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Abstract

Competitive Fragmentation Modeling for Metabolite Identification (CFM-ID) is a machine 

learning tool to predict in silico tandem mass spectra (MS/MS) for known or suspected 

metabolites for which chemical reference standards are not available. As a machine learning tool, 

it relies on both an underlying statistical model and an explicit training set that encompasses 

experimental mass spectra for specific compounds. Such mass spectra depend on specific 

parameters such as collision energies, instrument types, and adducts which are accumulated in 

libraries. Yet, ultimately prediction tools that are meant to cover wide expanses of entities must 

be validated on cases that were not included in the initial training and testing sets. Hence, 

we here benchmarked the performance of CFM-ID 4.0 to correctly predict MS/MS spectra for 
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spectra that were not included in the CFM-ID training set and for different mass spectrometry 

conditions. We used 609,456 experimental tandem spectra from the NIST20 mass spectral library 

that were newly added to the previous NIST17 library version. We found that CFM-ID’s highest 

energy prediction output would maximize the capacity for library generation. Matching the 

experimental collision energy with CFM-ID’s prediction energy produced the best results, even 

for HCD-Orbitrap instruments. For benzenoids, better MS/MS predictions were achieved than for 

heterocyclic compounds. However, when exploring CFM-ID’s performance on 8,305 compounds 

at 40 eV HCD-Orbitrap collision energy, >90% of the 20/80 split test compounds showed <700 

MS/MS similarity score. Instead of a stand-alone tool, CFM-ID 4.0 might be useful to boost 

candidate structures in the greater context of identification workflows.

Graphical Abstract

INTRODUCTION

The expanse of metabolites observed in humans, plants, and other forms of life is enormous. 

The Human Metabolome Database (HMDB) alone currently contains well over 100,000 

documented metabolites, and the total plant metabolome is believed to span over 1 

million compounds.1,2 In liquid chromatography coupled to tandem mass spectrometry 

(LC-MS/MS)-based metabolomics, a compound in a sample is commonly annotated by 

comparing their experimental mass spectra to reference mass spectra that are contained 

in a mass spectral libraries.3 Classically, these libraries are developed by acquiring mass 

spectra from authentic analytical standards. In practice, however, reference mass spectra are 

available for only a small fraction of the metabolome.4,5 The coverage of compounds in 

PubChem that have associated mass spectra is estimated to be less than 1%.4 Therefore, 

millions of compounds do not have associated experimental mass spectra, and moreover, 

most of them are not commercially available. Hence, mass spectra for these compounds 

must be predicted by in silico tools to facilitate compound identification in untargeted 

metabolomics.6 Predicted reference MS/MS spectra are in untargeted metabolomics because 

it is estimated that more than 80% of unknown MS/MS spectra remain unidentified.

Numerous computational tools have been developed for compound identification or structure 

elucidation.7 The three basic approaches are as follows: (1) rule-based fragmentation tools,8 
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for which fragmentation trends are identified by either classic organic chemistry based rules 

such as hydrogen-rearrangement rules9 or literature based reaction rules,10 (2) quantum 

chemistry tools,11,12 in which first principle theory is applied to simulate fragmentation 

of a compound of interest [Quantum chemistry tools such as quantum-chemical electron 

ionization mass spectra (QCEIMS) are generally applied to electron ionization spectra, but 

there have been recent works to predict ESI-MS spectra.13], and (3) machine learning 

tools,14,15 for which statistical models are parametrized to generate spectra based on 

compound and spectrum relationships. These tools produce millions of in silico reference 

mass spectra relatively quickly and easily in hopes to alleviate the pressing demand for 

reference MS/MS spectra. The success of enhancing experimental libraries within silico 

libraries has been demonstrated; however, it is also clear that as stand-alone tools, they 

are not sufficient.16 Other machine learning tools attempt to predict chemical structures 

or chemical fingerprints from spectra. Examples are CSI:FingerID, the structure classifier 

Canopus, or ChemDistiller.17–19

CFM-ID 4.0, the tool tested in this publication, is a machine learning software based on 

a stochastic homogeneous Markov process, with additional hard-coded fragmentation rules 

for certain classes of compounds such as complex lipids.8 Therefore, it is important to 

highlight that in this paper we examine the underlying statistical model in conjunction 

with its default training set. However, CFM-ID comes with the capacity to reparametrize 

according to whatever example set the user might provide. CFM-ID was trained on a set of 

12,165 Q-TOF fragmentation spectra for the [M + H]+ adducts and 6,120 MS/MS spectra 

for the [M – H]− adducts, covering collision energies of 10, 20, and 40 eV.4 Accordingly, 

CFM-ID predicts spectra for these collision energies for any given input compound.

