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Abstract
We examine the zero-temperature Metropolis Monte Carlo (MC) algorithm as a tool for training a
neural network by minimizing a loss function. We find that, as expected on theoretical grounds
and shown empirically by other authors, Metropolis MC can train a neural net with an accuracy
comparable to that of gradient descent (GD), if not necessarily as quickly. The Metropolis
algorithm does not fail automatically when the number of parameters of a neural network is large.
It can fail when a neural network’s structure or neuron activations are strongly heterogenous, and
we introduce an adaptive Monte Carlo algorithm (aMC) to overcome these limitations. The
intrinsic stochasticity and numerical stability of the MC method allow aMC to train deep neural
networks and recurrent neural networks in which the gradient is too small or too large to allow
training by GD. MC methods offer a complement to gradient-based methods for training neural
networks, allowing access to a distinct set of network architectures and principles.

1. Introduction

The Metropolis Monte Carlo (MC) algorithm was developed in the 1950s in order to simulate molecular
systems [1–4]. The Metropolis algorithm consists of small, random moves of particles, accepted
probabilistically. It is, along with other MC algorithms, widely used as a tool to equilibrate molecular
systems [5]. Equilibrating a molecular system is similar in key respects to training a neural network: both
involve optimizing quantities derived from many degrees of freedom that interact in a nonlinear way. Despite
this similarity, the Metropolis algorithm and its variants are not widely used as a tool for training neural
networks by minimizing a loss function (for exceptions, see e.g. [6–8]). Instead, this is usually done by
gradient-based algorithms [9, 10], and sometimes by population-based evolutionary or genetic
algorithms [11–13] to which MC methods are conceptually related.

In this paper we address the potential of the zero-temperature Metropolis MC algorithm and an adaptive
variant thereof as tools for neural-network training [14]. The class of algorithm we consider consists of
taking a neural network of fixed structure, adding random numbers to all weights and biases simultaneously,
and accepting this change if the loss function does not increase. For uncorrelated Gaussian random numbers
this procedure is equivalent, for small updates, to normalized or clipped gradient descent (GD) in the
presence of Gaussian white noise [15–18], and so its ability to train a neural network should be similar to
that of simple GD. We show in section 2.1 that, for a particular supervised-learning problem, this is the case,
a finding consistent with results presented by other authors [6–8].

It is sometimes stated that the ability of stochastic algorithms to train neural networks diminishes sharply
as the number of network parameters increases (particularly if all network parameters are updated
simultaneously). However, population-based evolutionary algorithms have been used to train
many-parameter networks [19], and in section 2.2 we show that the ability of Metropolis MC to train a
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fully-connected neural network is similar for networks with of order a hundred parameters or of order a
million: there is not necessarily a sharp decline of acceptance rate with increasing network size.

What does thwart the Metropolis MC algorithm is network heterogeneity. For instance, if the number of
connections entering neurons differs markedly throughout the network (as is the case for networks with
convolutional- and fully-connected layers) or if the outputs of neurons in different parts of a network differ
markedly (as is the case for very deep networks) then stochastic weight changes of a fixed scale will saturate
neurons in some parts of the network and scarcely effect change in other parts. The result is an inability to
train. To address this problem we introduce a set of simple adaptive modifications of the Metropolis
algorithm—a momentum-like term, an adaptive step-size scheduler, and a means of enacting heterogenous
weight updates—that are borrowed from ideas commonly used with gradient-based methods. The resulting
algorithm, which we call adaptive Monte Carlo or aMC, is substantially more efficient than the non-adaptive
Metropolis algorithm in a variety of settings. In section 2.2 we show, for one particular problem, that the
acceptance rate of aMC remains much higher than that of the Metropolis algorithm at low values of loss,
and can be made almost insensitive to network width, depth, and size. In section 2.3 we show that its
momentum-like term speeds the rate at which aMC can learn the high-frequency features of an objective
function, much as adaptive methods such as Adam [20] can learn high-frequency features faster than regular
GD. In section 2.4 we show that the MC method can train simple recurrent neural networks in the presence
of small or large gradients, where gradient-based methods fail. In section 2.5 we show aMC can train deep
neural networks in which gradients are too small for gradient-based methods to train. In section 2.6 we
comment on the fact that best practices for training nets using MC methods await development. We
introduce the elements of aMC throughout section 2, and summarize the algorithm in section 3.

Our conclusion is that the Metropolis MC algorithm and its adaptive variants such as aMC are viable
ways of training neural networks, if less developed and optimized than modern gradient-based methods. In
particular, MC algorithms can, for small updates, effectively sense the gradient, and they do not fail simply
because the number of parameters of a neural network becomes large. MC algorithms should be considered
a complement to gradient-based algorithms because they admit different design principles for neural
networks. Given a network that permits gradient flow, modern gradient-based algorithms are fast and
effective [9, 10, 21]. For large neural nets with tens of millions of parameters we find gradient-based methods
to be considerably faster than MC (section 2.6). However, MC algorithms free us from the requirement of
ensuring reliable gradient flow (and gradients can be unreliable even in differentiable systems [22]). As a
result, we find that MC methods can train deep neural networks and simple recurrent neural networks in
which gradients are too small (or too large) for gradient-based methods to work. There already exist
solutions to these problems, namely the introduction of skip connections or more elaborate recurrent neural
network architectures, but aMC requires neither of these things. One type of solution is architectural, the
other algorithmic, and having both options offers more possibilities than having only one.

