space filing curve is doubled alternatively along the � and �
axis. The coarsest level (a) is a single point, the second level (b)
has two points , the third level (c) has four points (forming the Z
shape) and so on.

4.2 Index Remapping

The cardinality function discussed in section 3 for a binary tree
case has the structure shown in table 1. Note that this is a general
structure suitable for out-of-core storage of static binary trees. It
is independent of the dimension � of the grid of points or of the
Z-order space filling curve.

The structure of the binary tree defined on the Z-order space fill-
ing curve allows to determine easily the three elements that are nec-
essary for the computation of the cardinality which are: (i) the level
� of an element, (ii) the constants � �

of equation (1) and (iii) the

local indices � � ��
.

� - if the binary hierarchy has
�

levels then the element of Z-order
index 	 belongs to the level

�
 � where � is the number of
trailing zeros in the binary representation of 	 ;

� �
- the number of elements in the levels coarser than � is � � �� �
 �

for � � � , with � � � � ;

� � ��
- if an element has index 	 and belongs to the set

� ��
then

�
� � is

an odd number. Its local index is then:

� � �� � 	 � �
� 	� �
 � � �

These three elements can be put together to build an efficient algo-
rithm that computes the hierarchical index � � � � � � � � ! � � �� � � � in
the two steps shown in the diagram of Figure 4:

1. set to 1 the bit in position
� ! � ;

2. shift to the right until a 1 comes out of the bit-string.

Clearly this diagram could have a very simple and efficient hard-
ware implementation. The software C++ version can be imple-
mented as follows:

inline adhocidex remap(register adhocindex i){
i |= last_bit_mask; // set leftmost one
i /= i&-i; // remove trailing zeros
return (i>>1); // remove rightmost one

}
This code would work only on machines with two’s complement
representation of numbers. In a more portable version one needs to
replace i /= i&-i with i /= i&((˜i)+1).

1

Shift

0

Shift

Loop: While the outgoing bit is zero

Incoming bit Outgoing bit

0 0 1 0 1 1 0 1 0 0

1 0 0 1 0 1 1 0 1 0 � 0

0 1 0 0 1 0 1 1 0 1 � 0

0 0 1 0 0 1 0 1 1 0 � 1

0 0 1 0 0 1 0 1 1 0

(a) (b)

Step 1: shift right with incoming bit set to 1

shift right with incoming bit set to 0

Figure 4: (a) Diagram of the algorithm for index remap-
ping from Z-order to the hierarchical out-of-core binary
tree order. (b) Example of the sequence of shift oper-
ations necessary to remap an index. The top element
is the original index the bottom is the output remapped
index.

5 � � -tree Hierarchy

In some occurrences it might be appropriate to use a blocking
scheme that follows better the underlying quad-tree/octtree struc-
ture of the hierarchy. For example when large disk blocks are being
used it is better to use a hierarchy with less levels of resolution than
the basic binary tree scheme of the previous section. At this end one
can apply the following generalized version of the index remapping
scheme.

The scheme of Figure 4 correspond to a binary tree because the
sequence of shifts in the loop are performed one bit at a time. To
align the data layout to a

� �
tree one needs to shift the bit-string by�

bits at each step. For example
� � �

aligns the data to a quad-tree
and

� � � aligns the data to an octtree. Following the notation of
section 3 we have:

3

Center for Applied Scientific Computing - Lawrence Livermore National Laboratory

level 0 1 2 3 4
Z-order index (2 levels) 0 1
Z-order index (3 levels) 0 2 1 3
Z-order index (4 levels) 0 4 2 6 1 3 5 7
Z-order index (5 levels) 0 8 4 12 2 6 10 14 1 3 5 7 9 11 13 15
hierarchical index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Table 1: Structure of the hierarchical indexing scheme for binary tree combined with the order defined by the Lebesgue space filling curve.

� - is the number of trailing groups of
�

zeros at the end of the
bit-string;

� �
- the number of elements in the levels coarser than � is � � �� � � � � � �

for � � � , with � � � � ;

 � ��
- if an element has index
 and belongs to the set

� ��
then �

�
� � �

has one of its last
�

bits different from 0. The local index is
then:

 � �� �
 � �
�
� � � � �

�
� �
 � �
 � � � � �

The computation of the final index
 � � � � � � � �
 � �� � � � is then
performed with the scheme of Figure 5. Note how the term sum

� � �
 � �� � � � is computed directly by shifting
 � � � to the right and
adding the complement of its high bits. This can be done because

� � � � � � � � � �
and hence � � � � �

� �
 � �
 � � � � can be obtained directly

by complementing the rightmost
� � # � � � � � bits of � �

� �
 � �
 � � �

Shift

Loop: While the last � bits are all zero
shift right � bits with incoming bits set to 0

+

Perform the following arithmetic operation

00 0 00 0

Zeros inserted from the left

˜

˜

˜

˜
˜

˜

Figure 5: Diagram of the algorithm for index remapping
for blocks that scale with a factor of 8 (three bits).

6 Preliminary Tests: Orthogonal Slicing

This section presents some preliminary results based on the basic
and widely used application of computing orthogonal slices of a
3D rectilinear grid of data at different levels of resolution. The data
layout proposed here is compared with the two most common array
layouts: the standard row major structure and the $ � $ � $ block-
wise decomposition of the data. Both practical performance tests
and formal complexity analysis lead to the conclusion that the data
layout proposed here allows to achieves substantial speedup when
used at coarse resolution or in a progressive fashion with acceptable
performance penalty if used only at the highest level of resolution.

6.1 Out-of-core Complexity Analysis

The out-of-core analysis reports the number of data blocks trans-
ferred from disk under the assumption that each block of data of
size % is transferred in one operation independently of how much

data in the block is actually used. At fine resolution the simple row
major array storage achieves the best and worst performances de-
pending on the slicing direction. If the overall grid size is � and
the size of the output is

&
then the best slicing direction requires

to load � � & � % � data blocks (which is optimal) but the worst pos-
sible direction requires to load � � & � blocks (for % � � � �� � �). In
the case of simple $ � $ � $ data blocking (which has best per-
formance for $ � �� %) the blocks of data loaded at fine resolution
are � � ,�� " � . Note that this is much better than the previous case
because the performance is close to (even if not) optimal indepen-
dently of the particular slicing direction. For subsampling rate of

#
the performance degrades to � � ,

- "
�� " � for

. �� % . This means that

at coarse subsampling the performance goes down to � � & � . The
advantage of the scheme proposed here is that independently of the
level of subsampling each block of data is used for a portion of �� % �
so that independently of the slicing direction and subsampling rate
the worst case performance is � � ,�� " � . This implies that the fine
resolution performance of the scheme is equivalent to the standard
blocking scheme while at coarse resolutions it can get orders of
magnitude better. More importantly this allows to produce coarse
resolution outputs at interactive rate independently of the total size
of the data-set.

6.2 Experimental Tests

A series of tests have been performed to verify the performance of
the approach. The out-of-core component of the scheme has been
implemented simply by mapping a 1D array of data to a file on
disk using the mmap function. In this way the I/O layer is imple-
mented by the operating system that pages in and out a portion of
the data array as needed. No multi-threaded component is used to
avoid blocking the application while retrieving the data. The blocks
of data defined by the system are typically 4Kbytes. Figure 6(a)
shows performance tests executed on a Pentium III Laptop 500Mhz
with 128M of RAM accessing a 1Gbyte dataset (� # � � # � � #
grid of char). The two schemes proposed here, 3-bits shift from
section 5 and 1-bits shift from section 4 show the best scalability
in performance. The blocking scheme with �
 #

chunks of regular
grid shows the next best compromise in performance. The � � 0
 0 # �
row major storage scheme has the worst performance compromise
because of its dependency on the slicing direction: best for �
 0 # �
plane slices and worst for �
 0 � � plane slices. Figure 6(b) shows the
performance results for a test run on an SGI MIPS R12000 300Mhz
with 600M of memory available for the application. In this case the
dataset is 8G (

� # � � # � � #
grid of char).

7 Conclusions and Future Direction

The present paper introduces a new indexing and data layout
scheme that is useful for out-of-core hierarchical traversal of large
datasets. Practical tests and theoretical analysis for a simple case
of orthogonal slicing show the performance improvements that can
be achieved with this approach especially in a progressive compu-
tation setting. This scheme is also going to be used as a basis for

4

Center for Applied Scientific Computing - Lawrence Livermore National Laboratory

1G dataset 8G dataset

1e-05

0.0001

0.001

0.01

0.1

1

10

1 10 100

 s
ec

on
ds

Sub-sampling frequency (1=full resolution, 2=every other element,).

3-bits shift
1-bit shift

16x16x16 blocks
(j,k) plane slices
(j,i) plane slices

1e-05

0.0001

0.001

0.01

0.1

1

10

1 10 100 1000

 s
ec

on
ds

Subsampling frequency (1=full resolution, 2=every other element).

3-bits shift
1-bit shift

16x16x16 blocks
(j,k) plane slice
(j,i) plane slice

(a) (b)

Figure 6: Two comparisons of the computation times of four different data layout schemes. The vertical axis is the computation
time in seconds. The horizontal axis is the level of subsampling of the slicing scheme (test at the finest resolution are on the left).
The two schemes proposed here, 3-bits shift from section 5 and 1-bits shift from section 4, show best overall performance.

out-of-core computation of general slices, progressively computed
isosurfaces and navigation of large terrains.

Future direction that are being considered include the combina-
tion with wavelet compression schemes, the extension to general
rectangular grids and to non-rectilinear hierarchies.

References
[1] James Abello and Jeffrey Scott Vitter, editors. External Mem-

ory Algorithms and Visualization.
[2] T. Asano, D. Ranjan, T. Roos, and E. Welzl. Space filling

curves and their use in the design of geometric data structures.
Lecture Notes in Computer Science, 911:36–44, 1995.

[3] C. L. Bajaj, V. Pascucci, D. Thompson, and X. Y. Zhang. Par-
allel accelerated isocontouring for out-of-core visualization.
In Stephan N. Spencer, editor, Proceedings of the 1999 IEEE
Parallel Visualization and Graphics Symposium (PVGS‘99),
pages 97–104, N.Y., October 25–26 1999. ACM Siggraph.

[4] L. Balmelli, J. Kovačević, and M. Vetterli. Quadtree for em-
bedded surface visualization: Constraints and efficient data
structures. In IEEE International Conference on Image Pro-
cessing (ICIP), Kobe Japan, October 1999.

[5] Y. Bandou and S.-I. Kamata. An address generator for an n-
dimensional pseudo-hilbert scan in a hyper-rectangular paral-
lelepiped region. In International Conference on Image Pro-
cessing, ICIP 2000, 2000. to appear.

[6] Siddhartha Chatterjee, Alvin R. Lebeck, Praveen K. Patnala,
and Mithuna Thottethodi. Recursive array layouts and fast
parallel matrix multiplication. In Proceedings of the 11th An-
nual ACM Symposium on Parallel Algorithms and Architec-
tures, pages 222–231, Saint-Malo, France, June 27–30, 1999.
SIGACT/SIGARCH and EATCS.

[7] Yi-Jen Chiang and Cláudio T. Silva. I/O optimal isosurface
extraction. In Roni Yagel and Hans Hagen, editors, IEEE Vi-
sualization 9́7, pages 293–300. IEEE, November 1997.

[8] Mark A. Duchaineau, Murray Wolinsky, David E. Sigeti,
Mark C. Miller, Charles Aldrich, and Mark B. Mineev-
Weinstein. Roaming terrain: Real-time optimally adapting
meshes. IEEE Visualization ’97, pages 81–88.

[9] Jeremy D. Frens and David S. Wise. Auto-blocking matrix-
multiplication or tracking BLAS3 performance from source
code. ACM SIGPLAN Notices, 32(7):206–216, July 1997.

[10] M. T. Goodrich, J.-J. Tsay, D. E. Vengroff, and J. S. Vitter.
External-memory computational geometry. In Proceedings of
the 34th Annual IEEE Symposium on Foundations of Com-
puter Science (FOCS ’93), Palo Alto, CA, November 1993.

[11] M. Griebel and G. W. Zumbusch. Parallel multigrid in an
adaptive pde solver based on hashing and space-filling curves.
25:827:843, 1999.

[12] J. K. Lawder. The Application of Space-filling Curves to the
Storage and Retrieval of Multi-Dimensional Data. PhD the-
sis, School of Computer Science and Information Systems,
Birkbeck College, University of London, 2000.

[13] Peter Lindstrom, David Koller, William Ribarsky, Larry F.
Hughes, Nick Faust, and Gregory Turner. Real-time, con-
tinuous level of detail rendering of height fields. Proceedings
of SIGGRAPH 96, pages 109–118, August 1996.

[14] Y. Matias, E. Segal, and J. S. Vitter. Efficient bundle sorting.
In Proceedings of the 11th Annual SIAM/ACM Symposium on
Discrete Algorithms , 2000.

[15] R. Niedermeier, K. Reinhardt, and P. Sanders. Towards opti-
mal locality in meshindexings, 1997.

[16] Rolf Niedermeier and Peter Sanders. On the manhattan-
distance between points on space-filling mesh-indexings.
Technical Report iratr-1996-18, Universität Karlsruhe, Infor-
matik für Ingenieure und Naturwissenschaftler, 1996.

[17] M. Parashar, J.C. Browne, C. Edwards, and K. Klimkowski.
A common data management infrastructure for adaptive algo-
rithms for pde solutions. In SuperComputing 97, 1997.

[18] V. Pascucci and C. L. Bajaj. Time critical isosurface refine-
ment and smoothing. In IEEE Symposium on Volume Visual-
ization and Graphics 2000, October 2000. To Appear.

[19] M. C. Rivara. Algorithms for refining triangular grids suitable
for adaptive and multigrid techniques. International Journal
for Numerical Methods in Engineering, 20:745–756, 1984.

[20] Hans Sagan. Space-Filling Curves. Springer-Verlag, New
York, NY, 1994.

[21] Hanan Samet. Applications of Spatial Data Structures.
Addison-Wesley, Reading, Mass., 1990.

[22] J. S. Vitter. External memory algorithms and data structures:
Dealing with massive data. ACM Computing Surveys, 2000.

[23] David S. Wise. Ahnentafel indexing into morton-ordered ar-
rays, or matrix locality for free. In Euro-Par 2000 – Parallel
Processing, volume 1900 of Lecture Notes in Computer Sci-
ence, pages 774–784. Springer, August 2000.

