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EPIGRAPH

”Oh, no,” said the Lecturer in Recent Runes, pushing his chair back.
”Not that. That’s meddling with things you don’t understand.”

”Well, we are wizards,” said Ridcully.
”We’re supposed to meddle with things we don’t understand.

If we hung around waitin’ till we understood things we’d never get anything done.”

Interesting Times – Terry Pratchett

Humans make everything needlessly difficult.

A Long Way to a Small Angry Planet – Becky Chambers

iv
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The intelligent programming assistant, directly integrated into the programmer’s work-

flow, has been a long time dream of programmers and researchers alike. Before the advent of

Large Language Models (LLMs), this dream came closest to reality with Program Synthesis

in the form of Programming-by-Example, and now tools such as GitHub Copilot have brought

a version of it using LLMs to consumers. Alongside the technical developments in Program

Synthesis and LLMs that made these tools possible, another area of research has focused on

the usability of such tools, investigating user interfaces and interaction models that could most

effectively employ these techniques to the benefit of programmers.
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This dissertation explores the overlap between these research areas, focusing on syn-

chronous program synthesis where the user is in-the-loop, specifying synthesis problems and

waiting on the result. It includes human-centered contributions to each step the synthesis

process, exploring the use of Live Programming to improve specification in Programming-

by-Example in SNIPPY and LOOPY, an algorithmic contribution to bottom-up enumerative

synthesis with side effects in SOBEQ, and exploring interfaces for validation of AI-generated

programs for experienced developers in LEAP, and end user programmers in COLDECO.
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Chapter 1

Introduction

Synthesizing programs from some form of specification has existed since at least the

1960s [184], and is an active area of research today [103, 14, 70, 57, 82, 49, 69, 55, 53, 108]. At

time of writing, at least two forms of program synthesis have been developed into commercial

tools: FlashFill [63], which brought Programming-by-Example (PBE) to end-user programmers

in spreadsheets, and AI-powered auto-complete tools such as GitHub Copilot [60] and TabNine

[171], which use code context and natural language to generate many lines of code directly in

the IDE. Alongside such tools and techniques, a rich literature has been developing which ex-

plores the human-centered design space of program synthesis, and addresses its many usability

challenges [87, 76, 201, 179, 13, 110, 129, 190, 141, 143].

This dissertation explores a particular approach to designing user interactions for many

such synthesis tools, focused on the use of Live Programming (LP). So, in this introduction,

I will first provide the necessary background, followed by an overview of the chapters of this

dissertation.

1.1 Background

In this section, I will first cover some existing works on human-centered program syn-

thesis and introduce the necessary terminology for situating this dissertation within that body of

work. Then I will briefly discuss live programming, including the LP environment used in this
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dissertation, and what makes LP distinct from other programming environments such as REPLs

and computational notebooks.

1.1.1 Program Synthesis

Program synthesis as a whole is too broad a topic for the scope of this introduction1.

But, from a human-centered perspective, synthesis tools can be generally split into two forms

of intended interaction: synchronous or asynchronous. In synchronous synthesis, the user is

in-the-loop, waits for the synthesis results, and can be expected to accept, reject or otherwise

offer feedback to the synthesizer during the synthesis process. Asynchronous synthesis instead

assumes the form of a background process, and while a human may be involved in providing its

specification and validating its results, they are not assumed to be present while synthesis is in

progress.

Most “interactive” program synthesis [202, 89, 57, 202] and AI-powered tools [60, 171,

96] are synchronous, having short timeouts and expecting the user to be present to interact

with the system. Traditional synthesis tools in Programming Languages (PL) research instead

either ignore the question of how a user is intended to interact with them, or apply to domains

where synthesis does not require a user in the loop, starting with existing specifications and

verifying solution correctness with a solver (e.g., LENS [145]). I will touch on designs for

asynchronous synthesis in Chapter 7, but this dissertation focuses on synchronous synthesis.

So, to contextualize its contributions, I will next introduce the three stages in the synchronous

program synthesis interaction model.

From the user’s perspective, synchronous synthesis consists of three separate stages,

which you can see in Fig. 1.1. First, the user must specify the synthesis problem or task, then

the tool executes its particular synthesis algorithm to synthesize a program matching the given

specification, and finally (assuming that it succeeds) the user must validate the solution.

Specification. For general purpose programming, specification usually takes the form of input-

1For a more thorough overview of program synthesis and a discussion of its technical dimensions see [67].
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Specification

Failure

Synthesis
Algorithm

Incorrect

ValidationSuccess Correct

Figure 1.1. The stages of synchronous program synthesis. Respecifying and repairing incorrect
solutions may be considered separate stages, but here they are folded into “Specification” and
“Validation” respectively.

output examples (also called Programming-by-Example or PBE) [63] or natural language [30],

but it can be as diverse as observed refactoring edits [126], desired syntactic features [143, 141],

and function types [55]. And, of course, domain-specific synthesis can leverage specialized in-

terfaces such as direct manipulation for SVGs [77], a visualization editor [186], and specifying

operations on an input table [17].

The first three chapters of this dissertation focus on PBE, where the user provides the

specification in the form of input-output examples. SNIPPY and LOOPY (Chapter 2 and Chap-

ter 3) streamline providing examples by automatically including the input environment, and

asking the user to only provide their desired outputs, while SOBEQ (Chapter 4) also includes

affordances for specifying the desired side-effects (or lack thereof). The last chapters, which

explore AI-generated programs, use natural language text and code context as the specification,

using input examples for validation instead.

Synthesis Algorithm. While there is a wealth of works on developing synthesis algorithms,

they are almost always opaque to the user. This is not necessarily a limitation, since the user of

a synthesis tool should ideally be able to use it effectively without understanding the underlying

algorithm. Though some have explored addressing algorithm transparency with interpretable

program synthesis [201] for enumerative techniques2.

Gulwani et al. [67] categorize synthesis algorithms into four groups, plus combinations

2As far as I am aware, while Explainable AI is a rich field of research, there have been no publications on
explainable AI for LLM-powered code generation specifically.

3



of the four. These include enumerative search, where programs are enumerated in some order,

and checked to see if they satisfy the specification, deductive search which recursively breaks

down the specification top-down, constraint solving approaches which first generate a logical

constraint from the specification and use a constraint solver to solve it, and finally statistical

methods including using probabilistic grammars and machine learning.

Including the algorithm as a key stage in synthesis interaction may seem strange, since

this is the step where user interaction is almost never directly available. However, as Peleg

[140] has argued before, the synthesis algorithm and interaction model are tightly coupled, af-

fecting the interaction design at every other stage of synthesis. Not only does the algorithm

need to meet users’ needs and expectations, but it determines many design considerations in-

cluding the forms of meaningful specification that the user can or is required to provide, the

total time the user needs to wait before getting the results (making certain algorithms unsuitable

to synchronous synthesis entirely), if and how the tool can communicate reasons for failure to

the user, the number of possible programs the user needs to inspect, and the kinds of guarantees

those solutions provide to name a few.

This dissertation includes a human-centered exploration of both enumerative and AI-

driven synthesis algorithms, though the only directly algorithmic contributions are to bottom-up

enumerative synthesis with control structures (Chapter 3) and what is to my knowledge the first

bottom-up proof-directed synthesis algorithm (Chapter 4).

Validation. Depending on the synthesis algorithm, a synthesizer may produce anywhere from a

single proven-correct program to a set of incorrect solutions. And, in contexts such as general

purpose programming, a solution may be unsuitable for reasons other than correctness (read-

ability, maintainability, etc.) [110]. Thus the user may be required to validate3 the synthesis

result, either by checking that the one solution is suitable, or choosing between a set of pro-

grams.

3I will use the term “validation”, but others have used “recognition” [86], “verifying” [129], and “co-audit”
[61] to refer to similar concepts.
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The forms of validation assistance that a tool can provide is therefore closely tied to

the synthesis algorithm. Prior to the proliferation of AI-driven synthesis using Large Lan-

guage Models (LLMs), most works that directly addressed validation challenges focused on

program disambiguation [121, 202, 85], since their algorithms guaranteed that the set of solu-

tions matched the user specification, but the ambiguity of the specification itself (input-output

examples, types, etc.) left the user with the task of selecting the intended program among those

matching the ambiguous specifications. LLMs, however, offer no such guarantees, and the cur-

rent common specification, natural language, can be more ambiguous as well. So more recent

work on LLMs explores validation more broadly, including the task of checking if any of the

given programs match the specification at all. Many works explore the challenges in validating

LLM-generated code [179, 110, 129, 190], and a few papers have suggested tools and interfaces

for addressing these challenges [153, 180].

While validation is a necessary part of the interaction and appears in most chapters in

this dissertation, it is a core contribution only in the last two chapters, focusing on interfaces

for validating AI-generated code in a live environment. LEAP (Chapter 5) focuses on experi-

enced developers in a LP-powered IDE, while COLDECO (Chapter 6) explores validation in the

context of end user spreadsheet programmers.

1.1.2 Live Programming

A core interaction model to most chapters of this dissertation is live programming, so

it is worth introducing it here. I will briefly cover what live programming is, walk through a

short example of PROJECTION BOXES, the live environment used most often here, and discuss

the concept of liveness and what distinguishes a live environment from other interfaces such as

read-eval-print-loops (REPLs) and computational notebooks.

Live programming4, refers to a set of closely related programming paradigms involving

the continuous execution of a program as it is being modified and extended [175]. A key motiva-

4Not to be confused with the practice of writing code live as a part of teaching a course [139].
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Figure 1.2. An example screenshot of PROJECTION BOXES [105], the Live Programming
environment used in SNIPPY, LOOPY and LEAP.

tion for LP literature was and remains pedagogy [174, 74, 168, 91], but it has since extended to

other areas. These include using LP for creative performance (also called Live Coding) [33, 20]

and, more relevant to this dissertation, general purpose programming [105, 131, 95, 111, 90].

In the context of this dissertation then, LP refers to a programming paradigm where the

dynamic state of the program is visualized during development, showing the runtime behavior

of incomplete code, and updating automatically as the code is modified and extended. Note that

this visualization may be as simple as the text representing each object [131], or as involved as

a set of bespoke specialized visualizations [79].

PROJECTION BOXES. This dissertation uses PROJECTION BOXES [105], shown in Fig. 1.2,

to explore interactive synthesis. PROJECTION BOXES is an LP environment for Python, built as

a custom version of Visual Studio Code5, which displays the available variables at each line of

the program and updates automatically, triggered by user edits to the code.

In the example in Fig. 1.2, the code on the left is a simple Python program defining the

function abbreviate, and calling it with a single example on line 12. PROJECTION BOXES exe-

cutes this code automatically in the background, and displays the boxes on the right, containing

the variables at each line. The box at line 8 includes an additional special variable rv denoting

the return value of the function. Note that any changes to this code would result in the boxes

being updated automatically to reflect the latest version of the code.

Liveness. To discuss what distinguishes live programming environments from other environ-

5https://code.visualstudio.com
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Figure 1.3. Four levels of liveness presented by Tanimoto [175].

ments that offer some form of execution feedback (e.g., REPLs), levels of liveness are a useful

concept. Originally introduced to discuss visual programming systems [174], they have since

been updated [175] to include other programming environments, which you can see in Fig. 1.3.

In this form, they present levels of program visualization based on how tied they are to the latest

version of the program. At level 1, there is no connection (e.g., the visualization is created man-

ually), level 2 ties it directly to the source code, at level 3 the visualization responds to changes

in the code automatically, while level 4 is fully live, responding to all changes, e.g., in the file

system or wall clock.

I would like to argue that these “levels”, rather than discrete categories, mark distinct

points on a continuous scale. For instance, debuggers for compiled languages are clearly at level

2, tied to the program, but requiring explicit action from the user to run and visualize the latest

runtime information. PROJECTION BOXES, meanwhile, are at level 3, responsive to edits to

the code without requiring a separate action from the user. But where would REPLs fall in this

categorization? They are responsive, but only to specific limited operations (usually some form

of pressing “Enter” on the keyboard) and only display the final value of the last expression, not

the intermediate values or side effects and changes to the state.
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Figure 1.4. A screenshot of SNIPPY, showing the user providing the specification for the
letters variable on line 7.

So I argue that instead of discrete categories, these levels present a spectrum of differ-

ence in (1) time and (2) required effort from the user towards seeing the latest visualization of

program state. Then, the move from debuggers to live programming can be seen as a gradual

move up the levels of liveness which improves various aspects of programming including code

comprehension [26, 36] and debugging [5]. Thus, many of the findings discussed in this disser-

tation will apply to varying degrees to environments with at least some degree of liveness, such

as REPLs and notebooks, but ultimately they are an exploration of what happens as we climb

to higher levels of liveness.

1.2 Overview

With the background in program synthesis and live programming established, this sec-

tion will briefly discuss each chapter in this dissertation, including some of their motivations

and contributions.

SNIPPY: Small-Step Live Programming by Example. This first chapter takes two existing

techniques, bottom-up enumerative program synthesis from input-output examples and live pro-

gramming, and combines them into a new small-step live PBE interaction in our tool SNIPPY

(Fig. 1.4). By leveraging LP, we were able to alleviate the need for manually providing long and

tedious examples to the synthesizer, instead taking the inputs from the LP environment directly

and asking the user to merely specify their desired outputs. And by keeping the synthesis prob-

lem at the level of a single variable assignment, we could keep the synthesis runtime very short
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and so keep the interactive pace of development without disruptive interruptions. However,

during the user study for SNIPPY, we quickly ran into two key limitations.

The first, which we dubbed the user-synthesizer gap, related to communicating the lim-

itations of the synthesizer to the user. SNIPPY could fail for a number of reasons (invalid

specifications, timeouts, and lacking the necessary components) but it had no way to communi-

cate it meaningfully to the user. So users could get quickly discouraged and under-rely on the

tool. On the other hand, some users with initial successes over-relied on SNIPPY, spending far

more time trying to get SNIPPY to solve tasks that they may have been able to do themselves

much more quickly. I will return to the issue of over- and under-reliance on synthesis in LEAP.

