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Abstract. I propose a new method for laser acceleration of relativistic electrons 
using the leaky modes of a hollow dielectric waveguide. The hollow core of the 
waveguide can be either in vacuum or filled with uniform gases or plasmas. In 
case of vacuum and gases, T M 01 mode is used for direct acceleration. In case of 
plasmas, EH11 mode is used to drive longitudinal plasma wave for acceleration. 
Structure damage due to high power laser can be avoided by choosing a core 
radius sufficiently larger than laser wavelength. Effect of nonuniform plasma 
density on waveguide performance is also analyzed. 

MODE PROPERTIES 

The capillary waveguide considered here is made of a hollow core with an 
index of refraction v1 and radius R, embedded in a dielectric medium with 
an index of refraction v2 . We are interested only in oversized waveguide sat
isfying the condition A.I/ R « 1, where >.. 1 = >..jv1 and >.. is the wavelength in 
vacuum. As a result, EM wave in the core is dominantly transverse. Choosing 
appropriate dielectric medium such that vv2 - 1 » A.I/ R, where v = v2 fv1 , 

the· eigenmodes of the waveguide can be solved following the same procedure 
by Marcatili and Schmeltzer [1]. 

Expressing the eigenmodes in the following form 

{ 
E(r,cp,z,t)} =·{ Ezm(r,cp) }ei(f31mz- wt)- a 1mz 

H(r, ¢, z, t) Hzm(r, ¢) ' 
(1) 

the eigenvalues are given by 

(2) 

where k1 = v1 k, k = 2rr / >.., /g = 2rr R/UzmA1 » 1, and Ulm is the mth root of 
the equation, Jz-1 (Uzm) = 0. 

1 
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There are three types of modes, corresponding to 

TEom (l = 0) 
TMom (l = 0) 
EHzm (l =I 0) 

(3) 

For laser acceleration, we are interested primarily in two low-order modes: 
T M01 mode for acceleration in vacuum and gases, and EH11 mode for accel
eration in plasmas. Consequently, we consider three cases: 8v1 = 0 when the 
core is in vacuum, 8v1 > 0 and 8v1 < 0 when the core is filled with uniform 
gases and plasmas, respectively, where 8v1 = v1 - 1 and l8v1 1 ~ 1. It is noted 
that EH11 mode is often designated asH E11 mode elsewhere in the literature. 

The electric field within the core r :::; R are given by 

TM01 (4) 

EHn (5) 

where Ea is the peak acceleration field for T M01 mode, E0 is the peak trans
verse field for EHn mode, r = f3zm + iazm, and 

(6) 

To leading order, r /kr 1 = 19 , since by definition, k~ = f 2 + k';1. Given electric 
field, magnetic field of a mode can be determined by 

Ht = z x (fEt + i'VtEz)/kZo 
Hz= (i/r)'Vt · Ht , 

(7) 

where subscript t denotes transverse component of a vector or operator, z is 
a unit vector in z-direction, and Zo is the vacuum impedance. 

As seen from Eq.(4) and Eq.(5), the transverse field dominates over the 
longitudinal one by a large factor, 19 . For T M 01 mode, Er is peaked at r = r P 

with a maximum value 

(8) 

where rp/ R = 0.481 and J''l=(U01rp/ R) = 0.582. For EH11 mode, Ey is 
peaked on-axis. 

A crucial factor of concern for using a waveguide for laser acceleration is 
structure damage due to high power laser. To evaluate surface field, Es, at 
dielectric boundary we expand the Bessel function in the transverse field given 
by Eq.(4) and Eq.(5), using the expression for kr1 , Eq.(6), to obtain 



- !Er(r = R)!/Ea 
!Ey(r = R)!/ Eo 

- xiJo(Uol)l 
- x!Jl(Uu)l/rg 

TMm 
EHu. 
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(9) 

It is important to note that for T M01 mode surface field is of the same order 
as the peak acceleration field, and for both modes surface field is much smaller 
than the peak transverse field. 