5

A Data Model for Multiresolution Scientific Data Environments
Philip J. Rhodes, R. Daniel Bergeron, and Ted M. Sparr

Computer Science Department
University of New Hampshire

Durham, NH, 03824
{rhodes,rdb,tms}@cs.unh.edu

1. Introduction
Modern dataset sizes present major obstacles to

understanding and interpreting the significant
underlying phenomena represented in the data. There
is a critical need to support scientists in the process of
interactive exploration of these very large data sets.
The goal of this exploration is to use coarse
representations of broad views of the data set for
purposes of identifying potentially interesting regions
followed by narrower views at higher resolutions.

1.1 Problem Definition
 The research described here focuses on developing

database support for this method of scientific research
based on interactive exploration of very large
distributed multiresolution data. We believe that a
major weakness of current scientific database efforts is
the lack of a comprehensive model that encapsulates
the structure inherent in the data. Such a model should
allow a database system to store and access this data
efficiently without needing to understand the meaning
of the data for the application domain. The most
important requirements for a data model for distributed
multiresolution data include the following:
1. The model must be general-purpose while still able

to rigorously encapsulate the most important
aspects of the data.

2. In addition to describing the multiple resolution
levels of a data set, it must be able to describe an
adaptive resolution level, i.e., a single level of the
data set that is itself composed of data that has
different resolutions in different regions.

3. It must be able to describe both the physical
domain in which the scientific phenomenon
actually occurs (we call this the geometry of the
problem) as well as the structure of the data that
represents that phenomenon (which we call the
topology of the data).

4. It must incorporate information about how data
points in each level of the multiresolution
representation relate to data points in the other
levels. We have developed notions of support and
influence which encapsulate these relations in an
application-independent manner.

1.2 Summary of Research
The major components of our research include:
MR/AMR Model. We are developing a data model

for hierarchical multiresolution (MR) and adaptive
multiresolution (AMR) data representations that
supports interactive exploration of scientific data.

This includes a model of error and error operations
that helps keep the experimenter informed of the
quality of data at various resolutions. Also, we
characterize the kinds of operations that can be
performed on MR/AMR data, especially as they relate
to data in a distributed computing environment.

Geometry and Topology. Our data model
distinguishes between the geometry and topology of a
dataset, allowing us to characterize a wide variety of
data types. This work should allow us to develop a
taxonomy of scientific data that helps exploit
regularities in both geometry and topology. We see the
topology as a bridge between the scientist’s geometric
data view and the index-oriented view of the
underlying database.

Lattice Model. The lattice model is a single-level
model of data that incorporates our ideas about
geometry and topology, and is an important
component of the formal model especially for
representing adaptive resolution data. Geometry and
topology forms the basis of a lattice class hierarchy
that can efficiently represent a variety of scientific
data.

Domain Representation. We are developing an
efficient way to represent domains, and especially the
extent of subdomains within an enclosing domain. The
representation should be space efficient and quick to
access. This work is particularly important because we
represent certain metadata (e.g., extracted features,
classifications) as labeled subdomains.

Data Storage. We must examine how to store the
data points in the underlying database. Our approach is
spatially coherent, i.e., given a point, we have efficient
database access to its geometric neighbors.

Evaluation. The model will be evaluated by
implementing a prototype and testing its performance
with large datasets. Our goal is a system that is flexible
and expressive enough to be of real assistance as the
scientist works with the data.

2 Data Model Foundations
Pfaltz et al. [Pfaltz98] identify the major features

of scientific data as large size, complex entities and
relationships, and volumetric retrieval. However, we
need a more rigorous definition if we hope to provide
effective database support for scientific data. For our
purposes, scientific data is a collection of values that
represents some natural phenomenon. This
phenomenon is a function over a multidimensional
domain. The notion of a dataset domain is central to
our model of scientific data. The value space of the

1

function defined over the domain usually consists of
the cartesian product of the value ranges of several
data attributes. This is equivalent to saying that any
point in D has a number of attributes — the value of
the data function at that point. Each data value says
something about a particular point in the domain.

We focus on scientific data that can be represented
in a continuous k-dimensional data space [Cigno97]. If
a data set consists of some attributes that are ordinal,
independent, and defined on a continuous value range,
the data set contains dimensional data, and those
attributes are dimensional.

2.1 Geometry, Topology, and Neighborhoods
The terminology used in the literature to describe

various systems of grids is not standardized. We are
developing a more comprehensive and consistent
framework for describing and defining grids that
encompasses most reported grid structures, including
both point and cell data organizations. We separately
represent the underlying space in which the grid is
defined, which we call the geometry, and the
relationships implied by the grid, which we call the
topology. Thus, the geometry of a data set refers to
the space defined by the dimensions; the topology of a
data set defines how the points of the grid are
connected to each other. A data set’s topology is a
graph with data points as nodes and arcs between nodes
representing a neighbor or adjacency relationship.

This approach enables database support for
application algorithms to process data either
geometrically or topologically. In many cases, the
topology and/or geometry do not have an explicit
representation within the data set because they derive
easily from the indexes of an array that stores the data
points. The array and its index structure compose the
computational space of a data set.

2.2 Error
Most scientific data contains some inherent error.

This includes measurement error from sampling or
computational error from simulation. Furthermore,
operations and analyses may introduce additional error.
Our model of scientific data includes localized error
(i.e., it is estimated at every point within the domain
[Wong95a]) as well as cumulative error.

2.3 Data Representation
Effective exploration tools for very large data sets

are best developed on top of a rigorous conceptual
model of the data. Such a model must be accessible to
both the programmer and the user and must be able to
adapt to the actual data in a natural and efficient way.
Our data model that represents a promising foundation
for describing scientific data that can be organized into
a multiresolution hierarchy.

A rigorous definition of a data representation is
the formal basis of our model of the scientist’s data
set. Although the data set represents a phenomenon

defined over a continuous domain (a geometric space
with an infinite number of points), the data set is a
finite sampling of this space. Consequently, our data
representation is defined over a finite set of sample
points, within the domain. A data representation has
several components that define the domain, sample
points, and value space of the data. See [Berg00] for
more detail.

2.4 The Lattice Representation
Although the data representation definition is

comprehensive enough to encompass most kinds of
scientific data, it only represents the actual data and
does not incorporate any notion of how the different
data elements might be related in a grid structure. We
incorporate the grid definitions into our data model by
adopting and extending the lattice which includes a
topology, as well as a data representation. Lattices are
discussed in more detail in [Berg00].

2.5 Simple Data Model
Our notions of data representation and lattice are

sufficient to represent a gridded scientific data set, but
not the phenomenon that the data set is intended to
model. Our notion of a data model uses the lattice to
approximate the phenomenon in the domain, as well
as the error. The approximating function is normally
based on the sample points and returns a value that
approximates the phenomenon in the domain.

3 Multiresolution Data Model
Although the basic data model described above

represents a very wide range of basic data sets, it is not
adequate as a model for multiresolution data. A
multiresolution (MR) model allows a researcher to view
data using resolutions ranging from very coarse to very
fine (the original data). Using a coarse resolution can
vastly reduce the size of the data that needs to be
stored, manipulated, and displayed. It also serves as an
overview of the entire dataset, allowing the researcher
to pick out regions of interest without examining the
original data directly. Once an interesting region has
been identified, the researcher may examine it at finer
resolutions, perhaps even accessing the original data.
“Drilling down” allows the researcher to examine only
data of interest at fine resolution, minimizing
processing and display costs.

3.1 Multiresolution Data Representation
The MR representation offers a tradeoff between

detail and efficiency. Incorporating multiple resolution
capability into the data model allows the database
system to provide direct support for managing and
using data at the resolution most appropriate to the
immediate task.

A reducing operator transforms one data model
into another data model, where the new representation
is smaller than the old [Cigno97]. This reduction
introduces additional associated localized error which

2

must be modeled. An MR hierarchy is formed by
repeated applications of reducing operations. The
process is repeated a number of times until the size of
the data has been reduced sufficiently or until further
reductions would introduce too much error. Certain
classes of wavelet functions form an ideal basis for
reducing functions because of their localized error
characteristics [Wong95a], but our model is also
appropriate for very different kinds of data reduction
techniques such as triangle mesh simplification
[Cigno97].

3.2 Adaptive Multiresolution (AMR)
An adaptive resolution (AR) representation allows

resolution to vary within a single lattice. The
resolution near a point may depend on the behavior of
the sampling function, on local error, or on the nature
of the domain in the neighborhood of the point. A
reducing operator that behaves differently over parts
of D can define an adaptive multiresolution
representation (AMR), which is an MR hierarchy in
which each layer is an AR representation. For
example, it can reduce resolution in areas with lowest
error when forming the next level. It might also try to
preserve resolution in areas of rapid value change and
reduce resolution in less volatile areas. Because an
AMR contains multiple resolutions within each level, it
has the potential to achieve a representation with the
same accuracy as MR using less storage. Alternatively,
for a given amount of memory, it can retain increased
detail and accuracy in important regions of the
domain.

3.3 Support and Influence
Our model for MR is very general. In practice,

most MR hierarchies are defined entirely by operations
on the sampling set, and they often place further
restrictions on a reducing function such as requiring
spatial coherence. Typically, any neighboring set of
sample points Sj in λi should map to a neighboring set
of sample points Sk in λi+1. Sj forms the support for Sk
as shown in figure 1. For any point p there is a set of
points in the next level that claim p as part of their
support. We call this set of points the influence of p
(see figure 1). By building the notions of influence and
support explicitly into the data model (and into the
database support system), we can provide a framework
for better implicit support for efficient data
distribution and distributed computation.

Sj: (support for Sk)

Sk

λi

λi+1

p

Influence of p

Figure 1. Support and Influence

4 Taxonomy of Geometry and Topology
 Since our representation of data must be efficient,

it is worthwhile to categorize the way that data points
lie in the geometry, and how they are connected in the
topology. Our classification is motivated by the desire
to exploit patterns within the spacing of the sample
points, so the data can be represented efficiently. The
taxonomy must be able to represent both cell and
point based grids and transformations between them
such as Delaunay and Voronoi techniques. Our software
design for the lattice representation follows from this
taxonomy. We are particularly interested in how much
information must be stored in order to describe the
geometry and topology of the dataset.

4.1 Periodic Tilings and Data
The study of tilings (tessellations) has some

relevance to our research since topologies often define
a tiling. A review of this field can be found in
[Schatt97].

If a tiling is periodic, then it is possible to duplicate
the tiling, translate it some distance, and place it down
again so that it matches exactly with the original copy.
That is, the tiling consists of a number of translated
repetitions of some pattern of tiles. An important and
related property of periodic tilings is that there exists a
subset of the space S that can be repeatedly copied and
translated throughout the space to complete the tiling.
A minimal subset of this kind is called a fundamental
domain or generating region.

a b c
Figure 2. The fundamental domains of the 2D regular

tilings.

 A regular tiling is a periodic tiling made up of
identical regular polygons [Schatt97]. The three tilings
shown in figure 2 are the only regular tilings for 2D
space.

This approach does not explicitly distinguish
between the geometry and topology components of a
grid. The definition of a tiling includes aspects of
topology but most concepts are geometry specific. We
are adapting these ideas to our work with geometry and
topology.

a

0,0 0,1 0,2

1,0 1,1 1,2

2,0 2,1 2,2

1 2

3
4

b

(1,1,4)
Sample

Point
List

Sample
Value

c

Sample Point
Index

Figure 3. A possible supercell implementation.

3

We use the notion of the supercell to represent
periodic sampling topologies. As shown in figure 3, a
supercell represents a generating region for the
topology, allowing the entire topology to be
conceptually represented by a grid of repeated
supercells while only storing a single supercell
definition. If we can find where in the grid a point lies,
we can very easily form a search key from the position
in the grid (i.e. supercell identifier), and the position of
the point within the supercell (i.e. point identifier).
Such a technique promises a quick way to access a
point’s data given its geometric position.

4.2 Regular Data
 Usually, for scientific data to be considered

regular, it must lie within a mesh of squares or cubes,
perhaps displaced by a shear operation [Cigno97]. By
this definition, data points arranged in a hexagonal
fashion, as in case c of figure 2, would not be
considered regular, though the first two would.
However, this may only be the case because of the
ubiquity of array storage. Researchers tend to think of
regular data as any data that can be stored very easily
in an array.

 It should be possible to develop a rigorous
definition of regular data. Besides being regular in the
mathematical sense, the patterns in figure 2 have an
interesting property: if we store the vertices (sample
points) in an array, it is possible to map a point’s array
indices to its locations in both the geometry and
topology without using any other information. Since
this property is of immediate interest to designers of
scientific databases, it might serve well as a definition
of regular scientific data.

 4.3 Classifying Irregular Data
With irregular data, it is not possible to map array

indices to a location in geometric space without using
extra information, if at all. Of course, arrays may still
be used to merely store the data points. Figure 4 shows
examples of irregular data. In figure 4.a, there is no
way to map indices to a geometric location without
referring to the spacing between the rows and columns,
which varies for each row and column. Therefore, the
mapping between indices and geometry must take this
spacing as another parameter, i.e. as “extra
information”. The situation in figure 4.b is even worse.
Here, there is no pattern whatsoever to the position of
the sample points, so a simple mapping from indices to
geometry is out of the question.

We further classify irregular data according to how
much information is required to represent the pattern
of sample points within the domain. In Figure 4.a,
points are lined up in rows and columns, so we only
need to store the spacings for each row and column.
The space required to store this information is
proportional to the number of rows plus the number of
columns. In figure 4.b, there is no pattern whatsoever
to the sample points, so we must store coordinates for

each individual point. Here, the space required is
proportional to the number of points. Of course, it is
possible to have datasets that combine these attributes,
behaving in different ways along different dimensions.

a b

Figure 4. Irregular data

5 Conclusion
We have developed a preliminary data model for

describing distributed multiresolution scientific data
sets. The model is intended to be the basis for a
scientific data management support environment that
can provide nearly transparent access to a
multiresolution data set regardless of the MR algorithm
used.

