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Simple Summary: Gastric cancer (GC) is the fourth most common cancer that occurs worldwide,
affecting specifically the Asian population. Currently, there are no available screening programs
for GC in United States. Since saliva is a highly desirable body fluid for developing biomarkers of
cancer screening, early detection, and monitoring, we previously reported that salivary extracellular
RNAs could be developed to detect gastric cancer in a Korean cohort, and here, we validate them in a
U.S. cohort. Our study emphasizes the importance of population-specific biomarker development
and validation, and specifically, the noninvasive nature of salivary biomarkers for population-based
screening in at-risk populations.

Abstract: Gastric cancer (GC) has the fifth highest incidence among cancers and is the fourth leading
cause of cancer-related death GC has predominantly a higher number of cases in certain ethnic groups
such as the Korean population. GC found at an early stage is more treatable and has a higher survival
rate as compared with GC found at a late stage. However, a diagnosis of GC is often delayed due to
the lack of early symptoms and available screening programs in United States. Extracellular RNA
(exRNA) is an emerging paradigm; exRNAs have the potential to serve as biomarkers in panels
aimed at early detection of cancer. We previously reported the successful use of a panel of salivary
exRNA for detecting GC in a high-prevalence Korean cohort, and that genetic changes reflected
cancer-associated salivary exRNA changes. The current study is a case-control study of salivary
exRNA biomarkers for detecting GC in an ethnically distinct U.S. cohort. A model constructed for
the U.S. cohort combined demographic characteristics and salivary miRNA and mRNA biomarkers
for GC and yielded an area under the receiver operating characteristic (ROC) curve (AUC) of 0.78.
However, the constituents of this model differed from that constructed for the Korean cohort, thus,
emphasizing the importance of population-specific biomarker development and validation.

Keywords: biomarkers; validation; gastric cancer; exRNA; saliva

1. Introduction

Gastric cancer (GC) is an aggressive type of cancer that remains a healthcare burden
worldwide [1]. For 2022, the American Cancer Society has estimated that there will be about
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26,380 new cases of gastric cancer in the USA and about 11,090 deaths (https://seer.cancer.gov/
statfacts/html/stomach.html (accessed on 10 May 2022)). Gastric cancer accounts for ~1.5%
of all new cases of cancers in the USA each year. The incidence of GC in the United States
has relatively decreased, however, in Western countries, approximately half of patients
present with locally advanced or metastatic GC at diagnosis, and an additional 40% to 60%
of those patients undergoing resection of gastric adenocarcinoma relapse after surgery [2].
Thus, early detection of this type of cancer is the main goal to reduce mortality, as the 5-year
survival rate of early detected cases can reach >95% [3].

Many studies from East Asian countries have shown that screening methods, especially
endoscopic screening for detecting early-stage GC, have resulted in a reduction in mortality.
However, population-based screening programs do not exist in the USA, because of the
low incidence of GC overall [4].

Although upper gastroesophageal endoscopy with targeted and random biopsies
remains to be the gold standard for the detection of GC, other screening tools have been
implemented in high-risk countries such as pepsinogens (PGs) including PG 1 and PG 2,
gastrin-17, and Helicobacter pylori (H. pylori) IgG antibody tests. Blood-based tumor markers
such as carcinoembryonic antigen (CEA) and carbohydrate antigen 19-9 (CA19-9) have also
been used for the detection of GC, but have low sensitivity and specificity for early-stage
disease [5,6].

Screening programs for GC vary among countries, depending on prevalence and cost-
effectiveness [6]. We previously reported the use of extracellular RNA (exRNA) biomarkers
in saliva as a diagnostic tool for screening and/or risk assessment for GC [7]. In a study of
a Korean cohort of subjects, we identified 30 mRNA and 12 miRNA biomarkers that were
associated with the expression pattern and presence of GC. A configured biomarker panel
consisted of three mRNAs (SPINK7, PPL, and SEMA4B) and two miRNAs (miR-140-5p and
miR-301a-3p) that were all significantly downregulated in the GC group, and yielded an area
under the receiver operating characteristic (ROC) curve (AUC) of 0.81 (95% CI 0.72–0.89).
When combined with demographic factors, the AUC of the biomarker panel reached 0.87
(95% CI 0.80–0.93) in differentiating subjects with GC from those without cancer. Since a
lower expression of these salivary markers was indicative of GC, a comprehensive cut-off
validation study would be necessary to develop these markers for the screening of GC in
the general population.