2. Results

2.1. Metropolis Monte Carlo and its connection to gradient descent
We start with the zero-temperature Metropolis MC algorithm. The zero-temperature limit is not often used
in molecular simulation, but it and its variants are widely used (and sometimes called random-mutation hill
climbing) for optimizing non-differentiable systems such as cellular automata [23, 24]. Consider a neural
network withN parameters (weights and biases) x= {x1, . . . ,xi, . . . ,xN}, and associated loss functionU(x). If
we propose the simultaneous change of each neural-network parameter by a Gaussian random number [25],

xi → xi + ϵi with ϵi ∼N (0,σ2), (1)

and accept the proposal if the loss does not increase, then, when the basic move scale σ is small, the values xi
of the neural-net parameters evolve according to the Langevin equation [17]

dxi
dn

=− σ√
2π

1

|∇U(x)|
∂U(x)

∂xi
+ ηi(n), (2)

where n is training time (epoch), and η is a Gaussian white noise with zero mean and variance
⟨ηi(n)ηj(n ′)⟩= (σ2/2)δijδ(n− n ′). That is, small stochastic perturbations of a network’s weights and biases,
accepted if the loss function does not increase, is equivalent to noisy clipped or normalized GD on the loss
function.

Given the success of gradient-based training methods, this correspondence shows the potential of the
Metropolis algorithm to train neural networks. Consistent with this expectation, we show in figure 1 that the
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Figure 1. Comparison of zero-temperature Metropolis Monte Carlo (MC) and gradient descent (GD) used to train a neural
network to minimize the mean-squared error U on the MNIST training set. (a) MNIST test-set accuracy C105 after 10

5 epochs of
batch learning as a function of MC step size σ (blue) or GD learning rate α (gray). (b) Training loss U and test-set accuracy C
versus epoch n for MC step size σ = 2× 10−3 (blue) and GD learning rate α= 4.5× 10−2 (gray).

zero-temperature Metropolis algorithm can train a neural network. For comparison, we also train the
network using simple GD,

x→ x−α∇U(x), (3)

where α is the learning rate, U(x) the loss function, and∇≡ (∂/∂x1, . . . ,∂/∂xN) the gradient operator with
respect to the neural-network parameters x.

We consider a standard supervised-learning problem, recognizing MNIST images [26, 27] using a
fully-connected, two-layer neural net. The net has 784 input neurons, 16 neurons in each hidden layer, and
one output layer of 10 neurons. The hidden neurons have hyperbolic tangent activation functions, and the
output neurons comprise a softmax function. The net has in total 13 002 parameters [28]. We did batch
learning, with the loss function U being the mean-squared error on the MNIST training set of size 6× 104

(in the standard way we consider the ground truth for each training example to be a 1-hot encoding of the
class label, and take the 10 outputs of the neural network as its prediction vector).

Figure 1(a) shows the classification accuracy C105 on the MNIST test set of size 104 after 105 epochs of
training. We show results for MC (blue) and GD (gray), for a range of values of step size σ and learning rate
α, respectively. The initial neural-net parameters for MC simulations were xi ∼N (0,σ2). The two
algorithms behave in a similar manner: each has a range of its single parameter over which it is effective, and
displays a maximum at a particular value of that parameter. The value of the maximum for GD is slightly
higher than that for MC (about 96% compared to about 95%), and GD achieves near-maximal results over a
broader range of its single parameter than does MC.

Figure 1(b) shows loss U and classification accuracy C as a function of epoch for two examples from
panel (a). GD trains faster with n initially, but results are comparable near the end of the learning process.
The learning dynamics of these algorithms is not the same: in the limit of small steps, the zero-temperature
Metropolis algorithm approaches normalized or clipped GD, not standard GD (and its equivalence to the
former would only be seen with an appropriately rescaled horizontal axis) [29]. Nonetheless, MC can in
effect sense the gradient, as long as the step size is relatively small, and for this problem the range of
appropriate step sizes is small compared to the effective GD step size. GD therefore trains faster, but MC has
similar capacity for learning. The computational cost per epoch of the two algorithms is of similar order,
with MC being cheaper per epoch for batch learning: each MC step requires a forward pass through the data,
and each GD step a forward and a backward pass.

There are many things that could be done to improve the learning precision of these algorithms (no
pre-processing of data was done, and a basic neural net was used [30]), but this comparison, given a neural
net and a data set, confirms that Metropolis MC can achieve results roughly comparable to GD, even on a
problem for which gradients are available. For this problem GD trains faster, but MC works. It is worth
noting that this conclusion follows from considering a range of step sizes σ: for a single choice of step size it
would be possible to conclude that MC does not work at all.

Similar findings have been noted previously: simulated annealing on the Metropolis algorithm [6, 7] and
a variant of zero-temperature Metropolis MC (applied weight-by-weight) [8] were used to train neural nets
with an accuracy comparable to that of gradient-based algorithms. These results, and the correspondence
described in [17] establish both theoretically and empirically the ability of Metropolis MC to train neural
nets.

3
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Figure 2. For a particular neural-network supervised-learning task, the acceptance rate of the Metropolis MC method decreases
sharply with loss but not model size. (a) Left: Loss U versus acceptance rate A for Metropolis MC for a deep neural net of three
different widths. Right: Acceptance rate A(U0) at fixed loss U0 for models of different widths, as a function of the number of
model parameters N. (b) Analog of (a) for models of increasing depth. (c) Analog of (a) for adaptive Monte Carlo, aMC.
(d) Analog of (b) for aMC. MC step size: σ = 10−3. aMC hyperparameters: (σ0, ϵ,ns, signalnorm) = (10−2,10−2,102,on).
Each data point is the average of five independent simulations.