Bibliography

[Berg00] R. Daniel Bergeron, Philip J. Rhodes, Ted M. Sparr,
"A Data Model for Distributed Multiresolution Visualization",
Proceedings of the Dagstuhl Workshop on Scientific
Visualization (To Appear), May, 2000

[Cigno97] Paolo Cignoni, Claudio Montani, Enrico Puppo,
Roberto Scopigno, "Multiresolution Representation and
Visualization of Volume Data", IEEE Transactions on
Visualization and Computer Graphics, Volume 3, No. 4,
IEEE, Los Alamitos, CA, 1997

[Pfaltz98] John L. Pfaltz, Russell F. Haddleton, James C.
French, "Scalable, Parallel, Scientific Databases", Proceedings
10th International Conference on Scientific and Statistical
Database Management, IEEE, Los Alamitos, CA, 1998

[Schatt97] Doris Schattschneider, Marjorie Senechal, "Tilings",
Handbook of Discrete and Computational Geometry, CRC
Press, Boca Raton, 1997

[Wong95a] Pak Chung Wong, R. Daniel Bergeron,
"Authenticity Analysis of Wavelet Approximations in
Visualization", Proceedings of IEEE Visualization ‘95, IEEE
Computer Society Press, Los Alamitos, CA, 1995

4

Geometric Fairing of Irregular Meshes using Mesh Hierarchies

Robert Schneider, Leif Kobbelt and H.P. Seidel

Max-Planck Institute for Computer Science, Saarbrücken

1 Introduction

In a recent paper we presented a new fairing algorithm for irregular meshes that form a man-
ifold, based on solving a non-linear fourth order partial differential equation (PDE) that only
depends on intrinsic surface properties instead of being derived from a particular surface pa-
rameterization. This continuous PDE has a (representation-independent) well-defined solution
which we approximate by our triangle mesh. Hence, changing the mesh complexity (refinement)
or the mesh connectivity (remeshing) leads to just another discretization of the same smooth
surface and doesn’t affect the resulting geometric shape beyond this. Our construction algorithm
creates a mesh sequence by iteratively updating the vertices until the outer and inner fairness
conditions are sufficiently satisfied, where the outer fainess determines the mesh geometry and
the inner fainess the distribution of the vertices within the surface. To simplify the computation
we factorize the fourth order PDE into a set of two nested second order problems thus avoiding
the estimation of higher order derivatives.

When applying such a nonlinear fairing algorithm directly to large meshes various problems
can occur. Large meshes often contain noise that has to be presmoothed before the Fairing iter-
ation can start since the curvature discretization and the vertex update steps assume an already
smooth surface. Moreover, a large mesh has a high vertex density which dramatically decreases
the convergence rate of fairing algorithms, especially for nonlinear higher order schemes.

An elegant solution to such problems is to use multigrid techniques during the construction
process, based on a fine-to-coarse hierarchical mesh representation. Here the necessary hierar-
chy levels are constructed using Hoppe’s progressive mesh approach with half-edge collapses.
However, instead of reducing a mesh while trying to keep the details, we are more interested
in creating a mesh whose smallest edge length is maximal while avoiding distorted triangles
(long triangles with small inner circle). We start with the construction of a discrete solution
on the coarsest level of the progressive mesh representation and then each solution on a coarse
level serves as starting point for the iteration algorithm on the next finer hierarchy level. A
presmoothing step thus only has to be applied on the coarsest level, later at each hierarchy level
the mesh is already presmoothed by the multigrid fairing concept. Between two hierarchy levels
we need a prolongation operator that introduces new vertices using the vertex split information
of the progressive mesh.

2 Our fairing concept

Following the set-up presented in [8] to define fair surfaces satisfying G1 boundary constraints,
the PDE that determines our geometric fairness concept in this paper is defined as

∆BH = 0, (1)

which can be interpreted as one possible nonlinear analogon to thin plate splines. Here ∆B is
the Laplace Beltrami operator and H the mean curvature. The PDE only depends on geometric
intrinsics and is comparatively simple for a forth order equation. Because of the mean value
property of the Laplacian, it is guaranteed that the extremal mean curvature values of a solu-
tion of (1) will be reached at the border and that there are no local extrema in the interior.
Since constant mean curvature surfaces satisfy this equation, important basic shapes as spheres,
cylinders and minimal surfaces satisfying H = 0 can be reconstructed.

1

3 Notation

We partition the vertices of a mesh M into two classes, denoting the set of all border vertices
with VB(M) and the set of all vertices in the interior of M with VI(M). For each vertex qi of
M let N(qi) be the set of vertices qj that are adjacent to qi and let D(qi) = N(qi) ∪ {qi} be its
1-disk. Let Hi = H(qi) denote the discrete mean curvature at the vertex qi.

4 Construction algorithm

We will now present a short description of the construction algorithm for a mesh MS that is a
discrete solution of equation (1), i. e. it satisfies the outer fairness criterion

∆BH(qi) = 0 ∀ qi ∈ VI(MS) (2)

plus an additional inner fairness criterion. The input data for our algorithm consists of vertices
and unit normals that form the G1 boundary conditions and an initial mesh M 0 that interpo-
lates the boundary vertices. The idea of the construction algorithm is to create a mesh sequence
Mk, k = 0, 1, 2, . . . by iteratively updating the vertices, until the outer and inner fairness condi-
tions are sufficiently satisfied.

Instead of solving a fourth order problem directly, we factorize it into two second order
problems which are solved sequentially. The factorization idea is inspired by the following obser-
vation: Given a fixed Laplace-Beltrami operator, fixed mean curvature values at the boundary
vertices VB(Mk) of a mesh Mk and a fixed set of interior vertices qk

i ∈ VI(Mk), (2) can be in-
terpreted as a Dirichlet problem for the Hi, where the unknown scalar mean curvature values at
the inner vertices are determined by a nonsingular linear system with a symmetric and positive
definite matrix. Solving the resulting nonsingular linear system yields scalar values H̃i at all
inner vertices qi ∈ VI(Mk), that represent a discrete harmonic function. The idea is now to use
this calculated scalar values H̃i to update each inner vertex qi such that H(qk+1

i) = H̃i, which
is again a second order problem. Expressed in two formulas, this factorization of M k → Mk+1

becomes
I. ∆BH̃i = 0
II. H(qk+1

i) = H̃i

}
∀ qk

i ∈ VI(Mk)

We determine the Laplace-Beltrami operator and the boundary mean curvature values by calcu-
lating the according values of the current mesh M k. In practice, it is not necessary to solve the
Dirichlet problem exactly. When we have determined the linear system, we apply some iteration
steps of an iterative linear solver, using the current mean curvature values as starting values.

5 Multigrid approach

It is well known that the convergence of mesh fairing algorithms can be dramatically accelerated
if multigrid techniques are integrated into the construction process [7, 4]. In our implementation
we followed this idea. The necessary hierarchy levels are constructed using the progressive mesh
approach [5] with half-edge collapses [6]. The number of hierarchy levels can be specified by
the user. However, instead of reducing a mesh while trying to keep the details, we are more
interested in creating a mesh whose smallest edge length is maximal while avoiding distorted
triangles (long triangles with small inner circle).

Our multigrid algorithm exploits the fact that a coarse mesh already approximates the
shape of the smooth surface that is implicitly defined by the PDE. Increasing the mesh size
mainly improves the smoothness of the approximation (Fig 1). Therefore, we start with the
construction of a discrete solution on the coarsest level of the progressive mesh representation

2

and then each solution on a coarse level serves as starting point for the iteration algorithm on
the next finer hierarchy level. Between two hierarchy levels we need a prolongation operator
that introduces new vertices using the vertex split information of the progressive mesh. When
adding a new vertex qi, we have to take care that the outer fairness is not destroyed at that
position. This is achieved in three steps, where the first two steps are similar to the prolongation
operator used by Guskov et al. [4]:

• First we update the mesh topology and introduce qi at the position given by its inner
fairness criterion, which is defined by local discrete Laplacians

qi =
∑

qj∈N(qi)

λijqj

• In some cases the first step is not enough to avoid triangle distortions, therefore in the
second step we further update the complete 1-ring of qi. This means we solve the local
linear problem ∆ql = 0 for all ql ∈ D(qi).

• Since the second step disturbs the outer fairness, we finally solve ∆BHl = 0 for all ql ∈
D(qi) by applying the construction algorithm locally on the 1-disk D(qi).

Our construction algorithm assumes that the mesh is not a noisy surface. Therefore, before
starting the multigrid algorithm we first construct at the coarsest level the solution of the
problem based on discretizing the equation ∆2f = 0. Later at each hierarchy level our mesh is
already presmoothed by the multigrid fairing concept.

References

[1] Bloor, M. I. G., and M. J. Wilson, Using partial differential equations to generate free-form
surfaces, Computer Aided Design, 22 (1990), 202–212.

[2] Burchard, H. G., J. A. Ayers, W. H. Frey, and N. S. Sapidis, Approximation with Aesthetic
Constraints, in Designing Fair Curves and Surfaces, ed. N. S. Sapidis, SIAM, Philadelphia,
1994.

[3] Chopp, D. L., and J. A. Sethian, Motion by Intrinsic Laplacian of Curvature, Interfaces
and Free Boundaries 1, 1–18, 1999.

[4] Guskov, I., W. Sweldens, and P. Schröder, Multiresolution Signal Processing for Meshes,
SIGGRAPH 99 Conference Proceedings, 325–334.

[5] Hoppe, H., Progressive meshes, SIGGRAPH 96 Conference Proceedings, 99–108.

[6] Kobbelt, L., S. Campagna, and H-P. Seidel, A General Framework for Mesh Decimation,
Proceedings Graphics Interface ’98, Morgan Kaufmann Publ., 43–50.

[7] Kobbelt, L., S. Campagna, J. Vorsatz, and H-P. Seidel, Interactive Multi-Resolution Mod-
eling on Arbitrary Meshes, Proceedings of SIGGRAPH ’98, 105–114.

[8] Schneider, R., and L. Kobbelt, Generating Fair Meshes with G1 Boundary Conditions,
Proceedings of GMP 2000, 251–261.

[9] Welch, W., and A. Witkin, Free-Form shape design using triangulated surfaces, SIGGRAPH
94 Conference Proceedings, 247–256.

3

(a) (b) (c)

(d) (e) (f)

Figure 1: Mesh fairing based on discretizing ∆BH = 0. The boundary condition is determined
by 3 cylinders that are arranged symmetrically. a) shows the original mesh (920 vertices) and b)
a reduced version with 118 vertices. In c) and d) we optimized the inner fairness with respection
to a local uniform parameterization. In e) we chose a inner fairness condition that produces a
mesh that is discrete conformal to the original mesh a). The influence of the mesh size and the
vertex distribution is small, a fact that is exploited during the multigrid construction process.

(a) (b) (c)

Figure 2: Feature removal of a mesh with user defined boundary curve.

4

Hierarchical LIC for Vector Field Visualization

Udeepta Bordoloi and Han-Wei Shen
Department of Computer and Information Science

The Ohio State University
Columbus, Ohio 43210

E-mail: bordoloi@cis.ohio-state.edu and hwshen@cis.ohio-state.edu

Abstract

This paper presents a hierarchical algorithm to accelerate 2D LIC
computation. A quadtree data structure, combined with vector field
simplification metrics, are employed to provide the capability of
selective LIC approximation. In the algorithm, each node of the
quadtree is associated with a measure of “complexity” correspond-
ing to the local flow field. At run time, a threshold is provided by
the user to determine the degree of approximation. We report work
in progress aiming to solve two fundamental problems: (1) Find an
appropriate metric as a measure of the degree of vector field com-
plexity. (2) Develop an approximate LIC algorithm to produce an
image that gives a faithful representation of the vector field, i.e., it
should have as much information as a normal LIC image.

1 Introduction

One of the most popular methods for vector field visualization is
Line Integral Convolution, or LIC [1]. Since this method was first
introduced in 1993, researchers have proposed many extensions to
improve the computation speed [2, 3], to produce better LIC im-
ages [4, 5, 6], and to apply LIC to both steady and unsteady flow
fields [7, 8, 9]. The popularity of LIC mainly comes from its ef-
fectiveness in depicting the flow directions everywhere in a dense
vector field. The disadvantage of LIC, however, is that it is compu-
tationally expensive. Even though computing power has increased
significantly in the last decade, the amount of data generated from
numerical simulations has also increased by many orders of magni-
tude. In this paper, we present an algorithm that utilizes a hierarchi-
cal scheme to accelerate LIC computation, and to make interesting
features of a vector field stand out against the relatively uninterest-
ing background.

The main cost of computing LIC images is streamline advec-
tion. To reduce the computation time, previously Stalling and Hege
have proposed a fast-LIC method [2] which performs convolution
incrementally for pixels along a streamline to reduce the overall
number of streamlines being computed. In addition, adaptive step
size control for a Runge-Kutta numerical integration method is also
employed by the fast-LIC method to further speed up the computa-
tion. In contrast with the fast-LIC method, the technique presented
in this paper adopts a different approach. Instead of computing ac-
curate streamlines everywhere to cover the entire field, streamlines
are computed approximately and selectively based on the underly-
ing vector field features. In parts of the vector field where the flow
directions are fairly straight or similar across a local region, only
one streamline is computed and the same streamline is used by the
points in the entire neighborhood to perform convolution. Our goal
is to reduce the number of streamlines computed and simplify the
LIC computation, and thus reduce the total computation cost.

To make the algorithm suitable for applications that have dif-
ferent visual quality and interactivity requirements, it is very im-
portant that different levels of approximations to be provided and

controlled. To achieve this goal, we use a quadtree hierarchical
data structure to provide the capability of selective approximation
when computing 2D LIC images. In our algorithm, each node of the
quadtree is associated with a measure of “complexity” correspond-
ing to the local flow field. At run time, the user provides a threshold
to specify the minimum complexity level to displayed. If the mea-
sure associated with a given node is lower than the user supplied
value, the corresponding flow field region is simplified and approx-
imate LIC is performed in the region. Otherwise, the algorithm
subdivides the region into smaller parts and performs the same test
recursively. To make possible such a hierarchical LIC computation,
two key issues need to be addressed:
(1) Find an appropriate metric as a measure of the degree of com-

plexity for the local areas of the underlying vector field.

(2) Develop an approximate LIC algorithm to produce an image
that gives a faithful representation of the vector field, i.e., it
should have as much information as a normal LIC image.

In the following, we present our hierarchical LIC algorithm ad-
dressing the above two problems. We first briefly overview the LIC
algorithms. We then describe the error metrics that are used in the
quadtree hierarchical data structure. Two approximate methods for
LIC computation are discussed, and experimental results demon-
strating both the image quality and computational speed of the al-
gorithm are presented.

1.1 Related Work

The Line Integral Convolution method is a texture synthesis tech-
nique that can be used to visualize two-dimensional vector field
data. Taking as the input a vector field and a white noise image
with the same resolution as the vector field, LIC computes convo-
lution of the input noise image using the following algorithm: For
each pixel, streamlines in both the positive and negative directions
are first calculated. The pixel’s convolution result is computed by
weighted-averaging the image values of the pixels along the stream-
line paths. As a result, the intensity values of the pixels along each
streamline are strongly correlated so the directions of the flow field
can be clearly visualized.