The second was a limitation in SNIPPY’s algorithm and interface. Python users write

imperative code, and want to invoke SNIPPY inside data-dependent loops and expect it to work

well within (and ideally even synthesize) conditionals. But, following the SyGuS competition’s

benchmarks [9], we had developed SNIPPY to work in functional contexts with no side-effects

and no control structures, instead allowing for map and filter operations using Python’s list and

dictionary comprehension. This was frustrating for our users at best, and resulted in incorrect

synthesis results as worst. Addressing this is the topic of the next chapter.

LOOPY: Bottom-up Enumerative Synthesis with Control Structures. LOOPY was a direct

result of our user study for SNIPPY. By observing users, how they wrote imperative Python

code, and where and how they invoked the synthesizer, we were able to extend SNIPPY and its

core algorithm to better meet our users’ needs in LOOPY. The core of LOOPY’s contribution

is Block-level live PBE, where the user is able to provide the specification for entire blocks of

code rather than a single variable assignment, and LOOPY can correctly and quickly synthesize

the desired programs in the presence of control structures.

To do this, we needed to extend both the user interface and the algorithm simultane-

ously6. To allow for synthesis inside data-dependent loops (where future iterations of the loop

6See Peleg [140] for a discussion of this philosophy of design and development, dubbed “Co-Design”, including
a deeper discussion of LOOPY’s development.
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Figure 1.5. Providing a specification inside a data-dependent loop in LOOPY. Notice that
while the code on line 8 is yet to be synthesized, the input values in the PROJECTION BOXES

are correct up to the third iteration.

depend on the execution of as-yet-unsynthesized code from previous iterations) and condition-

als, we developed live execution, stepping over the hole in the body left for synthesis, and using

the user’s specified output values to fill-in that hole and correctly execute future iterations. You

can see an example of this in Fig. 1.5.

To synthesize entire blocks of variable assignments, we developed the Intermediate State

Graph (ISG), a hypergraph compactly representing all possible orders of assignments and an

optional top-level conditional over the entire block. The details of the ISG and algorithm are

beyond the scope of this introduction. But, in short, aside from the before-state (the state of the

program before the synthesized code) and after-state (the state after the execution of the to-be-

synthesized code), each variable assignment could be seen as a mutation of the state, resulting

in a number of intermediate states. Since LOOPY is restricted to one mutation per variable,

we could efficiently enumerate all possible orders of variable assignments by representing each

of these states as nodes in a graph, with edges connecting two nodes if a variable assignment

mutated the parent node, and resulted in the child node. This restricted form of mutation worked

well for LOOPY, allowing it to synthesize blocks of code in just a few seconds. But it also hinted

at a deeper limitation of bottom-up enumerative synthesis algorithms: their inability to easily

synthesize mutating code, which is the topic of the following chapter.

SOBEQ: Bottom-up Synthesis of Side-Effects with Separation Logic. We had chosen bottom-

10



EVAL

EVAL
{arr 7→ [1]}arr{arr 7→ [1];[1]}

FRAME
{arr 7→ [1]}arr.pop(){arr 7→ [];1}

{arr 7→ [1]∗n 7→ 5}arr.pop(){arr 7→ []∗n 7→ 5;1}
{arr 7→ [1]∗n 7→ 5}arr.pop() + n{arr 7→ []∗n 7→ 5;6}

FRAME
{n 7→ 5}n{n 7→ 5;5}

{arr 7→ []∗n 7→ 5}n{arr 7→ []∗n 7→ 5;5}

Figure 1.6. The CHSL derivation of the program arr.pop() + n in SOBEQ.

up enumeration as the synthesis algorithm for SNIPPY and LOOPY because, in centering the

user’s experience of our tools, we needed an algorithm that would work with simple input-

output examples, but could synthesize solutions quickly and with a deterministic runtime.

To do this synthesis efficiently, however, this algorithm relies on Observational Equiva-

lence (OE) reduction [6, 177] a technique that allows it to prune large parts of its search space

by discarding programs that, on the given before-state, produce the same output value (i.e., are

“observationally” equivalent). This causes problems if the synthesized programs can mutate

that before-state in any way, not only potentially losing the desired solution by discarding a

program that appears equivalent in the before-state but not after some synthesized mutation, but

possibly synthesizing an incorrect program by not accounting for mid-expression mutations.

We bypassed this problem in LOOPY by restricting permitted mutations to a fixed set of possi-

ble variable assignments, and enumerating programs for each intermediate state separately. But

allowing arbitrary mutations was an open problem.

This chapter introduces a novel bottom-up enumerative algorithm that can correctly and

efficiently synthesize programs with mutations. To do so, we used a simple Separation Logic

[151, 137] we named Concrete Heap Separation Logic (CHSL), representing the operational

semantics of the synthesized language. Instead of enumerating all programs in a fixed before-

state, we instead enumerate hoare-triples including the pre- and post-condition of each enumer-

ated program, and redefine the synthesis goal as a derivation in CHSL of the desired program.

You can see a simple example of such a derivation in Fig. 1.6.
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Figure 1.7. An example screenshot of LEAP. The suggestion panel on the right is inspired by
Copilot’s multi-suggestion pane, but rather than a single-use accept solution button, it allows
the user to preview each suggestion, allowing them to take advantage of static analysis results
and live programming.

The above three chapters explore interaction models and algorithms for PBE but, more

recently, LLM-driven code generation has shifted the focus of human-centered program synthe-

sis research. LLMs can generate orders of magnitude more code within the same time as PBE

and other PL-based algorithms. And, since they work with natural language and code context,

they incur an even lower specification overhead than PBE, acting as a significantly more pow-

erful autocomplete [60], and in theory allowing those with no programming experience to write

code [112]. LLM-driven synthesis comes with its own limitations, however, with one of the

most vital open problems being that of validation. LLMs offer no guarantees about the gener-

ated code (not even syntactic validity), and so burden the user with the work of validating that

the code is syntactically correct, semantically meaningful, and matches the user’s intent. The

last two chapters of this dissertation focus on this problem of validating AI-generated programs,

first in a similar environment as SNIPPY and LOOPY, but now powered with LLMs and capable

of producing multiple solutions, and finally in spreadsheets, arguably the most widely used live

programming environment.

LEAP: Live Exploration of AI-Generated Programs. Our work on LEAP was greatly inspired

by Grounded Copilot [13]. In their study of how developers use Copilot, they found that users

tend to use the tool in one of two modes: Acceleration where the tool assists them in completing
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Figure 1.8. An example screenshot of COLDECO, showing decomposed columns (A), natural
language descriptions (B), and summary rows (C).

a known solution faster, and Exploration where the tool assists them in exploring potential

solutions to their problem. Their findings suggested that users spend significantly more time

in exploration mode, and that in this mode, they are much more willing to explore alternative

solutions, use the set of affordances at their disposal (direct examination, code execution, etc.)

to validate the suggestions, and edit or even cherry-pick from multiple suggestions.

With these findings in mind, we developed LEAP, a set of improvements to Copilot’s

multi-suggestion pane combined with live programming in the form of PROJECTION BOXES,

which could significantly lower the cost of validation. In a user study, we found that this lower

cost decreased both over- and under-reliance on generated code, and resulted in an overall lower

cognitive load. Though these benefits were highly dependent on the type of task, with one-off

and API-heavy tasks benefitting more than general algorithmic tasks.

COLDECO: An End User Spreadsheet Inspection Tool for AI-Generated Code. All previous

chapters focus on users with at least some degree of programming experience. But the first

major success of program synthesis, and one of its most promising future directions, is its

ability to empower end user programmers, i.e., those without programming experience, to work

with and write code. So the final chapter of this dissertation shifts the focus away from the IDE,

and turns to the problem of synthesized program validation in spreadsheets.

To this end, we developed three interfaces for end user validation of AI-generated pro-
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grams, and combined them in our tool COLDECO (see Fig. 1.8). First, inspired by the work

of Liu et al. [112], we provided a natural language description of the generated code, using

a fully deterministic template-based system. Next, we gave the users the ability to decompose

the single output column created by the synthesized code into “helper” columns displaying in-

termediate values. Finally, we showed users summary rows, a set of rows selected from the

table demonstrating the different behaviors of the program. Crucially, COLDECO did not show

the generated Python code to the users. Our study found that users could successfully validate

AI-generated programs using COLDECO, and that they had a diversity of preferences for the

affordances COLDECO provides.
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Chapter 2

SNIPPY: Small-Step Live Programming
by Example

2.1 Introduction

Live programming is a paradigm where the programming environment continually dis-

plays runtime values. While live programming provides immediate feedback about the current

state of execution, it does not explicitly help the programmer to discover the next line of code

they need to write to accomplish their goal.

On the other hand, program synthesis is a technique that helps programmers by generat-

ing code automatically. There are many approaches to program synthesis, but in this paper we

focus on a class of techniques called Programming-by-Example (PBE), where the programmer

provides input-output examples, and the synthesizer produces candidate programs that satisfy

these examples. While program synthesis can generate code that accomplishes a given goal, tra-

ditional synthesizers are stand-alone and not integrated tightly into the development work-flow,

which makes it hard for the programmer to formulate the goal for the synthesizer to solve.

As such, live programming and PBE are perfectly suited for each other: the live pro-

gramming environment provides all the values needed for the programmer to easily provide

examples without a significant break in workflow; and synthesis from examples helps address a

limitation of live programming, which is that it does not explicitly generate statements.

Because of this symbiotic relationship, there has been prior work on combining Live
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Programming with PBE, sometimes called Live Programming by Example [159, 154] or syn-

thesis from Direct Manipulation Interfaces [32, 120, 77]. However, broadly speaking, examples

in this prior work describe behavior holistically, meaning that each example impacts either the

entire program, or a large part of the program (e.g., an entire function). In the literature on pro-

gram semantics, this kind of specification is usually referred to as a big-step semantics [193].

In this paper, we describe a different approach to Live Programming by Example, which

we call Small-Step Live Programming by Example (SSL-PBE). In contrast to prior work, SSL-

PBE allows the programmer to specify examples in a live programming environment, but only

for a single missing statement. Synthesis in SSL-PBE starts in a live programming environment

where program state is displayed after each statement. While in traditional live programming

the displayed state is read-only, in SSL-PBE the runtime values can be modified. When the

programmer edits values in the state, a program synthesizer runs to generate a local program

snippet that satisfies the new data. SSL-PBE is unique in that it enables a new programming

paradigm where the programmer “leads” the generation of the program with data.

To understand the viability of this new paradigm, we implemented SSL-PBE for the

Python programming language, in a tool named SNIPPY. SNIPPY uses the live programming

environment of Projection Boxes [105] and a custom-made enumerative program synthesizer to

generate Python statements.

Through a user study, we demonstrate that SSL-PBE is easy to use, and has an impact

on task time and correctness on more difficult tasks. Our study also shows that the synthesizer

can generate between 18% to 66% of the code, thus demonstrating that the synthesizer and the

human can work together to form a complete solution. Finally, our user study also shows that

almost all our participants preferred SNIPPY over searching the internet in some cases, the main

reasons being that compared to the internet searches SNIPPY incurs a lower cognitive burden,

automatically connects the snippet with the surrounding code, and provides a more compact

solution.

The main contributions of this paper are:
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Figure 2.1. Writing code using SNIPPY: (a)-(d) generates the first statement and (e)-(h) gener-
ates the second statement.

• We present a novel paradigm called Small-Step Live Programming by Example, in which

programmers can modify live data to generate code snippets.

• We present an implementation of this paradigm in a tool called SNIPPY.

• A user study of SNIPPY on 13 programmers finding that SNIPPY complements web

searches in bridging certain types of knowledge gaps, and that SNIPPY helped users solve

harder problems

• We identify the user-synthesizer gap, where a mismatch between the user’s mental model

of the synthesizer and the abilities of the synthesizer hinders the user’s ability to use the

synthesizer effectively. We believe that the user-synthesizer gap needs to be addressed as

synthesis tools begin to target programmers rather than end-users.

2.2 Motivating example

A programmer named Kayla is processing a text file using Python. One part of the

processing involves reducing a name (e.g., “Augusta Ada King”) to a non-standard form of

initials1 (e.g., “A.A.K”). Kayla has a lot of programming experience, but is only a casual Python
1The task is taken from this competitive programming exercise: https://www.codewars.com/kata/

57eadb7ecd143f4c9c0000a3
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user, which means Kayla does not immediately know how to achieve this task in Python. Being

an experienced programmer, Kayla breaks down the task into two components: getting the first

letter of each word, and reconnecting them in the desired format.

2.2.1 Opportunistic programming

Kayla turns to searching for the answer using a search engine. Unsure of the precise

string terminology of Python, but used to relying on search engines, she tries the natural lan-

guage search, “Python first letter of every word”. The first result is a link to the Stack Overflow

question “How can I get the first letter of each word in a string?” which has no accepted answer

but upon further reading has code which looks suitable in the comments discussing the question.

Copying the code and modifying the variable names, Kayla now has the following:

letters = [w[0] for w in s.split(’ ’)]

This code returns a list of initials. Now all that remains is to format it. Since the required

formatting is trickier than standard initials punctuation, Kayla knows that a loop is not the

easiest way to go in this case. Kayla recalls that Python has a join method to convert arrays to

strings, so she tries:

letters = [w[0] for w in s.split(’ ’)]

res = letters.join(’.’)

However, this code produces the runtime error

AttributeError: ’list’ object has no attribute ’join’

which Kayla now looks up online as well. After some digging, Kayla realizes that join is a

method on strings, so the correct code is in fact:

letters = [w[0] for w in string.split(’ ’)]

res = ’.’.join(letters)
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2.2.2 Small-Step Live Programming by Example

Let us consider the same task again, but instead Kayla will use our proposed approach,

Small-Step Live Programming by Example, as reified in our SNIPPY tool. Kayla starts in a

live programming environment, in this case Projection Boxes [105], as seen in Fig. 2.1(a). The

visualization shows at each line a projection box with the values of all variables at that line.