Within the dielectric medium r ~ R, the maximum field intensities occur at 
the boundary r = R, and all fields have the radial dependence exp( ikr2r) / y'r, 
where to leading order kr2 = k1 ...)v2 - 1. A non-vanishing imaginary part 
of v due to even slightly lossy dielectric medium could give rise to a rapid 
exponential decay of fields in radial direction. Thus the power carried in each 
mode is distributed dominantly within the core and can be expressed by 

P(z) = Po e-z/Lattn ' (10) 

where Lattn = ,;R/2x is power attenuation length due to refractive loss, and 

TMo1 
EHn. 

(11) 

It is noted that EH11 mode is linearly polarized, whereas T M 01 mode is 
radially polarized. However, when necessary, a linearly polarized mode can be 
formed by a proper mixing of TM01 with EH21 mode (2]. The electric fields 
for the mixed mode T M 01 + EH21 are given by 

TMo1 + EH21 (12) 

To preserve the acceleration gradient on-axis, Ea, same as the T M01 mode, 
the mixed mode requires a factor of two more laser power. For the three 
modes we have U11 = 2.405, U01 = U21 = 3.832, also, J0 (U01 ) = -0.403 and 
Jl(Uu) = 0.519. 

Coupling between the waveguide modes and free space Gauss-Laguerre 
modes (also known as TEM modes [3]) can be very efficient. When focused 
at the waveguide input cross section, power coupling from a radially polarized 
T EM01 mode to the T M01 mode reaches a maximum of 97% at w0 / R = 0.56, 
this is true also for coupling from a lineally polarized T EM01 mode to the 
mixed T M01 + EH21 mode; and coupling from aT EM00 mode to EH11 mode 
is 98% at w0 / R = 0.64, where w0 is the Gaussian beam waist. Despite the 
fact that the modes are leaky due to refractive loss, optical guiding is quite 
effective as the losses for low-order modes can be made very small by choosing 
R sufficiently large relative to >., as seen from Eq.(2). 
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ACCELERATION IN VACUUM 

According to Eq.(2), phase velocity, vP, of the TM01 mode is larger than 
the speed of light, c 

w 

f3oi 

c 
(13) 

We define an acceleration phase slippage length over which a relativistic elec
tron with energy W0 = 7mc2

, while being accelerated, slips a full 1r phase with 
respect to the fast acceleration wave 

(14) 

Over this distance, energy gain of the electron on-axis is 

{La 
.6. Wa = eEa lo sin( 7r z I La)dz = eEaLaTa ' (15) 

where Ta = 2/7r is a reduction factor due to a 1r phase slippage during acceler
ation. Here we have neglected the small attenuation of the acceleration field 
due to waveguide loss over the distance La. In parallel, we may also define a 
deceleration phase slippage length, Ld, over which the electron slips another 
1r phase while losing energy amounted to .6. Wd = eEaLdTd, where Td can be 
different from Ta if Ld/ La =/:. 1. The average acceleration gradient during a 
period of 27r phase slippage is then given by 

G = .6.Wa- .6.Wd = Ga 1- (Ld/ La)(Td/Ta) 
La + Ld 1 + Ld/ La ' 

(16) 

where Ga = .6.Wa/ La = eEaTa· To have net acceleration, the ratio Ld/ La 
should be made small. This can be done by introducing a static magnetic 
field during the half period of deceleration. The effect of the magnetic field 
is to reduce the longitudinal velocity of the electron such that it slips faster, 
thus taking shorter distance, Ld, in the field of deceleration. 