While LIC is effective in visualizing 2D vector fields, it is quite
computationally expensive. Stalling and Hege proposed an exten-
sion to speed up the process [2]. Their work is based on two key
observations. First, a streamline starting from any point in the do-
main actually passes through many pixels. For those pixels, only
one rasterized streamline is sufficient to produce the convolution
and thus redundant numerical integrations can be avoided. The sec-
ond observation is that adjacent pixels along the same streamline
use very similar sets of pixel values for the convolution. Therefore,
the LIC value computed for one pixel can be reused by its neigh-
bors with small modifications to accelerate the convolutions. By
reducing the number of streamlines computed and speeding up the
LIC convolution, Stalling and Hege’s new method can gain a great
saving in computing the LIC.

The main idea of this paper is to further speed up the LIC com-
putation by adopting vector field simplification methods and hier-
archical data structures [10, 11]. While the remaining of the paper
discusses our algorithm for accelerating the standard LIC method,
we believe that combining our algorithm with the fast-LIC algo-
rithm can be very effective.

1.2 Measure for simplification

To allow different levels of approximations, we need to provide er-
ror measures to characterize the degree of complexity in the regions
of the vector field. We use the term “complexity” to measure the
parallelism between the streamlines, i.e., how the flow directions in
a local region are similar to each other. We have implemented two
measures to represent the complexity of the vector field. One is the
magnitude of curl, and the other is the metric proposed by Heckel
et al.[10]. Our goal is to make regions with features like vortices
and saddle points have a high degree of complexity. Uninteresting
parts such as straight flows, on the other hand, are considered to
have a low degree of complexity.

The measures are calculated for each point in the field at a pre-
processing stage, and a quadtree is built out of the information.
During the actual LIC image computation stage, we traverse the
quadtree in a depth first manner. We adopt the convention that a
low value of the measure implies that the region can be simplified,
and a high value suggests that there might be interesting features
in the region, and we should subdivide the region further, i.e., go
down the current quadtree level. Thus the measure we are using
denotes ’complexity’. We do not simplify a region even if only one
point within it has a ’complexity’ value higher than the user defined
threshold. This is achieved by keeping track of the maximum value
of ’complexity’ for each region, and it is this value that is kept at
each node of the quadtree.

1.2.1 Curl

The curl at a point in a vector field is defined as the cross product
between the divergence of the vector field at that point and the
vector given by the field at that point. Mathematically, it has the
form:

������� �� � �
���

��
�

���

��
��

where �� and �� are the x and y components of the vector. A in-
tuitive geometrical interpretation of curl at a point would be that
it gives a measure of how much the vector field curls around that
point. Thus the magnitude of curl at the center of a whirlpool would
be very high, and that of a point in the middle of a straight flow
would be zero. The quadtree preprocessing for curl is straightfor-
ward. We first calculate the magnitude of curl for each point in the
vector field, and then build the quadtree over the vector field in a
bottom up fashion. Each node of the tree stores the maximum value
of curl in the region the node represents.

The magnitude of curl represents a local measure of complexity
for the flow, as only the vectors from a point’s adjacent points are
used in the calculation. A very low curl at a point means that the
flow is almost parallel at that point. But it would not necessarily
mean that the flow is parallel some distance from the point. Poten-
tially, this nature of locality can become problematic when simpli-
fying the LIC computation as the streamline convolution path orig-
inating from each point has a much wider span. Some experimental
results are presented and discussed in the result section.

1.2.2 Streamline Distance Error

Another flow complexity measure that we chose to use was pro-
posed by Heckle et al.[10]. For each point, the metric represents the

X

Streamline at X

translated to Y
Streamline of X

Streamline at Y

Y

Figure 1: Streamline distance error metric

difference between the accurate and the approximate streamlines
originating form the point in question. More specifically, the error
is measured as the sum of distances of the corresponding points on
the two streamlines, as shown in Figure 1.

Generating a quadtree out of this measure is slightly different
from the maximum quadtree method that we use for the curl metric.
At the lowest level of the quadtree, say a � � � block, we calculate
the error at each point as the distance between the actual streamline
originating from that point and the approximate streamline, which
is a translated streamline computed form the center of the � � �
block. The leaves store the maximum of the error distances of the
four points in the 2x2 block. For the next level, we follow the same
steps for the 4x4 region a node represents. This time, the value at
the node is the maximum of the error distances of the sixteen points
in the region, and the error distances are computed with respect
to the streamline of the center point of this region. Note that this
center point is different from any of the center points of the 2x2
sub-regions of this region.

To approximate a LIC image, this metric is believed to be more
intuitive if we are to translate an approximate streamline across a
region to perform the convolution. If the translated streamline does
not model the actual streamline well, the distance would be high
and thus we need to use a finer level of quadtree approximation.
Before we present the approximation result using this metric, we
first we discuss our LIC approximation methods in the next section.

1.3 Approximating LIC

For a region that has a low complexity measure, we intend to limit
the calculation of streamlines as much as possible, i.e., use only one
(or possibly a few) streamline to approximate the flow directions
for the whole region. In the following we describe two methods
for approximating LIC using the quadtree-based hierarchical vector
field simplification measure that we have discussed.

1.3.1 Streamline Translation

Our first method is to translate an approximate streamline to each
point of a local region and use the approximate streamline trajec-
tory as the LIC convolution path. For a region that is determined to

for point X

Approximate streamline
for Y is the streamline

Y

at X translated one
unit to the left

Streamline calculated

X

Figure 2: LIC approximation using streamline translation

be simplified, we select one point, near the center of the region, and
calculate the actual streamline originating from this point and per-
form rasterization of the streamline. To calculate LIC for any other
point in the region, we translate the rasterized streamline from the
center point by a displacement vector (the vector from the central
point to the current point that we are approximating the streamline
for), and use it to perform the same convolution as the standard LIC.

Figure 2 shows an example of our algorithm. Consider the grid
point that is to the left of the current point. Since we assume that
the shape of the streamlines is similar, we just translate the current
streamline one unit to the left to get the approximate streamline for
the new point.

1.3.2 Pseudo LIC

We have also experimented with Pseudo LIC (PLIC) proposed by
Verma et al.[12], which uses texture mapping to generate LIC-like
textures. PLIC places seed points for streamlines on a uniform grid,
which might be sparser than the grid of the output image. (Com-
pare this to the traditional method of LIC, in which seed points for
streamlines are pixels of the output image). To generate flow tex-
tures, a rectangular LIC texture of a straight field is warped and
texture mapped onto the streamline. The quality of PLIC output
depends on how sparse the seed points are, and how wide and how
long the rectangular patch used for texture map is. More details can
be found in [12].

In our algorithm, the streamline is calculated at the central point
of the region to be simplified. Instead of performing regular LIC
convolution for each point in the region, we texture map a rectan-
gular patch from a previously calculated LIC image of a straight
vector field onto the streamline. The catch is that the seed points
are no longer uniformly spaced, and we need to calculate a proper
width and length for the rectangular patch depending on the size of
the region we are simplifying.

2 Results and Discussion

In the following, we first give qualitative assessments on the merits
and demerits of the metrics we use, and then discuss the speedups
and the result images.

We have applied our algorithm to a ��� � ��� two dimensional
vector field with three vortices and two saddle points. Figures 3-6
show results using the streamline translation method for LIC ap-
proximation with the curl and the streamline distance as the error
metrics. Figures 7-10 were generated using PLIC approximation
with the same set of error metrics. Figure 11 is the traditional
LIC image for comparison. The streamline distance error metric
is calculated using a streamline advected to a length of 40 units.
The images generated using the streamline translation method use
a convolution length of 40 units, while the Pseudo LIC images are
convolved to 20 units.

From the figures we note that when the curl is used as a metric,
the image begins to show noticeable artifacts around the vortices.
The reason for this can be better understood from the image of the
magnitude of the curl of the vector field in Figure 12. The curl is
very high at the saddle points and also at the centers of the vortices.
But as we move away from the vortex centers, the curl falls to levels
that are comparable to areas with a straight flow. This happens
because curl is calculated locally, while the streamline calculated
for generating the LIC images spans a much greater region. Thus
one of the drawbacks of curl is that it fails to capture the global
features to the field.

The streamline distance error metric is very well suited for the
translation method of approximating streamlines. Since the error is
calculated using the same translated streamline that is later used for
approximation, it tells us exactly how good or bad the approxima-
tion is. The effects of simplification when using the streamline dis-
tance error metric, however, start to appear near the saddle points.
From the images of the various levels of the distance error in Fig
13 and 14, we notice that the error is high for the vortices but really
low around the saddle points.

Based on the above observations, neither curl nor the streamline
distance error appear to be the perfect metric for vector field sim-
plification on their own right. It is likely that a combination of both
the curl and the streamline distance would prove to be much more
faithful in representing the ’complexity’ of regions of vector fields.

Using either of the LIC approximation methods, appreciable
speedup can be achieved (see Figure captions) with different de-
grees of convolution artifacts. The tradeoff between image qual-
ity and computation speed is controlled by the user. The stream-
line translation method produces artifacts as the coherence becomes
weaker between the pixels that are adjacent to each other but in dif-
ferent regions of the quadtree simplification. In addition, the cor-
relation between the pixels in the region that is simplified is also
disturbed as the convolution paths for the pixels that are along the
same streamline in the original field now become slightly differ-
ent as a result of the streamline approximation. However, for the
flow regions that have low complexity, the differences are small
in general. Pseudo LIC seems to be a much better candidate for
approximation. We do not see discontinuity along the boundaries
of the regions that are simplified. In the original Pseudo LIC al-
gorithm, streamlines are uniformly spaced. For our purposes, we
have to place them according to the quadtree traversal, which re-
sults in non-uniform placement. This causes different parts of the
final image to have different intensities because they have different
amounts of texture mapped values deposited on them. We solve this
problem by starting new streamlines from points which do not have
a minimum number of texture mapped deposits on them.

3 Future Work

There is scope for more work on both the error metrics and the
LIC approximation methods. We believe we can produce a better
metric by combining more than one property of the vector field, in
this case the curl and the streamline distance. As far as approxima-
tion is concerned, we can use concepts of fast-LIC in our algorithm

to achieve higher speedups. Finally, the use of a hierarchical al-
gorithm should prove very useful for producing three dimensional
LIC images, where the challenge is both computational speed and
selective display of information.

Acknowledgments

This work was supported by The Ohio State University Research
Foundation Seed Grant. We would like to thank Ravi Samtaney
for providing the test data sets and Dr. Roger Crawfis for useful
comments.

References

[1] B. Cabral and C. Leedom. Imaging vector fields using line
integral convolution. In Proceedings of SIGGRAPH 93, pages
263–270. ACM SIGGRAPH, 1993.

[2] D. Stalling and H.-C. Hege. Fast and resolution independent
line integral convolution. In Proceedings of SIGGRAPH 95,
pages 249–256. ACM SIGGRAPH, 1995.

[3] M. Zöckler, D. Stalling, and H.-C. Hege. Parallel line inte-
gral convolution. In Proceedings of First Eurographics Work-
shop on Parallel Graphics and Visualisation, pages 111–128,
September 1996.

[4] M.-H. Kiu and D. Banks. Multi-frequency noise for LIC. In
Proceedings of Visualization ’96, pages 121–126. IEEE Com-
puter Society Press, Los Alamitos, CA, 1996.

[5] H.-W. Shen, C.R. Johnson, and K.-L. Ma. Visualizing vec-
tor fields using line integral convolution and dye advection.
In Proceedings of 1996 Symposium on Volume Visualization,
pages 63–70. IEEE Computer Society Press, Los Alamitos,
CA, 1996.

[6] V. Interrante and C. Grosch. Strategies for effectively visual-
izing 3d flow with volume lic. In Proceedings of Visualiza-
tion ’97, pages 421–424. IEEE Computer Society Press, Los
Alamitos, CA, 1997.

[7] L.K. Forssell and S.D. Cohen. Using line integral convolu-
tion for flow visualization: Curvilinear grids, variable-speed
animation, and unsteady flows. IEEE Transactions on Visual-
ization and Computer Graphics, 1(2):133–141, 1995.

[8] A. Okada and D. L. Kao. Enhanced line integral convolu-
tion with flow feature detection. In Proceedings of IS&T/SPIE
Electronic Imaging ’97, pages 206–217, 1997.

[9] H.-W. Shen and D.L Kao. A new line integral convolution al-
gorithm for visualizing time-varying flow fields. IEEE Trans-
actions on Visualization and Computer Graphics, 4(2), 1998.

[10] B. Heckel, G. Weber, B Hamann, and K. Joy. Construction of
vector field hierarchies. In Proceedings of Visualization ’99,
pages 19–25. IEEE Computer Society Press, Los Alamitos,
CA, 1999.

[11] A. Telea and J. van Wijk. Simplified representation of vector
fields. In Proceedings of Visualization ’99, pages 35–42. IEEE
Computer Society Press, Los Alamitos, CA, 1999.

[12] V.. Verma, D. Kao, and A. Pang. Plic: Bridging the gap be-
tween streamlines and lic. In Proceedings of Visualization ’99,
pages 341–348. IEEE Computer Society Press, Los Alamitos,
CA, 1999.