It is known that the pathogenesis of GC depends on multiple etiological factors and
ethnicity could obviously be one of determining factors [8]. However, it is also possible
that there are common biological alterations that may contribute to the pathogenesis of
disease and these genetic changes may be cancer-associated salivary exRNA alterations.
The miRNAs and exRNAs are endogenous, small non-coding RNA molecules that post-
transcriptionally modulate gene expression [9]. Because these molecules are stable in
different body fluids including saliva, analysis of these molecules can lead to an important,
noninvasive diagnostic and prognostic tool for GC screening. However, the expression
of biomarkers may differ based on the population investigated. A key requirement of
biomarker validation for clinical and regulatory purposes is that of intended use. A
biomarker or panel of biomarkers that may differentiate disease from normal in one
population may not perform similarly in a different population. While we have previously
demonstrated that a particular panel of salivary biomarkers may differentiate subjects
with GC from those without cancer in an Asian population with a high prevalence of
gastric cancer, it is unclear whether this same panel of markers would perform similarly
in a low-prevalence U.S. population. The current study represents a case-control study of
salivary exRNA biomarkers in a U.S. cohort.

2. Materials and Methods
2.1. Saliva Collection and Processing

Unstimulated whole saliva was collected from 50 newly diagnosed treatment-naive
patients with histologically proven GC (stages I–IV) and 50 control subjects without GC,
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based on recent endoscopic results at the University of Texas MD Anderson Cancer Center,
USA, using standard operating procedures (SOPs) developed for our prior study of a
Korean cohort [7,10]. Subjects were asked to avoid oral hygiene measures, eating, drinking,
and gum chewing at least 1 h prior to saliva collection. The subjects rinsed with tap water
(10 mL) for 30 s about 10 min prior to saliva collection and expectorated. Clinical samples
were collected in sterile tubes, lasting 5–10 min per collection (at least 5 mL of saliva), and
kept on ice through the entire process. All samples were processed, approximately 1 h
after collection. First, samples were centrifuged in a refrigerated centrifuge at 2400× g
for 15 min at 4 ◦C, and the supernatant was processed immediately for the concurrent
stabilization of proteins and RNA by the inclusion of a protease inhibitor cocktail (aprotinin,
3-phenylmethylsulfonyl fluoride (3-PMSF) (Sigma-Aldrich, St. Louis, MO, USA), sodium
orthovanadate (Na3VO4) (Sigma-Aldrich, St. Louis, MO, USA)) and RNase inhibitor
(Invitrogen SUPERase·In RNase Inhibitor, Thermo Fisher Scientific, Austin, TX, USA) based
on our saliva standard operating procedure (SOP) [11]. These samples were aliquoted into
smaller cryo-vials, labeled, and frozen at −80 ◦C.

This study, including the patient consent process, was approved by the Institutional
Review Board for Human Studies at the University of Texas MD Anderson Cancer Center
(IRB number PA17-0583). The control group consisted of subjects undergoing upper
endoscopy for dyspepsia or gastroesophageal reflux-like symptoms and documented to
have no neoplasia. Patient-level clinical demographics were obtained (age, gender, ethnicity,
smoking history, staging, and diagnosis). The study was performed from 19 October 2017
to 13 June 2019.

2.2. RNA Isolation from Saliva Samples

Total RNA from 50 blinded GC subjects and 50 non-GC control subjects was isolated by
using a Qiagen miRNeasy Micro kit (Qiagen, Germantown, MD, USA). The 250 µL samples
of cell-free saliva was used to isolate total RNA using a modified protocol successfully used
in the lab for isolating salivary RNA [10]. The final RNA was eluted in 14 µL of water.