However, while in a traditional live programming environment the visualization is read-only, in

our approach the values of variables in the visualization can be edited to show the programmer’s

intent. Thus, Kayla edits the value of letters in the projection box to enter the desired value, as

shown in Fig. 2.1(b). By this, Kayla is stating that she wants SNIPPY to generate a code snippet

that will produce [’A’,’A’,’K’] in the letters variable when s is ’Augusta Ada King’. In

the synthesis literature this is called an input-output example. If the statement Kayla wanted

to generate was executed multiple times (i.e., it is inside a loop or in a function that is called

multiple times), the projection box would have one line per execution and Kayla would be able

to provide one or more input-output examples, one for each execution of the statement.

Once Kayla has provided some input-output examples by changing the live visualiza-

tion, these examples are sent to a Programming by Example (PBE) synthesis engine, while the

user is told that the synthesizer is working in the background Fig. 2.1(c). In previous PBE

tools aimed at programmers, providing examples is often a weak point of the interaction model,

sometimes requiring a break in the workflow that could be as severe as switching to a different

tool and editing its configuration files. Through direct manipulation of live data, our approach

makes the specification process seamless. Furthermore, focusing the user’s attention on the

value assigned to a single variable turns the synthesizer into a helper utility in a larger task,

which harnesses the still-limited power of synthesis to solve specific sub-tasks for the user.

Within seconds, the SNIPPY synthesizer finds a solution and adds the generated code

snippet, as shown in Fig. 2.1(d).

Next, Kayla creates a new variable, called res, as shown in Fig. 2.1(e) – for brevity of the
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figure, at this point we configured Projection Boxes to not display the variable s anymore. Kayla

changes the projection box value of res to be ’A.A.K’, as shown in Fig. 2.1(f). This provides

the synthesizer with an input-output example stating the output in res should be ’A.A.K’ when

s is ’Augusta Ada King’ and letters is [’A’, ’A’, ’K’]. Within a few seconds, the SNIPPY

synthesizer generates a statement, as shown in Fig. 2.1(g)-(h). To finish the code, Kayla changes

the return statement to return the res variable.

In summary, this example showed how Kayla was able to finish writing the code, without

leaving the IDE, without searching online, and without bearing the cognitive load of thinking

about the details of list comprehension, split or join.

2.3 Related work

2.3.1 Live programming

Live programming is a paradigm that provides immediate visualizations of a program’s

behavior. This research area dates back to the seminal work of Hancock [74]. Live program-

ming environments have been developed for Python [68, 90], Java [18], Javascript [149, 1],

Lisp [2] and ML-like languages [132]. There is also work categorizing different kinds of live-

ness [175, 183], and studies exploring the benefits of live programming [191, 95]. Tradition-

ally, live programming only provides feedback to the programmer, and not the ability to edit

the output or synthesize new pieces of code. Our work distinguishes itself from traditional live

programming by contributing a new paradigm where changing data in the visualization can

produce small code snippets for the programmer.

2.3.2 Big-step program synthesis and repair

Program synthesis takes a specification of behavior and returns a program satisfying the

specification. Automatic program repair (APR) takes a program and a specification, and mini-

mally changes the program to satisfy the specification. Both commonly take specifications that
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describe the full program, or as previously desribed, “big-step” specifications. Most synthesis

and APR literature assumes a user that provides the specifications, but does not focus on the

experience of the user when creating the specifications or processing the results.

Programming by Example

Programming by Example (PBE) is a field of program synthesis where behavior specifi-

cations are provided as input-output pairs. This approach has been applied to string transforma-

tions of Excel data [63] and file renaming [66], data extraction [100], and transforming tabular

data [195], all synthesis solutions for end-users. In APR and synthesis aimed at developers,

examples can also take the form of unit tests [115, 116, 194, 101].

Since examples are partial specifications, often resulting in too-specific programs that

require more examples to generalize, [143] question their sufficiency as a specification tool.

Entering examples is also error-prone, a problem tackled by [142].

Live programming by example

Two approaches for synthesis for developers are named “Live Programming by Ex-

ample”. The first [159] allows users to edit HTML output causing changes to its rendering

JavaScript code. The second [154] consists of two connected files, a code file with functions

and an examples file with unit tests for the functions. Unit tests are executed for live program-

ming data, and modifying a unit test will attempt to synthesize a new function where the tests

pass. Both approaches shift the audience of PBE from non-programmer end-users to program-

mers who interact with the synthesized code, but both still use examples as a holistic mode of

specification. In SNIPPY, the separation between code and data is not as severe: live values are

adjacent to the code, not in another file. Additionally, SNIPPY uses examples as small-steps on

intermediate values, rather than just the output of the entire execution, giving users access to

localized synthesis from local examples.
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Domain specific synthesis tools

Several recent projects focus on domain-specific example-driven tools for non-program-

mers: Rousillon [29] generates web scrapers, Bespoke [178] GUI applications, and Wrex [41]

Python wrangling code in Jupyter Notebooks. SNIPPY targets general programming, rather

than one domain-specific task. As such, our intended users are programmers, not data scientists

or power-users, and we augment a different workflow.

Direct manipulation interfaces as specification

Direct manipulation user interfaces [162] are visualizations of the system state that can

be changed, and are prevalent as editors of graphical representations. Sketch-n-Sketch [32, 120,

77] is a direct-manipulation editor for programmable graphical formats such as SVG, HTML,

and LaTeX, where direct manipulation changes to the visual output become repair operations on

the generating code and inputs. [77] takes this further by adding refactoring tools and turning

the direct manipulation editor into a visual programming environment. The direct manipulation

workflow is aimed at modifying visual objects in languages with little separation between code

and input. SSL-PBE is a technique for more expressive langauges.

2.3.3 Small-Step Program Synthesis

Several existing synthesis and APR techniques rely on a small-step specification, or

specifications that tackle only local behavior within a larger program.

Sketch and sketching

Sketching (popularized by Sketch [167] and modified into a variant used by many syn-

thesis works [57, 164, 81, 141]) is a method for specifying to the synthesizer a partial imple-

mentation of the target program with holes, initially missing numeric values but now missing

expressions or statements. Sketches isolate local steps for the synthesizer to fill, and are usually

accompanied by a big-step specification (e.g., examples) from which a local specification for

the holes is derived.
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SNIPPY differs from these in two ways: first, synthesis queries in SNIPPY are them-

selves locally-specified, and do not require the potentially-lossy transformation from a larger

specification, and second, and enabled by the previous, SNIPPY can be used without end-to-end

specifications for the full program, which means it can be used to perform exploration.

Single statement synthesis

Small-step synthesis has been worked into IDEs to attempt predicting the next state-

ment. For example, InSynth [72] code-completes assignments using the type of the assigned

variable as the specification. As another example, CodeHint [57] allows the programmer to stop

the program at a breakpoint and generate a new version of the next statement by providing a

specification on the current program state (typically a typef-based specification, though exam-

ples are possible). The user can trigger the breakpoint again to provide specifications for more

inputs, but those only serve to rule out candidates generated for the first input state. While in

CodeHint providing specifications for multiple inputs requires running to the breakpoint again

and again, in SNIPPY the PROJECTION BOXES display flattens both loops and multiple inputs

into a single list, allowing the user to specify any and all inputs at once.

Both CodeHint and InSynth return several ranked options for the completion, a different

interaction model than that of SNIPPY, which returns a single result. While returning a single

result is an all-or-nothing approach, it also means that users do not need to select out of multiple

options, a task that previous work has shown is difficult for users to perform correctly without

in-depth inspection [143].

Program states as specifications

Another form of local specifications is direct state manipulation, or changing the pro-

gram’s internal state to create repair specifications, as in Wolverine [182] and JDial [80]. Both

provide ways for users to modify the values of variables along an execution trace of the program

on a test input, then create a repair to the program. Wolverine, which has a gdb-like interface,

also hot-patches the repair and allows debugging to continue.
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Unlike both projects, which are APR tools, SNIPPY is a synthesis tool. This means that

SNIPPY’s user is not working on an already fully-written program and only correcting a bug

found in the course of the execution.

Both projects also tackle a common problem: APR can find a trivial fix that satisfies a

specification by removing desired functionality. Wolverine’s solution is to let the programmer,

while debugging the program, mark an intermediate state as specification, declaring the unmod-

ified state should appear in the execution trace of the final program. SNIPPY faces a similar

problem, declaring certain behavior as already-correct while not forcing the user to specify all

inputs. Its solution, discussed in the next section, is inspired by Wolverine’s solution, adapted

from repair to synthesis.

2.4 User Interface

We implemented SNIPPY on top of PROJECTION BOXES [105] by making the variable

values editable in each projection box. After the programmer modifies some values in a projec-

tion box, every modified row becomes an example that is sent to a Programming by Example

(PBE) synthesizer. Recall that the projection box for a line in the program contains multiple

rows if that line is executed multiple times.

Activating SNIPPY

In order to allow SNIPPY to naturally become part of the development workflow, it can

be activated and specified entirely via keyboard operations. To assign a synthesized value to a

variable, the user begins typing an assignment statement, but instead of a concrete value, they

assign ??:

newVar = ??

This special token, which is not valid Python code, temporarily becomes the temporary assigned

value 0 (since Python variables are not typed, a specific initial value by type cannot be gener-

ated), and the focus is moved to the now-editable value of the variable, as in Fig. 2.1(b). The
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Figure 2.2. Using SNIPPY with multiple values. (a) PROJECTION BOXES showing multiple
values for the same line, and (b) providing only some of the values as examples to SNIPPY.

user can then enter a new value, and start the synthesizer by hitting Enter.

Modified values are then packaged as examples to the synthesizer, where each input

state includes all variables that are in scope at the line that is being synthesized, namely all

variables that appear in the projection box at that line.

Editing examples

Some examples are inconvenient to type, but easier to edit. For example, if the user

wants to turn the string ’Augusta Ada King’ in the variable s into a list of words [’Augusta’,

’Ada’, ’King’], they can start with a blank variable value and enter in every word into the

list, but it is easier and far less error prone to start with the value of the string and edit it into a

list. To this end, the user can activate SNIPPY with an expression reference:

newVar = s??

This will put the user in edit mode for the values of newVar as before, but instead of a default

initial value will populate newVar with the value of s.
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Multiple examples

PROJECTION BOXES can show multiple values for a line of code. This can happen

in one of two cases: if the function is called multiple times with multiple values, as seen in

Fig. 2.2(a), or if the current line of code is inside a loop. For SNIPPY, this means that there

are different values for the in-scope variables that can be sent to the synthesizer as multiple

examples for the same expression. When the PROJECTION BOXES contain multiple rows, the

edited variable becomes editable in all rows, as seen in Fig. 2.2(b), and the user can travel

between the values using the Tab key.

Sometimes the user does not want to provide an output value for every row in the PRO-

JECTION BOXES. A simple example for this would be inside a loop with many iterations, where

two or three examples will suffice to demonstrate the desired functionality. SNIPPY allows users

to only edit some of the output values. Rows where the value was changed are submitted to the

synthesizer as examples, and unchanged rows are ignored. Fig. 2.2(b) shows highlighted rows

that were edited by the user and will be sent as examples to the synthesizer.

Occasionally, the value of some of the rows already exhibits correct behavior. These

already-correct rows will not be changed, but if they are not sent to the synthesizer along with

changed rows, a program that changes their behavior may be synthesized. To avoid this, SNIPPY

lets the user specify that the output value in a row is correct as-is by selecting it with Shift+Enter.

A variant of this problem was previously solved in Wolverine [182], where the user can mark a

state as “specification” the execution must still pass through, but with no assurance which line

of code will pass through it.

A Synchronous Modality

SNIPPY synthesis calls are synchronous. This means that once the user calls the synthe-

sizer, a wait message (shown in Fig. 2.1(c)) appears, and the user waits for synthesis to quickly

finish or fail. An asynchronous workflow could have been explored, but it would not allow

SNIPPY to be used in a more exploratory manner. The synchronous workflow motivates us to
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Figure 2.3. The structure of our generate-and-test synthesizer. Programs are enumerated and
passed to the validator to be tested against the user-provided examples.

use a timeout that is as brief as possible, which means our synthesizer must be extremely effi-

cient to find meaningful expressions within that timeout. We chose a timeout of seven seconds,

enough to synthesize programs of up to height 3 (zero-based) on several desktop and laptop

architectures, while staying well below a distruptive interruption [136]. In the next section, we

discuss the design considerations when building such a synthesizer.

2.5 Synthesizer implementation

We designed and implemented a custom synthesizer to generate the one-line Python

snippets requested by SNIPPY users. The synthesizer that we built is known as an enumerat-

ing generate-and-test synthesizer: broadly speaking, enumerating means that the synthesizer

enumerates programs by expanding a grammar that represents the space of programs to search,

and generate-and-test means that the synthesizer evaluates each enumerated program to test

whether it fits the given examples. Figure 2.3 shows an overview of SNIPPY as a system, in-

cluding details of our enumerating generate-and-test synthesizer.

As with any synthesizer, the astronomical size of the search space is the main challenge,

which we begin to mitigate using the known technique of observational equivalence [177, 6],

which unifies all programs that behave the same on inputs from the example. However, our

setting adds several additional challenges: (i) Python is a dynamically typed language, so types
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E ::= I | S | L | . . .
I ::= x | I+I | S.find(S) | max(IL) | int(S) | . . .
S ::= s | S+S | S[I] | S[I:I] | str(I) | S.join(SL) | . . .
L ::= SL | IL
SL ::= sl | S.split(S) | [S for var in L] | . . .
IL ::= il | [I for var in L]
x ::= vars with only int values in examples
s ::= vars with only string values in examples
sl ::= vars with only list-of-string values in examples
il ::= vars with only list-of-int values in examples

Figure 2.4. Fragment of the expression grammar supported by SNIPPY. E is the root expres-
sion; I are integer expressions; S are string expressions; SL are list-of-strings expressions; IL
are list-of-ints expressions.

cannot be used out of the box to constrain the search, (ii) our synthesizer generates Python

list comprehensions, which are loops, a hard problem for synthesis, (iii) our synthesizer needs

to generate string constants to enable the string manipulation code that Python programmers

write, and (iv) our synthesizer should work with as few examples as possible, despite PBE’s

propensity for trivial solutions for such tasks.