Fig4. Streamline Translation,
metric:curl, speedup:50.3%

Fig3. Streamline Translation,
metric:curl, speedup:21.2%

Fig5. Streamline Translation,
metric:distance, speedup:34.1%

Fig6. Streamline Translation,
metric:distance, speedup:52.6%

Fig7. Pseudo LIC,
metric:curl, speedup:23.6%

Fig8. Pseudo LIC,
metric:curl, speedup:43.3%

Fig9. Pseudo LIC,
metric:distance, speedup:25.3%

Fig11. Original LIC algorithm
Time: 33.6s

Fig12. Magnitude of curl shown
as a gray scale image

Fig13. Streamline distance error
for the level 2x2

Fig14. Streamline distance error
for the level 4x4

Fig10. Pseudo LIC,
metric:distance, speedup:47.5%

Approximating Material Interfaces during Data Simplification

David E. Sigeti∗ Benjamin F. Gregorski†
John Ambrosiano ∗ Gerald Graham ∗

Mark A. Duchaineau‡ Bernd Hamann † Kenneth I. Joy †

∗ Los Alamos National Laboratory
† University of California, Davis

‡ Lawrence Livermore National Laboratory

1 Introduction

We present a new method for simplifying large data sets
that contain material interfaces. Material interfaces embed-
ded in the meshes of computational data sets are often a
source of error for simplification algorithms because they
represent discontinuities in the scalar or vector fields over
a cell. By representing material interfaces explicitly in a
data simplification process, we are able to provide separate
field representations for each material over a single cell and,
thus, to represent the fields much more accurately. Our al-
gorithm uses a multiresolution tetrahedral mesh supporting
fast coarsening and refinement capabilities and error bounds
for feature preservation. We represent a material interface
or other surface of discontinuity as the zero set of a signed
distance function. This representation makes it possible to
maintain continuity of the surface across cell boundaries. It
also makes it possible to represent more complex interface
structures within a cell, such as T-intersections. Within a
cell, a field is represented on either side of the surface of
discontinuity by separate linear functions. These functions
are determined by true and “ghost” values of the field at the
vertices of the cell. By requiring that each vertex have only
one ghost value for a given field and material, we are able
to avoid introducing spurious discontinuities in the fields at
cell boundaries. The use of linear functions determined by
ghost values makes it unnecessary to divide the original cells
in the mesh along the surface of discontinuity, avoiding the
resultant introduction of complex cell types and field rep-
resentations. It also decouples the field representation from
the representation of the surface of discontinuity, making it
easier to represent fields when the material interfaces are
more complex. Both the signed distance function that de-
fines the surface of discontinuity and the ghost values that
determine the field representations are handled very simply
during refinement and coarsening of the mesh ensuring that
all spurious discontinuities can be avoided with a minimum
of computation and programming effort. We have applied
our algorithm to simplification of a test problem from a well
known fluid dynamics code with excellent results. Graphi-
cal and numerical results are presented. Furthermore, our
multiresolution representation can be applied to other kinds
of surfaces, e.g. isosurfaces.

2 Multiresolution Tetrahedral Mesh

As the geometric basis for our simplification algorithm we
use the subdivision of a tetrahedral mesh presented by Zhou

∗{ambro,ggraham,sigeti}@lanl.gov
†{gregorsk,hamann,joy}@cs.ucdavis.edu
‡{duchaineau1}@llnl.gov

et al [1]. This framework has an important advantage
over other multiresolution spatial data structures such as an
octree—it makes it easy to avoid introducing spurious dis-
continuities into our representations of fields. The way we
perform the binary subdivision ensures that the tetrahedral
mesh will always be a conformant, i.e, all edges in the mesh
end at the endpoints of other edges and not in the interior
of edges. The simplest representation for a field within a
tetrahedral cell is just the unique linear function that inter-
polates field values specified at the cell’s vertices. In the case
of a conformant mesh, this natural field representation will
be continuous across cell boundaries, resulting in a globally
C0 representation.
We have generalized the implementation presented by

Zhou et al by removing the restriction that the input data
needs to be given on a regular rectilinear mesh consisting
of (2N + 1) × (2N + 1) × (2N + 1) points. A variety of
input meshes can be supported by interpolating field val-
ues to the vertices of the multiresolution tetrahedral mesh.
In general, any reasonable interpolation procedure may be
used. In some cases, the procedure may be deduced from
the physics models underlying the simulation that produced
the data set. In other cases, a general-purpose interpolation
algorithm will be appropriate.
We construct our data structure as a binary tree in a top-

down fashion. Data from the input data set, including grid
points and interface polygons, are assigned to child cells at
the time that their parent is split.
The other basis for our algorithms is the ROAM system,

described in [2]. ROAM uses priority queue-driven split and
merge operations to provide optimal real-time display of tri-
angle meshes for terrain rendering applications. The tetrahe-
dral mesh structure used in our framework can be regarded
as an extension to tetrahedral meshes of the original ROAM
data structure for triangle meshes.
Since our data structure is defined recursively as a binary

tree, a representation of the original data can be computed
in a preprocessing step, and we can utilize the methods de-
veloped in ROAM to efficiently select a representation that
satisfies an error bound or a desired cell count. This makes
the framework ideal for interactive display.
Strict L∞ error bounds are incorporated into the subdi-

vision process, see Section 5 below.

3 Representing Material Interfaces

In the class of input datasets with which we are working,
material interfaces are represented as triangle meshes. In
the case that these triangle meshes are not known, they are
extracted from volume fraction data by a material inter-
face reconstruction technique described in [3] and [4] (The

Figure 1: True and approximated interfaces.

volume fractions resulting from numerical simulations indi-
cate what percentages of which materials are present in each
cell.). Such an interface reconstruction technique produces
a set of crack-free triangle meshes and normal vector infor-
mation that can be used to determine on which side and in
which material a point in space lies.
Within one of our tetrahedra, an approximate material

interface is represented as the zero set of a signed distance
function. Each vertex of a tetrahedron is assigned a signed
distance value for each of the material interfaces in the tetra-
hedron. This value is simply the minimum distance from the
vertex to the interface. The sign of the distance is given by
the side of the interface on which the vertex lies.
Figure 1 shows a two-dimensional example of two triangles

forming a conformant mesh, crossed by an interface (shown
in red). The minimum distances from the vertices of the
triangles to the interface are shown as dotted lines. The dis-
tances for vertices on one side of the interface (say, above the
interface) are assigned positive values and those on the other
side are assigned negative values. These signed distance val-
ues at the vertices will then determine linear functions in
each of the triangles and the approximated interface (shown
in blue) will be the zero set of these linear functions. Be-
cause the mesh is conformant, the linear functions in the
two triangles will agree on their common side, and the zero
set will be continuous across the boundary. The situation
in three dimensions is analogous, with the word “triangle”
replaced by “tetrahedron”.
We note that, in order for the interface representation to

be continuous across cell boundaries, it is necessary both
that the mesh be conformant and that each vertex have at
most one signed distance value for each interface.
The signed distance values for a vertex are computed when

the vertex is created in a split operation. When searching for
the point on the true interface that is closest to the vertex,
it is possible to restrict attention those cells that share the
edge being split. This makes the computation very efficient
for the great majority of vertices.

4 Representing Discontinuous Fields

Once we have approximated the interfaces within a cell, we
must decide how to represent fields on either side of the in-
terface. Our algorithm represents the discontinuity by con-
structing a linear field representation for each material in
the cell. In order to specify these representations, each of
the vertices in a cell must have a distinct field value for

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��
��

Figure 2: Ghost values.

each material in the cell. When a vertex does not lie in a
given material, the field value associated with that material
is called a ghost value.
The use of ghost values is illustrated in Figure 2. The

material on the upper side of the interface is represented by
brown and the material on the lower side is represented by
green. The two upper vertices lie in the brown material and,
thus, have regular values for the field in the brown material.
These values are indicated by the the solid brown circles.
The empty green circles indicate that these vertices require
ghost values for the green material. Similarly, the lower cir-
cles lie in the green material and, thus, have regular values
for the field in the green material (solid green circles) and re-
quire ghost values for the field in the brown material (empty
brown circles). Once we have such ghost values, we can de-
fine linear representations for the field in the two regions by
the usual interpolation. If we maintain a conformant mesh
and assign only a single ghost value for a given material to
a vertex, then our field representation will be discontinuous
where it should be (across the interface) but not across cell
boundaries (which would be a spurious discontinuity). Once
again, the situation in three dimensions is analogous, with
the word “triangle” replaced by “tetrahedron”.
In our current implementation, we choose as the ghost

value for a given vertex, field, and material the value of
the field at the point in the material that is closest to the
cell. These points are, of course, exactly the points that
were used to determine the distance map that defines the
approximation to the interface.
The ghost values for a vertex are computed when the ver-

tex is created during the tetrahedral refinement process.

5 Error Bounds and Refinement Strategy

The error bounds employed in our framework are similar to
the nested error bounds used in the ROAM system. Each
cell has two associated kinds of error values, field errors and
material interface errors.
Field errors are first calculated for leaf cells and are then

propagated up the hierarchy. So far, we have only worked
with input data sets that may be considered to consist of
discrete grid points. In this case, the computation of error
bounds for leaf cells is straightforward—the error for a leaf
cell is simply the maximum of the errors associated with
all the grid points from the input data set that it contains.
When fields in the input data set are considered to have

values over finite volumes, the computation of leaf cell errors
will be more complex.
The field error eT for a non-leaf cell is computed from the

errors associated with its two children according to:

eT = max{eT0 , eT1}+ |z(vc)− zT (vc)| (1)

where eT0 and eT1 are the errors of the children; vc is the
vertex that splits the parent into its children; z(vc) is the
field value assigned to vc; and zT (vc) is the field value that
the parent assigns to the spatial location of vc, equivalently,
zT (vc) =

1
2
(z(v0) + z(v1)), where v0 and v1 are the vertices

of the parent’s split edge. This error bound is nested in the
sense that the error of a child is guaranteed not to be greater
than the error of the parent.
The material interface error associated with a leaf node

is the maximum of the errors associated with each of the
interfaces in the node. For each interface, the error is the
maximum distance between the approximate representation
of the interface in the cell and those polygons that define the
true interface and which are contained in the cell.
We initially refine our mesh to meet a user-determined

error bound on the location of interfaces. The mesh is then
further refined, using the ROAM algorithms, to minimize
the error in a given field consistent with a given tetrahedron
count.

6 Results

We have tested our algorithm on a data set resulting from
a simulation of a hypersonic impact between a dense pro-
jectile and a less dense metal block. The simulation uses a
logically rectilinear mesh of dimensions 32x32x52. For each
cell, the density and pressure values are available, as well as
the per-material densities and volume fractions. The physi-
cal dimensions in x, y, and z directions are [0,12] [0,12] and
[-16,4.8].
There are three materials in the simulation: the projec-

tile, the block, and empty space. The interface between the
projectile and the block consists of 38 polygons, the interface
between the projectile and empty space consists of 118 poly-
gons and the interface between empty space and the block
consists of 17574 polygons.
Figures 3 shows a cross section view of the mesh created

by a cutting plane. The black lines are the original interface
polygons intersected by the plane, and the magenta lines are
our approximation to the interface. The interface approxi-
mation error is 0.15. An error of 0.15 means that all of the
vertices in the original material interface meshes are no more
that a physical distance of 0.15 from their associated inter-
face approximation. This is equivalent to an error of (0.5 -
1.5)% when considered against the physical dimensions. A
total of 3174 tetrahedra were required to approximate the
interface to an error of 0.15. The overall mesh contained a
total of 5390 tetrahedra. A total of 11990 tetrahedra were
required to approximate the interface to an error of 0.15 and
the density field to an error of 3. The maximum field ap-
proximation error in the cells containing material interfaces
was 2.84 and the average field error for these cells was 0.007.
These error measurements indicate that separate field repre-
sentations for the materials on either side of a discontinuity
can accurately reconstruct the field.
Figures 4 and 5 compare density fields generated using

linear interpolation of the density values to fields generated
using separate field representations on either side of the dis-
continuity. Figure 5 shows that using explicit field repre-
sentations in the presence of discontinuities can improve the

quality of the field approximation. This can be seen in the
flat horizontal and vertical sections of the block where the
cells approximate a region that contains the block and empty
space. In these cells, the use of explicit representations of
the discontinuities leads to a very accurate representation
of the density field. The corresponding field representations
using linear interpolation, shown in Figure 4, do a very poor
job of capturing the discontinuities. Furthermore, Figure 5
captures more of the dynamics in the area where the pro-
jectile is entering the block (upper left corner). The linear
interpolation of the density values in the region where the
projectile is impacting the block smoothes out the density
field, and does not capture the distinct interface between
the block and the projectile. Figure 6 shows the density
field from Figure 5 with our approximation to the interface
and without the cell outlines.

7 Conclusions and Future Work

We have presented a simplification method for scientific data
sets that explicitly represents material interfaces in mesh
cells. Our algorithm constructs an approximation that can
be used in place of the original data set for visualization
purposes. Explicitly representing the material and implicit
field discontinuities allows us to use multiple field represen-
tations to better approximate the field within each cell. The
use of the tetrahedral subdivision allows us to generalize our
algorithm to a wide variety of data sets and to support in-
teractive level-of-detail exploration and view-dependent sim-
plification. Future work will extend our error calculations
to support complex input cell types such as tetrahedra and
curvilinear hexahedra. Our current ghost value computa-
tion assumes that the field is constant on the other side of
the interface. Higher-order extrapolation methods should
be investigated for ghost value computation to determine if
a superior field approximation can be obtained. Similarly,
material interfaces are defined by approximations based on
linear functions. The tradeoff between cell count and higher-
order approximation methods should be investigated to de-
termine if a better approximation can be obtained without
a great increase in computational complexity. Finally, we
plan to apply our algorithm to more complex unstructured
data sets.

References

[1] Y. Zhou, B. Chen, and A. Kaufman, “Multiresolution
tetrahedral framework for visualizing regular volume
data,” in IEEE Visualization ’97 (R. Yagel and H. Ha-
gen, eds.), pp. 135–142, IEEE Computer Society Press,
1997.

[2] M. A. Duchaineau, M. Wolinsky, D. E. Sigeti, M. C.
Miller, C. Aldrich, and M. B. Mineev-Weinstein,
“ROAMing terrain: Real-time optimally adapting
meshes,” in IEEE Visualization ’97 (R. Yagel and H. Ha-
gen, eds.), pp. 81–88, IEEE Computer Society Press,
1997.

[3] K. S. Bonnell, “On material boundary surfaces,” Mas-
ter’s thesis, University of California at Davis, June 2000.

[4] K. S. Bonnell, M. A. Duchaineau, D. R. Schikore,
B. Hamann, and K. I. Joy, “Constructing material inter-
faces from data sets with volume-fraction information,”
in IEEE Visualization 2000, 2000. to appear.

Figure 3: Cross section of the tetrahedral mesh showing the
original interfaces and interface approximations.

Figure 4: Density field using linearly interpolated density
values (interface error = 0.15).

Figure 5: Density field using explicit interface representa-
tions and separate field representations (interface error =
0.15).

Figure 6: Figure 5 without the cell outlines.