2.3. Validation of miRNA GC Markers

The biomarker panel used in this study contained two miRNAs (miR-140-5p and
miR-301a-3p); U6 snRNA and miR-197 were used as the reference genes. TaqMan miRNA
assays (Thermo Fisher Scientific, Austin, TX, USA), containing these four small RNA
genes, were ordered from Applied Biosystems (Foster City, CA, USA). The protocol was
similar to that recommended by the manufacturer for creating custom reverse transcription
(RT) and preamplification primer pools using TaqMan MicroRNA Assays (Thermo Fisher
Scientific, Austin, TX, USA). Total RNA (3 ng) was converted to cDNA using a TaqMan
MicroRNA Reverse Transcription Kit (Applied Biosystems, Foster City, CA, USA). After RT,
the product was preamplified using SsoAdvance PreAmp Supermix (Bio-Rad, Hercules,
CA, USA) and preamplification primer pool. The preamplified product was diluted 2
times prior to miRNA quantification. The qPCR reactions for each candidate miRNA were
performed in triplicate on a Roche LightCycler 480 II (Roche, San Francisco, CA, USA). The
average threshold cycle (Cq) was examined and U6 snRNA and miR-197 were used as the
reference genes for normalizing the data.

2.4. Validation of mRNA GC Markers

Three selected candidate mRNA biomarkers (3 mRNAs (PPL, SEMA4B, and SPINK7)
as well as 2 reference genes (GAPDH and ACTB)) generated by microarray profiling were
validated by nested real-time quantitative polymerase chain reaction (RT-qPCR) (RT-PCR
followed by a separate SYBR green quantitative polymerase chain reaction (qPCR)) on the
new set of samples from MD Anderson Cancer Center (blinded 50 GC and 50 non-GC).
The gene accession numbers and primer sequences used for the transcriptomic biomarker
validation are shown in Supplementary Materials Table S1. The qPCR primers were
designed using the Primer3 software and synthesized by Sigma-Genosys after performing
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a Primer-BLAST search. The primer sequences were designed to avoid any known single-
nucleotide polymorphism region in the target gene. All the amplicons were intron spanning.
The RT-qPCR assay followed the Minimum Information for Publication of Quantitative
Real-Time PCR Experiment guidelines and was performed in duplicate with each biomarker
candidate. The specificity of the PCR product for each gene was confirmed with melting
curve analysis and 3% agarose gel analysis.

2.5. RT-qPCR Preamplification for Validation of mRNA Candidates

The multiplex RT-PCR preamplification was performed with an Invitrogen SuperScript
III Platinum One-Step qRT-PCR System (Thermo Fisher Scientific, Austin, TX, USA) with
a pool of outer primers at 100 nM each. The reaction mixture was prepared on ice, and
then loaded into the preheated thermocycler. The amplification was performed as follows:
2 min at 60 ◦C; 30 min at 50 ◦C; 2 min at 95 ◦C; and 15 cycles of 15 s at 95 ◦C, 30 s at
50 ◦C, 10 s at 60 ◦C, and 10 s at 72 ◦C; with a final extension for 10 min at 72 ◦C and
cooling to 4 ◦C. Immediately after RT-qPCR, 10 µL of the reaction was treated with 4 µL
of Exo-SAP-IT (Thermo Fisher Scientific, Austin, TX, USA) for 15 min at 37 ◦C to remove
excess primers and deoxynucleotide triphosphates (dNTPs), and then heated to 80 ◦C for
15 min to inactivate the enzyme mix. The preamplified complementary DNAs (cDNAs)
were then diluted by adding water to 200 µL (20-fold) to enable the qPCR of all targets.

2.6. qPCR for Validation of mRNA Candidates

Singleplex qPCR was performed in 10 µL reactions with 2 µL of each preamplified
cDNA sample and the inner primers at 200 nM each. The reaction was conducted with
a SYBR Green I Master mix in LightCycler 480 (Roche Diagnostics, Indianapolis-Marion
County, Indiana) instrument. After 10 min of polymerase activation at 95 ◦C, 40 cycles of
15 s at 95 ◦C and 60 s at 60 ◦C were performed, followed by melting curve analysis. Three
controls including one RT control, no-template control, and positive control with universal
human RNA were performed with every candidate on each sample.