We next turn to the question of how the efficiency of MC training scales with net parameters, and how to
improve this efficiency by introducing adaptivity to the algorithm.

2.2. Metropolis acceptance rate as a function of net size
To examine how the efficiency of the Metropolis algorithm changes with neural-net size and architecture, we
consider in this section a supervised-learning problem in which a neural net is trained by zero-temperature
Metropolis MC to express the sine function f0(θ) = sin(2πθ) on the interval θ ∈ [0,1]. The loss U is the
mean-squared error between f0(θ) and the neural-net output fx(θ), evaluated at 103 evenly-spaced points on
the interval. The neural net has one input neuron, which is fed the value θ, and one output, which returns
fx(θ). Its internal structure is fully connected, with hyperbolic tangent nonlinearities. To explore the effect of
varying width (panels (a) and (c) of figure 2) we set the depth to 2 and varied the width from 10 to 103, these
choices corresponding to about 102 to about 106 parameters. To explore the effect of varying depth (panels
(b) and (d) of figure 2) we set the width to 25 and varied the depth from 2 to 10, these choices corresponding
to about 102 to about 104 parameters.

In figure 2((a), left) we show loss U as a function of Metropolis acceptance rate A for three different
neural-net widths. The acceptance rate tells us, for fixed step size, the fraction of directions that point
downhill in loss. It provides information similar to that shown in plots of the index of the critical points of a
loss surface [31, 32], confirming that at large loss there are more downhill directions than at small loss. In
figure 2((a), right) we plot the acceptance rate A(U0) at fixed loss U0 as a function of the number of net
parameters N (obtained by taking horizontal cuts across panel (a); note that more net sizes are shown in
panel (b) than panel (a)).

The acceptance rate decreases with increasing net size, but relatively slowly. Upon increasing the size of
the net by 4 orders of magnitude, the acceptance rate decreases by about 1 order of magnitude. We have
indicated an N−1 scaling as a guide to the eye. In the extreme limit, if N simultaneous parameter updates
each had to be individually productive, the acceptance rate would decrease exponentially with N, which is
clearly not the case. The more dramatic decrease in acceptance rate is with loss: at small loss the acceptance
rate becomes very small.

Similar trends are seen with depth in figure 2(b). The acceptance rate declines sharply with loss. It also
declines with the number of parameters, slightly more rapidly than in panel (a) but not as rapidly as N−1.

Empirically, therefore, we do not see evidence of a fundamental inability of MC to cope with large
numbers of parameters. In section 2.5 we discuss how network heterogeneity can impair the Metropolis
algorithm’s ability to train a network. The solution, as we discuss there, is to introduce an adaptive variant of
the Metropolis algorithm. To motivate the introduction of this algorithm we show in panels (c) and (d) the
aMC analog of panels (a) and (b), respectively. The trends experienced by Metropolis have been annulled,

4



Mach. Learn.: Sci. Technol. 3 (2022) 045026 S Whitelam et al

Figure 3. Adaptivity speeds convergence on a test function. We use aMC with three values of ϵ to simulate a particle moving on
the Rosenbrock function f(x,y), equation (6). Panel (a) shows a 2000-step simulation for each of three values of ϵ; the global
minimum is indicated by the red dot at (1,1). Panel (b) shows the value of the function along each trajectory when continued to
n= 104 steps. aMC hyperparameters: σ0 = 10−3,ns = 20.

the acceptance rates of aMC remaining large and essentially constant with loss or model size over the range
of parameters considered.

We now turn to a step-by-step introduction of the elements of aMC.

2.3. Adaptivity speeds learning, particularly of high-frequency features
Modern gradient-based methods are adaptive, allowing the learning rate for each neural-net parameter to
differ and to change as a function of the gradients encountered during training [10] (adaptive learning is also
used in evolutionary algorithms [33–35]). We can copy this general idea in a simple way within a
zero-temperature Metropolis MC scheme by changing the proposed move of equation (1) to

ϵi ∼N (µi,σ
2). (4)

The parameters µi, set initially to zero, are updated after every accepted move according to

µi → µi + ϵ(ϵi −µi), (5)

where ϵ is a hyperparameter of the method. This form of adaptation is similar to the inclusion of momentum
in a gradient-based scheme: the center µi of each parameter’s move-proposal distribution shifts in the
direction of the last accepted move ϵi, with the aim of increasing the probability of generating moves that will
be accepted. In addition, to remove the need for a search over the step-size parameter σ, we introduce a
simple adaptive learning-rate schedule by setting σ → 0.95 σ (and µi = 0) after ns consecutive rejected
moves. We take the initial step size to be σ = σ0. We refer to this adaptive Monte Carlo algorithm as aMC,
specified in section 3.