Crest lines extraction from �D triangulated meshes

Georgios Stylianou and Gerald Farin

Department of Computer Science and Engineering

Arizona State University

Tempe� AZ ����������

� Abstract

We present an automatic crest lines extraction
method from �D triangulated meshes� We use a
bivariate polynomial to approximate the surface lo�
cally and calculate the principal curvatures and di�
rections on every vertex and a tracing algorithm
to extract the crest lines� We show crest lines on
various triangulated meshes and evaluate their in�
variance under rotation and stability under scaling�

Keywords��D triangulation� crest lines� principal
curvatures�

� Introduction

Crest lines are �D lines on a surface that provide
a satisfactory geometrical representation of impor�
tant physical properties such as anatomical features
in the case of medical images ����

Lengagne et al ���� extract crest lines from �D tri�
angulations� This method has problems regarding
the derivative calculation of the largest curvature
because it makes a very rough approximation of the
derivative that fails in many cases�

Gu	eziec ��� extracts crest lines using a B�spline
parametrization of the skull� Although� such a
parametrization is the most accurate� is very ex�
pensive and most importantly it can not be used
to parametrize every surface�

Khaneja et al ��� implemented a dynamic pro�
gramming algorithm to extract crest lines from tri�
angulations that is stated to have noise immuniza�
tion� This method is semi�automatic and was ap�
plied to medical data only� The problem is it re�
quires the presense of an expert to de
ne start�end
points for every crest line� thus this method fails
when there is no expert or the expert fails to iden�

tify topologically correct points�
We propose a method that solves the problems

appearing in ���� is automatic in addition to ��� and
can be applied in any surface as long as it is repre�
sented by a triangulated mesh in contrast to ����
This article is organized as follows� In Section

� we brie�y describe the underlying theory of our
method� Sections
� � present the method and the
experimental results�

� Theory

In this section� we brie�y give the theoretical as�
pects of this work�

��� Crest lines

Crest lines are local shape features of a surface�
They are as the set of of all points satisfying

Dt�
k��u� v� � � ���

where k� is the largest principal curvature and t�

is its direction in the �u�v��domain�
They are shape features with the main charas�

teristic of using local information to yield a global
description of the surface�

��� Parametrization

We use a quadratic bivariate polynomial to
parametrize locally the surface�
The patch we use has the type

x�u� � au� � buv � cv� � du� ev � f ���

where u � �u� v� is a point on the domain� x�u�
is a point on the surface and a�b� c�d� e� f are the
coe�cients of the patch�

�

��� Least Squares �tting

We use the least squares ��� method to �t ��� on a
point set� Here we de�ne the problem and describe
the domain calculation�
Problem� Given a point set D 	 fpiji 	
� ���� Lg

we want to �nd an approximating patch b�u� v��
such that

LX

i��

kpi � b�ui� vi�k
� ���

is minimized�
The �rst step is the domain calculation i�e� the

calculation of the parameters ui 	 �ui� vi� that cor

respond to pi� In other words� we have to calculate
the domain parameters ui of the prospective range
values pi� The procedure we use is due to Hamann
���� Here we rapidly give the steps�
In order to approximate the principal curvatures at
a point xi do

�� Get the neighboring points of xi�

�� Compute the best plane P � passing through
these points�

�� De�ne an orthonormal coordinate system in P

with a point in D as the origin�

�� Project all the points of D onto the plane P

and represent their projections with respect to
the local coordinate system in P �

The �nal points are the wanted domain points� In
our case� the plane P is the plane with normal vec

tor the normal vector on a vertex of the triangu

lated mesh�
The second step is the patch �tting� We solve

the linear system

D 	 FX

which is equivalent to minimizing �� D is the given
point set� F is the domain values of this point set
D and X are the unknowns� the coe�cients of the
polynomial ��

� Method

Here� we describe the method we propose for au

tomatic crest line extraction� The method is two

fold� The �rst step approximates the principal cur

vatures and directions on every vertex of the trian

gulation and the second step traces the crest lines�

The �rst step is�
For every vertex vi of the mesh�

�� Get the star of vi� denoted by star�vi��

�� Fit the quadratic patch ��� on vi and star�vi��

�� Compute the principal curvatures and their
corresponding directions on vi�

Then we evaluate whether a vertex is a crest
point� The local neighborhood of a vertex vi of
a triangulated mesh is its star�vi�� We can utilize
the de�nition ��� and directly calculate the direc

tional derivative of the largest curvature of every
vertex like Lengagne et al ��� or using numerical
di�erences but the derivative is very noise sensi

tive and it fails to provide consistent values many
times especially on irregular triangulated meshes�
In fact� we have experimented using the numerical
di�erences method and it� often� does not give ac

ceptable results� Consequently� we take a di�erent
approach�
We use the interpetation of de�nition ��� where

a point is a crest point if its largest curvature

is locally maximal in its corresponding direction�
Therefore� after calculating the principal curvature
ki
�
and its corresponding domain direction ti

�
of a

vertex vi� we use the domain values of the star�vi�
as follows�

� The domain values of the star�vi� are
�u�� ����uL�� L is the number of vertices in the
star�vi� and u� is the domain value of vi�

� Find the edge �u��um�� m � ��� L� closest to
ti
�
�

� Find the edge �u��uj�� j � ��� L� and j �	 m

closest to �ti
�
�

� Get the largest curvature of the corresponding
vertices km

�
� kj

�
�

� If �ki
�
��� �km

�
�� � e and �ki

�
��� �kj

�
�� � e then

vi is a crest point�

where e �	
 controls the level of maximality�
The second step of the method is the tracing of

crest lines over the mesh� Letthe mesh consist of
N vertices� The algorithm is�

�� Initialize linelist L and set the number of lines
j 	
�

�

�� Set the id of the current vertex i � ��

�� if vi is not visited and is a crest point

� call traceCrestLine�vi� lj ���rst�	�

� call traceCrestLine�vi� lj ��last�	�

� increase j�

� If i � N increase i and goto step ��

The procedure traceCrestLine�vi� lj	 is�

�� Mark vi as visited and add it to line lj �

�� Get all the vertices of star�vi	 that are crest
points and are not visited� Let their number
be n�

�� If n � � then goto step � for the new vertex�
else exit�

When we call traceCrestLine with the argument
��rst� it adds every point on the beginning of the
line� otherwise with the argument �last� adds every
point on the end of the line� Therefore� we can
trace the maximum line segment possible and not
just parts of a line�

� Results

We have tested our algorithm on various meshes�
Firstly� we used regular triangulated meshes rep

resenting di�erent kinds of vases� Figures � and
� show the crest lines superimposed on vase� and
vase�� respectively� Figure � shows the crest lines

Figure �� Crest lines of vase��

for vase� after scaling two times in x and y coordi

nates� before extracting crest lines� They are very
stable� even though� we streched the object� The
only problem on the crest lines is that they are
slightly translated from their actual position� as it
is visually observed� This problem occurs because
we trace crest lines over the vertices of the mesh�

Figure �� Crest lines of vase��

Figure �� Crest lines of vase� after streching�

Figures
 and � show the crest lines extracted
from the triangulated mesh of the Stanford bunny
in two di�erent mesh resolutions� Bunny� consists
of ���� vertices and ����� facets� Bunny�� which
is a decimated version of bunny�� consists of ����
vertices and ���� facets� To obtain these results we
set the threshold e � ��� and e � ��� for bunny�
and bunny�� respectively� Even though the level
of resolution is quite di�erent� we get very simi

lar results� The substantial di�erence is that the
crest points of bunny� are much more stable than
bunny��s in terms of their level of maximality�
Moreover� even with these nice results we have

some artifacts� Lines that should not exist or very
small lines� These can be removed by deleting the
lines that have less than a given number of points�
This keeps the most signi�cant lines�

Figure � shows the crest lines extracted as in ����
Clearly� they are very di�erent and too many lines
appear that should not exist� The problem that
causes all these artifacts is the derivative calcula

tion of the largest curvature�

�

Figure �� Crest lines for Stanford bunny��

Figure �� Crest lines for Stanford bunny��

� Conclusions

In this work� we have presented a method for crest
lines extraction� We used a bivariate polynomial
to calculate principal curvatures and directions on
every vertex of the mesh and used de�nition �	
 to
decide when a vertex is a crest point� Later� we
gave an algorithm to trace the crest lines over the
mesh and stored them in a useful data structure
for future use� Finally� we shown its e�ciency on
various triangulated meshes� and evaluated the in�
variance of crest lines under rigid transformations
and stability under streching�
In future work� we intend to implement a quan�

titative comparison method using crest lines� im�
prove noise control and make a parallel implemen�

Figure
� The crest lines of vase	 as in �	�

tation of this method for extracting crest lines e��
ciently on triangulated meshes of order of hundreds
of thousands of points�

� Acknowledgments

This work was supported in part by the Arizona
Alzheimer�s Disease Research Center�

References

�	� R� Lengagne� F� Pascal� O� Monga� Using Crest
Lines to Guide Surface Reconstruction from
Stereo� ICPR ����	��
�

��� N� Khaneja� M�I� Miller� U� Grenander� Dy�
namic Programming Generation of Curves on
Brain Surfaces� IEEE Transactions on Pattern

Analysis and Machine Intelligence�

��� A� Gu�eziec� Large Deformable Splines� Crest
lines and Matching� IEEE �th International

Conference on Computer Vision�
���
���	����

��� G� Farin� Curves and Surfaces for Computer

Aided Geometric Design� Fourth Edition� Aca�
demic Press� Boston� 	����

��� A� Gray� Modern Di�erential Geometry of

Curves and Surfaces with Mathematica� Second

Edition� CRC Press�	����

�
� B� Hamann� Curvature Approximation for Tri�
angulated Surfaces� In Computing� 	���	���
Springer�Verlag� 	����

�

Scaling the Topology of Symmetric, Second-Order Tensor Fields

Xavier Tricoche, Gerik Scheuermann, Hans Hagen, Stefan Clauss
University of Kaiserslautern, Department of Computer Science

P.O. Box 3049, D-67653 Kaiserslautern
Germany

E-mail:
�
tricoche|scheuer|hagen|clauss � @informatik.uni-kl.de

1 Introduction

Tensors are the language of mechanics. Therefore, tensor field visualization is a challenging issue for scientific
visualization. Scientists and engineers need techniques that enable both qualitative and quantitative analysis of
tensor data sets resulting from experiments or numerical simulations. A topology-based visualization method
of symmetric, second-order tensor fields in two dimensions has been designed for that purpose [1]. It focuses
on one of the two eigenvector fields corresponding to the minor or major eigenvalues. Like the vector case, the
displayed graph consists of so-called degenerate points (where both eigenvalues are equal) connected by partic-
ular integral curves, the separatrices. This technique proved to be suitable for tensor fields with simple structure
because the extracted topology contains few degenerate points and separatrices, leading to a comprehensible
structure description. However, for tensor fields with complicated structure (like those encountered in turbulent
flows, for instance), topology-based methods result in cluttered pictures that confuse the interpretation.

Our hierarchical method merges close degenerate points into one, which simplifies the topology and clarifies
its depiction, though globally maintaining the qualitative properties of the original data. It is the extension to
the tensor case of a paper we presented at the IEEE Visualization 2000 Conference [2]. We assume a planar,
piecewise bilinear interpolated, symmetric, second-order tensor field over a structured grid. The degenerate
points are determined first. A clustering strategy is then applied on the resulting set of degenerate points. This
leads to a grid partition into cell clusters such that the distance between degenerate points in each cluster is
below a user-prescribed threshold. After this, we merge the degenerate points lying in each cluster to get the
desired scaling effect. Finally, we determine and integrate the resulting separatrices.

The clustering strategy has been already presented earlier for vector fields [2]: Starting with the whole
domain as initial cluster, one computes the distance of the degenerate points to their midpoint. If this distance
exceeds a prescribed threshold, the cluster is split into two subclusters along an edge polyline chosen to opti-
mize the distance criterion in the resulting subclusters. The merging process and the analysis of the resulting
degenerate points present new aspects and are detailed in the following.

We have applied our method to a swirling jet simulation with evolving turbulence. In this case, the topology
is clarified, the separatrices easier to track while the significant structural features have been preserved.

2 Eigenvectors and Eigenvalues

First, we give here the analytic expressions of the eigenvalues and eigenvectors of a symmetric, second-order
tensor. We denote the considered tensor field as follows:

� � � �
 �� � �
where
 � � and � are bilinear scalar functions in � and � .
Except in the special case where the matrix is diagonal, the system to solve leads to the following expressions.
The eigenvectors are �� � � � � � � � � �� � with

� � � " � and � �� � � � $
 � ') �
 $ � � � , . � �
1

The associated eigenvalues are (with the same notations)

� � � � � � � � 	 � � �
 � � � � � � ��
That is,

� �
is the major eigenvalue associated with eigenvector

� � � � � �� � � and
� �

is the minor eigenvalue
associated with eigenvector

� � � � � �� � � .

3 Local Topology Deformation

In each cluster, we aim at locally simulating the fusion of all preexisting singularities while preserving consis-
tency with the original global topology. Practically, we must remove the degenerate points, replace them by
a single one and let the cluster boundary unchanged. Like in the vector case, we achieve it as follows. We
first remove all quadrilateral cells in the cluster. Then we add a new vertex at the cluster center, associated
with a degenerate tensor value. At last, we cover the resulting empty domain by linear interpolated triangles
joining the new vertex to those on the cluster boundary. Yet, contrary to the vector case, a degenerate tensor
value is not unique and may be any isotropic tensor (i.e. of the form

� �). Fortunately, one can suppress the
isotropic component of the tensor field (one gets then the so-called deviator component) for it does not modify
the topology of its eigenvectors (see [3], Theorem 1). That is, one associates a zero matrix value with the new
vertex.

4 “Parallel” Positions Localization

Once such an artificial degenerate point has been created, we need to determine its local structure to find
the positions of its separatrices. As a matter of fact, separatrices are integral curves that bound the so-called
hyperbolic sectors of a singularity (see [2], section 4.2.1). For that reason, boundary curves and type of the
sectors must be found. As the singularity lies inside a piecewise linear domain, one can show that its structure
may be fully identified on the piecewise linear edges on the boundary of its containing cluster. For each
such edge, one has the following configuration: One is given a segment ! " � " � ! with linear parameterization# % ' (� * , on which a linear varying, symmetric, second-order tensor field is defined. Furthermore, one is given
the cluster center position - that does not lie on ! " � " � ! . Now, we seek on ! " � " � ! the positions " � # � where
the vector .- " is parallel to the eigenvectors, that is.- " 2 .� � .(

.
The linear parameterization can be written" � # � � � *
 # � " � � # " � � # % ' (� * , .
Thus .- " 2 .� � .- " � 2 .� � � *
 # � ." � " � 2 .� .
With the notations 4 .- " � � 6 � 8 � � 9 � � �." � " � � 6 � ; < � ; = � �
and supposing � � # � ?� (

, the “parallel” condition becomes@@@@@ 8 � � � *
 # � ; < � �9 � � � *
 # � ; = � �
 � � 	 � � �
 � � � � � � � @@@@@ � (
(� , � and � are here linear functions in

#
).

Straightforward calculus leads finally to a cubic polynomial equation in
#

that we solve with an analytic method.
The positions found are the possible locations of separatrices.