The chemical space of the metabolome is more expansive than any training set. The higher 

accessibility of high accuracy mass spectrometers today enables the use of training sets 

that are representative of both orbital ion trap and Q-TOF mass spectrometers equally. We 

therefore tested CFM-ID’s prediction capabilities for compounds, fragmentation methods, 

and collision energies that it has not yet encountered. To accomplish this, we predicted 

spectra for the highly curated and reliable NIST20 MS/MS library, which contains 

compounds that are not included in CFM-ID’s training set that were measured on both 

Q-TOF and orbital ion trap instruments.

METHODS

The workflow for our methods is shown in Figure 1. We used the highly curated NIST20 

library from the U.S. National Institute of Standards and Technology (NIST) as input of 

spectra and molecules into the benchmarking test.20 Compounds found in NIST1721 or the 

CFM-ID training set were removed from the NIST20 library set. The remaining chemical 

structures were used to predict MS/MS spectra using the CFM-ID 4.04 and the Mass 

Spectrum Rule-Based Fragmenter (MSRB) 1.1.3 software programs that were provided in 

Docker image format from the David Wishart laboratory (University of Alberta, Canada).22 

The software performance was evaluated by matching predictions against experimental 

NIST20 library MS/MS spectra using the unweighted dot product with a mass tolerance 

of 10 ppm and excluding all ions within 2 Da of precursors. All spectra were normalized 
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to relative abundance before calculating mass spectral similarities. Compound structures 

were classified according to the Wishart laboratory ClassyFire tool using the batch version 

implemented at http://cfb.fiehnlab.ucdavis.edu.23 To test our similarity-prediction model, the 

Vaniya/Fiehn Natural Product Library set of Q-Exactive HF orbital ion trap accurate mass 

MS/MS spectra (VFNPL) was freely downloaded from the Massbank of North America 

(https://massbank.us). For all chemical structure data sets, CACTVS molecular fingerprints 

were obtained using the PubChem web tool.24 All analyses were conducted using custom 

python scripts.

RESULTS AND DISCUSSION

Selecting Experimental MS/MS Spectra.

The NIST20 MS/MS library is composed of 27,613 compounds that generated 1,026,712 

MS/MS mass spectra. This library is commercially available to the public and is released 

in three-year intervals after extensive curation. Only spectra for the most often observed 

[M + H]+ and [M – H]− adducts were used to yield a consistent and large benchmarking 

data set. Compared to the 2017 release (NIST17 library), there was a significant increase 

with 15,961 compounds and 609,456 spectra newly added. A few NIST20 molecules were 

already used in CFM-ID training libraries and consequently removed, leaving 15,328 and 

15,494 compounds in the [M + H]+ and [M – H]− benchmarking set, respectively. While 

CFM-ID was solely trained on Q-TOF mass spectra, we included Q-TOF as well as orbital 

ion trap spectra. Orbital ion trap spectra included both higher energy collisional dissociation 

(HCD) and collision induced dissociation (CID) fragmentations.

Creating the CFM-ID Library.

For these filtered NIST20 compounds, a CFM-ID 4.0.4 spectral library was created that was 

patched with CFM-ID predictions for molecules for which a rule-based upgrade model was 

available, MSRB 1.1.3. The MSRB-Fragmenter patch is an add-on tool that predicts spectra 

based on rules. The CFM-ID web tool shows users rule-based predictions when available, 

instead of machine-learning based predictions. Therefore, to replicate user experience, we 

utilized the MSRB predictions when possible.4 In total, the MSRB-Fragmenter yielded 834 

spectra for 278 compounds for [M + H]+ adducts and 822 spectra for 274 compounds for [M 

– H]− adducts.

Overall CFM-ID Performance.

We aimed at benchmarking the performance of CFM-ID on spectra that were not included in 

either training, testing, or validating CFM-ID software.25 CFM-ID version 4.0 was created 

in early 2020. For that reason, we utilized the NIST20 MS/MS library that was released 

in June 2020 and removed all compounds that were present in NIST17 or the CFM-ID 4.0 

training set. For each remaining compound, we generated CFM-ID predictions for three 

collision-induced dissociation energies, 10, 20, and 40 eV. After removing CFM-ID training 

compounds, NIST17 compounds, and uncommon adducts, 248,207 spectra remained. For 

each spectrum, we obtained the dot product similarity score with all three energy predictions 

for CFM-ID. We did not include any peak within 2 Da of the precursor ion because the 

precursor ion signifies the intact molecule and must be considered as orthogonal to MS/MS 
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fragment spectra and because the intensity of precursor ions varies considerably between 

instrument types and collision energies. For each experimental spectrum, we saved only the 

score with the greatest similarity among its three comparisons.