Yet, despite all these challenges, we need to create a synthesizer that operates in an

interactive setting, able to generate useful snippets in seconds. We discuss how we address

each of these four challenges, while maintaining interactive speeds, in each of the following

subsections.

2.5.1 Python as a typed language

Python is a dynamically typed language, i.e., type-checking is deferred until runtime.

This means a lot of flexibility, even allowing a variable at one statement in the program to take

on different types each time the statement is executed. However, our synthesizer runs statically

(i.e., before runtime), at which point type information in Python is not available. Without type

information for the generated expressions, any possible operation could be applied to a given

expression, which makes the search space intractably large. Instead, we treat Python as a typed

language with integers, strings, booleans, and lists and dictionaries that are homogeneous in
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type.

We do this by inferring variable types from the examples, and designing a grammar

that has productions for each type, restricting the parameters of functions to certain types. To

provide a sense of what this grammar looks like, Fig. 2.4 shows a fragment of the expression

grammar used in SNIPPY (note it is far from the full grammar). This grammar only allows for

homogeneous lists (lists of all integers or lists of all strings), and also restricts certain functions

to operate only on certain types, e.g., max is restricted to lists of integers even though max can

run on iterable types of all kinds. While this limits the SNIPPY synthesizer, it also greatly

reduces the number of programs that must be searched, which lets SNIPPY find large and useful

programs within seconds.

2.5.2 List and Dictionary Comprehensions

Our synthesizer is a bottom-up synthesizer, meaning that it uses production rules from

the grammar to combine previously discovered expressions into larger expressions. For exam-

ple, using the grammar in Fig. 2.4 and the synthesis call in Fig. 2.1(c), the enumerator starts

with the terminal production rules, enumerating constants, including ’ ’, and the variables, in

this case the string s. The enumerator then applies the rule S ::= S.split(S) to create all

expressions of this form, with S replaced by any of the current string expressions, which are

the string constants and s, generating (among others), ’ ’.split(s) and s.split(’ ’). The

process continues, iteratively building larger and larger expressions. Each expression is tested

against the examples, and if an expression that satisfies all examples is found, it is returned to

the user.

Unfortunately, this process breaks down for list and dictionary comprehensions that

SNIPPY must support. Consider the production SL ::= [S for var in L] for making a list

of strings from another list. The nonterminal S (the “body” of the comprehension) can include

the new variable var, so S in this production is actually derived from a different grammar

than L (since L cannot access var). To account for this, our synthesizer uses the approach
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proposed in [141]: expressions are generally built using a standard bottom-up approach, except

bodies of comprehensions, which are built using nested bottom-up enumerations. For SL ::=

[S for var in L], the enumerator builds L bottom-up, and for each generated L it fixes L in

the expression [S for var in L], and then starts a nested enumeration for S.

Performing this new nested enumeration for comprehension bodies has three benefits:

(1) the nested enumeration can include the comprehension variable var (2) the nested enumer-

ation can omit the production rules for comprehensions, preventing nested comprehensions and

reducing the search space, and (3) most importantly, this nested enumeration can incorporate

the inputs from the examples into observational equivalence, as the external enumeration does,

with the help of another technique called input extension [141], and by doing so drastically

reduce the search space of the nested enumeration.

2.5.3 Discovering string literals

Bottom-up enumeration has to start with a set of constant literals like 0 and 1. To make

synthesis efficient this set must be small. SNIPPY supports the constants -1, 0, 1, and ’ ’,

though more constants can be enumerated with simple post-processing. E.g., the expression

1 + 1 + 1 (generated by the grammar) can be simplified via post-processing to 3.

However, for string problems, particularly string wrangling, there is often a need for

string literals that cannot be discovered by the grammar, even with the above post-processing.

One could, in theory, ensure the grammar contained string concatenation and every ASCII char-

acter, which would let the synthesizer construct any ASCII string, but this would make the

search unusably slow, and still only cover English strings.

Another approach to this problem, taken by the benchmark suite of the competition for

syntax-guided solvers [9], is to adapt the synthesizer’s grammar for every problem, adding only

the string literals needed on a per-task basis. However, this does not suit a live system like

SNIPPY where the user can ask for arbitrary problems to be solved, since we do not want to

burden the user with specifying string literals each time.
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SNIPPY implements a middle ground between these approaches. Its grammar is ini-

tialized with a single string literal, ’ ’, but is extended as necessary. Before enumeration, the

synthesizer searches the outputs of the provided examples for substrings that do not appear in

any of the inputs or the grammar, and adds them to the grammar. For instance, in our motivating

example, the output initials are separated by the character ’.’, which is not part of the SNIPPY

grammar. If it does not appear in any of the input variables in the example, then it will be added

to the grammar. However, if the user had added a new variable dot with the value ’.’, then a

new constant is no longer needed, and it will not be added.

2.5.4 Variable usage

Synthesizers often require that the synthesized expression use all variables available, a

property called relevancy [69]. However, this requirement does not make sense for SNIPPY.

The example inputs include every variable in scope during the assignment statement being

synthesized, including inputs to previous steps and intermediate results. Forcing the synthesizer

to use all these variables can lead to unintuitive and hard to explain results, and will likely cause

no result to be found.

However, removing the relevancy requirement entirely is also problematic. Let us as-

sume the user gives the variable out the value -2. Several programs will evaluate to -2 on the

inputs from the examples, but the first one found by the synthesizer is -1 + -1, which is then

post-processed into -2 and returned to the user. PBE tools approach this scenario in one of two

ways: by requiring the user to add another example to show -2 is not always the output, or by

biasing the synthesis process heavily against constants. This bias is sometimes so severe that,

for instance, if -2 is needed within a larger expression like s[-2] (the second to last character

of the string s), the synthesizer would prefer a program where -2 is generated with as few con-

stants as possible, such as a.find(b) + a.find(b) when b is not a substring of a. The result,

s[a.find(b) + a.find(b)], is both less general—it works for the current inputs, but may not

work for others—and makes little sense unless the user understands this biased model.
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SNIPPY does not bias its search against constants in general, but applies a reduced rel-

evancy requirement by not returning a result program that does not use variables. For example,

it will construct the expression -2, and use it to construct larger programs such as s[-2]. How-

ever, if the example output is -2, the synthesizer will not return -2 as the target program, and

instead continue searching for a more suitable program.

2.6 Study Methodology

To evaluate SNIPPY, we conducted a within-subjects user study comparing Python de-

velopment using SNIPPY to developing with PROJECTION BOXES.

We focused our study on the following research questions:

RQ1: Does SSL-PBE make a difference in speed and correctness compared to an unaided de-

velopment process?

RQ2: How useful is SSL-PBE, as measured for example by the percentage of the final code

that is written by SNIPPY vs by the user?

RQ3: Do users report positive experiences with SSL-PBE?

RQ4: How does SSL-PBE compare to searching the internet for help?

We recruited 13 participants, 9 male, 4 female, with between 3 and 23 years of pro-

gramming experience (average 8.7) for a two-hour user study. We asked potential participants

to self-rate their Python experience on a scale of 1 (not familiar at all) to 5 (extremely familiar),

and selected participants with experience between 2 and 4.

2.6.1 Tasks

Each participant solved 4 Python tasks from the competitive programming website

codewars.com. The tasks are:

A: abbreviate2: Convert full name to lowercase initials separated by periods

2https://www.codewars.com/kata/554b4ac871d6813a03000035, an additional step asking for a lowercase ab-
breviation was added to make the task more difficult.
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B: count-duplicates3: return number of characters that appear in a given list more than

once

C: max-min4: compute min and max of a list

D: palindrome5: compute whether a string can be a palindrome if rotated by one ore more

characters

We grouped the tasks into two sets that provided the same level of difficulty: (A,B) and (C,D).

A and C were easier tasks, while B and D were harder tasks. We used two order of the tasks:

(A,B);(C,D) and (C,D);(A,B).

2.6.2 Control and Test Conditions

We use two tool configuration, one control and one test. The control is called PRO-

JECTION BOXES, which in this case will refer to the live visualization without SNIPPY. The

test condition is SNIPPY. Since users had never seen PROJECTION BOXES before, we random-

ized the order of the control/test to prevent any advantage to SNIPPY users from being more

experienced with PROJECTION BOXES.

Since we have two orders of the control/test, and two orders of the tasks, we have four

groups:

1. SNIPPY: (A,B) ; PROJECTION BOXES: (C,D) (4 users)

2. PROJECTION BOXES: (C,D) ; SNIPPY: (A,B) (2 users)

3. SNIPPY: (C,D) ; PROJECTION BOXES: (A,B) (4 users)

4. PROJECTION BOXES: (A,B) ; SNIPPY: (C,D) (3 users)

Participants were randomly assigned into the above groups, maintaining even group

sizes, divided by level of expertise. Participants were then asked to solve the first two tasks with

the first tool and the second two tasks with the second tool.
3https://www.codewars.com/kata/54bf1c2cd5b56cc47f0007a1
4https://www.codewars.com/kata/554b4ac871d6813a03000035
5https://www.codewars.com/kata/5a8fbe73373c2e904700008c
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2.6.3 Study Session

The study was conducted remotely via video conferencing. Because SNIPPY requires

installing and setting up a runtime environment, the study was also conducted via remote con-

trol.

Users were first given a survey about their background as programmers. Additionally,

users were asked whether they have experience with other synthesis tools, either by prior use of

academic tools or using smart code completion products.

We developed instructional videos, one for PROJECTION BOXES, and one for SNIPPY.

The SNIPPY video assumes PROJECTION BOXES had been introduced. Participants starting

with PROJECTION BOXES were shown the PROJECTION BOXES video before using PROJEC-

TION BOXES, then the SNIPPY video before using SNIPPY. Participants starting with SNIPPY

were shown both the PROJECTION BOXES and the SNIPPY video before starting with SNIPPY,

and no additional video before using PROJECTION BOXES. After the instructional video for

a tool participants were given a demo task not related to the study tasks for a few minutes of

guided exploration of the tool. Users were also given an opportunity to ask questions about the

tool after the demo tasks.

Participants then performed the tasks. When using PROJECTION BOXES, participants

were given a web browser and free internet access to search for code, whereas SNIPPY users

were only given SNIPPY. Participants were instructed to use SNIPPY as much (or as little) as

they wish. Tasks included suggested examples to help users check their answers. Participants

determined when a task ended, either by saying they completed it or by giving up on the current

task and moving to the next task. Each task was capped at 35 minutes.

After all four tasks, users were given a final survey asking them to reflect on ways

SNIPPY helped them to write code.
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Figure 2.5. Percentage and number of correct answers for each task.

Table 2.1. Changes in session times in SNIPPY compared to PROJECTION BOXES. Negative
percentage indicates a speedup.

Easy Hard

count-

abbreviate max-min duplicates palindrome

All
avg 22% 33% -7% 2%
med 21% 139% -18% -21%

Correct
avg 21% 13% -25% -1%
med 28% 80% -36% -21%

2.7 Results

2.7.1 Session times and correctness (RQ1)

Fig. 2.5 shows the number and percentage of correct answers to each task, determined

via 10 unit tests for each task that were run after the session ended.. Our study is too small

to show statistical significance, but we examine the tasks with the most notable differences:

abbreviate and palindrome.

In abbreviate, participants who did not have SNIPPY made more mistakes. Most of

the mistakes in abbreviate had to do with using an incorrect separator between initials. Users

who used SNIPPY to synthesize the code that combines the first letters of the names did not

make this mistake, as they used the given expected output to generate the correct code. Also, of

the two participants who gave up on palindrome (P1, and P12), P12 did not use the synthesize
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Table 2.2. Synthesis calls in relation to the final solution

count-

abbreviate max-min duplicates palindrome

Useful calls
Total calls

avg 61% 36% 36% 27%
med 58% 25% 20% 20%

Synthesized
All code

avg 47% 66% 28% 18%
med 47% 65% 23% 15%

function feature of SNIPPY for the entire 20 minute session, essentially reducing the session to

a PROJECTION BOXES session.

Tab. 2.1 shows the change in session times from PROJECTION BOXES to SNIPPY, with

PROJECTION BOXES as a baseline. A negative percentage indicate a reduction in session time

(speedup), whereas a positive percentage indicates an increase in session time (slowdown). The

numbers are provided both for all sessions, and for all sessions where the participants found

correct solutions.

While our study is not large enough to provide statistically significant results, broadly

speaking, our preliminary numbers suggest a possible pattern based on how hard the task is.

Indeed, recall that abbreviate and max-min were easier tasks, while count-duplicates and

palindrome were harder tasks. In the two easier tasks, SNIPPY appears to make the sessions

longer, whereas for the two harder tasks, SNIPPY appears to make the sessions shorter.

There are two factors that could explain this. First, for easier tasks, writing the code di-

rectly can be faster than using a synthesizer, especially if using the synthesizer requires multiple

round trips (e.g., if the first example is insufficient, and a second example is needed).

Our results echo those of previous studies such as Galenson et al. [57], where using syn-

thesis in a freeform manner more than doubled the time to completion of the task. However, we

are encouraged by the fact that our slowdown is not as severe, indicating the live programming

aspect of SSL-PBE helps mitigate some of the overhead of using the tool.
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2.7.2 Usefulness of Synthesis (RQ2)

We measured how many synthesis calls were useful to the programmer. We counted

as useful any synthesis call where a non-trivial part of the synthesized code was used in the

participant’s final program. As not useful we counted all other calls, including calls where

synthesis timed out. The results are in the top part of Tab. 2.2.