2.7. Statistical Analysis for qPCR

The qPCR analyses were all done in triplicate. For the miRNA analysis, data were
analyzed using the RQ Manager software version 1.2 and DataAssist software version 3.0
(Applied Biosystems). Similarly, the ∆Cq value was computed using RNA polymerase
III transcribed U6 small nuclear RNA as the reference gene [7]. For the mRNA analysis,
the ∆Cq of each biomarker candidate was calculated by subtracting the Cq value of the
housekeeping genes (GAPDH and ACTB) from the raw Cq value in the same sample.
∆Cq values for mRNA and miRNA were compared between groups using the Wilcoxon
rank-sum test.

3. Results
3.1. Clinicopathological Characteristics of Patients

The patients’ characteristics and study variables are summarized between groups (GC
vs. control) using mean (SD) and frequency (%) and compared between groups using the
two-sample t-test or chi-square test (Table 1).
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Table 1. Patients’ characteristics for non-GC and GC patients from the MD Anderson Cancer Center.

Patient Characteristics Control (n = 49) GC (n = 51) p-Value Test

Age 60.0 (11.2%) 61.0 (12.3%) 0.666 t-Test
Male 16 (32.7%) 32 (62.7%) 0.003 Chi-square

Ethnicity 0.467 Fisher’s
Asian 3 (6.1%) 6 (11.8%)

Black, non-Hispanic 6 (12.2%) 10 (19.6%)
Caucasian 32 (65.3%) 26 (51.0%)
Hispanic 8 (16.3%) 9 (17.6%)

Present smoker 5 (10.2%) 7 (13.7%) 0.588 Chi-square
Prior smoker 16 (32.7%) 15 (29.4%) 0.726 Chi-square

Present or prior smoker 21 (42.9%) 22 (43.1%) 0.977 Chi-square
H. pylori biopsy performed 22 35 – –

H. pylori positive (% of tested individuals) 2 (9.1%) 5 (14.3%) 0.695 Fisher’s

3.2. miRNA RT-qPCR

Next, we constructed a model with the demographic terms (age, gender, and smoking
history) plus the two candidate miRNA markers for GC (computing the dCT by subtracting
the reference gene (U6) from our candidate markers (miR-140 and miR-301a)). This was
the same reference gene (U6) used in our prior study [7]. In this study, we found the CT
values for U6 were 15.37 ± 2.64 in the non-GC control group and 15.53 ± 2.70 in the GC
patient group (p = 0.809 by t-test). The p-values show no significant differences between GC
patients and non-GC controls, suggesting U6 is a good reference gene for salivary exRNA
quantification. To reduce the potential bias from one reference gene, we also tested miR-197
as an extra reference small RNA. We found the CT values for miR-197 were 16.20 ± 1.82
in the non-GC control group and 16.19 ± 1.85 in the GC patient group (p = 0.796). Next,
we compared the AUC between the model with only demographic factors to the model
utilizing demographic and miRNA data using the DeLong’s test (Table 2). Analyses were
conducted using IBM SPSS V25 (Armonk, NY, USA) and R V 3.6.1 (www.r-project.org
(accessed on 20 March 2021), Vienna, AU, USA) and p-values < 0.05 were considered to be
statistically significant. The AUC (95% CI) was 0.75 (0.65–0.84) for the GC group versus
the non-GC group based on these two miRNA markers together with demographic factors.
The markers (dCT) were both significant in that model (miR-140 (p = 0.003), miR-301a
(p = 0.002)). Interestingly, the demographic model alone yielded an AUC of only 0.68, while
the combined model (demographic data with miRNA biomarkers) resulted in an improved
AUC of 0.75 (DeLong p-value = 0.129).

Table 2. Models: (A) Demographic model for gastric cancer and (B) demographic model with two
miRNA biomarkers for gastric cancer.