We hypothesized that that the quality of CFM-ID predictions of these spectra might 

depend on (a) instrument type and type of collision induced-fragmentation, (b) adduct 

type (a complexity which we limited by constraining to only protonated and deprotonated 

molecules), and (c) collision energy and, finally, the actual compound structure (defined by 

InChI Codes which were hashed as InChIKeys). We first partitioned 248,207 NIST20 mass 

spectra into six groups defined by instrument type and adduct type as given in Table 1.

When subjecting these molecules to in silico fragmentation by CFM-ID 4.04 and 

benchmarking these spectra against the NIST20 experimental mass spectra, we were 

surprised to see a clear dichotomy of matches in a histogram plot (Figure 2), with very 

disparate frequencies of a number of compounds that excellently matched to experimental 

mass spectra (at dot-score similarity > 950) and many more compounds that did not show 

satisfying MS/MS similarities (<50 dot-score similarity). Between these two boundaries we 

found a nearly flat distribution of a few other compounds. For Q-TOF spectra, the low total 

number of compounds may have hampered finding any good MS/MS matches at all.

Impact of Collision Energy on CFM-ID Performance.

Next, we analyzed the impact of collision energies. We first focused on the 157,407 

protonated MS/MS spectra fragmented in HCD-mode using orbital ion traps and compared 

these to the 1,111 mass spectra in the positive ESI mode obtained by a Q-TOF mass 

spectrometer. In contrast to the overall analysis in Figure 2 that focused on the best MS/MS 

match across all experimental and in silico collision energies, here we kept all individual 

MS/MS dot-score similarities separate that matched each experimental spectrum against 

the simulated CFM-ID spectra for each of the three CFM-ID predictions. We binned 

all experimental collision energies into 1 eV bins, ranging from 1 to 45 eV for Q-TOF 

spectra and 1−70 eV for orbital ion trap mass spectra (Figure 3). For orbital ion traps, 

energy data differed within the NIST20 library, and we therefore selected only one specific 

instrument type (the Thermo Finnigan Elite Orbitrap data) to be able to utilize uniform 

energy descriptors. For the full range of energies calculated for this instrument type, we 

generated 200 bins but found a dramatic dip in the number of spectra beyond the first 50 

bins (up to 70 eV) to which we therefore limited the analyses. We conclude that CFM-ID 

performs poorly for the Q-TOF mass spectra from the NIST20 library that were not publicly 

available during CFM-ID 4.0 software development. We did not find any relationship of 

dot-score similarities of predicted versus experimental spectra, neither with respect to the 

experimental energies nor when analyzed for the different simulated energies at 10–40 eV.

For the Elite Orbitrap mass spectra, we yielded a more nuanced result. While averaged 

MS/MS dot-score similarities remained well below the mark of 600 scores, a threshold 

that is often used to annotate compounds in experimental MS/MS investigations, we still 

saw an increase in higher-ranking dot-score similarities depending on the collision energies. 

For simulated low collision energies at 10–20 eV in CFM-ID (orange and purple graphs 
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in Figure 3b), much better dot scores were achieved for experimental spectra at <10 eV
or <20 eV than at >40 eV collision energies. Vice versa, CFM-ID spectra simulated for 

40 eV collision energy showed the best dot-score similarities around 40 eV experimental 

collision energies. Based on these observations, we conclude that CFM-ID is best used for 

Orbitrap spectra that match in silico with experimental collision energies. However, very 

often experimental MS/MS spectra at 10–20 eV showed very simplistic mass spectra with 

very little fragmentation, which we interpret as the main reason why average dot-score 

similarities reached higher maxima than experimental versus predicted MS/MS spectra at 40 

eV. In practice, low energy MS/MS spectra only yield uninformative neutral losses such as 

water or ammonium losses. Hence, for the purpose of annotating unknown compounds with 

in silico libraries, experimental and in silico spectra at 40 eV should be more useful.

Orbital ion trap collision energies are often given in relative normalized collision energies 

(%NCE). To refer %NCE values to energies given in eV, we used information from metadata 

given in the NIST20 library for collision energies for the Thermo Finnigan Elite Orbitrap 

instrument containing both eV and %NCE information. Applied Orbitrap energies are 

represented as proportions of an optimal energy that scales (linearly) with the precursor 

mass. This proportion is typically written as “%NCE”.