2

5 Sector Type Identification

Because of the sign indeterminacy, the sector type identification cannot be obtained by the method described
in the vector case. As a matter of fact, the distinction between hyperbolic and elliptic type is impossible
without additional information. For that reason, we use the tensor index defined by Delmarcelle [4]. Between
two consecutive “parallel” positions, we compute the angle variation of the considered eigenvector field (see
Fig. 1). Depending on the sector type, one gets

� � � � �
in the parabolic case

� � � � � � 	 in the hyperbolic case

� � � � �

	 in the elliptic case

which enables a sector type identification. When a hyperbolic sector is found, its boundary curves are then
integrated to form the topological graph.

θ θ θ

dα = dα = dα = θ θ−π θ+π

Figure 1: Angle variation in the parabolic, hyperbolic and elliptic case

6 Results

We show next the results of our method applied on the rate of strain tensor field of a swirling jet simulation. The
dataset is almost axisymmetric, a property that is quite well preserved by our algorithm. The grid is structured
and has 124 x 101 cells ranging from 0 to 9.87 in x, resp. -3.85 to 3.85 in y. The original topology presents
61 degenerate points and 131 separatrices while the topology scaled with threshold 0.4 has 31 singularities
and 76 separatrices and the topology scaled with 0.8 has 15 degenerate points and only 42 separatrices. (The
degenerate points created artificially are shown in yellow).

Acknowledgment

The authors wish to thank Wolfgang Kollmann, MAE Department of the University of California at Davis, for
providing the swirling jet dataset. Furthermore, we would like to thank Tom Bobach, Holger Burbach, Jan Frey,
Aragorn Rockstroh, René Schätzl and Thomas Wischgoll for their programming efforts.

References

[1] Delmarcelle T., Hesselink L., The Topology of Symmetric, Second-Order Tensor Fields. Proceedings
IEEE Visualization’94, 1994.

[2] X. Tricoche, G. Scheuermann, H. Hagen, A Topology Simplification Method for 2D Vector Fields.
Proceedings IEEE Visualization’00, 2000.

[3] Lavin Y., Levy Y., Hesselink L., Singularities in Nonuniform Tensor Fields. Proceedings IEEE
Visualization’97, 1997.

[4] Delmarcelle T., The Visualization of Second-Order Tensor Fields. PhD Thesis, Stanford University,
1994.

3

Figure 2: Original topology: 61 degenerate points

Figure 3: Simplified topology: threshold=0.4, 31 degenerate points

Figure 4: Simplified topology: threshold=0.8, 15 degenerate points

4

Simplification of Tetrahedral Meshes Using a
Quadratic Error Metric

Issac J. Trotts � Bernd Hamann � Kenneth I. Joy�

David Kenwright�

In order to effectively visualize the results of huge numerical simulations it
is critical that the size of datasets be efficiently reduced to a manageable size.
Various methods have been developed to address this problem by constructing
sequences of tetrahedral meshes approximating scalar-valued functions. Several
methods rely on iterative vertex insertion. For example, methods described by
Hamann and Chen [HC94] and Cignoni et al. [CdFM�94] start with a coarse
initial tetrahedral mesh and then refine this mesh by inserting vertices in regions
having large approximation errors. Such methods provide explicit bounds on the
maximal errors at the vertices of the resulting tetrahedral approximations.

Recently, Popovic and Hoppe [PH97] have extended the edge collapse algo-
rithm of Hoppe [Hop96], to arbitrary simplicial complexes. The special case of
tetrahedral meshes has been considered by Cignoni et al. [CMPS97], Staadt and
Gross [SG98], and Trotts et al. [THJ99]. The algorithm discussed in [CMPS97]
orders edge collapses by considering the variation of the field gradient along
edges. The method described by Staadt and Gross orders edge collapses by as-
signing to each edge a cost that depends on the variation of the scalar value along
the edge, the change in volume introduced by collapsing the edge, and the increase
in the average deviation from equilateral shape of the tetrahedra affected by the
collapse. The methods described by Trotts et al. determine an order for edge col-
lapses by computing upper bounds for the function value and domain boundary
errors.

�Fluid Dynamics Research Laboratory, Massachussetts Institute of Technology, 37-442 Mas-
sachussetts Ave., Cambridge, MA 02319, �trotts,kenwright�@mit.edu

�Center for Image Processing and Integrated Computing (CIPIC), Department of Com-
puter Science, University of California, Davis, 1 Shields Avenue, Davis, CA 95616-8562,
�hamann,joy�@cs.ucdavis.edu.

1

v

�xi� yi�

fi

x

y

f

p

Figure 1: Height field analogy for computation of the error metric. The error of a
point � approximating a vertex � is given by summing the squared distances of �
to the planes containing the triangles incident at �.

We present a technique which extends the algorithm of Garland and Heckbert
[GH98], originally designed to simplify triangle meshes by iteratively merging the
vertex pairs leading to least estimated error according to a quadratic (or ”quadric”)
error metric. Garland and Heckbert’s method is one of the most efficient triangle
mesh simplification algorithms to date [LT99], and computes locally optimal loca-
tions for the edge collapse targets. Extending this technique to tetrahedral meshes
with associated scalar fields, we use a quadratic error metric that incorporates the
shortest perpendicular distance from a given point (the target of an edge collapse)
to the hyperplanes spanned by tetrahedra in the region around the collapsing edge.
In contrast to the method described earlier by Trotts et al. , we measure error in
terms of Euclidean distance in 4D space, rather than in terms of a combination of
domain boundary error and function value error (see Fig. 1).

In addition, we introduce a spring term to the error metric to keep vertices
near their initial locations in 4D. The resulting tetrahedra tend to be more nearly
equilateral, provided that this is also true of the tetrahedra in the initial mesh. For
datasets with constant or linearly varying regions, such as the Heaviside3D dataset
shown in Fig. 2, collapses could otherwise happen in an order which would lead
to tetrahedra having great variation in edge length.

References

[CdFM�94] Paolo Cignoni, Leila de Floriani, Claudio Montani, Enrico Puppo,
and Robert Scopigno. Multiresolution modeling and visualization

2

Figure 2: Data sets simplified to 1% with non-optimal vertex placement: (a) The
Blunt Fin (from 428,202 tetrahedra in 18 minutes on a Pentium III 450 MHZ w/
256 MB RAM) (b) the Skull (from 2,713,500 tetrahedra in 1 hour, 45 minutes
on an R10K with 2GB RAM), (c) Heaviside3D (from 20,250 tetrahedra on an
R10K with 512 MB RAM). The Blunt Fin is visualized by several isosurfaces,
and the Skull by a single isosurface. The Heaviside3D data set is displayed as its
boundary, shaded by scalar value.

3

of volume data based on simplicial complexes. pages 19–26. ACM,
1994.

[CMPS97] Paolo Cignoni, Claudio Montani, Enrico Puppo, and Roberto
Scopigno. Multiresolution representation and visualization of vol-
ume data. IEEE Transactions on Visualization and Computer
Graphics, 3(4):352–369, October-December 1997.

[GH98] Michael Garland and Paul S. Heckbert. Simplifying surfaces with
color and texture using quadric error metrics. In David S. Ebert,
Hans Hagen, and Holly Rushmeier, editors, IEEE Visualization 1998
Proceedings, pages 263–269, Los Alamitos, California, October
1998. IEEE Computer Society Press.

[HC94] Bernd Hamann and Jiann-Liang Chen. Data point selection for
piecewise trilinear approximation. Computer Aided Geometric De-
sign, 11:477–489, 1994.

[Hop96] Hugues Hoppe. Progressive meshes. In Holly Rushmeier, editor,
Computer Graphics (SIGGRAPH ’96 Proceedings), pages 99–108,
August 1996.

[LT99] Peter Lindstrom and Greg Turk. Evaluation of memoryless simplifi-
cation. IEEE Transactions on Visualization and Computer Graphics,
5(2):98–115, April-June 1999.

[PH97] Jovan Popović and Hugues Hoppe. Progressive simplicial com-
plexes. In Turner Whitted, editor, Computer Graphics (SIGGRAPH
’97 Proceedings), pages 217–224, August 1997.

[SG98] Oliver G. Staadt and Markus H. Gross. Progressive tetrahedraliza-
tions. In David Ebert, Hans Hagen, and Holly Rushmeier, editors,
IEEE Visualization 1998 Proceedings, pages 397–402, Los Alami-
tos, California, October 1998. IEEE Computer Society Press.

[THJ99] Issac J. Trotts, Bernd Hamann, and Kenneth I. Joy. Simplification of
tetrahedral meshes with error bounds. IEEE Transactions on Visual-
ization and Computer Graphics, 5(3), July-September 1999.

4

Extraction of Crack-free Isosurfaces from Adaptive Mesh Refinement Data

Gunther H Weber1,2,3, Oliver Kreylos1,3, Terry J Ligocki3, John M Shalf3,4, Hans Hagen2 and Bernd Hamann1,3

1 Center for Image Processing and Integrated Computing (CIPIC), Department of Computer Science,
University of California, Davis, CA 95616-8562, USA, {weber, kreylos, hamann}@cs.ucdavis.edu

2 AG Graphische Datenverarbeitung und Computergeometrie, Fachbereich Informatik,
Universität Kaiserslautern, D-67653 Kaiserslautern, Germany, {weber, hagen}@informatik.uni-kl.de
3 Lawrence Berkeley National Laboratory, National Energy Research Scientific Computing Center,

One Cyclotron Road Mailstop 50F, Berkeley, CA 94720, USA, {GHWeber, OKreylos, TJLigocki, JShalf}@lbl.gov
4 National Center for Supercomputing Applications, 605 E Springfield Avenue,

Champaign, IL 61820, USA, jshalf@ncsa.uiuc.edu

1 Introduction

Physical phenomena often vary substantially in scale. There can be
large regions where a given physical quantity only varies slightly.
At the same time, there can be small regions where the same
quantity changes rapidly. Adaptive mesh refinement (AMR) ,see
[1, 2, 3], is a technique used in computational fluid dynamics (CFD)
to simulate phenomena characterized by drastically varying scales.
By using a set of nested grids at different resolutions, AMR com-
bines the topological simplicity of structured rectilinear grids per-
mitting the efficient computation and storage of the result with the
adaptivity to changes in spatial resolution of unstructured grids.

The data sets we visualize result from the simulation of as-
trophysical phenomena by Bryan et al. [3] using the Berger and
Colella [1] AMR algorithm. They consist of a hierarchy of grids
of increasing resolutions. Each level consists of a number of axis-
aligned rectilinear grids with data samples associated with the cell
centers. Each level has an integer refinement ratio with respect to
the parent level, i.e., the cells of the parent level are partitioned in
an integer number of refined cells in each dimension. For each grid,
except those at the root level, information is provided as to which
grid cells in the coarser level they refine.

Figure 1: An AMR hierarchy with three grids in two levels.

Figure 1 shows a simple AMR hierarchy consisting of three grids

in two levels. The root level consists of one grid. This coarse grid
is refined by two fine grids. The boundaries of the fine grids are
drawn as bold lines to make them distinguishable. Locations of the
data values are denoted by solid circles.

Isosurface extraction is one of the most commonly used methods
for the visualization of scalar-valued volume data. An isosurface is
the surface that passes through all points in the volume where the
scalar value is equal to a specified isovalue. Scalar AMR data poses
challenges when one extracts isosurfaces. If close attention is not
paid at the borders between different hierarchy levels, discontinu-
ities in the final isosurface triangulation will arise. The goal of our
work is to devise a method that avoids these cracks.

2 Related Work

Little research has been published regarding the visualization of
AMR data. Norman et al. [9] translate an AMR hierarchy into
finite element hexahedral cells with cell-centered data and other
formats which can take advantage of standard visualization tools
(AVS, IDL, and VTK) but preserving the hierarchical nature of the
data. Ma [6] describes parallel rendering of AMR data. While he
resamples the data to vertex-centered data, he still uses the hierar-
chical nature of AMR data and contrasts it to resampling it to the
finest available resolution. Max [7] describes a sorting scheme for
cells for volume rendering and uses AMR data sets as one applica-
tion of his method.

Isosurfaces are a commonly used technique for the visualization
of scalar fields. Our work is based on the marching cubes (MC)
method, introduced by Lorensen et al. [5]. The volume is traversed
cell-by-cell, and the part of the isosurface within the current cell is
constructed. This is done by classifying each vertex as either being
inside (i.e., its value being less then the isovalue) or outside (i.e.,
its value being greater than or equal to the isovalue) the isosurface.
For each of the 256 possible combinations, there exists an entry in
a look-up table (LUT) containing a triangle list for that case. The
vertices of these triangles are the intersection points between the
isosurface and the edges of the cell. These intersection points are
computed by linear interpolation.

The LUT of the original article contained errors which could re-
sult in cracks in the extracted isosurface. This is due to ambiguous
cases where different possibilities for the isosurface within a cell
exist, see Nielson et al. [8]. Van Gelder et al. [4] provide a detailed
description of this problem and describe a solution that produces
topologically correct isosurfaces and provide a proof that in order
to do so more than one cell must be considered at once.

If topological correctness of the isosurface is sacrificed, it is

possible to take special care in the generation of the LUT, and
to avoid the cracks in the final isosurface without looking at sur-
rounding cells. In our work, we use the LUT from VTK, see
http://www.kitware.com/ for further details, which avoids
cracks by a carefully devised LUT.

3 First Approach

If the original grid cells for each grid of the AMR hierarchy are
used for cell-based isosurface extraction, several problems arise.
The MC method expects data values to be associated with cell ver-
tices. The AMR method provides function values at cell centers.
Thus, the data set needs to be re-sampled, i.e., interpolated values
have to be calculated at cell vertices. This is a problem since AMR
simulations are based on the finite-difference method. There is no
inherent interpolation scheme for the data that is continuous at cell
borders. The MC algorithm in turn approximates the isosurface by
interpolating between values at the vertices. The resulting isosur-
face would be derived from the original data by two consecutive
interpolation steps.

Figure 2: “Dangling node problem” with MC method.

Furthermore, this scheme results in cracks at the borders between
two different hierarchy levels. This problem arises, because the
resampling yields “dangling” nodes in the fine grid. Even if an
interpolation scheme is used that is consistent between levels, i.e.,
it assigns the same value to the dangling nodes as the interpolation
in the coarse grid does, an MC approach still produces cracks in the
isosurface.