A. Demographic Model for Gastric Cancer

Terms Odds Ratio (95% CI) p-Value

Age 0.99 (0.96–1.04) 0.945
Male 3.74 (1.57–8.92) 0.003

Present or prior smoker 0.75 (0.31–1.79) 0.514

B. Demographic Model with Two miRNA Biomarkers for Gastric Cancer

Terms Odds Ratio (95% CI) p-Value

Age 0.99 (0.95–1.03) 0.683
Male 5.42 (2.03–14.48) 0.001

Ever Smoker 0.82 (0.33–2.07) 0.680
dCTmiR140_U6 2.56 (1.37–4.79) 0.003
dCTmiR301_U6 0.36 (0.19–0.68) 0.002

www.r-project.org
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Next, logistic regression models for GC status were constructed using demographic
factors from our previous publication (age, gender, and smoking history) with the AUC
(95% CI) and odds ratios (ORs) estimated (Table 3). Interestingly, the demographic factors
in this U.S. cohort showed an AUC of 0.68 (95% CI 0.57–0.78), which was similar to the
AUC of 0.69 (95% CI 0.59–0.79) in the Korean cohort that we previously reported [7].

Table 3. Performance of the panel (demographic features + miRNAs + mRNAs) according to the
different stages of GC (I–IV).

vs. Control Overall Stage I/II Stage III/IV Stage IV

Demographic features only 0.68 (0.57–0.78) 0.67 (0.51–0.84) 0.67 (0.56–0.79) 0.68 (0.55–0.80)

Demographic features + miRNAs 0.75 (0.65–0.84) 0.80 (0.63–0.96) 0.72 (0.61–0.83) 0.70 (0.58–0.83)

Demographic features + miRNAs + mRNAs 0.78 (0.69–0.87) 0.85 (0.72–0.99) 0.75 (0.64–0.85) 0.74 (0.63–0.86)

3.3. mRNA RT-qPCR

We constructed a new model for the U.S. cohort using the same variables in three
different ways, as reported in our previous report based on a Korean cohort [7]:

(1) Model 1, a new model with only demographic characteristics (AUC = 0.68, sensitivity
= 62.7%, and specificity = 70.8%);

(2) Model 2, a new model with demographic characteristics and miRNA biomarkers for
GC (AUC = 0.75, sensitivity = 62.7%, and specificity = 81.3%);

(3) Model 3, a new model with demographic characteristics, miRNA, and mRNA biomark-
ers for GC (AUC = 0.78, sensitivity = 62.7%, and specificity = 83.3%).

When mRNAs were combined with miRNA biomarkers and demographic features, the
new combined model yielded the best AUC of 0.78 for differentiating subjects with GC from
those without GC, with the highest specificity (sensitivity = 62.7% and specificity = 83.3%)
(Figure 1) as compared with the models composed of only demographic features (AUC = 0.68,
sensitivity = 62.7%, and specificity = 70.8%) or demographic features together with miR-
NAs (AUC = 0.75, sensitivity = 62.7%, and specificity = 81.3%). There was also a signifi-
cant difference between Model 1 (AUC = 0.68) and Model 3 (AUC = 0.78) (Delong’s test
p-value = 0.037), suggesting that the model with both miRNA and mRNA biomarkers
for GC combined with demographic characteristics (Model 3) performed better than the
model with only demographic characteristics (Model 1) with increased specificity (83.3%
for Model 3 as compared with 70.8% for Model 1) (Figure 1, Table 4).

Table 4. Demographic characteristics with miRNA and mRNA biomarkers for gastric cancer.

Demographic Features + 2 miRNA Biomarkers for GC + 3 mRNA Biomarkers for GC

Terms OR (95% CI) p-Value

Age 0.99 (0.95–1.03) 0.544
Male 5.42 (2.03–14.48) 0.001

Ever Smoker 0.82 (0.33–2.07) 0.421
dCTmiR-140_U6 2.56 (1.37–4.79) 0.007
dCTmiR-301a_U6 0.36 (0.19–0.68) 0.002
dCTPPL_ACTB 0.88 (0.66–1.18) 0.406

dCTSEMA4B_ACTB 0.90 (0.66–1.23) 0.497
dCTSPINK7_ACTB 1.23 (0.94–1.60) 0.132
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Figure 1. Performance of 3 different models: (1) A new model with only demographic characteris-
tics (AUC = 0.68, sensitivity = 62.7%, and specificity = 70.8%); (2) a new model with demographic
characteristics and miRNA biomarkers for gastric cancer (AUC = 0.75, sensitivity = 62.7%, and
specificity = 81.3%); (3) a new model with demographic characteristics, miRNA and mRNA biomark-
ers for gastric cancer (AUC = 0.78, sensitivity = 62.7, and specificity = 83.3%).