Applied eV = Optimal eV × %NCE

and

(Optimal eV) ∝ (Precursor mass)

therefore

Applied eV ∝ Precursor mass × %NCE

The applied eV was used as the x-axis in Figure 3b. Hence, histograms give very similar 

results if eV values are known of if they are displayed as Precursor mass × %NCE
(Supplement S1).

For other instrument types, such as the Thermo Fisher Lumos instrument, a different 

constant C in the proportionality would be needed. For this reason, we did not include 

all Orbitrap NIST20 spectra but only spectra from this specific instrument type. Overall, it is 

clear that one cannot simply use %NCE values that are typically reported for orbital ion trap 

instruments and report definitive eV values across all instrument types.

We wondered why most spectra predictions gave either excellent results at >900 similarity 

or dismal results at <100 similarity. We used the best scoring CFM-ID energy for each 

molecule and analyzed the percentage of all 86,747 molecules for [M + H]+ adducts 

for the Thermo Finnigan Elite orbital ion trap mass spectrometer that yielded acceptable 

dot-score similarities between CFM-ID predictions and HCD-experimental MS/MS spectra 

(Figure 4). In this analysis, it becomes clear that very good predictions were found for a 
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comparatively large population of very low experimental collision energies, while very poor 

MS/MS predictions consisted of a comparatively large population of very high experimental 

collision energies. The “best predictions” (>950) were bolstered by experimental collision 

energies close to 1 eV. Hence, the vast majority of the “best predicted spectra” resulted 

from a systematic bias of matching very simple MS/MS fragmentation spectra with simple 

predictions.

Impact of a Molecule Structure on CFM-ID Performance.

Next, we investigated the impact of a structure on CFM-ID predictability. To remove 

observed systematic bias from mismatched energies, we limited the analyses of MS/MS 

spectra to the 8,035 molecules that were assigned with explicit eV units in the NIST20 

library between 35 and 45 eV for the Thermo Finnigan Orbitrap. Figure 5 shows that for 

>90% of these compounds, MS/MS similarity dot scores of <700 were yielded, even when 

choosing the optimal 40 eV setting in CFM-ID predictions for HCD-Orbitrap spectra. Yet, 

for about 10% of these molecules, decent MS/MS spectra could be simulated with dot scores 

> 600 and in some cases even >800 dot-score similarities.

We therefore used this subset of data to explore the impact of chemical structure on 

CFM-ID predictability of MS/MS spectra. We first hypothesized that compounds with 

a greater similarity to the CFM-ID training set might yield better dot-score MS/MS 

similarities. To this end, we acquired CACTVS fingerprints using the PubChem REST API 

for 4,040 molecules of the training set (that was disclosed by the authors of the CFM-ID 

software) and applied these to 8,298 chemical fingerprints for the 35–45 eV HCD spectra 

molecules for [M + H]+ adducts in the Orbitrap NIST20 database.26 With all chemical 

fingerprints combined, we created a 2-dimensional reduction embedding of fingerprints 

using Uniform Manifold Approximation and Projection (UMAP), Figure 6.27 We also 

examined dimensionality reduction using PCA and t-SNE. Pairwise comparison of PCA’s 

dimensions as well as t-SNE projections yielded the same clustering of well-performing 

compounds (Supplements S2, S3). Chemical fingerprints of molecules with low dot-score 

MS/MS similarities were expected to be found far away from the training data. We found 

that compounds with very poor MS/MS dot scores (dark blue) showed UMAP structural 

overlaps to the same degree as compounds with good dot scores. Hence, chemical similarity 

to the training data itself did not predict the ability to correctly simulate MS/MS spectra in 

CFM-ID. Instead, we found clusters of good predictions (yellow dots), suggesting a success 

of CFM-ID for very specific chemical classes but not for others. To this end, we classified 

all 8,298 molecules by the ClassyFire algorithm into chemical SuperClasses and analyzed 

the proportion of dot-score similarities for the top-6 SuperClasses (Figure 7). It became 

clear that well-predicted compounds in CFM-ID at >900 dot-score similarities were very 

likely to be benzenoids, while the poorly predicted compounds at <600 dot scores were 

likely to be organoheterocyclics. The overall proportion of chemical compounds was heavily 

biased toward these two SuperClasses, precluding definitive comments about other chemical 

structures.

Intrigued by the notion that specific compound types were well-predicted and specific 

compound types were poorly predicted, we sought to achieve a higher-resolution view on 
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chemical substructures. Here, we used a random forest approach to identify fingerprint bits 

with the capability to distinguish between well-predicted and poorly predicted compounds 

and then later, in an attempt to predict CFM-ID’s capability to predict spectra, used a binary 

classification scheme with a dot-score similarity of 700 as a watershed mark between good 

and poorly predictable substructures.