For simplicity, we assume the magnetic field is sinusoidal as in a wiggler, 
By = Bo cos(21rzj Aw), with a period Aw· Then Ld is defined by 

[
2_ 2_ a~l7r Ld _ a~Aw . [47r Ld] _ 

2 + 2 + 2 ' 2 2 ' Sill ' - 7r ' "fg "( "( A "( A Aw 

(17) 

where aw = eBo.Aw/27rV'imc. If we set Aw = Ld then 

(18) 
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and aw is now determined by 

(19) 

where Q1 = eBo>..'·'? I 47r../2mc and Q2 = (1 + ('Y I /g )
2]/3. Due to longitudinal 

oscillation in electron orbit, Td is different from Ta and given by 

1 lo'lr Td =- sin (B- ~sin (4B)]dB , 
7f 0 

(20) 

where~= (1- LdiLa)l4. The value ofTd varies in the range {1.84 f-+ 2}17r 
for Ldl La in the range { 0 f-+ 1}. 

We have assumed the electron is decelerated by the on-axis value of Ez, but 
as the electron is deflected off-axis, it will see a weaker longitudinal field and a 
stronger transverse EM fields. The maximum orbital offset in the x-direction 
due to the wiggler field is tlXmax = ../2aw>..wl1f/. 

Because of the magnetic deflection, the electron will radiate and lose energy. 
The radiative energy loss per wiggler period is 

tlW. = 87r2mc2 (!.!:__) 2 2 
r 3 >..w awl ' (21) 

where re is the classical radius of electron. The maximum possible energy 
that can be accelerated with this method can be determined by the condition: 
tlWa > tlWd + tlWr. 

Transverse force on a relativistic electron due to an EM wave does not vanish 
to order of 1112 in a waveguide mode or when the index of refraction differs 
from unity. To see this, we note the magnetic field of the T M01 mode can be 
expressed as H'P = (1 + 1121; + 8v1)EriZ0 . Correspondingly, the transverse 
force on a relativistic electron is 

(22) 

which can be either focusing or defocusing depending on acceleration phase, 
</>a, which varies constantly due to slippage. The beta function for an electron 
near the axis in vacuum is found to be 

(23) 

To avoid strong nonlinear transverse EM force when the electron is deflected 
off-axis by the wiggler field, By, during deceleration, the mixed mode T M01 + 
EH11 may be used since it has zero transverse force along the x-axis, as seen 
from Eq.(12). 

An example is given in Table 1 for acceleration in vacuum with the T M01 

mode. Here in calculating f3t we set sin <Pa=1, and Is is the laser intensity on 
the waveguide surface. 
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Table 1. Example for Laser Acceleration in Vacuum. 

A [J.Lm] 1 lg 410 Ea (GV/m] 3.7 

R/A 250 La [em] 16 Es [GV/m] 3.0 

v2 1.5 Ld [em] 6.2 Is [TW/cm2] 1.2 

Wo (GeV] 1 Lattn [m] 10 G [GV/m] 1.1 

Po [TW] 100 f3t [em] 12 ~Wa (GeV] 0.38 

Bo [T] 1.5 ~Xmax/R 0.35 ~wd [GeV] 0.14 

aw 6.2 Td 0.61 ~Wr [eV] 88 

ACCELERATION IN GASES 

The phase velocity of the T M 01 mode in uniform gases is given by 

(24) 

which corresponds to an acceleration length or phase slippage length 

(25) 

The phase matching condition is obtained by making the denominator zero 

(26) 

This condition suggests an alternative way to maintain phase matching as 1 
increases during acceleration: instead of varying 8v1 by adjusting gas pressure 
along the waveguide, one may change 19 by tapering waveguide radius. For 
highly relativistic electron satisfying the condition 1 >> 19 , a steady state 
phase matching condition, 8v1 = 1/21;, is approached. An example is given in 
Table 2 for laser acceleration in gases in the highly relativistic limit. The beta 
function in gases is smaller than that in vacuum, Eq.(23), by a factor of J2. 
The maximum acceleration gradient is limited by various processes occurring 
in gases in the field of high power laser, such as nonlinear self-focusing and 
gas breakdown. Here we assume the limit is set by E~ax:::; lOGY /m. 

Table 2. Example for Laser Acceleration in Gases. 