In general, we see that a sizeable number of synthesis calls are not useful. Still, for

every task but palindrome at least one participant had 100% useful synthesis calls. P8 in

count-duplicates and P12 in palindrome had no useful calls in the course of solving their

task.

Additionally, we measured how much of each user’s final program originated from the

synthesizer. To do this, we computed the proportion of tokens (using Python’s own code tok-

enizer) in the user’s answer that came from synthesis. We did not count things not generated by

SNIPPY, such as the assignment into a variable or the return statement of the function, and in the

case the user renamed a variable in the synthesized code, the variable name was counted as user

code, while the rest of the snippet was counted as synthesizer code. In short, we measured the

manual effort that was performed by the user and how much was delegated to the synthesizer.

The average and median results are in the bottom part of Tab. 2.2.

Because SNIPPY does not generate things like the return statement or assignments, and

because palindrome required a loop to be manually written, 100% synthesized was not a pos-

sible result. Broadly speaking, programmers tackling the harder tasks (count-duplicates

and palindrome) wrote more of the program manually. These tasks are harder to break up

into synthesis-ready chunks, and in some approaches to the task, the synthesizer will no longer

help. All tasks except palindrome could be solved almost entirely by synthesis, and the largest

portion synthesized by one user was 83% in count-duplicates (P3, 39 of 47 tokens). The

way a problem is deconstructed for synthesis is crucial to how much of it can be synthesized.

Users whose breakdown of the task meshed with SNIPPY could synthesize every step and write
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Table 2.3. Survey Results. All questions are on a likert scale where 1 is “Disagree” and 5 is
“Agree”.

Average Median Dist.
SNIPPY helped me write my
code 3.46 3

SNIPPY was easy to use 4.23 4

I would use SNIPPY again 3.54 4
SNIPPY would be useful beyond
today’s tasks 3.69 4
I would like to have PROJEC-
TION BOXES 4.54 5
I would like to have SNIPPY

available 4.38 5

almost no code, whereas users who did not come up with such a breakdown were still able to

synthesize code, but to a lesser extent. Overall, we see that although a lot of synthesis calls were

not successful, calls that were successful provided users with substantial parts of the solution.

SNIPPY and data-dependent loops

A very frequent cause of failed synthesis calls was an attempt to synthesize statements

inside loops that cause a data dependency between the iterations, or a loop where a variable is

written to in one iteration, then used in the next, a simple example of which is sum = sum + i.

Dependent loops are a known hard problem in program synthesis [141], and are notoriously

hard to specify correctly even under the best conditions. Attempting to synthesize these was a

gap in the participants’ understanding of the synthesizer limitations (even for participants who

were previously familiar with synthesis tools). We discuss the implications of this gap in the

next section.

2.7.3 User survey (RQ3)

Tab. 2.3 shows the results of our survey, including the average, median and the distribu-

tion of scores. In the “Discussion” section below we will discuss in more detail the factors that

affect the utility of SNIPPY, and explain these results. For now, we do note that, even though
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the scores on utility are lower than others, because SNIPPY can be invoked as needed, users still

overall said they would like to have SNIPPY available.

2.7.4 Comparison to Searching the Internet (RQ4)

One of the questions in our post-study questionnaire asked participants to compare

SNIPPY to searching the internet. Overall, 23.1% of participants said that they preferred

SNIPPY to the internet, 15.4% said they preferred the internet, and the remainder said that

it depends and explained the trade-offs.

P1, P10, and P12 stated that SNIPPY can work well even if one does not have a clear

picture of what they should search for online. P1 also said that SNIPPY solutions are more

concise.

One recurrent theme we observed is that searching the internet and SNIPPY supplement

each other, each having different strengths. (In fact P7 said that they would first try SNIPPY

and if that didn’t work they would search the internet.) For the kinds of code snippets that

SNIPPY can generate, SNIPPY is better, for several reasons that were explicitly mentioned by

our participants. First, SNIPPY can find a solution quickly without imposing the cognitive bur-

den of switching to another window or tool. Second, SNIPPY can find compact solutions. Third

SNIPPY correctly connects the generated snippet to the surrounding code – in contrast solutions

from the internet often need to be adapted and correctly glued into the surrounding context, a

non-trivial and error prone task. Finally SNIPPY can work well even when the programmer

does not have a clear picture of what to search for on the internet.

On the other hand, however, SNIPPY (as with any synthesis tool) has limitations in what

it can do, and this affects its utility compared to searching the internet.
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2.8 Discussion

2.8.1 Usage of Small-Step Live Programming by Example

Through our study, we identify three predominant ways in which SNIPPY helped pro-

grammers.

First, some participants used SNIPPY in precisely the way we anticipated: decomposing

the problems into smaller steps, then editing the live data to make SNIPPY generate code snip-

pets for those smaller steps. In these cases, SNIPPY does not help algorithmically, but instead

provides help with individual steps of a larger algorithm. The most successful uses of SNIPPY

were ones where the programmer came up with the high-level strategy, and SNIPPY helped with

the individual steps.

Second, some participants used SNIPPY “on the side”: they would stop coding the main

task they were working on, and start writing code separately to get SNIPPY to generate a useful

snippet. For example, P1 used this approach to generate code for rotating a string by a constant

number—3 characters. Once the code for rotating a string by 3 was generated, P1 took the

snippet, generalized it to an arbitrary rotation by k and placed it inside a loop. This interruption

in the flow of programming leads to a less fluid process, but still uses SNIPPY effectively.

Third, some participant used SNIPPY to recall details about Python syntax or Python

libraries they had forgotten. In this situation, the programmer might know how to do some-

thing, but forgot (or possibly is not fully familiar with) the details of expressing it in Python.

Examples of such easily forgotten details, especially for those with less Python experience (but

even for programmers with a lot of Python experience) include: the order of parameters to cer-

tain methods, like split; the exact syntax of dictionary comprehension; the exact syntax of

list/dictionary comprehension with an embedded filter; the name of library functions, e.g., for

converting characters to lower case, for returning the keys and values of a dictionary, or for

returning the elements and indices of a list.
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2.8.2 Understanding Synthesized Code

When a synthesizer generates code, there is a question of how well the programmer

understands the code. In our study, programmers checked that the code appeared reasonable but

did not try to understand the details. In some cases, participants remarked on the synthesized

code being simpler than they would have written. In other cases, participants explicitly said that

the code worked, but they did not fully understand it.

One may be concerned about correctness when programmers use code that they do not

fully understand, but in our study we observed that this did not drive programmers to an incor-

rect solution. We also observed users sometimes take code snippets they do not fully understand

from the internet in our control setting, and are not the first to document this [22].

However, we observed a much more interesting problem when programmers do not

understand the synthesized code: it leads to the mindset that the synthesizer is all-or-nothing:

either the synthesizer eventually generates code that works, or if not, then the programmer just

gives up on the synthesizer altogether. Unfortunately, this can prevent the programmer from

using an almost-correct solution generated by the synthesizer.

This happened to P2 who used SNIPPY in palindrome to generate an almost-correct

solution. Given the setup that the programmer used, the synthesized code only worked for

lists of size 4. Had the programmer generalized 4 to an expression for the list’s length, the

problem would have been solved. Instead they tried unsuccessfully to generalize the examples

and re-synthesize, and eventually gave up on the problem.

More generally, this leads us to the following takeaway:

Because programmers do not try to understand the code generated by the syn-
thesizer, they unnecessarily shy away from trying to use partial results from the
synthesizer.

This in turn points to a possible direction for future research, namely on understand-

ability and usability of partial results in synthesizer-generated code (something that has already

started being explored, for example in Wrex [41] and Bester [142]).
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2.8.3 Mental Model of the Synthesizer

We have noticed that the mental model that the programmer has of the synthesizer is

very important. We start by framing our discussion in terms of the well-known gulfs of evalua-

tion and execution. The gulf of evaluation captures how well a user can understand the internal

state of the system. The gulf of execution captures how well a user can discover how to make the

system take steps toward an ulterior goal. In the setting of programming, the gulf of evaluation

relates to understanding the program state and its result; the gulf of execution relates to under-

standing what kinds of statements should be written next to finish a task. E.g., at a command

line prompt, showing the current directory and the computer name eases the gulf of evaluation

(exposing internal state); making commands at the prompt discoverable via auto-complete or

command-line searches may ease the gulf of execution (making it easier to choose the next step

toward a goal).

PROJECTION BOXES help with the gulf of evaluation, since they make the internal state

of the program visible at all times. However, they do not help explicitly with the gulf of execu-

tion, since they do not help directly with writing the code.

SNIPPY provides this missing aspect of PROJECTION BOXES, easing the gulf of execu-

tion with explicit help discovering the next statement toward a broader end goal. However, this

over-simplification misses an important subtlety. While SNIPPY does ease the gulf of execution

in some ways, it introduces a different kind of burden that also relates to the gulf of execution:

the programmer must now pick between SNIPPY and one of three other approaches: (1) writing

the code by hand, (2) searching the internet, or (3) manually decomposing the problem into

smaller pieces to try with SNIPPY.

So, in essence, we have shifted the gulf of execution from one kind of gulf to another:

from figuring out what statement to write next, to figuring out if SNIPPY should be used for

the next statement. This new gulf of execution is particularly interesting because for program-

mers to make the choice between SNIPPY and other approaches, we have observed that they
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must have an accurate mental model of the synthesizer’s abilities. If a programmer broadly

understands (through trial and error) what kinds of tasks the synthesizer can do, they will know

when to invoke the synthesizer and when to try something else. However, if the programmer

has a poor mental model of the synthesizer’s ability (e.g., one that overestimates the synthe-

sizer’s ability), then the programmer might waste time and energy trying to get the synthesizer

to do something that it simply cannot. This leads to frustration, making it less likely that the

synthesizer will be used the next time around. Furthermore, if the programmer underestimates

the synthesizer’s ability, they will under-utilize the tool.

We introduce the term user-synthesizer gap to refer to this gap between the
user’s mental model of the synthesizer’s abilities and the actual abilities of the
synthesizer.

We are not the first to notice this kind of effect. Lau [98] explored the related topic of a

user’s trust of the synthesizer, concluding that the adoption of Programming by Demonstration

tools is held back by tool behaviors that undermine that trust. Gero et al. [58] explored mental

models of AI agents in an interactive game, strengthening the conclusion that mistrusting the

system is detrimental to success of the user, but also finding that: (1) users with a generally good

understanding of AI systems developed a better mental model of the AI agent and (2) people

tended to overestimate the AI’s abilities.

The way the user-synthesizer gap manifested itself in our study shows that the overesti-

mation of the AI system’s capabilities documented by Gero et al. also occurs for synthesizers,

but that it may involve underestimating the synthesizer’s ability instead. Because state-of-the-

art general-purpose synthesizers still cannot generate all the necessary code in a real setting,

the only way a synthesizer can help a programmer is on sub-problems to a larger task. In this

situation, the user-synthesizer gap will inevitably come into play. This is less pronounced in

domain-specific tools, as the limits of the domain act as an accurate mental and actual model

for the synthesizer’s limits.

We observed three properties about this gap. First, it is a much bigger problem if the
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user over-estimates the synthesizer’s ability than underestimates it. Second, the larger the gap

is, the more difficult it becomes for the programmer to make choices about how to incorporate

the synthesizer into programming tasks. Third, this gap is self-correcting in some ways, in that

if the gap is large, programmers eventually understand this, and adjust their mental model to

reduce the gap. Consequently, as the programmer learns more about the synthesizer through

trial and error, the gap can decrease over time, but this is a non-trivial learning curve that takes

time, and can be a significant impediment to the adoption of synthesizers.

All the above observations lead us to believe that reducing the user-synthesizer gap

represents an impactful future research arc that has the potential to further unlock the potential

of state-of-the-art synthesis techniques.

2.9 Limitations

While the results of the study are promising, our study has certain limitations that remain

to be addressed in future work.

Our study compares SSL-PBE with live programming augmented with searching the

internet in a browser. Further studies would be needed to compare SSL-PBE to other interaction

models, such as web searches or knowledge bases embedded in the IDE [107, 46], big-step

synthesis tools in and out of the IDE [81], and smart code completion [72].

There are also several threats to the validity of our results. Our survey was conducted in

the presence of one of the authors, which could lead to a social desirability bias. Additionally,

the phrasing of questions was not neutral (e.g. “SNIPPY helped me write my code” instead of

“How helpful was SNIPPY in writing your code”).

There may also be a bias in our findings on users’ understanding of the synthesized code.

Our tasks each included one or more examples participants could input into the live program-

ming environment, which could limit users’ view of the code to those inputs and discourage

them from examining the synthesized code further.
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Finally, the small sample size and short length of tasks could be a threat to the internal

validity of the study. Individual differences in coding speed could affect the conclusions we

drew from the length of the programming sessions.

2.10 Conclusion

We introduced a new paradigm called Small-Step Live Programming by Example and

discussed its implementation in SNIPPY. Through a within-subjects study we demonstrated that

this paradigm is easy to use, and is most effective in non-trivial tasks. We also found that almost

all participants preferred SNIPPY over searching the internet in some cases. Furthermore, our

study showed that most users did not attempt to understand the code deeply, which resulted in an

all-or-nothing approach to using SNIPPY’s output. Finally, we identified the “user-synthesizer

gap”, which describes the gap between the user’s mental model of the synthesizer’s capabilities

and its actual capabilities. We believe that reducing this gap represents an important direction

for future research.
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Chapter 3

LOOPY: Bottom-up Enumerative Synthe-
sis with Control Structures

3.1 Introduction

As software development environments continue to evolve, one feature that has long

captured the community’s imagination is a “programmer’s assistant”, watching over the pro-

grammer’s shoulder and helpfully suggesting code snippets to solve small tasks that continu-

ously arise during development. The assistant would allow the programmer to focus on the core

algorithm instead of getting bogged down in low-level details or interrupting their flow to search

for code online. In recent years, this dream seems to be within reach thanks to algorithmic ad-

vances in program synthesis and specifically programming by example (PBE) [185, 47, 117, 14,

161, 16, 15, 165]; despite these advances, however, the programmer’s assistant remains elusive.