This simplistic binary scheme was performed to allow the RF model to learn specific 

chemical features that had a high impact on overall good CFM-ID scoring, instead of 

using regression models that might focus on differentiating among the more sampled, 

lower MS/MS similarity dot scores. We chose the model that maximized precision because 

precision is most important for building libraries of predicted MS/MS spectra. To identify 

features, we selected the top-50 chemical fingerprint bits that showed the greatest capacity to 

distinguish between good and worse MS/MS predictions. We examined the distributions 

for compounds for each chemical fingerprint bit in heatmaps and give results for the 

top-substructure fingerprints in Table 2, Table 3, and Supplement S2. Using the chemical 

fingerprint bit 185 (“two rings of membership 6”) and bit 143 (“at least 1 ring of size 

5”) explicitly reproduced the result of the superclass analysis. Hence, both the fingerprint 

analysis and the ClassyFire SuperClass analysis showed that CFM-ID maintained the trained 

ability to predict MS/MS spectra for simple aromatic molecules that consisted of carbon-

only rings. However, this training did not extend to other cyclic structures such as small ring 

systems with heteroatoms for which CFM-ID predictions failed. Using a train/test split as 

20%/80%, chosen randomly from the NIST20 data set, we found that more than 90% of 

the structures yielded <700 dot-score similarities to the corresponding experimental spectra 

(see the confusion matrix, Supplement S3). Yet, 20 of the 23 benzenoids included in this 

withheld testing set gave >700 dot score similarities of confidence that the model can be 

used to select subsets of proposed compounds for which one can generate an in silico 

library.

To confirm how generalized this model is, we sought an orthogonal test set for which we 

used the Vaniya-Fiehn Natural Product Library within the public MassBank.us repository. 

Because our collision energy analysis for CFM-ID strongly suggested that matching 

the %NCE for Orbital Ion Trap instrument was extremely important, we removed all 

compounds for which we could not obtain or calculate an equivalent %NCE to match the 

CFM-ID “40 eV collision energy”. This constraint left 226 compounds to be tested using 

the CFM-ID 40 eV prediction. When removing all ions within 2 Da of the precursor ion, 

only 6 of the 226 tested natural product compounds yielded a >700 dot score (Supplement 

S3), confirming that CFM-ID has very limited prediction ability for correct MS/MS spectra 

beyond simple benzenoid structures.

CONCLUSIONS

It is important that machine learning-based prediction models are tested and benchmarked 

by independent analyses on data sets that were not available during model building. Here, 

we tested mass spectra from NIST20 and MassBank.us (MassBank of North America) to 

probe the accuracy for which CFM-ID 4.0 was able to predict spectra from the structure, 

a holy grail in tools for use in untargeted metabolomics or exposome research. As a 
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standalone too, CFM-ID’s performance provides only a few spectra with high MS/MS 

similarity scores when validated against experimental spectra. However, even with low 

dot-score similarities, tools like CFM-ID might be worthwhile to be used in the context 

of compound identification workflows to boost some structures over alternative chemicals, 

as has been shown in the CASMI 2016 contest.16 For example, CFM-ID could be used 

to predict fragmentation at 40 eV at which richer fragmentations occur that are useful 

for compound identification. For HCD spectra in orbital ion trap mass spectrometers, we 

observed some structural clusters of good MS/MS predictability. While it is not possible to 

match CFM-ID to a specific %NCE, CFM-ID collision energies in eV are proportional to 

the product of %NCE and precursor mass of the compound. Based on these results, it seems 

reasonable that for improvement of MS/MS in silico prediction from structures, Q-TOF and 

HCD experimental spectra may be combined to expand the space of training sets. During 

our benchmarking tests, we found that the accuracy of CFM-ID 4.0 predictions depended on 

specific chemical substructures but not on the similarity of tested structures to the structural 

space in the training set. Hence, we can conclude that currently, machine learning for direct 

MS/MS predictions in CFM-ID did not work for most compound classes, except for the 

ClassyFire SuperClass of benzenoids. Nevertheless, if CFM-ID 4.0 is cautiously used in 

conjunction with compound-identification workflows, it may improve overall compound 

ID scores.16,28 We hope that in the coming years the standardization of metabolomics 

repositories will enable massive data sets to drive the progress of machine learning methods 

to predict mass spectra from chemical structures.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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DATA AND SOFTWARE AVAILABILITY

The code used in this manuscript is available at https://github.com/plbremer/

cfmid_2. The CFM-ID docker images are available at https://hub.docker.com/

repository/docker/wishartlab/cfmid. The NIST20 and NIST17 data sets are available 

for purchase at https://www.nist.gov/programs-projects/nist20-updates-nist-tandem-and-

electron-ionization-spectral-libraries. The VFNPL is freely available at https://massbank.us/.