The aMC parameter ϵ can be used to influence the rate of learning. In figure 3 we provide a simple
illustration of this fact using the two-dimensional Rosenbrock function

f(x,y) = (1− x)2 + 100(y− x2)2, (6)

often used as a test function for optimization methods [36–38]. The Rosenbrock function has a global
minimum at (x,y) = (1,1) that is set within a long valley surrounded by steep slopes on either side. A
particle on this function moving under pure GD takes a long time to reach the global minimum because
gradients within the valley are small: the particle will quickly reach the valley and then move slowly along the

5
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Figure 4. Adaptivity speeds learning of high-frequency features. We train a neural network to learn the function (7) using two
gradient-based methods (GD and Adam) and aMC with three values of the parameter ϵ. (a) Loss U as a function of training time
n. (b) Pseudo-loss U′, which expresses the difference between the net function and the low-frequency term (the logarithm) of (7).
(c) Output of neural nets trained by aMC (colored lines) at fixed training time. The thicker and thinner black lines are the
function (7) and its low-frequency term, respectively. GD and Adam learning rate: α= 5 × 10−3; aMC hyperparameters:
(σ0,ns) = (0.1,50).

valley floor [36, 37]. Placing a particle at the point (−2,2), outside the valley, we evolve the position
x= (x,y) of the particle using aMC. We used the initial step size σ0 = 10−3 and rescaling parameter
ns = 100, and carried out three simulations for three values of ϵ. As shown in the figure, the larger is ϵ the
more rapidly is the global minimum attained, with the difference between zero and nonzero epsilon being
considerable. This form of adaptivity has an effect similar to that of momentum with GD [39].

Returning to neural-network simulation, the aMC parameter ϵ can speed the rate at which a neural
network can learn high-frequency features, much as adaptive methods do with gradient-based algorithms.
The extent to which high-frequency features should be learned varies by application. For instance, if a training
set contains high-frequency noise then we may wish to attenuate an algorithm’s ability to learn this noise in
order to enhance its ability to generalize. This is the idea expressed in figure 2 of [40]. Empirical studies show
that non-adaptive versions of GD sometimes generalize better than their adaptive counterparts [41], in some
cases because of the different abilities of these things to learn high-frequency features.

In figure 4 we consider a supervised-learning problem inspired by figure 2 of [40]. We use gradient-based
methods (GD and Adam) and aMC to train a neural network to learn the function

f0(θ) = ln(1+ 5 θ)+
1

10
sin(20 πθ), (7)

on θ ∈ [0,1]. This function contains a low-frequency term, the logarithm, and a high-frequency term, the
sine. The neural network has one input neuron, which is fed the value θ, one output neuron, which returns
fx(θ), and a single hidden layer of 100 neurons with tanh activations. The parameters x of the network were
set initially to random values xi ∼N (0,σ2

0).
In figure 4(a) we show the training loss, the mean-squared difference U between f0(θ) and the neural-net

output fx(θ), evaluated at 1000 evenly-spaced points over the interval. At left we show results produced using
GD and Adam, and at right we show results produced using aMC for three values of ϵ, one positive
(ϵ= 5× 10−3), one negative (ϵ=−5× 10−3), and zero. (Note that the case ϵ= 0 still involves adaptive
adjustment of the step-size parameter σ.) Of the gradient-based methods Adam trains faster than GD, while
for aMC the training loss U decreases fastest for positive ϵ and slowest for negative ϵ. (We did not carry out a
systematic search of learning rates in order to compare directly the gradient-based and MC methods; our
intent here is to illustrate how adaptivity matters within the two classes of algorithm.)

6
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In figure 4(b) we show the pseudo-loss U ′ that expresses the mean-squared difference between the net
function fx(θ) and the low-frequency logarithmic term of f 0. The net is not trained to minimize U ′, but it so
happens during training that U ′ becomes small as the net first learns the low-frequency component of f 0.
Subsequently, U ′ increases as the net also learns the high-frequency component of f 0.

Of the gradient-based methods Adam learns high-frequency features more rapidly than GD. As it does
so, the value of the pseudo-loss U ′ increases. For aMC, the parameter ϵ controls the separation of timescales
between the learning of the low- and high-frequency components of f 0. If we want to learn f 0 as quickly as
possible then positive ϵ is the best choice. But if we consider the high-frequency component of f 0 to be noise,
and regard U ′ as a measure of the network’s generalization error, then negative ϵ is the best choice.

Panel (c) shows the aMC net functions at a time n such that the net trained using ϵ= 0 has begun to learn
the high-frequency features of f 0. At the same time the nets trained using positive and negative ϵ have
learned these features completely or not at all, respectively.

2.4. Monte Carlo algorithms can train a neural network even when gradients are unreliable
Metropolis Monte Carlo and aMC can effectively sense the gradient [17], and so can train a neural network
to similar levels of accuracy as GD. However, MC algorithms can also train a neural network when gradients
become unreliable, such as when they vanish or explode.

Vanishing gradients can be overcome by the intrinsic stochasticity of the MC method. In the absence of
gradients, pure gradient-based methods receive no signal [42, 43]. However, the Metropolis MC
procedure (1) is equivalent, for vanishing gradients, to the diffusive dynamics ẋi = ξi(n), where ξ is a
Gaussian white noise with zero mean and variance ⟨ξi(n)ξj(n ′)⟩= σ2δijδ(n− n ′). Thus Metropolis MC will,
in the absence of gradients, enact diffusion in parameter space until nonvanishing gradients are encountered,
at which point learning can resume.

MC algorithms can also cope with exploding gradients. Moves are proposed without reference to the
gradient, and so can be made on a landscape for which the gradient varies rapidly or is numerically large.
MC algorithms are also numerically stable, with moves that would induce large increases in loss being
rejected but otherwise not harming the training process.