However, when we applied the coefficients as estimated from the prior Korean cohort
study [7], the AUC was only 0.52 because of differences in the significance of individual
demographic features as well as in performance of GC miRNA and mRNA biomarkers in
the current U.S. cohort as compared with the Korean cohort.

Additionally, we also assessed the panel performance (demographic characteristics
(demo) + miRNAs + mRNAs) in two separate scenarios defined as controls vs. early-stage
GC (I, II) as well as controls vs. late-stage GC (III, IV). It appeared that the discrimination
(AUC) of the control vs. early-stage GC model was 0.85 (0.72–0.99), whereas for the control
vs. late-stage GC, the performance was 0.75 (0.64–0.85). Therefore, our panel may perform
better in discriminating controls from early-stage GC, although this would need to be
confirmed in a follow-up study (Table 3).

4. Discussion

A growing number of studies have demonstrated the utility of exRNA as a reliable
noninvasive approach for diagnosis, therapy, and prognosis of cancers [12]. Extracellular
RNAs have been explored as biomarkers in a number of different biofluids and types of
cancer, which include esophageal squamous cell carcinoma (ESCC) [13], lung cancer [14],
brain cancers [15–18], prostate cancer [19], pancreatic cancer [20], colon cancer [21], and
gastric cancer [22]. As of 2020, 45 clinical trials, in the USA and numerous other countries,
have been reported that have focused on the use of exRNA and exosomes as clinical
biomarkers of cancer [12]. These clinical trials have explored exRNAs as clinical biomarkers
of various cancer types including lung and prostate cancers. Blood is a primary source of
exRNAs that have been tested, but studies have also investigated urine. Especially saliva is
being explored as an emerging biofluid that is easy to collect, and has been shown to reflect
the spectrum of health and disease states found using serum [23,24].



Cancers 2022, 14, 3632 8 of 12

Standards for validation of biomarkers require that they be applied in the population
for which they are intended to be used [25]. A biomarker or panel of biomarkers which
can differentiate disease from normal in one population may not perform similarly in a
different population. We previously reported on a panel of salivary biomarkers which,
when combined with specific demographic factors, differentiated subjects with GC from
those without cancer in an Asian population with a high prevalence of gastric cancer.
Our aim was to evaluate the performance of salivary exRNA biomarkers for GC, which
we previously discovered and validated in Korean GC patients [7], in a U.S. population.
Previously, 12 mRNA and 6 miRNA candidates were verified with a discovery Korean
cohort by RT-qPCR and further validated with an independent Korean cohort (n = 200).
The configured biomarker panel consisted of three mRNAs (SPINK7, PPL, and SEMA4B)
and two miRNAs (miR-140-5p and miR-301a), which were all significantly downregulated
in the GC group, and yielded an AUC of 0.81 (95% CI 0.72–0.89). When combined with
demographic factors, the AUC of the biomarker panel reached 0.87 (95% CI 0.80–0.93) [7].
In our prior study, demographic characteristics (including age, gender, and smoking) were
all highly significant predictors of case status [7], while, in the current U.S. MD Anderson
Cancer Center cohort, only gender was significant (Table 4). However, this U.S. cohort (MD
Anderson Cancer Center cohort) had more ethnic diversity including Caucasian (51% of
the GC group and 65.3% of the control group), Black non-Hispanic (19.6% of the GC group
and 12.2% of the control group), and Hispanic (17.6% of the GC group and 16.3% of the
control group) subjects, with the Asian population as the least prevalent group (11.8% of
theGC group and 6.1% of the control group). In a previous study [7], Asians constituted
100% of the GC and control groups for both mRNA and miRNA discovery and validation
phases (Figure 2). In addition, in the current study, the samples were obtained from older
patients (GC group, 61 years old and control group, 60 years old), fewer smokers (present
or prior smoking, 43.1% of the GC group and 42.9% of the control group), and fewer males
(62.7% of the GC group and 32.7% of the control group) as compared with the Korean
cohort (Figure 2) [7].