ABBREVIATIONS

MS/MS tandem mass spectrometry

NIST National Institute of Standards and Technology

HMDB Human Metabolome Database
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LC liquid chromatography

QTOF quadrupole time of flight

MSRB Mass Spectrum Rule-Based Fragmenter

VFNPL Vaniya/Fiehn Natural Product Library

HCD higher-energy collisional dissociation

CID collision-induced dissociation

NCE normalized collision energy

UMAP Uniform Manifold Approximation/Projection

REFERENCES

(1). Wishart DS; Feunang YD; Marcu A; Guo AC; Liang K; Vázquez-Fresno R; Sajed T; Johnson 
D; Li C; Karu N; Sayeeda Z; Lo E; Assempour N; Berjanskii M; Singhal S; Arndt D; Liang Y; 
Badran H; Grant J; Serra-Cayuela A; Liu Y; Mandal R; Neveu V; Pon A; Knox C; Wilson M; 
Manach C; Scalbert A HMDB 4.0: The Human Metabolome Database for 2018. Nucleic Acids 
Res. 2018, 46 (D1), D608–D617. [PubMed: 29140435] 

(2). Rai A; Saito K; Yamazaki M Integrated Omics Analysis of Specialized Metabolism in Medicinal 
Plants. Plant J. Cell Mol. Biol. 2017, 90 (4), 764–787.

(3). Cajka T; Fiehn O Toward Merging Untargeted and Targeted Methods in Mass Spectrometry-Based 
Metabolomics and Lipidomics. Anal. Chem. 2016, 88, 524. [PubMed: 26637011] 

(4). Djoumbou-Feunang Y; Pon A; Karu N; Zheng J; Li C; Arndt D; Gautam M; Allen F; Wishart 
DS CFM-ID 3.0: Significantly Improved ESI-MS/MS Prediction and Compound Identification. 
Metabolites 2019, 9 (4), 72. [PubMed: 31013937] 

(5). Go Y-M; Walker DI; Liang Y; Uppal K; Soltow QA; Tran V; Strobel F; Quyyumi AA; Ziegler 
TR; Pennell KD; Miller GW; Jones DP Reference Standardization for Mass Spectrometry and 
High-Resolution Metabolomics Applications to Exposome Research. Toxicol. Sci. 2015, 148 (2), 
531–543. [PubMed: 26358001] 

(6). Schrimpe-Rutledge AC; Codreanu SG; Sherrod SD; McLean JA Untargeted Metabolomics 
Strategies – Challenges and Emerging Directions. J. Am. Soc. Mass Spectrom. 2016, 27 (12), 
1897–1905. [PubMed: 27624161] 

(7). Krettler CA; Thallinger GG A Map of Mass Spectrometry-Based in Silico Fragmentation 
Prediction and Compound Identification in Metabolomics. Brief. Bioinform. 2021, 22 (6), 
bbab073. [PubMed: 33758925] 

(8). Allen F; Greiner R; Wishart D Competitive Fragmentation Modeling of ESI-MS/MS Spectra for 
Putative Metabolite Identification. Metabolomics 2015, 11 (1), 98–110.

(9). Tsugawa H; Kind T; Nakabayashi R; Yukihira D; Tanaka W; Cajka T; Saito K; Fiehn O; 
Arita M Hydrogen Rearrangement Rules: Computational MS/MS Fragmentation and Structure 
Elucidation Using MS-FINDER Software. Anal. Chem. 2016, 88 (16), 7946–7958. [PubMed: 
27419259] 

(10). Thermo Fisher Scientific. Powering Confident Insights - Explore Your Small-Molecule Data to 
Its Core; 12pp.

(11). Ásgeirsson V; Bauer CA; Grimme S Quantum Chemical Calculation of Electron Ionization 
Mass Spectra for General Organic and Inorganic Molecules. Chem. Sci. 2017, 8 (7), 4879–4895. 
[PubMed: 28959412] 

(12). Wang S; Kind T; Tantillo DJ; Fiehn O Predicting in Silico Electron Ionization Mass Spectra 
Using Quantum Chemistry. J. Cheminformatics 2020, 12 (1), 63.