We show in this section that the ability to cope with vanishing and exploding gradients allows aMC to
train recurrent neural networks that gradient-based methods cannot. Recurrent neural networks (RNNs) are
designed to act on sequences, and have been applied to problems involving text, images, speech, and
music [44–47]. An RNN possesses a vector known as its hidden state, which acts as a form of memory. This
vector is updated each time the RNN views a position in a sequence. The size of the gradient scales in general
exponentially with sequence length, and so when the sequence is long, and long-term dependencies exist, the
gradient tends to vanish or explode. As a result, it can be difficult to train simple RNNs using first-order
gradient-based methods in order to learn long-term dependencies in sequence data [9, 48–51]. One solution
to this problem is the introduction of more elaborate and computationally expensive RNN architectures such
as long short-term memory [42] and gated recurrent units [52, 53]. These architectures can be more reliably
trained by gradient-based methods than can simple RNNs.

Here we demonstrate an algorithmic solution to the problem rather than an architectural one, by
showing that MC methods can train an RNN in circumstances in which gradient-based methods cannot. We
train a simple RNN with tanh activation functions to distinguish the digits of class 0 and 1 in the MNIST
data set. We binarized the data, and used a vector of length 2 and a one-hot encoding to represent black or
white pixels. The RNN was shown an unrolled version of each image, a sequence of 784 pixels. The RNN
architecture is a two-layer stack in which the hidden state at each site in the first layer is used as input for the
second layer. The dimension of the hidden state is set to 64, and the final hidden state is sent into a linear
classifier. The loss function is the cross entropy between the neural network’s prediction and the ground
truth.

In figures 5(a) and (b) we show the results of training the RNN using aMC and gradient-based
optimizers. We stochastically subsample the training data set for each update (‘mini-batching’), using 1500
samples at each step. We used GD and the Adam optimizer, both with learning rate 10−3, with gradient
clipping turned on (this has been shown to solve the exploding-gradient problem for some data sets [54]),
and aMC with hyperparameters σ0 = 10−3,ns = 100, ϵ= 0 (which is the Metropolis algorithm with an
adaptive step-size scheduler). GD and Adam fail to train (a search over learning rates between the values
10−5 and 1 did not result in lower loss values), while aMC trains to small values of loss and a test-set
accuracy of 99.8%.

In figure 5(c) we show the size of the gradient associated with the models produced by aMC. aMC does
not calculate or make use of the gradient, but we can nonetheless evaluate it for the models produced by the
training process. Two distinct regimes can be seen, with the size of the gradient changing by about three
orders of magnitude between them. The gradient-based algorithms cannot escape from the small-gradient

7
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Figure 5. The intrinsic stochasticity and numerical stability of the Monte Carlo method allows it to learn in the presence of
numerically small and large gradients. (a) Training-set loss U and (b) test-set classification accuracy C as a function of training
epoch n for a simple RNN instructed to distinguish MNIST 0 s from 1 s. The RNN is presented with each image as an unrolled
sequence of length 784. The gradient-based methods GD (gray) and Adam (blue) cannot train; aMC (green) trains to an accuracy
of 99.8%. (c) Size of the gradient (blue) associated with the models produced by aMC. The algorithm trains productively in
regimes in which |∇U| ≪ U and |∇U| ≫ U. The loss (green) is reproduced from panel (a). Learning rate for GD and Adam:
α= 10−3; aMC hyperparameters: σ0 = 10−3,ns = 100, ϵ= 0.

regime, and when initiated from the large-gradient regime that is encountered by aMC, in which |∇U| ≫ U,
the gradient-based integrators explode. Thus MC can train productively in the face of two of the classic
obstacles to training by gradient-based methods, small and large gradients. Note also that the memory cost
of doing GD with an RNN scales linearly with the sequence length, while for aMC the sequence length has no
effect on memory cost.

Simple RNNs are known be harder to train by GD than more complex RNNs, but simple RNNs possess
similar or greater capacity per parameter than more complex architectures [55]. Methods that can train
simple RNNs may therefore allow more widespread use of those architectures.

2.5. For nets with heterogeneous structures or neuron activations, the weight-update scale must be made
heterogenous
For some architectures, particularly those with structural heterogeneity or heterogenous neuron activations,
it is necessary to scale the MC step-size parameter σ for each neural-net parameter individually. In this
section we address this problem using deep neural networks for which, as in section 2.4, gradients are too
small for gradient-based methods to train.

Choosing a set of heterogeneous MC step-size parameters can be done by adapting ideas used in the
development of gradient-based methods [56]. Guided by that work we modify the proposal distribution
of (4) to read

ϵi ∼N (µi,σ
2
i ), (8)

where σi = λiσ. The λi are parameters that are either set to unity (a condition we call ‘signal norm off ’) or
according to equation (18) in section 3.2 (‘signal norm on’). The parameters µi and σ are adjusted as in
section 2.3. The parameters λi, which are straightforwardly calculated during a forward pass through the net,
ensure that the scale of signal change to each neuron is roughly constant. The intent of signal norm is similar
to that of layer norm [57], except that the latter is an architectural solution—it entails a modification of the
net, and is present at test time—while the former is an algorithmic solution and plays no role once the neural
net has been trained.

In figure 6 we show the results of neural networks of depth d trained by aMC and by gradient-based
methods to express a step function f0(θ) that is equal to 1/2 if 1/2< θ < 3/4 and is zero otherwise. The
neural nets have one input neuron, which is fed the value θ, and one output neuron, which returns fx(θ).
They have 10 neurons in the penultimate hidden layer, and 4 neurons in each of the other d− 1 hidden
layers, the intent being to allow very deep nets with relatively few neurons. All neurons have tanh activation
functions.