Where do existing PBE synthesizers fall short?

Big-step synthesis. Consider a Python programmer who wants to solve the String Compression

task from the popular book Cracking the Coding Interview [123, p. 91]: Implement basic

string compression using the counts of repeated characters. For example, the string "aabccca"

would become "2a1b3c1a". Traditional PBE synthesizers adopt a big-step interaction model,

where the programmer specifies inputs and outputs at the function level, and the synthesizer

is expected to generate the entire function body in one shot. In our example, the programmer

might provide the input-output example "aabccca"→ "2a1b3c1a", and expect the synthesizer
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1 def compress(s):

2 rs = ’’

3 count = 1

4 last = s[0]

5 for c in s[1:]:

6 if c == last:

7 count += 1

8 else:

9 rs = rs + str(count) + last

10 count = 1

11 last = c

12 return rs + str(count) + last

(a) (b)

(c)

Figure 3.1. (a) Motivating example: Python solution for String Compression. This program
loops over the input string s, updating the result rs and two auxiliary variables: last, the previ-
ous character from s, and count, the length of the current run. (b) Prior work: Small-Step Live
PBE. The user enters desired values for z into a projection box, and the synthesizer replaces ??

with len(x). (c) Our work: block-level synthesis with LOOPY. The user enters values for last,
count, and rs, and the synthesizer replaces line 6 with the entire loop body.

to generate the body of the function compress in Fig. 3.1a. Unfortunately, this function contains

several features that make it challenging for program synthesis techniques to discover: it is

relatively long and contains both library function calls and a loop. Although state-of-the-art PBE

synthesizers such as FRANGEL [161] are capable in principle of generating programs of this

complexity,1 they require minutes, not seconds, to do so, and the result can be unpredictable and

sensitive to the provided examples, making big-step synthesizers unsuitable for the interactive

setting of a programmer’s assistant.

Small-step synthesis. To enable program synthesis in interactive settings, a different line of

work [57, 52] has developed a small-step interaction model, where the synthesizer—typically

integrated into the IDE—is used to generate just the next line of code, and the programmer is

1We attempted to solve the String Compression task with FRANGEL by providing up to nine input-output
examples of varying complexity, but it failed to find the right solution within a 30 minute timeout.
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expected to provide a local specification for that line. In particular, the interaction model we

developed in [52], dubbed Small-Step Live PBE, uses a live programming environment—an

enviroment where the program state is continuously displayed—named Projection Boxes [105].

With Small-Step Live PBE, the programmer may edit the live state to specify desired values for a

single output variable, prompting the synthesizer to generate an assignment to that variable; for

example in Fig. 3.1b, when the programmer enters desired values for z into the projection box

for the two rows representing live values from the different invocations of test, the synthesizer

replaces the prompt ?? with a generated expression len(x).

An important advantage of this interaction model is that the programmer needs to spec-

ify only the after-state for the synthesis problem, while the before-state is supplied by the live

programming environment from the live state before the update, seen on the left of the projec-

tion box. And because the code for each individual assignment is smaller and simpler than a

full big-step solution, the synthesizer can produce useful results in seconds, making it suitable

for interactive use.

Unfortunately, Small-Step Live PBE would not be very helpful when solving the String

Compression task, because this task requires control structures (loops and conditionals). Intu-

itively, it is hard to specify code inside a loop one assignment at a time because of the dependent

before-state problem [141]: the before-state of a given loop iteration depends on the code exe-

cuted in the previous loop iterations. In our example, suppose the programmer is in the middle

of implementing compress from Fig. 3.1a and is yet to write the entire else branch; if they now

try to synthesize the assignment to rs in line 9 by providing the value of rs for the first few

loop iterations, this will fail because the right-hand side of this assignment uses the variables

rs, count, and last, which all should be updated in the loop; hence the synthesizer does not

have access to the correct before-state for these variables for later loop iterations.

Our approach: Block-Level Live PBE. To overcome this limitation and enable interactive syn-

thesis in the presence of control structures, we propose a new block-level interaction model,
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which we call Block-Level Live PBE, and implement this model in a synthesizer called LOOPY.2

LOOPY builds on Small-Step Live PBE, but allows the programmer to specify the after-state

for multiple output variables at a time, prompting the synthesizer to generate a code block, i.e.,

a sequence of assignments, possibly including conditionals. In our running example, the pro-

grammer can use LOOPY to generate the entire loop body, by simultaneously specifying the

values for last, count, and rs for the first five loop iterations, as shown in Fig. 3.1c. Given

this input, LOOPY generates the code on lines 6–11 of Fig. 3.1a in under two seconds. A video

showing LOOPY is found at https://youtu.be/EIWtF4BJpmo.

The key technical insight that makes Block-Level Live PBE effective is live execution, a

concept inspired by the live evaluation of [117]. In live execution, the programmer performs the

natural act of providing variable values for loop iterations in order. In doing so, the programmer

essentially serves as an interactive oracle to execute missing statements. As such, live execu-

tion can accurately propagate the before-state through a loop, even when the loop is not yet

complete, which solves the dependent before-state problem. Indeed, given the specification in

Fig. 3.1c, LOOPY can use the programmer-provided after-state at iteration 0 as the before-state

for iteration 1,3 and similarly for the next three iterations.

Although synthesizing the entire loop body at once is often convenient, we deliberately

designed LOOPY to be flexible with respect to the granularity of the block. In particular, it also

supports synthesizing loop bodies one assignment at a time, as well as mixing hand-written

and synthesized code (as long as the output variables of each synthesis problem only depend

on variables that are already correctly updated or are part of the same synthesis problem). For

example, the programmer might manually write the code that updates last and count, and then

use LOOPY to synthesize the assignment to rs on line 9, and LOOPY will correctly compute

and display the before-state of future loop iterations by taking into account both the specified

after-state for rs and the hand-written code for the other variables.
2The code for LOOPY is found at https://github.com/KasraF/LooPy, and as a VM image at https://doi.org/10.

5281/zenodo.5459013.
3Iteration counts are displayed in the “#” column of the projection box.
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Efficient synthesis of code blocks. The core technical challenge in building a block-level syn-

thesizer like LOOPY is to make synthesis scale at interactive speeds to larger code snippets, such

as the loop body in Fig. 3.1a (lines 6-11). To avoid blindly enumerating all sequences of assign-

ments, we leverage our block-level interaction model: given a complete before- and after-states

for a synthesis problem, LOOPY can enumerate single assignment subprograms considering all

intermediate states that the program might go through. We introduce a data structure called the

Intermediate State Graph (ISG), which compactly represents all paths from the before-state to

the after-state through those intermediate states.

Evaluation. We empirically evaluate the performance of our new synthesizer LOOPY, and show

that it can handle a wide range of synthesis tasks at interactive speeds. Through a small-scale

qualitative user study with five participants, we also evaluate the feasibility of providing block-

level specifications. In our study, participants used LOOPY to solve two Python programming

tasks that involved loops. Our study shows that generally programmers are able to provide

block-level specifications.

Contributions. In summary, this paper makes two main contributions:

1. A new interaction model called Block-Level Live PBE, whose key technical insight is live

execution, an approach that uses programmer input as an oracle to compute the before-

state of future loop iterations, even when the loop body is incomplete. Our user study

demonstrates the feasibility of this interaction model.

2. A block-level program synthesis algorithm using Intermediate State Graphs. Our empir-

ical evaluation shows that this algorithm can synthesize a variety of code blocks using

small specifications and in interactive times (seconds).

3.2 Motivating example

In this section we illustrate the interaction model and the inner workings of LOOPY

using the String Compression task from in Fig. 3.1 as the running example. We assume that
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our user is an experienced programmer, but does not use Python very often; hence they have

a high-level idea of the algorithm they want to implement, but they would like to use program

synthesis to figure out the details at every step.

Prior work: Small-Step Live PBE. One paradigm for integrating synthesis into the program-

mer’s workflow is our recent work on Small-Step Live PBE [52], an approach that combines

live programming in the Projection Boxes environment [105] with programming by example.

Small-Step Live PBE allows the user to edit the live state of the program after a missing as-

signment statement, prompting the synthesizer to generate a statement that modifies the state

accordingly. Fig. 3.1b shows a simple example: the user wants to compute the length of the

list x, but they have forgotten the name of the corresponding Python function. To invoke the

synthesizer, they introduce a hole, z = ??, which spawns a projection box where the output

variable z can be edited. The user might provide the value for z in the first line only; this gives

rise to a synthesis task that asks to transform the before-state σstart = {x 7→ [1,2,3],z 7→ ⊥}

into the after-state σend = {x 7→ [1,2,3],z 7→ 3}. If the user specifies z in both lines, the syn-

thesis task becomes a set of examples (before-after pairs) σ0
start → σ0

end,σ
1
start → σ1

end. Given this

specification, the synthesizer generates the assignment z = len(x), which replaces the hole.

The Small-Step Live PBE interaction model has two important properties. First, the user

only needs to provide the after-state σend for each example; the before-state σstart is computed

by the live programming environment simply by executing the program up until the point of

the hole. This saves user effort, since they need not manually construct relevant before-states

from the middle of an execution. Second, the user’s expectation of the synthesizer is that once

the hole is replaced by the synthesis result, the program execution will indeed pass through the

exact after-states they had specified.

Challenge: loops. These properties become non-trivial to realize in the presence of loops.

Going back to the compress function in Fig. 3.1a, if the user wants to invoke Small-Step Live

PBE inside the loop (say, to help with the assignment on line 9) the projection box cannot
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display an accurate before-state for any loop iteration beyond iteration 1, because that would

require executing the loop body, which has not yet been completed. While in principle it is

possible to ask the user to provide after-states for arbitrary before-states, this violates the user’s

mental model of Live PBE: that they are specifying states that are a part of a single program

execution, and the synthesized programs will actually pass through those states.

Our solution: Block-Level Live PBE. To extend the Live PBE paradigm to work in the presence

of loops, we propose a new interaction model we dub Block-Level Live PBE and implement this

model in a synthesizer called LOOPY. In our compress function in Fig. 3.1a, LOOPY can

synthesize the entire block of code inside the for loop, lines 6–11. In the rest of the section

we explain how LOOPY synthesizes this code, gradually building up to it through a series of

smaller-scale synthesis problems for different fragments of the compress function. We start

with explaining how LOOPY synthesizes a single assignment, then multiple assignments, and

finally the whole conditional.

3.2.1 Handling Loops with Live Execution 1 def compress(s):

2 rs = ’’

3 count = 1

4 last = s[0]

5 for c in s[1:]:

6 if c == last:

7 count += 1

8 else:

9 rs = ??

10 count = 1

11 last = c

To start, we explain how our approach works for a

single assignment. Consider for example the setting where

the user has already figured out how to update the auxiliary

variables count and last, and only needs help with append-

ing to rs. In other words, the user starts with a sketch shown

on the right, where the hole rs = ?? on line 9 indicates the

statement they would like to synthesize. (This program is a

prefix of the full solution in Fig. 3.1a; we assume that the

user will add the return statement later by hand).

Live execution. To enable Live PBE in the presence of loops,

LOOPY performs live execution (inspired by the live evaluation of [117]), where the program-

mer serves as an oracle to execute missing statements and accurately propagate the before-state
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through the sketch.

In our example, when the user first invokes LOOPY, they see the projection box in

Fig. 3.2a and are prompted to enter the output value for rs in iteration 1.4 Because the execution

until that point has not encountered any holes, the projection box displays an accurate before-

state for this iteration5:

σ
0
start = {c 7→ ’b’,rs 7→ ’’,count 7→ 2,last 7→ ’a’}

Once the user enters the desired value ’2a’ for rs, LOOPY uses it as an oracle to “jump over” the

missing assignment and compute the state after line 9 as (with the modified part highlighted):

σ
0
end = {c 7→ ’b’, rs 7→ ’2a’ ,count 7→ 2,last 7→ ’a’}

Starting from this state, LOOPY executes the rest of the loop body, to compute the accurate

before-state for the next time the execution encounters the hole (in iteration 2):

σ
1
start = { c 7→ ’c’ ,rs 7→ ’2a’, count 7→ 1 , last 7→ ’b’ }

At this point the user is prompted to enter the after-state for iteration 2, as shown in Fig. 3.2b,

which again can be used as an oracle to continue live execution and further update the projection

box (see Fig. 3.2c). After any number of iterations, the programmer can decide to stop and

invoke the synthesizer with the specifications provided so far.

Thanks to live execution, the two desirable properties of Live PBE are preserved inside

the loop: 1. the before-states like σ0
start, σ1

start are supplied by the environment, and 2. once

synthesis is complete, program execution passes through the states specified by the user. From

the UI standpoint, live execution is supported by enforcing that the user specify after-states for

4Iteration 0 is missing from this box, since it takes the other branch of the conditional and hence does not
execute the hole.

5In this section we omit s from the states for brevity, since it does not change.
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(a) Before the first iteration (b) After the first iteration (c) The complete specification

Figure 3.2. Specifying after-states for the hole rs = ?? in LOOPY. Note that the projection
box only displays those iterations that execute the hole (1, 3, and 5).

each evaluation of the hole in order; for example, in Fig. 3.2b the user cannot skip iteration 2

and proceed to enter the value for iteration 5, because the before-state in the latter iteration is

not yet accurate.