It is unclear how these factors may account for differences between the two distinct
populations with respect to biomarker profiles. Interestingly, the prevalence of H. pylori
positivity in the U.S. population with gastric cancer was relatively low as compared with
Asian populations with gastric cancer where H. pylori was a major risk factor. There was no
difference, however, in the prevalence of H. pylori between cancer patients and controls in
the U.S. cohort, but the number of subjects studied was small.

These demographic differences may be important factors to consider for validation
of salivary exRNA GC biomarkers in two entirely independent patient cohorts (Korea vs.
USA). Our study indicated that, overall, the demographic factors in this U.S. cohort were
similar (AUC of 0.68) to those of the Korean cohort (AUC of 0.69) [7]. In our previous
study with Korean subjects, we found a difference in nearly all the selected mRNAs
(ANXA1, CD24, CSTB, ERO1A, KRT4, KRT6A, PPL, RANBP9, S100A10, SEMA4B, and
SPINK7) and miRNAs for GC (miR-140-5p, miR-374a, miR-454, miR-15b, miR-28-5p, and
miR-301a). They were all statistically significant (FDR-adjusted p-value <0.05). However, in
the U.S. cohort, none of the miRNAs (miR-140 and miR-301) and mRNAs (SPINK7, PPL,
and SEMA4B) performed similarly (Supplementary Materials Figure S1). Therefore, any
model constructed from the prior Korean cohort could not be generalized to the current
U.S. cohort [7].
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Figure 2. Comparison of demographic characteristics between Korean and U.S. study groups.
The demographic characteristics of the Korean cohort used in our previous study [7] (Table 1
for the discovery phase and Table 2 for the validation phase) were compared with the demo-
graphic characteristics of the U.S. cohort used in this study (Table 3). (Tables 1 and 2 adapted
from Li et al. [7]. Reprinted with permission of the Oxford University Press, Copyright © 2022 Amer-
ican Association of Clinical Chemistry. Li et al., Discovery and Validation of Salivary Extracellular
RNA Biomarkers for Noninvasive Detection of Gastric Cancer. Clin. Chem. 2018, 64, 1513–1521.
https://doi.org/10.1373/clinchem.2018.290569).

Interestingly, there was a statistically significant difference between a new model with
only demographic characteristics (AUC = 0.68) and a new model with demographic charac-
teristics, and miRNA/mRNA biomarkers for GC (AUC = 0.78) (Figure 1) (Delong’s test
p-value = 0.037), indicating that the model with both miRNAs and mRNAs together with
demographic characteristics (Model 3) was much better than the model with demographic
characteristics alone (Model 1). Interestingly, our panel has a potential to perform better in
discriminating non-GC controls from early-stage GC (I, II) (AUC = 0.85 (95% CI 0.72–0.99))
as compared with the late-stage GC (III, IV) (AUC = 0.75 (95% CI 0.64–0.85)), although this
still would need to be confirmed in a follow-up study. Thus, we were able to validate a
panel of salivary exRNA biomarkers with credible clinical performance for the detection of
GC in a U.S. population. Our study confirms, again, the potential utility of salivary exRNA
biomarkers in screening and risk assessment for GC.

4.1. Current Biomarker Performance

Most of the currently available published reports are based on blood-based biomarkers
for GC. So et al. developed a 12-miR assay from serum specimens (miR-140, miR-183, miR-
30e, miR-103a, miR-126, miR-93, miR-142, miR-21, miR-29c, miR-424, miR-181a, and miR-340)
in a three-phase, multicenter study comprising 5248 subjects from Singapore and Korea in
retrospective cohorts of 682 subjects [26]. Interestingly, one of the miRNAs was miR-140,
the same as that investigated in our studies. The 12- miRNA panel yielded an AUC of 0.93
(95% CI 0.90–0.95) and an AUC of 0.92 (95% CI 0.88–0.96) in the discovery and verification
cohorts, respectively. In this prospective study, overall sensitivity was 87.0% (95% CI