A [J.Lm] 10 Po (GW] 50 Ea [GV/m] 0.21 

R/A 50 lg 82 Es (GV/m] 0.17 

v2 1.5 8v1 [10-5] 7.4 Lattn [m] 0.84 
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ACCELERATION IN PLASMAS 

Wave equation for laser field propagation in weakly relativistic plasma under 
cold fluid condition is governed by [4] 

(27) 

where wp=Je2n0/Eom is the electron plasma frequency, n0 the ambient plasma 
density, and Eo the dielectric constant in vacuum. The plasma density mod
ulation, 8njn0 , driven by the ponderomotive potential of the laser field, 
a2 = <leEz/mcwJ 2>, will generate a wakefield, Ew = -\7<P, where the wake 
potential, <P, is determined by [5,6] 

[ ;, +w;] ~ = w;mec'~ . (28) 

To close the loop, 8njn0 is related to the wake potential by Poisson's equation 

(29) 

Under the condition a2 « 1, we will have 8n/n0 « 1, as will be shown later. 
As a result, the second and third term on the right hand side of Eq.(27) can be 
dropped and the wave equation is then decoupled from the plasma equations, 
Eq.(28) and Eq.(29). The only effect of the plasma on laser propagation is 
through an index of refraction v1=1- w;f2w2

. 

We now consider laser wakefield acceleration [7] in a capillary waveguide 
filled with a uniform plasma. A laser pulse propagating through the waveguide 
will excite a wakefield with phase velocity equals the group velocity of the laser 
pulse. For EH11 mode, thegroup velocity is given by 

dw c 
Vg = d/3 11 = 1 + 1/2'"'!; + 1/2'"'!~ ' 

(30) 

where '"'/p = w / Wp » 1. Correspondingly, the slippage length by definition is 

(31) 

To solve the plasma equations, we take the approach in parallel to the 1D 
linear analysis of laser wakefield by Gorbunov and Kirsanov [5], except here 
the solution we provide is in full 3D. Introducing a variable ( = z-v9 t, Eq.(28). 
can be solved as 

(32) 
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where kp = wpfv9 . For a Gaussian pulse of EH11 mode, we have from Eq.(5) 

2 

a2(p, () = ~o JJ(Unp)e-<2 /2a';-z/Lattn , 

where p = r / R, the wake potential behind the laser pulse is 

<I>= -<I>oJJ(Unp)e-z/Lattn sin (kpz- Wpt) , 

where 

The longitudinal wakefield is then given by 

Ewz = EaJJ(Unp)e-z/Lattn COS (kpz- Wpt) , 

and the transverse wakefield by 

(33) 

(34) 

(35) 

(36) 

where the peak acceleration field, Ea = <I>okp, is maximized if the laser pulse 
length is chosen according to the condition, kpCY z = 1. From here on, we will 
use this optimal condition wherever relevant. 

As wakefield is excited in the plasma channel, energy in the driver pulse, 
Eq.(33), will be depleted. To characterize this process, a pump depletion 
length, Lpump' can be defined by the condition, W1 = Ww, where Wi is the 
initial energy of the laser pulse 

(38) 

and Ww is the energy in the wakefield the laser pulse left behind as it propa
gates a distance Lpump 

The two terms above on the right hand side correspond to en
ergy in the longitudinal and transverse wakefield, respectively, where 
Iz= Jti dppJ6(Unp)=7.62x 10-2 and Ir=~ Jti dppJJ(Unp)J[(U11 p)=6.35x 10-3

. 

We then obtain 

(40) 

In addition, we may define a characteristic pulse dispersion length, Ldisp, over 
this propagation _distance the driver pulse will double its length, CYz. Given 
group velocity dispersion by Eq.(30), we have 
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(41) 

There is yet another characteristic length, the beta function, due to the trans
verse wakefield. For electron near the axis the beta function is given by 

1/4~R f3t = (2/U11 )(Exp(1)/27r] ---;---;:-- . 
Sin 'Pa ao 

(42) 

Finally, the plasma density modulation is 

8
n = J1r /8Exp(1)a6{1 + 2(rp//'g) 2 (1- lf(Uup)j JJ(Unp)]} 

no 
JJ(Unp)e-z/Lattn sin (kpz- Wpt) . (43) 

Indeed, we have 8n/no « 1, if a5 « 1. 
An example is given in Table 3 for laser acceleration in plasmas. Here the 

energy gain per stage is defined by, .6.Wa = eEaLslipTa, the energy gain per 
slippage length. In calculating f3t we set sin <Pa = 1. 