This is illustrated in Figure 2. The intersection of the isosur-
face with the cell face is shown as dashed line. The MC method
approximates this with a line segment in the coarse grid. For a re-
finement ratio of two, this coarse cell face is shared with four fine
cell faces. The data values present in both grids are shown as solid
circles. Additional samples in the fine grid are shown as rectangles.
If the values in the outlined rectangles are chosen to be consistent
with the values in the coarse grid, there is no problem along the
edges because MC will choose the same intersection points for both
the coarse and the fine cells. The value in the middle between the
four fine cell faces poses a problem. For the isosurface segments
to match up, this value must be chosen in a way that the polyline
becomes a line. To achieve this, all points on the fine faces would
have to lie on a plane (treating the value associated with each point
as height). Since this is not generally the case for the four vertices,
the point in the middle cannot be chosen in a consistent way with
all four vertices.

Other multiresolution methods have encountered the same prob-
lem [11, 10] and proposed solutions for it. However, since the “dan-
gling node” problem is a result of the resampling process that in
itself poses a few problems, we decided to develop a different ap-
proach.

Figure 3: Three AMR grids and their dual grids.

4 Use of Dual Grids

We solve the problems described in the last section by using a dual
grid for contouring. This dual grid is defined by the original sam-
ples at the cell centers by considering them as vertices of a vertex-
centered grid. This is illustrated in Figure 3 for the AMR hierarchy
from Figure 1. The original AMR grids from Figure 1 are drawn
with dashed lines. We note that this process shrinks all grids by one
cell in each direction. The result is a gap between the coarse grid
and an embedded fine grid. The next section describes how this gap
can be used to avoid discontinuities in the final isosurface. The dual
grid approach generalizes to the 3D case.

5 Stitching 2D Grids

� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �

� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �

� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �

� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �

	 	
	 	
	 	
	 	
	 	

� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �

� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �

� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �

� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �

� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �

Figure 4: “Stitch cells” between the three grids shown in Figure 3.

The use of the dual grids results in a gap between the hierarchy
levels. This gap can be used to merge the different hierarchy level
seamlessly. We fill this gap in a stitching step. The resulting stitch
mesh is constrained by the boundaries of the coarse and the fine
grids. Furthermore, it must not subdivide any edges of the existing

grids. In 2D, this is achieved by requiring that only existing vertices
are used and no new vertices generated. Since one of the reasons
for using the dual grids is avoiding the insertion of new vertices,
whenever possible, this poses no problems.

In the 2D case, a constrained Delaunay triangulation can be used
to fill the gap between grids. For two reasons, we chose not to do
this. First, while in the 2D case only edges must be shared between
the stitching grid and the dual grids, in the 3D case, faces must be
shared. The boundary faces of the rectilinear grids are quadrilater-
als and cannot be shared with tetrahedra without being subdivided,
causing cracks for the reasons explained in Section 3. Furthermore,
an index based approach is faster, since it uses the regular structure
of the boundaries while avoiding problems that might be caused by
this regular structure when using a Delaunay-based approach.

The stitching process for a refinement ratio of two is shown in
Figure 4. Stitch cells must be generated for edges along the bound-
ary and for the vertices of the fine grid. The stitch cells generated
for the edges are shown in grey, while the stitch cells generated for
the vertices are drawn crosshatched. For the transition between a
fine and a coarse grid, each edge of the fine grid is connected alter-
natingly to either a vertex or edge of the coarse grid. This yields
triangles and deformed quadrilaterals as cells. The quadrilaterals
are not subdivided, since such a subdivision is not unique. This
in turn would again result in problems in the 3D case when these
quadrilaterals are shared between cells.

In the case of multiple grids, a check must be performed: Are the
grid points in the coarse grid refined or not? Figure 4 shows several
cells that connect to an adjacent fine grid.

The vertices are connected to the coarse grid via two triangles.
Here, a consistent partition of the deformed quadrilateral is possi-
ble. Again, this partition was chosen to avoid problems in the 3D
case. We note that, in the vertex case, it is also important to con-
sider whether adjacent cells are refined. Potentially, if another fine
grid is adjoining, an edge must be created between the current grid
and the adjacent grid. This edge is then connected to the coarse
grid. This case is illustrated along the bottom edge of the fine grids
shown in Figure 4.

6 Stitching 3D Grids

The index-based approach can be generalized to the 3D case. In the
simple case of one fine grid embedded in a coarse grid, quadrilat-
erals, edges and vertices of the fine grid must be connected to the
coarse grid. Along each of the two directions of the face, a deci-
sion is made to connect to a vertex or an edge. The combination of
these two decisions results in each quadrilateral being connected to
either a vertex, a line segment (in the two possible directions) or an-
other quadrilateral. The cell types resulting from these connections
are pyramids, deformed triangle prisms and deformed hexahedral
cells, shown in Figure 5.

Figure 5: Cell types resulting from connecting a fine grid face.

The edge case can be thought of as a combination between ver-
tex and edge case of the 2D case. If the viewing direction is parallel
to the edge (so that it appears to the viewer as a point), it must al-
ways connected to two perpendicular edges of the coarse grid. In
the direction along the edge, one connects it to a point or a paral-
lel edge. The combination results in the edge to be connected to
either two perpendicular edges or two quadrilaterals of the coarse

grid. This results either in tetrahedra or deformed triangle prisms
as connecting cells, shown in Figure 6.

Figure 6: Cell types resulting from connecting a fine grid edge.

The vertex case is the combination of two 2D vertex cases. This
results in each vertex being connected to three quadrilaterals of the
coarse grid via pyramid cells.

In the case of the coarse grid being refined by more than one
fine grid, each coarse grid point must be checked for being refined.
Edges might be “upgraded“ to the quadrilateral case (for two adja-
cent edges). Vertices can be “promoted” to edges or even quadrilat-
erals, for the case of more than two grids meeting at a given loca-
tion. This results in a large number of possible cases to be consid-
ered.

7 Results

The results of using dual grids, generating stitch cells and extending
MC to handle the new polyhedral cell types is shown in Figure 7. It
shows an isosurface created form two levels of an AMR hierarchy.
One fine grid is embedded in a coarse grid. The isosurface gener-
ated for the coarse grid is colored red, the isosurface generated for
the fine grid is colored blue, and the isosurface generated for the
stitch cells is colored green. The resulting isosurface is seamless at
the boundaries between the two levels.

8 Future Work

Future work will be directed at multiple grids embedded in a coarse
grid. Furthermore, the use of a generic triangulation scheme sat-
isfying the outlined constraints is under consideration. This would
allow the use of our method for other AMR data, where the grids are
not necessarily axis-aligned, e.g., data sets produced by the AMR
method of Berger et al. [2].

9 Acknowledgments

This work was supported by the Directory, Office of Science, Of-
fice of Basic Energy Sciences, of the U.S. Department of Energy
under Contract No. DE-AC03-76SF00098, the National Science
Foundation under contracts ACI 9624034 and ACI 9983641 (CA-
REER Awards), through the Large Scientific and Software Data
Set Visualization (LSSDSV) program under contract ACI 9982251,
and through the National Partnership for Advanced Computational
Infrastructure (NPACI); the Office of Naval Research under con-
tract N00014-97-1-0222; the Army Research Office under contract
ARO 36598-MA-RIP; the NASA Ames Research Center through
an NRA award under contract NAG2-1216; and the North At-
lantic Treaty Organization (NATO) under contract CRG.971628
awarded to the University of California, Davis. We also acknowl-
edge the support of ALSTOM Schilling Robotics, Chevron, Gen-
eral Atomics, Silicon Graphics, and ST Microelectronics, Inc. We
thank the members of the NERSC/LBNL Visualization Group; the
LBNL Applied Numerical Algorithms Group; the Visualization
Group at the Center for Image Processing and Integrated Com-
puting (CIPIC) at the University of California, Davis and the AG
Graphische Datenverarbeitung und Computergeometrie at the Uni-
versity of Kaiserslautern, Germany.

Figure 7: Isosurface extracted from two levels of the AMR hierarchy (data set courtesy of Greg Bryan, MIT, Theoretical Cosmology Group).

References

[1] Marsha Berger and Phillip Colella. Local adaptive mesh re-
finement for shock hydrodynamics. Journal of Computational
Physics, 82:64–84, May 1989. Lawrence Livermore Labora-
tory Report No. UCRL-97196.

[2] Marsha Berger and J. Oliger. Adaptive mesh refinement for
hyperbolic partial differential equations. Journal of Compu-
tational Physics, 53:484–512, March 1984.

[3] Greg L. Bryan. Fluids in the universe: Adaptive mesh refine-
ment in cosmology. Computing in Science and Engineering,
1(2):46–53, March/April 1999.

[4] Allen Van Gelder and Jane Wilhelms. Topological considera-
tions in isosurface generation. ACM Transactions on Graph-
ics, 13(4):337–375, October 1994.

[5] William E. Lorensen and Harvey E. Cline. Marching cubes: A
high resolution 3D surface construction algorithm. Computer
Graphics, 21(4):163–169, July 1987.

[6] Kwan-Liu Ma. Parallel rendering of 3d amr data on the
sgi/cray t3e. In Proceedings of Frontiers ’99 the Seventh Sym-

posium on the Frontiers of Massively Parallel Computation,
pages 138–145. IEEE Computer Society, February 1999.

[7] Nelson L. Max. Sorting for polyhedron compositing. In
H. Hagen, H. Mueller, and G. Nielsen, editors, Focus on Sci-
entific Visualization, pages 259–268. Springer-Verlag, 1993.

[8] Gregory M. Nielson and Bernd Hamann. The asymptotic de-
cider: Removing the ambiguity in marching cubes. In Visual-
ization ’91, pages 83–91, 1991.

[9] Michael L. Norman, John Shalf, Stuart Levy, and Greg Daues.
Diving deep: Data management and visualization strategies
for adaptive mesh refinement simulations. Computing in Sci-
ence and Engineering, 1(4):36–47, July/August 1999.

[10] Raj Shekhar, Elias Fayyad, Roni Yagel, and J. Fredrick Corn-
hill. Octree-based decimation of marching cubes surface. In
Proceedings of the 7th Annual IEEE Conference on Visualiza-
tion (VIS-96), pages 335–342, 499, New York, October 1998.
ACM Press.

[11] R. Westermann, L. Kobbelt, and T. Ertl. Real-time explo-
ration of regular volume data by adaptive reconstruction of
iso-surfaces. The Visual Computer, 15(2):100–111, 1999.

Title: Hierarchical Best Linear Spline Approximation

Speaker: David F. Wiley
Department of Computer Science
University of California
One Shields Avenue
Davis, CA 95616
U.S.A.

Email: wiley@cs.ucdavis.edu
Phone: (530) 754-9470

Authors: David F. Wiley, Martin Bertram, Benjamin W. Jordan, and Bernd Hamann

Abstract:
We present a method for the hierarchical approximation of functions in one, two, and
three variables. The input to our method is a coarse decomposition of the compact
domain of a function in the form of intervals (univariate case), triangles (bivariate case),
and tetrahedra (trivariate case). We compute best linear spline approximations,
understood in an integral least squares sense, for functions defined over triangulations
and refine triangulations using repeated bisection. This requires the identification of the
interval (triangle, tetrahedron) with largest error and splitting it into two intervals
(triangles, tetrahedra). Each bisection step requires the recomputation of all spline
coefficients due to the global nature of the best approximation problem. This is done
efficiently by bisecting multiple intervals (triangles, tetrahedra) in one step and by using
sparse matrix representations for the matrices resulting from the normal equations. The
spline coefficients are readily found using an efficient sparse matrix system solver.

The linear spline we use for the approximation function is a linear combination of hat
basis functions with associated spline coefficients. At an arbitrary spline knot location
the associated hat function has a value of 1 and varies linearly to 0 from this knot to the
neighboring knot(s) and is 0 at all other knot locations. From approximation theory, the
spline coefficients can be found using the system Mc = F where M is an NxN matrix
(where N is the number of spline knots) whose entries are the inner products of the hat
functions; c is the spline coefficient vector of size N; and F is a vector of size N whose
entries are the inner products of the hat functions with the input function.

A spline segment in the univariate case and a minimal triangulation of the convex hull of
the input function in the bivariate and trivariate case initially approximate the input
function. Spline coefficients are computed for the initial approximation to produce the
first level of the hierarchy. Error between the approximation function and input function
is estimated using the L2 norm of the difference between the two functions. Error
estimation is performed at an interval (triangle, tetrahedron) level such that local errors
are established. The top 10% of intervals (triangles, tetrahedra) with the highest local
error values are bisected and spline coefficients recomputed to produce the next

successive level in the hierarchy. These steps are repeated until a global error tolerance is
achieved.

Due to the nature in which we refine the approximation at each iteration, we can take
advantage of the small changes that occur in the system Mc = F between each level.
Unaffected entries are reused and the entries that are affected are computed. It is possible
to implement a system solver that takes advantage of these small changes as well,
although in our particular implementation we found that much more computation time is
spent updating F than the combined time of updating M and using a conventional sparse
solver to find the coefficients. The cause of this bottleneck is the need for high-resolution
integration over the input function because low-resolution integration schemes result in
poor spline coefficients that are not useful. Our implementation relies upon a Romberg
integration scheme that produces good results.

When approximating a function containing finite data, an improvement on the method is
to consider only original data sites during the bisection step. Here, the splitting of the
interval (triangle, tetrahedron) occurs at the nearest original data site to the midpoint, not
at the analytical midpoint as before. This provides a natural upper bound to the total
number of subdivision steps and permits the reference of original data sites.
Approximation storage requirements are reduced as a result.

First derivative information can be used in the spline coefficient computation to refine the
approximation. Using this information reduces over- and under-shoots near high gradient
areas that appear in the spline approximation. The amount of first derivative information
use is controlled by weight coefficients to allow more flexibility in the approximation.

First derivative information can also be used in the error computations to penalize
intervals (triangles, tetrahedra) that cover high gradient regions. These intervals
(triangles, tetrahedra) are then more likely to be split during the bisection step. The result
is a higher concentration of intervals (triangles, tetrahedra) near high gradient regions and
fewer in the less interesting low gradient field. Again, the contribution of the first
derivative component is governed by weight coefficients.

Modify the inner product used above in the spline coefficient and error computation to
include the weighted first derivative information. The applicability of the first derivative
information depends upon the input function. It is difficult to choose a single set of
weights to govern the first derivative information for all types of input.

Goals considered in the design of this method are: simplicity, generality, efficiency,
compact representation, and applicability. Simplicity of the method is guaranteed by the
use of well-known spline approximation methods and small topological changes during
subdivision. The method is general enough to be applied to functions of any number of
variables as well as multi-valued functions. Computation is reasonably efficient when
using sparse matrix representations. The generated approximations can be stored
compactly since only the coefficients and small topological changes occur between each

level, and the approximations are easily rendered using conventional visualization
techniques.