Synthesis. Live execution reduces the sketch and the user input from the projection box into a

local synthesis problem, defined simply as a set of before-after pairs. For example, user input

from Fig. 3.2c generates the following pairs:

σ0
start = { c 7→ ’b’,rs 7→ ’’, σ0

end = { c 7→ ’b’, rs 7→ ’2a’ ,

count 7→ 2,last 7→ ’a’} count 7→ 2,last 7→ ’a’}

σ1
start = { c 7→ ’c’,rs 7→ ’2a’, σ1

end = { c 7→ ’c’, rs 7→ ’2a1b’ ,

count 7→ 1,last 7→ ’b’} count 7→ 1,last 7→ ’b’}

σ2
start = { c 7→ ’a’,rs 7→ ’2a1b’, σ2

end = { c 7→ ’a’, rs 7→ ’2a1b3c’ ,

count 7→ 3,last 7→ ’c’} count 7→ 3,last 7→ ’c’}

Given this specification, the synthesizer takes less than a second to generate the ex-

pression rs + str(count) + last for the right-hand side of the hole rs = ??, and LOOPY

replaces the statement with a pretty-printed version: rs += str(count) + last.

To solve the local synthesis problem, LOOPY uses a popular synthesis technique called

bottom-up enumeration with Observational Equivalence reduction [177, 6]. In this technique,

an expression enumerator gradually builds more and more complex expressions by composing
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Figure 3.3. Specifying after-states for a hole with multiple variables in LOOPY.

previously enumerated simpler expressions; all expressions are evaluated on the set of before-

states σ i
start, and expressions with the same output are pruned.

3.2.2 Synthesizing assignment sequences with Intermediate State
Graphs

Next we explain how our approach works for blocks of statements. In our running

example, the order of assignments in the else branch of compress can be tricky to get right, so

it would be nice to delegate the entire else branch to the synthesizer. In LOOPY the user can

achieve this by writing a hole with multiple output variables—last, count, and rs—as shown

in Fig. 3.3.

9 rs += str(count) + last

10 count = 1

11 last = c

This spawns a projection box that prompts the user

to enter values for all three output variables, at each loop

iteration. Given the user input in Fig. 3.3, LOOPY again

takes less than a second to generate the sequence of assignments shown on the right.

While live execution extends straightforwardly to multi-variable holes, the challenge is

to extend the synthesis back-end to synthesize the correct assignment order while maintaining

interactive speeds. Fortunately, because in our setting the entire before- and after-states are

given, we can decompose the synthesis of a sequence of assignments into sub-problems for

individual assignments.
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𝜎𝑠𝑡𝑎𝑟𝑡

𝜎{rs}

𝜎{count}

𝜎{last}

𝜎{rs,count}

𝜎{count,last}

𝜎{rs,last}

𝜎𝑒𝑛𝑑

rs = ?

rs = ?count = ?

count = ?

last = ?

Figure 3.4. Intermediate State Graph for synthesizing rs, last, and count.

Specifically, consider the before-after pair for iteration 1 in Fig. 3.3:

σstart = {c 7→ ’b’,last 7→ ’a’,count 7→ 2,rs 7→ ’’}

σend = {c 7→ ’b’, last 7→ ’b’ , count 7→ 1 , rs 7→ ’2a’ }

A sequence of three assignments that transforms σstart into σend must pass through two inter-

mediate states. Let us first assume that the order of assignments is given (first rs, then count,

then last), and the synthesizer only needs to generate their right-hand sides. In this case, the

two intermediate states are fixed: the first one is the state where only rs is updated and the rest

of the variables have the same values as in σstart (we denote it σ{rs}); similarly, the second state

is the one where only rs and count are updated (we denote it σ{rs,count}). Hence our synthesis

problem has been reduced to three independent sub-problems, σstart → σ{rs}, σ{rs} → σ{rs,count},

and σ{rs,count} → σend, each only requiring an assignment to a single variable.

Intermediate State Graph. Of course, in reality the order of assignments is not given: this

is what the user needed help with in the first place! The bad news is that for a hole with n

output variables there are n! possible assignment orders to consider, but the good news is that

the synthesizer need not enumerate them all explicitly, because different orders share interme-

diate states and assignment sub-sequences. For example, both the assignment order last, rs,

count and the assignment order last, count, rs pass through the intermediate state σ{last}, and

likewise both rs, last, count and last, rs, count pass through σ{rs,last}.

To take advantage of these shared states, we propose a new data structure we dub an
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Intermediate State Graph (ISG). The ISG for our running example is shown in Fig. 3.4. The

nodes in this graph are all the relevant states of a synthesis problem—σstart, σend, and the

intermediate states σX for all subsets X ⊂ V of the output variables; the edges in this graph

connect a state to all states with exactly one more updated variable.6 Each ISG node except

σend holds a separate bottom-up expression enumerator.

When the enumerator at the ISG node σ{rs} encounters the expression c, this expression

gets evaluated in the state σ{rs} and tested as a possible assignment for all outgoing edges from

that node. In our example, the assignment last = c transforms σ{rs} into σ{rs,last}, hence we

label the outgoing edge last from σ{rs} with this program and mark the edge solved. A solution

to the synthesis problem is found when there is a path from σstart to σend along solved edges.

For this example, we get a solution by traversing the path σstart,σ{rs},σ{rs,count},σend.

3.2.3 Synthesizing conditional statements

6 if c == last:

7 count += 1

8 else:

9 rs += str(count) + last

10 count = 1

11 last = c

As a final challenge, assume the user now

wants the synthesizer to generate the entire loop

body, by inserting the same multi-variable hole im-

mediately after the loop header and providing after-

states for the first five iterations of the loop, as shown

in Fig. 3.1c. Again, in less than a second, LOOPY

replaces the hole with the code shown on the right.

To understand how LOOPY generates this code so quickly, the final missing piece is efficient

synthesis of conditionals.

Our technique for synthesizing conditionals is inspired by the divide-and-conquer ap-

proach from EUSOLVER [10], but is adapted to the context of ISGs. As an example, consider a

simplified synthesis problem defined by the before-after pairs ε0 and ε1 from the first two loop

6For simplicity, here we ignore Python’s simultaneous assignment statements, which update multiple variables
at a time. In Sec. 3.4 and Sec. 3.5.3 we show how LOOPY synthesizes such assignments.
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iterations in Fig. 3.1c, where ε i = σ i
start → σ i

end for i = 0,1 and

σ0
start = { c 7→ ’a’,rs 7→ ’’, σ0

end = { c 7→ ’a’,rs 7→ ’’,

count 7→ 1,last 7→ ’a’} count 7→ 2 ,last 7→ ’a’}

σ1
start = { c 7→ ’b’,rs 7→ ’’, σ1

end = { c 7→ ’b’, rs 7→ ’2a’ ,

count 7→ 2,last 7→ ’a’} count 7→ 1 , last 7→ ’b’ }

The synthesizer has to decide whether to generate a single assignment sequence that satisfies

both of these examples, or to synthesize two branches, where the first one satisfies ε0 and the

second one satisfies ε1; more generally, with k examples, the synthesizer needs to guess the right

partitioning of these examples into the two branches. LOOPY is able to consider all possible

partitions simultaneously using the following modification to the ISG.

Consider again the ISG in Fig. 3.4, but now imagine that every node is associated with

a vector of states (one for each example ε0 and ε1). Let us focus on the transition between

σstart and σ{count}. Instead of a single edge between these nodes that satisfies both examples,

LOOPY now constructs two edges, one for each partition of the example set: ⟨{ε0,ε1}, /0⟩ and

⟨{ε0},{ε1}⟩. The edge label now contains two separate solutions for count: one for the then

branch of the conditional and one for the else branch. Whenever a new expression is enumerated

at the node σstart, it is tested as a potential solution for both of the cases on each of the two edges:

for example, the expression count + 1 is correct for ε0 but not ε1, so we save it on the edge

⟨{ε0},{ε1}⟩, in the then case; the expression 1 is correct for ε1 but not ε0, so we save it on the

same edge but in the else case.

Finally, to synthesize the guard expression for the conditional, the σstart node of the ISG

also accumulates boolean expressions that partition the examples into all possible partitions. To

construct the synthesis result, we now require the ISG to have a path from σstart to σend via

edges that belong to the same partition, and a boolean expression that matches that partition.
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p̂ ::= s atomic statement
| x = ?? hole
| p̂ ; p̂ sequential composition
| if e : p̂ else : p̂ conditional
| for x in e : p̂ for-loop

Figure 3.5. The syntax of sketches p̂ in LOOPY; programs p use the same grammar excluding
holes.

ATOM
JsK(σ) = σ ′

[s]O(σ) = σ →s σ ′ HOLE
[h]O(σ) = σ →h O(σ)

SEQ

[p̂1]O(σ
0) = σ0 . . .→ŝ1 σ1

[p̂2]O(σ
1) = σ1 . . .→ŝ2 σ̂2

[p̂1 ; p̂2]O(σ
0) = σ0 . . .→ŝ1 σ1 . . .→ŝ2 σ̂2

SEQBOT
[p̂1]O(σ

0) = σ0 . . .→h ⊥
[p̂1 ; p̂2]O(σ

0) = σ0 . . .→h ⊥

Figure 3.6. Definition of a live trace [p̂]O(σ) of a sketch p̂ starting from store σ using a live
execution oracle O; rules for conditionals and loops are omitted for brevity.

3.3 From Live PBE to Block-Level Synthesis

In this section, we define two forms of synthesis tasks: a live PBE task, specified by a

LOOPY user, and a block-level synthesis task, solved by the the LOOPY synthesis engine. We

also formalize live execution as the mechanism that reduces the former task to the latter.

We define our synthesis tasks over a subset of Python shown in Fig. 3.5 (for now ignore

the hole statement, which can appear in sketches but not in programs). The structure of expres-

sions e and atomic statements s is irrelevant for purposes of this section, and therefore omitted

from the figure. We assume, however, that they are equipped with semantics JeK : Store→ Val

and JsK : Store→ Store (where Val is the set of values and Store is the set of stores σ that map

variables to values). We combine the semantics of atomic statements with the standard behav-

ior of control structures to define a program trace [p](σ0) = σ0 →s1 σ1 →s2 · · · →sn σn as the

sequences of stores σ i and atomic statements si that a program execution starting at σ0 goes

through, such that σ i = JsiK(σ i−1).
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Sketches and live exectuion. A sketch p̂ is a program with exactly one hole statement x = ??,

where x denotes one or more program variables, called the output variables of the hole. We use

the meta-variable h to range over holes and ŝ to range over the union of atomic statements and

holes.

A live execution oracle is a function O that, given a store σ , returns either a new store

σ ′ or ⊥. Note that the oracle need not take the hole as input since a sketch has only one hole

(we do assume, however, that the oracle is specific to a sketch). We also assume that O only

updates the output variables of the hole, i.e., for a sketch with the hole x = ?? and for any store

σ and program variable y /∈ x, O(σ)(y) = σ(y).

Using the oracle, we define a live trace [p̂]O(σ0) of a sketch p̂ starting in the store

σ0. A live trace is a sequence σ0 →ŝ1 σ1 →ŝ2 · · · →ŝn σ̂n, where the last state σ̂n can be

either a store σn or ⊥. Live traces are defined using rules in Fig. 3.6. The differences from

regular program traces are captured in the rules HOLE, which uses the oracle to execute a hole

statement, and SEQBOT, which suspends live execution once the oracle returns ⊥ (a similar

suspension happens in the rule for loops, which is omitted for brevity). We say that a program

trace t refines a live trace t̂, written t ≺ t̂, if t can be obtained from t̂ by replacing every step

of the form σ →h σ̂ ′ with a trace σ →s1 . . . →sn σ ′′, where either σ̂ ′ = σ ′′ or σ̂ ′ = ⊥. In

other words, t passes through the same stores as t̂, except that oracle steps can be replaced with

multiple atomic steps, and if t̂ was suspended, t instead continues execution.

With these preliminaries, we can define the live PBE task:

Definition 1 (Live PBE task). A live PBE task is a triple ⟨p̂,O,σ0⟩ of a sketch p̂, a live ex-

ecution oracle O , and an initial store σ0. A solution to a synthesis task is a program p such

that

1) ∃p∗.p = p̂[p∗/h], i.e., p is the sketch with its hole replaced by some program p∗; and

2) [p](σ0)≺ [p̂]O(σ0), i.e., the execution trace of p refines the live trace of the sketch.
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The two conditions above capture the syntactic and semantic expectations of a live PBE

user, respectively. The first condition prevents the synthesizer from replacing any part of the

sketch other than the hole. The second condition requires the synthesized program to behave

like the live execution for as long as possible (until the point where the latter was suspended).

For simplicity, we define a live PBE task using a single initial store σ0; the definition can be

easily generalized to multiple initial stores; note, however, that if the hole is inside a loop, even

a single initial store can lead to multiple occurrences of the hole in the live trace, and hence

multiple invocations of the oracle.

The LOOPY UI. In LOOPY, the user provides the sketch p̂ and the initial store σ0 (see e.g., the

call compress(’aabccca’) in line 12 in Fig. 3.3), and also serves as the live execution oracle

O . The LOOPY UI incrementally builds the live trace [p̂]O(σ0) by querying the oracle via

projection boxes, as shown in Fig. 3.2. More precisely, LOOPY first builds the prefix σ0 · · · →s1

σ1 →h of the live trace until it first encounters the hole; it then displays the store σ1 in the

left-hand side of the projection box, and prompts the user to enter new values for the output

variables of h in the right-hand side. If the user presses “enter”, O(σ1) is taken to be ⊥, and

the live trace is complete; otherwise execution continues with the updated store until it either

terminates or encounters the hole again (in a later loop iteration), which triggers another query

to the oracle (in the next line of the projection box).

Block-level synthesis. Given a live PBE task ⟨p̂,O,σ0⟩, we can now use its live trace, generated

by the LOOPY UI, to derive a simpler, local specification for p̂’s hole h, which we refer to as

the block-level synthesis task. The LOOPY synthesizer can then simply solve this local task,

ignoring the fact that the original sketch might have contained a loop.

Definition 2 (Block-level synthesis task). A block-level synthesis task is defined by the set of

examples E , where each example ε is a pair of stores σstart → σend. A solution to a block-level

task is a program p∗ with no holes or loops, such that for every σstart → σend ∈ E , [p∗](σstart) =

σstart . . .→s σend.
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To reduce the live PBE task ⟨p̂,O,σ0⟩ to a block-level task, we define E = {σ → σ ′ |

σ →h σ ′ ∈ [p̂]O(σ0)}. It is easy to show by comparing the definitions of the two synthesis

tasks, that if p∗ is a solution to the block-level task E , then p̂[p∗/h] is a solution to original live

PBE task ⟨p̂,O,σ0⟩.