In figure 6(a) we show loss U as a function of epoch n for four algorithms: GD (gray); Adam (blue); and
aMC with signal norm off (green dotted) and on (green). For each algorithm we ran 20 independent
simulations, 10 using Kaiming initialization [58] and 10 initialized with Gaussian random numbers
xi ∼N (0,σ2

0), where σ0 = 10−2. We plot the simulation having the smallest U after 106 epochs. As the depth
of the network increases beyond four layers, GD and aMC with signal norm off stop learning on the
timescales shown. Above 32 layers, Adam also stops learning on the timescale shown. (For depth 64 we tried
a broad range of learning rates for GD and Adam, from 10 to 10−6, none of which was successful. We also
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Figure 6. Intrinsic stochasticity and heterogenous weight-scale updates allow aMC to train deep nets in which the gradient is too
small for gradient-based methods to work. (a) Loss function U versus epoch n for deep nets trained to express a step function by
GD (gray), Adam (blue), and aMC with signal norm off (green dashed) and on (green). The latter is able to train for all depths
shown. (b) Net outputs after 106 epochs (colored) against the target function (black) for two depths. (c) Loss U of 10
independent simulations for each of Adam and aMC for the deeper nets. GD learning rate: α= 10−3; Adam hyperparameters:
(α,β1,β2) = (10−4,0.9,0.999); aMC hyperparameters: (σ0,ϵ,ns)= (10−2,10−2,102).

varied the Adam hyperparameters β1,β2 over a small range of values, without success. It may be that
hyperparameters that enable training do exist, but we were not able to find them.) aMC with signal norm on
continues to learn up to a depth of 128 (we also verified that aMC trains nets of depth 256), and so can
successfully train deep nets in which gradient-based algorithms receive too little signal to train.

In figure 6(b) we show net outputs at n= 106 epochs for three algorithms and two depths. As discussed
in section 2.3, the adaptive algorithms Adam and aMC learn the sharp features of the target function more
quickly than does GD. For the deeper net, the gradient-based algorithms GD and Adam do not receive
sufficient signal to train.

In figure 6(c) we show 10 simulations for each of Adam and aMC for the deeper nets. The outcome of
training is stochastic, resembling a nucleation dynamics with an induction time that increases with net
depth. For some initial conditions both algorithms fail to train on the allotted timescale. In general, the rate
of nucleation is higher for aMC than Adam, and remains measurable for all depths shown

We verified that introducing skip connections [59] or layer norm [57] to the neural nets enabled Adam to
train at depth 64 (and enables aMC without signal norm to train at all depths). These architectural
modifications allow gradient-based algorithms to train, but they are not required for MC. This comparison
illustrates the fact that design principles for nets trained by MC methods differ from those trained by
gradient-based methods.

2.6. Best practices for training neural nets usingMC await development
In this section we first revisit figure 1 using aMC, and we present data indicating that numerical best
practices for training nets using MC may differ from those developed for gradient-based algorithms.

In figure 7(a) we reproduce figure 1(b) with the addition of an aMC simulation (green) in which we use
aMC’s adaptive step-size attenuation (with ns = 20) and signal norm. These features allow us to choose an
initial step-size parameter σ0 = 10−2 larger than the optimum value for Metropolis MC (see figure 1(a)). As
a result, training proceeds faster than for MC, at a rate comparable to the GD result shown. Training-set loss
and test-set accuracy at long times are similar for all three algorithms.

In figure 7(b) we compare the aMC result of panel (a), which uses batch learning (green), with two
additional aMC results. The first (cyan) uses conventional minibatching with a minibatch size of 2000.
Minibatch learning proceeds faster than batch learning, as happens with gradient-based methods, but
achieves slightly larger values of training-set loss and test-set error than does batch learning. We speculate
that this happens because of competing sources of stochasticity, that of the minibatch and that intrinsic to
the MC algorithm. The second (cyan) uses progressive batching: training begins with a minibatch of size 500,
which doubles every time the classification error rate on the minibatch falls below 10% (aMC moves are
conditioned against minibatch loss, in the usual way, not minibatch classification error, but the latter is the
trigger for the doubling of the minibatch size). After doubling the minibatch size the aMC algorithm is reset
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Figure 7. As for gradient-based methods, different forms of batching can speed neural-net training by MC. (a) As figure 1(b),
with the addition of a simulation done using aMC (green) with hyperparameters (σ0, ϵ,ns, s.n.) = (10−2,0,20,on). (b) The
aMC result from panel (a), which uses batch learning, compared with aMC using conventional minibatching (blue) and
progressive batching (cyan).

Figure 8. Training-set loss U (a) and test-set classification accuracy C (b) for MNIST classification done using ResNET-18, a deep
neural network of≈ 1.11 × 107 parameters. GD learning rate was 10−3; aMC hyperparameters were σ0 = 10−3,ns = 100, and
ϵ= 10−3, with signal norm off.

(σ → σ0 and µi → 0). Progressive-batch learning proceeds faster than batch learning, and reaches similar
final values of training-set loss and test-set accuracy. This comparison suggests that MC may respond
differently than GD to procedures such as minibatch training; best practices for MC training of neural
networks await development.

We note that the noise intrinsic to the MC method provides a means of exploration even when the batch
identity is kept fixed (noise also provides a way to effect change in the presence of vanishing gradients; see
sections 2.5 and 2.4). For the problem discussed in this section there is a variation of about 1% in values of
test-set accuracy at 105 epochs for 30 independent MC trajectories propagated with the same set of
hyperparameters. Such fluctuations could provide the basis for an additional form of importance sampling
that identified and propagated the best-performing networks in a population.