Bremer et al. Page 10

J Chem Inf Model. Author manuscript; available in PMC 2024 October 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(13). Borges RM; Colby SM; Das S; Edison AS; Fiehn O; Kind T; Lee J; Merrill AT; Merz KM; Metz 
TO; Nunez JR; Tantillo DJ; Wang L-P; Wang S; Renslow RS Quantum Chemistry Calculations 
for Metabolomics. Chem. Rev. 2021, 121 (10), 5633. [PubMed: 33979149] 

(14). Wei JN; Belanger D; Adams RP; Sculley D Rapid Prediction of Electron–Ionization Mass 
Spectrometry Using Neural Networks. ACS Cent. Sci. 2019, 5 (4), 700–708. [PubMed: 
31041390] 

(15). Liebal UW; Phan ANT; Sudhakar M; Raman K; Blank LM Machine Learning Applications for 
Mass Spectrometry-Based Metabolomics. Metabolites 2020, 10 (6), 243. [PubMed: 32545768] 

(16). Blaženović I; Kind T; Torbašinović H; Obrenović S; Mehta SS; Tsugawa H; Wermuth T; Schauer 
N; Jahn M; Biedendieck R; Jahn D; Fiehn O Comprehensive Comparison of in Silico MS/MS 
Fragmentation Tools of the CASMI Contest: Database Boosting Is Needed to Achieve 93% 
Accuracy. J. Cheminformatics 2017, 9 (1), 32.

(17). Dührkop K; Shen H; Meusel M; Böcker S Searching molecular structure databases with tandem 
mass spectra using CSI:FingerID. PNAS 2015, 112, 12580. [PubMed: 26392543] 

(18). Dührkop K; Nothias L-F; Fleischauer M; Reher R; Ludwig M; Hoffmann MA; Petras D; 
Gerwick WH; Rousu J; Dorrestein PC; Böcker S Systematic Classification of Unknown 
Metabolites Using High-Resolution Fragmentation Mass Spectra. Nat. Biotechnol. 2021, 39 (4), 
462–471. [PubMed: 33230292] 

(19). Laponogov I; Sadawi N; Galea D; Mirnezami R; Veselkov KA ChemDistiller: An Engine 
for Metabolite Annotation in Mass Spectrometry. Bioinformatics 2018, 34 (12), 2096–2102. 
[PubMed: 29447341] 

(20). NIST 20 MS/MS Library (2020); https://www.sisweb.com/software/nist-msms.htm#2 (accessed 
2021-03-04).

(21). Stein SE NIST 17 MS/MS LIbrary; 2017; DOI: 10.18434/T4H594.

(22). Wang F; Liigand J; Tian S; Arndt D; Greiner R; Wishart DS CFM-ID 4.0: More Accurate 
ESI-MS/MS Spectral Prediction and Compound Identification. Anal. Chem. 2021, 93 (34), 
11692–11700. [PubMed: 34403256] 

(23). Djoumbou Feunang Y; Eisner R; Knox C; Chepelev L; Hastings J; Owen G; Fahy E; 
Steinbeck C; Subramanian S; Bolton E; Greiner R; Wishart DS ClassyFire: Automated Chemical 
Classification with a Comprehensive, Computable Taxonomy. J. Cheminformatics 2016, 8 (1), 
61.

(24). PubChem/CACTVS Fingerprints. https://pubchemdocs.ncbi.nlm.nih.gov/data-specification 
(accessed 2021-09-08).

(25). Chao A; Al-Ghoul H; McEachran AD; Balabin I; Transue T; Cathey T; Grossman JN; Singh 
RR; Ulrich EM; Williams AJ; Sobus JR In Silico MS/MS Spectra for Identifying Unknowns: A 
Critical Examination Using CFM-ID Algorithms and ENTACT Mixture Samples. Anal. Bioanal. 
Chem. 2020, 412 (6), 1303–1315. [PubMed: 31965249] 

(26). Ihlenfeldt WD; Takahashi Y; Abe H; Sasaki S Computation and Management of Chemical 
Properties in CACTVS: An Extensible Networked Approach toward Modularity and 
Compatibility. J. Chem. Inf. Comput. Sci. 1994, 34 (1), 109–116.

(27). McInnes L; Healy J; Melville J UMAP: Uniform Manifold Approximation and Projection for 
Dimension Reduction. 2020, ArXiv180203426. ArXiv Preprint. Cs Stat. https://arxiv.org/abs/
1802.03426#:~:text=UMAP%20(Uniform%20Manifold%20Approximation%20and,applies%20t
o%20real%20world%20data (accessed 2022-08-29).