Table 3. Example for Laser Acceleration in Plasmas. 

.A (J.Lm] 1 n0 (1017/cm3
] 1.1 Ea (GV/m] 0.94 

R/.A 150 (fm/no)max 0.034 Es (GV/m] 1.7 

V2 1.5 /'p 100 Is (TW/cm2
] 0.39 

Wo (GeV] 1 /'g 392 Lslip (m] 0.94 

Po (TW] 20 f3t (em] 1.6 Lattn (m] 7.9 

wl (J] 2.7 a z (J.Lm] 16 Ldisp (m] 52 

ao 0.28 .6.Wa (GeV] 0.56 Lpump (m] 126 

We have analyzed the capillary waveguide when the core is filled with a 
plasma of uniform density, n0 . In reality, this can only be an approximation. 
To evaluate the effect of nonuniformity of the plasma, let's consider a special 
case when the uniform background is modified by a parabolic profile given by 

n = n0 + .6.n(1- (r/ R) 2
] . (44) 

Such a profile has a defocusing effect on the mode if .6.n > 0, thus making the 
waveguide less effective. However, the attenuation length for the EH11 mode 
is reduced by a factor of two at most, if the following criteria is satisfied 

.6.n < 4 6 ,; 
. 2 . 

no /'g 
(45) 

For the example in Table 3, this corresponds to .6.njn0 ::; 30%. Thus we may 
infer from here that the guiding provided by the capillary waveguide can also 
be rather stable,- against either systematic or random variations in plasma 
density. The derivation of the criteria, Eq. ( 45), will be published elsewhere. 
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CONCLUSIONS 

I have introduced the concepts and techniques that are crucial for advancing 
the current development of laser acceleration into a new, more realistic stage. 
Of what being accomplished here, the most notable is the significant increase 
in acceleration distance by using the leaky modes of an oversized capillary 
waveguide. In vacuum, a new mechanism for energy transfer from laser to 
electron is proposed, and with which both limits on acceleration distance set 
by diffraction and phase slippage are overcome. In gases, a tuning technique is 
provided to maintain the phase matching over a longer acceleration distance. 
In plasmas, the approach taken here is radically different in concept from 
the current mainstream development. First of all, the prevailing notion on 
optical guiding in plasma is based on an analogy to optical fiber in which 
the index of refraction is maximal on axis, opposite to what proposed here. 
Secondly, it is commonly believed that no guiding structure could sustain 
the laser power required for acceleration without being, at least partially, 
turned into plasma. Therefore the only method considered so far for optical 
guiding is to tailor the plasma itself in transverse density profile one way 
or the other, by either relativistic self-focusing [6), charge displacement [8), 
or capillary discharge [9]. By relieving the duty of optical guiding from the 
plasma, the medium for acceleration, to an external waveguide, our approach 
opens up a new avenue to more effective, stable and practical optical guiding 
and acceleration. In addition, the acceleration structure proposed here has the 
following advantages: dielectric damage [10] by high power laser is shown not 
to be a problem; the large waveguide cross section is favorable for achieving 
better electron beam quality; the efficient coupling between waveguide modes 
and free space modes eases mode handling such as mode injection, transport 
and recycling, thus leading to a better overall system efficiency; last but not 
least, all aforementioned desirable features are achieved without sacrificing a 
virtue of practical importance: the simplicity. This work was supported by 
the U.S. Department of Energy under contract No.DE-AC03-76SF00098. 
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