Finally, we show in figure 8 the analog of figure 1(b) for ResNET-18. ResNET-18 is a large, deep neural
network with≈ 1.11× 107 parameters [59] (we changed the number of input channels for the first layer in
order to apply it to MNIST). We applied layer normalization [57], which homogenizes neuron inputs and
removes (or reduces) the need for signal norm when using aMC. The GD learning rate was set to 10−3 and
we applied gradient clipping for |∇U|> 1; the aMC hyperparameters were σ0 = 10−3,ns = 100, and
ϵ= 10−3. Two points are apparent from the plot: GD trains faster than aMC, but aMC has similar ability to
train in the long-time limit: both GD and aMC train to small loss and about 99.2% accuracy on the MNIST
test set. Thus for large modern architectures such as ResNET-18 we find training with gradients faster than
training by MC, but the latter has similar capacity for learning, suggesting that it is a promising tool for
training neural networks when gradients are unreliable: see sections 2.4 and 2.5.

3. Summary of aMC

3.1. An adaptive version of the Metropolis algorithm for training neural networks
In this section we summarize the aMC algorithm used in this paper. It is based on the Metropolis MC
algorithm, modified to allow the move-proposal distribution to adapt in response to accepted and rejected
moves. The Metropolis acceptance criterion is min(1,e−∆U/T), where∆U is the change of loss and T is
temperature. For nonzero temperature the algorithm allows moves uphill in loss. We focus here on the limit
of zero temperature, which allows no uphill moves in loss. This choice is motivated by the success of
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Table 1. Clock times τ (in seconds) for 103 epochs of batch learning using a deep neural net of width 64 applied to MNIST, for GD,
Adam, and aMC.

# hidden layers τGD τAdam/τGD τaMC/τGD

2 8.5 1.01 0.56
4 10.6 1.01 0.54
8 14.9 1.01 0.51

gradient-descent algorithms and the intuition in deep learning (suggested by the structure of
high-dimensional Gaussian random surfaces) that at large loss most stationary points on the loss surface are
saddle points that can be escaped by moving downhill [31, 32].

aMC is specified by four hyperparameters: σ0, the initial move scale; ϵ, the rate at which the mean of the
move-proposal distribution is modified; ns, the number of consecutive rejected moves allowed before
rescaling the parameters of the move-proposal distribution; and by the choice of signal norm being on or off.

We introduce a counter ncr = 0 to record the number of consecutive rejected moves. We initialize the
parameters (weights and biases) x= {x1, . . . ,xi, . . . ,xN} of the neural network (e.g. using Gaussian random
numbers xi ∼N (0,σ2

0)), and set the centers µi of each parameter’s move-proposal distribution to zero. aMC
proceeds as follows:

(a) Current state. Record the current neural-network parameter set x. Select the data (defining the batch,
episode, etc) and record the current value of the loss U(x) on the data (for batch learning the value U(x)
is known from the previous step of the algorithm). If signal norm is on, calculate the values λi specified
by equation (18), the required quantities having been calculated in the course of calculating U(x).

(b) Proposed move. Propose a change

xi → x ′i = xi + ϵi with ϵi ∼N (µi,σ
2
i ), (9)

of each neural-network parameter i, where σi = λiσ. Initially, µi = 0 and σ = σ0, where σ0 is the initial
move scale. The parameters λi are set either to unity (‘signal norm off ’) or by equation (18) (‘signal
norm on’). Evaluate the loss U(x ′) at the set of coordinates x ′ resulting from the proposal (9). If
U(x ′)⩽ U(x) [60] then we accept the move and go to Step (c). Otherwise we reject the move and go to
Step (d).

(c) Accept move.Make the proposed coordinates x ′ the current coordinates x. Set ncr = 0. For each
neural-network parameter i, set

µi → µi + ϵ(ϵi −µi), (10)

using the values ϵi calculated in (9). Return to Step (a).
(d) Reject move. Retain the set of coordinates x recorded in Step (a). Set ncr → ncr + 1. If ncr = ns then set

ncr = 0, σ → 0.95 σ, and (for all i) µi = 0. Return to Step (a).

We refer to this algorithm as aMC, for adaptive Monte Carlo (the term ‘adaptive Metropolis algorithm’
has been used in a different context [61]). Standard zero-temperature Metropolis MC is recovered in the
limit ϵ= 0,ns =∞, and λi = 1. Note that the algorithm requires calculation of the loss U(x) only, and not of
gradients of the loss with respect to the net parameters.

The computational cost of one aMC move is the cost to draw N Gaussian random numbers and to
calculate the loss function twice (minibatch learning) or once (batch learning). Clock times per 103 epochs of
batch learning using a deep neural net of width 64 applied to MNIST are shown in table 1 for GD, Adam, and
aMC. Calculations were run on an NVIDIA Tesla T4 GPU.

The memory cost of aMC is the cost to calculate the loss, to store two versions of the model, and (if ϵ ̸= 0
and signal norm is on) to store the values µi and λi for each neural-net parameter.