(28). Schymanski EL; Ruttkies C; Krauss M; Brouard C; Kind T; Dührkop K; Allen F; Vaniya 
A; Verdegem D; Böcker S; Rousu J; Shen H; Tsugawa H; Sajed T; Fiehn O; Ghesquière B; 
Neumann S Critical Assessment of Small Molecule Identification 2016: Automated Methods. J. 
Cheminformatics 2017, 9 (1), 22.

Bremer et al. Page 11

J Chem Inf Model. Author manuscript; available in PMC 2024 October 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.sisweb.com/software/nist-msms.htm#2
https://pubchemdocs.ncbi.nlm.nih.gov/data-specification
https://arxiv.org/abs/1802.03426#:~:text=UMAP%20(Uniform%20Manifold%20Approximation%20and,applies%20to%20real%20world%20data
https://arxiv.org/abs/1802.03426#:~:text=UMAP%20(Uniform%20Manifold%20Approximation%20and,applies%20to%20real%20world%20data
https://arxiv.org/abs/1802.03426#:~:text=UMAP%20(Uniform%20Manifold%20Approximation%20and,applies%20to%20real%20world%20data


Figure 1. 
Overall method workflow.
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Figure 2. 
Overall CFM-ID performance measured by dot products between experimental NIST20 

MS/MS spectra and CFM-ID predictions for the same compound and adduct. The dot 

product was taken between experimental spectra and the three CFM-ID predictions, 

regardless of the fragmentation method or settings. The best scoring dot product among the 

three comparisons was recorded, and the total list was partitioned into six groups according 

to fragmentation conditions and adduct.
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Figure 3. 
Histograms of dot-score similarities for [M + H]+ molecules between experimental versus 

predicted MS/MS spectra, by experimental collision energies. Left (a): 1,111 experimental 

Q-TOF spectra from the NIST20 library. Right (b): 86,747 Thermo Finnigan Elite Orbital 

Ion Trap spectra from the NIST20 library.
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Figure 4. 
Histogram of [M + H]+/HCD-Orbitrap collision energy against CFM-ID predictions. Each 

normalized to the sum of spectra in that bin of dot product experimental column was scores.
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Figure 5. 
Histogram of 8,035 [M + H]+/HCD-Orbitrap compounds with experimental collision 

energies of 35–45 eV and simulated CFM-ID energy of 40 eV.
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Figure 6. 
2D UMAP embedding of CFM-ID positive training fingerprints and [M + H]+/HCD-

Orbitrap fingerprints. Upper panel (a) training data set. Lower panel (b) 8,298 molecules 

with 35–45 eV [M + H]+ MS/MS spectra superimposed onto the training data (red dots). 

The yellow/blue color scheme indicates the normalized dot product values 0–1000 between 

0 and 1.
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Figure 7. 
ClassyFire-defined chemical superclasses vs the MS/MS dot product similarity for HCD-

Orbitrap spectra [M + H]+ between 35 and 45 eV. Each binned column of the dot product is 

sum-normalized.
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Table 1.

MS/MS Spectra from the NIST20 Library Used to Benchmark CFM-ID Software

adduct and type of fragmentation number of tested spectra

 [M + H]+, Orbitrap HCD 157,407

 [M – H]−, Orbitrap HCD 71,026

 [M + H]+, Orbitrap CID 12,295

 [M – H]−, Orbitrap CID 6,333

 [M + H]+, Q-TOF MS/MS 1,111

 [M – H]−, Q-TOF MS/MS 35
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Table 2.

Substructures Associated with >700 Dot-Score Similarities by CFM-ID

Bit Number SMILES/SMARTS Visualization

185 At least 2 rings of size 6 N/A

333 C(~C)(~C)(~C)

345 C(~C)(~H)(~N) N/A

356 C(~C)(:C)(:C)

365 C(~H)(~N) N/A

430 C(-C)(-C)(=C)

516 [#1]-C=C-[#1]

688 C-C:C-C-C

708 C-C(C)-C-C

709 C-C(C)-C-C-C

710 C-C-C(C)-C-C
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Table 3.

Substructures Associated with <700 Dot-Score Similarities by CFM-ID

Bit Number SMILES/SMARTS Visualization

19 >=2 O N/A

143 At least 1 ring of size 5 N/A

340 C(~C)(~C)(~N)

374 C(~H)(~H)(~H) N/A

376 C(~N)(:C)

449 C(-N)(=C)

545 N-C:C-C

600 N-C:C:C-C

665 N-C:C-C-C
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