https://doi.org/10.1373/clinchem.2018.290569
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79.4–92.5%) at specificity of 68.4% (95% CI 67.0–69.8%). Interestingly, the AUC was 0.848
(95% CI 0.81–0.88), much higher than other more frequently used gastric tumor markers
such as H. pylori serology (0.635), pepsinogen (PG) 1/2 ratio (0.641), PG index (0.576),
ABC method (0.647), CEA (0.576), and CA19-9 (0.595) [26]. Other plasma miRNAs yielded
AUCs from 0.65 to 0.75 for miR-185, miR-20a, miR-210, miR-25, and miR-92b [27]. In another
study, miR-181a-1 and KAT2B mRNA were identified as a combined predictor for GC with
AUC > 0.95 [28], while the expression levels of HOXC6 mRNA in patients with advanced
GC (AGC) were found to be significantly higher than those in patients with early-stage GC
(EGC) [29]. Another report suggested that the combination of three biomarkers (collagen
type VI alpha 3 chain (COL6A3), serpin family H member 1 (SERPINH1), and pleckstrin
homology and RhoGEF domain containing G1 (PLEKHG1)) yielded an elevated AUC of
0.907. A higher COL6A3 level was also significantly correlated with lymph node metastasis
and poor prognosis in GC patients, while high levels of SERPINH1 and PLEKHG1 mRNA
expression were correlated with lower overall survival (OS) in GC patients [30]. CircRNAs
may also be an auxiliary diagnostic biomarker of GC [16]. In a combined 11 studies, which
included 12 types of circRNAs (11 in tissues and 5 in plasma), all were downregulated.
The combined diagnostic OR (DOR) and AUC with 95% CI were 8.778 (6.108, 12.614) and
0.81 (0.78, 0.84) respectively [31]. Another type of RNA with diagnostic value for GC
detection include long non-coding RNAs (lncRNAs). The ROC curve showed that the AUC
of serum lncRNA HCP5 detected by qRT-PCR was 0.818 (95% CI 0.757–0.880, p < 0.001,
80% sensitivity, and 70% specificity), while the three combined diagnoses (HCP5, CEA, and
CA199) provided the highest AUC of 0.870 (95% CI 0.819–0.921, p < 0.001) in distinguishing
between GC and healthy donors reaching 81% sensitivity and 79% specificity [32]. In
addition, it was found that LINC00941 was associated with tumor depth and distant
metastasis in GC as it could discriminate GC samples from normal samples (AUC = 0.7911,
95% CI 0.7264–0.8559, p < 0.0001) and M1 samples from M0 samples (AUC = 0.6809, 95%
CI 0.5852–0.7766, p = 0.0031) [33].

4.2. Limitations, Future Studies, and Advantage of the Markers Used in This Study

The abovementioned studies suggest salivary RNAs as potential biomarkers for the
diagnosis of GC, but emphasize the need for validation in intended use populations.
However, no study of adequate sample size for independent validation has been performed
to date. There remains an unmet need to develop a noninvasive biomarker assay for
identifying patients with GC from a high-risk population. Thus, the major advantage of
the markers used in the current study is their noninvasive nature, which is important for
population-based screening in at-risk populations.

5. Conclusions

We aimed to develop universal biomarkers for GC that could be applicable to all
individuals regardless of their ethnic origin. Although we were unable to ”validate” the
prior model developed based on a Korean cohort [7], we were able to demonstrate that our
markers had diagnostic utility above and beyond demographic factors alone. Additional
studies are needed to evaluate the diagnostic utility of our models in different ethnic
populations, such as a Korean cohort in a U.S. population. More importantly, our study
emphasizes the importance of population-specific biomarker development and validation
for salivary exRNA biomarker for GC detection.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cancers14153632/s1, Figure S1: Comparison of miRNA and mRNA
biomarker performance for GC between Korean and the U.S. MD Anderson Cancer Center study
groups, Table S1: The list of mRNA biomarker candidates and primer sequences used for validation.
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