3.2. Signal norm: enacting heterogenous weight updates in order to keep roughly constant the change of
neuron inputs
The proposal step (9) contains the parameter step size σi = λiσ. For some applications, particularly involving
deep or heterogeneous networks, it is useful to choose the λi in order to keep the scale of updates for each
neuron approximately equal, following ideas applied to gradient-based methods [56]. We call this concept
signal norm; when signal norm is off, all λi = 1. When it is on, we proceed as follows.
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Consider the class of neural networks for which the input to neuron j (its pre-activation) is

Iαj =

Nj∑
i→j

xiS
α
i , (11)

where the sum runs over all weights xi feeding into neuron j; N j is the fan-in of j (the number of connections
entering j); and Sαi is the output of neuron i (the neuron that the weight xi connects to neuron j) given one
particular evaluation α of the neural network. Under the proposal (9) the change of input to neuron j is
approximately [62]

∆α
j =

Nj∑
i→j

ϵiS
α
i . (12)

We therefore have

⟨∆α
j ⟩=

Nj∑
i→j

µiS
α
i , (13)

and

⟨(∆α
j )

2⟩=
Nj∑
i→j

Nj∑
k→j

[
µiµk(1− δik)+ (σ2

i +µ2
i )δik

]
Sαi S

α
k , (14)

where ⟨·⟩ is the expectation over the move-proposal distribution (9), and δik is the Kronecker delta. The
expected approximate variance of the change of input to neuron j under the move (9) is therefore

⟨(∆α
j )

2⟩− ⟨∆α
j ⟩2 = σ2

Nj∑
i→j

λ2
i (S

α
i )

2. (15)

This quantity, averaged over all Ndata neural-net calls required to calculate the loss, is

[⟨(∆α
j )

2⟩− ⟨∆α
j ⟩2]data = σ2N−1

data

Ndata∑
α=1

Nj∑
i→j

λ2
i (S

α
i )

2. (16)

We can choose the values of the λi in order to ensure that the right-hand side of (16) is always σ2. A
simple way to do so is to set equal the λi for all weights xi feeding neuron j, in which case

λi =

N−1
data

Ndata∑
α=1

Nj∑
i ′→j

(Sαi ′)
2

−1/2

. (17)

If all neuron outputs Sαi ′ appearing in (17) vanish identically then the expression must be regularized; one
option is to set λi = 0 for weights feeding a neuron whose input neurons are zero for a given pass through the
data. Recall that the sum α runs over the input data; the sum i ′ → j runs over all neurons i′ whose
connections feed j; N j is the fan-in of j (the number of connections entering j); and Sαi ′ is the output of
neuron i′ given a particular evaluation α of the neural network. The values (17) can be calculated from the
pass through the data immediately before the proposed move.

Under (17), weights on connections that feed into a neuron receiving many other connections will
experience a smaller basic move scale than weights on connections that feed into a neuron receiving few
connections. Similarly, weights on connections fed by active neurons will experience a smaller basic move
scale than weights on connections fed by relatively inactive neurons.

Finally, if the parameter xi is a bias we choose λi = 1.
To summarize, we consider two settings for the parameters λi that set the step-size parameters σi = λiσ

in the proposal (9). The first setting, ‘signal norm off ’ (used in figures 1, 2(a), (b), 4, and 5), has λi = 1 for
all parameters xi.

The second setting, called ‘signal norm on’ (used in figures 2(c), (d), 6, and 7), has

λi =

{
1 if xi is a bias;

Equation(17) if xi is a weight into neuron j.
(18)
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4. Conclusions

We have examined the Metropolis MC algorithm as a tool for training neural networks, and have introduced
aMC, an adaptive variant of it. MC methods are closely related to evolutionary algorithms, which are used to
train neural networks [11–13, 19], but the latter are usually applied to populations of neural networks; the
MC algorithms we have considered here are applied to populations of size 1, just as GD is. For sufficiently
small moves the Metropolis algorithm is effectively GD in the presence of white noise [17]. Thus on
theoretical grounds the Metropolis algorithm should possess the ability to train a neural network to values of
a loss function similar to those achieved by GD; this is indeed what we (and others [6–8]) have observed
empirically, both for simple neural nets and for large, modern architectures. This correspondence does not
guarantee similar training times, however, and we have found gradient-based methods to be faster in general,
particularly for large and heterogenous neural nets.

aMC is an adaptive version of the Metropolis algorithm. The efficiency of aMC diminishes less quickly
with decreasing loss and increasing net size than does the efficiency of the Metropolis algorithm, and aMC
can train faster than Metropolis, much as adaptive gradient-based methods can train faster than pure GD.

The Metropolis algorithm and aMC offer a complement to gradient-based methods in that they can
sense the gradient when it exists but can work without it. In particular, aMC can train nets in which the
gradient is too small (or too large) to allow gradient-based methods to train on the timescales simulated.
We have shown here that aMC can train deep neural networks and recurrent neural networks that GD
cannot train. In both cases there exist modifications to those networks that can be trained by gradient-based
methods, but aMC does not require those modifications. The design principles of neural nets optimal for
MC algorithms are largely unexplored but are likely distinct from those optimal for gradient-based methods,
and having both sets of algorithms (together with hybrids of them [63]) offers more choices for net design
than having only one.

Finally, we note that while Metropolis and aMC have a fundamental connection to gradient-based
methods in the limit of small step size, MC algorithms more generally can enact large-scale nonlocal or
collective changes that cannot be made by integrating gradient-based equations of motion [5, 64–68]. The
analogy suggests that improved MC algorithms for training neural networks await development.

Data availability statement

The data that support the findings of this study are openly available at the following URL/DOI: https://
github.com/reproducible-science/aMC.

Code availability

Calculations using gradient descent and Adam were done in PyTorch [58]. Monte Carlo calculations were
done in C and in PyTorch. A PyTorch implementation of the aMC optimizer (with signal norm off) and an
example RNN optimization are available from [69].
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