The following two sections will address the synthesis of loop-free blocks of code as

a solution to the block-level synthesis task. For the sake of presentation, Sec. 3.4 focuses on

straight-line code blocks (sequences of assignments); then Sec. 3.5 extends the synthesis algo-

rithm to conditionals.

3.4 Synthesizing Sequences of Assignments

In this section, we describe LOOPY’s block-level synthesis algorithm for straight-line

programs, i.e., when the solution p∗ is drawn from the following grammar:

p ::= x = e | p ; p

Here x = e is Python’s simultaneous assignment statement, which has one or more variables

on the left and the same number of expressions on the right. The semantics of a simultaneous

assignment is to first evaluate each ei in the current store and then to assign its value to the

corresponding xi. For example, executing x, y = x + x, x + x + x in the store {x 7→ 1,y 7→

1} yields the store {x 7→ 2,y 7→ 3}.

We begin our exposition in Sec. 3.4.1 with the simplest version of the algorithm, where

the synthesis task is restricted to a single example (|E | = 1), and the solution is restricted to a

single (simultaneous) assignment. Sec. 3.4.2 then extends the algorithm to generate a sequence

of assignments, and Sec. 3.4.3 extends it to handle multiple examples.

Expression enumerators. All variants of LOOPY’s synthesis algorithm require enumerating

expressions e, used on the right-hand side of assignments (and in the guards of conditionals

later on). To this end, LOOPY relies on an existing algorithm called bottom-up enumeration
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with Observational Equivalence reduction [177, 6]. Bottom-up enumeration gradually builds

up a bank of larger and larger expressions, by combining sub-expressions that are already in the

bank. Observational Equivalence (OE) speeds up this process by evaluating every expression

on a given set of inputs and only retaining one expression per result in the bank.

For the purposes of Sec. 3.4.1–3.4.2, we can think of an expression enumerator as a

black-box function Enum(σ), which is parameterized by a store,7 and produces a (possibly

infinite) stream of expressions e0,e1, . . .. The reason an enumerator takes σ as a parameter is

twofold: first, it uses the store’s domain, Vars(σ), as the set of free variables in the expressions

it builds; second, it uses σ to evaluate the expressions for the purposes of OE reduction. OE

reduction guarantees that the enumerator Enum(σ) is complete on σ , that is, for any value v, if

there exists an expression e such that JeK(σ) = v, then a (possibly different) expression ei such

that JeiK(σ) = v will eventually be enumerated; in other words, OE discards programs but never

discards distinct evaluation results on σ .

When LOOPY solves a synthesis task σstart → σend and uses an enumerator to synthesize

a sub-expression e of a program p, it is crucial that the enumerator be initialized with the store σ

in which e will be evaluated during the execution of p on σstart. Depending on where e is located

inside p, σ might or might not be equal to σstart. Passing a wrong store to the enumerator leads

to incompleteness: we can no longer assume that if an expression with the required value exists,

it will be enumerated. For this reason, LOOPY often needs to create multiple enumerators with

different stores.

3.4.1 Single Example, Single Assignment

We begin by examining the case where E = {ε} and the target program contains a single

assignment. We will denote Modε the set of variables modified by an example ε = σstart → σend,

i.e., those variables x where σend(x) ̸= σstart(x). The solution to our block-level synthesis task

is hence of the form x = e, where the left-hand side contains exactly the variables in Modε .

7In Sec. 3.4.3 we will generalize the notion of expression enumerators from a single store to a vector of stores.
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Synthesis algorithm. The synthesis algorithm maintains a variable assignment A , which maps

each variable in Modε to an expression or ⊥; the assignment is initialized by setting A (x) =⊥

for every x ∈Modε . The algorithm then creates a single expression enumerator Enum(σstart).

In each iteration, it draws another expression ei from the enumerator stream, and for every

unassigned variable x (such that A (x) = ⊥), it tests whether ei is valid for x, i.e., whether

JeiK(σstart) = σend(x); if so, the algorithm updates A (x) to ei. When A is complete (i.e.,

A (x) ̸= ⊥ for every x), the algorithm terminates and returns x = A (x) as the solution to the

block-level synthesis task. Note that a single expression enumerator is sufficient in this case

because all right-hand sides of the simultaneous assignment x = e are evaluated in the same

store σstart.

Example 1. Consider the specification σstart = {x 7→ 1,y 7→ 1} and σend = {x 7→ 2,y 7→ 3},

making Modε = {x,y}. We first initialize A = {x 7→ ⊥,y 7→ ⊥} and create an enumerator

Enum({x 7→ 1,y 7→ 1}). After several iterations, the enumerator yields the expression x + x,

which evaluates to 2. This matches σend(x), so we set A (x) to x + x. Next, the enumerator

yields x + x + x, which evaluates to 3, matching σend(y). At this point, A = {x 7→ x + x,y 7→

x + x + x} is complete, so the algorithm terminates and returns the simultaneous assignment

statement:

x, y = x + x, x + x + x

3.4.2 Single Example, Sequence of Assignments

The synthesis task described above has an even simpler solution if instead of a sin-

gle simultaneous assignment we perform two assignments in sequence: x = x + x; y = x +

y. We can synthesize this solution by decomposing the overall synthesis task into two single-

assignment sub-tasks: σstart → σ{x}, which transforms the start state into an intermediate state

where only x has been updated, and σ{x} → σend, which transforms the intermediate state

into the end state. Each sub-task can then be solved independently using the algorithm from
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Sec. 3.4.1. Since the order and grouping of assignments in the solution p∗ is not known a-

priori, the algorithm has to consider decomposing the problem using all intermediate states that

p∗ could possibly pass through. If we assume that p∗ assigns each variable only once, there is

exactly one intermediate state for each non-empty, strict subset of Modε . Formally, for each

X ⊂ Modε , let a partially-updated state σX be the state where only those variables in X have

been updated:

σX = {x 7→ σend(x) | x ∈ X} ∪ {x 7→ σstart(x) | x ∈Modε \X}

Note that σ /0 = σstart and σModε
= σend, and all other partially-updated states are intermediate

states.

Example 2. In Ex. 1, there are two possible intermediate states to consider: σ{x} = {x 7→ 2,y 7→

1} and σ{y} = {x 7→ 1,y 7→ 3}. A solution p∗ can transition from σstart to σend through σ{x},

where x is modified first, through σ{y}, where y is modified first, or directly, in a simultaneous

assignment.

Intermediate State Graph. We can compactly represent the space of all possible solutions to

a synthesis task using a DAG whose nodes are partially-updated states and whose edges are

single-assignment synthesis sub-tasks. We dub this data structure an Intermediate State Graph.

Definition 3 (Intermediate State Graph (ISG)). Given a synthesis task {ε} = {σstart → σend},

its ISG is a directed acyclic graph where:

1. there is a node NX for each X ⊂Modε , which represents the partially-updated state σX ;

2. there is an edge (NX ,NX ′) iff X ⊊ X ′;

3. each edge (NX ,NX ′) is labeled with a variable assignment A(X ,X ′), whose domain is X ′\X .

Example 3. Fig. 3.7 depicts the ISG for Ex. 1 with different variable assignments AE on the

edges: on the left all the assignments are empty; on the right, some (but not all) the assignments

are complete.
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(a) The initial ISG
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(b) The ISG with a solution

Figure 3.7. The Intermediate State Graph for Ex. 1. The path of complete edges is marked in
red.

Synthesis algroithm. The synthesis algorithm maintains an ISG, where the assignment for each

edge E is initialized with AE(x) = ⊥ for every x in its domain. The algorithm then creates

an expression enumerator Enum(σX) for each ISG node NX except the final node Nend. In

each iteration, the algorithm draws an expression ei from an enumerator at some node NX .

For every outgoing edge (NX ,NX ′) and for every unassigned variable x on that edge (such that

A(X ,X ′)(x) =⊥), it tests whether ei is valid for x on that edge, i.e., whether JeiK(σX) = σX ′(x);

if so, the algorithm updates A(X ,X ′)(x) to ei. When all variables on an edge are assigned (i.e.,

A(X ,X ′)(x) ̸= ⊥ for every x), the edge (NX ,NX ′) is marked complete. The algorithm terminates

when there is a path from Nstart to Nend via complete edges. The sequence of assignments along

the path is the solution to the synthesis problem.

Example 4. To solve the synthesis problem defined in Ex. 1, we first initialize the ISG as shown

in Fig. 3.7a. We then create three expression enumerators, one each in Nstart, N{x}, and N{y}.

Consider the iteration of the algorithm where we query the enumerator Nstart, and it

yields the expression x + x. This expression, which evaluates to Jx + xK(σstart) = 2, is then

tested for validity for every variable on each of the three outgoing edges from Nstart:

− (Nstart,N{x}), variable x: σ{x}(x) = 2, so A(start,{x})(x) is set to x + x.

− (Nstart,N{y}), variable y, σ{y}(y) ̸= 2, so A(start,{y})(y) remains ⊥.

− (Nstart,Nend), variables x and y: σend(x) = 2 but σend(y) ̸= 2, so A(start,end)(x) is set to x

+ x, and A(start,end)(y) remains ⊥.
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After this iteration, the edge (Nstart,N{x}) is complete, but the two other outgoing edges are not.

At a later iteration, we encounter the expression x + y at a different node, N{x}. This

expression, which evaluates to Jx + yK(σ{x}) = 3 is tested for validity for the variable y of the

sole outgoing edge (N{x},Nend) from N{x}. Since σend(y) = 3, A({x},end)(y) is set to x + y, and

this edge is now complete. Moreover, as shown in Fig. 3.7b, there is now a path of complete

edges from Nstart to Nend, which is translated into the solution x = x + x; y = x + y.

Multiple enumerators. As we alluded to at the beginning of this section, our synthesis algorithm

for a sequence of assignments needs to use multiple enumerators, initialized with different

stores σX , because the synthesized expressions are meant to be evaluated in different stores

during program execution. To illustrate potential completeness issues when using a wrong

store, assume that the ISG in Fig. 3.7 had a single shared enumerator Enum(σstart). Note that

JxK(σstart) = JyK(σstart) = 1, so from the standpoint of Enum(σstart) these two expressions are

equivalent, and one of them (say y) is discarded by OE. As a result Enum(σstart) will never

enumerate any expressions with variable y; in particular, using just this enumerator, we would

not be able to generate the desired solution x = x + x; y = x + y. Instead, the enumerator

Enum(σ{x}) yields both x and y (and larger expressions build from both of these variables),

since the two variables are not equivalent in σ{x}.

Design considerations. A shrewd reader might be concerned that the enumerators at differ-

ent nodes duplicate each other’s work, since they do enumerate some of the same expressions.

An alternative design that eliminates this work duplication is to use a single shared enumer-

ator initialized with a vector of all partially updated states: EnumσX . This enumerator treats

each σX as a separate example it must consider, and prunes expressions by evaluating them

point-wise on σX and comparing their output vectors. Indeed, we can safely share this single

enumerator between all nodes in the ISG, without the danger of any relevant expressions being

lost, as all states on which the expressions might possibly be evaluated are taken into account.

Perhaps surprisingly, this design turned out to be so inefficient, that it did not even warrant a
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quantitative evaluation. The reason is that the shared enumerator has a much more fine-grained

equivalence relation between expressions, which prevents OE reduction from pruning expres-

sions efficiently; as a result, the shared enumerator produces many more expressions than all

per-node enumerators combined.

The algorithm above does not specify the order in which different enumerators are

queried. Our current implementation interleaves them in a round-robin fashion. In principle

they could easily run in parallel, as the only operation that requires coordination between mul-

tiple ISG nodes is checking for a complete path. As long as the scheduling of enumerators is

starvation-free, it does not affect the soundness or completeness of the algorithm, although it

can affect the size of the generated solution.

Picking the smallest program. Because a single edge can be shared by multiple paths, the syn-

thesis algorithm might discover multiple complete paths from Nstart to Nend in a single iteration.

In this case LOOPY selects the program with the smallest total size. To that end, each edge

(NX ,NX ′) is assigned a weight equal to ∑x∈X ′\X size(A(X ,X ′)(x)), where size is the size of an

expression in AST nodes (with size(⊥) = ∞). LOOPY then uses Dijkstra’s algorithm to find the

shortest path from Nstart to Nend.

In general, the synthesis algorithm is not guaranteed to find the smallest solution overall,

because the size of expressions enumerated at different nodes increases at a different rate (e.g.,

in Fig. 3.7 Nstart starts producing larger expressions sooner than the other nodes, since it only

has to consider expressions with a single free variable)8; our experiments show, however, that

the round-robin interleaving produces small programs in practice.

3.4.3 Multiple Examples, Sequence of Assignments

Recall that in Live PBE, a hole inside a loop typically generates a block-level synthesis

task with multiple examples (one for each loop iteration entered by the user). We now extend

8It is theoretically possible to pause each enumerator that finishes program size k until all enumerators finish
size k, and start size k+ 1 together. This is impractical, however, since the set of programs of size k can be very
large even for a moderate k.
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our synthesis algorithm to this setting. More specifically, let E = ⟨ε1, . . . ,εn⟩ be a vector of

examples (the ordering of examples is irrelevant, but fixed once and for all before synthesis

begins). We define the set of modified variables ModE to include variables modified in any of

the examples: ModE =
⋃

ε∈E Modε .

Expression enumerators. An expression enumerator Enum(⟨σ1, . . . ,σn⟩) must now be param-

etrized by a vector of stores. Each expression ei it constructs is evaluated in all stores to produce

an output vector ⟨v1, . . . ,vn⟩; output vectors are compared point-wise, and only one expression

per vector is retained in the bank. As usual with OE reduction, the more examples we have, the

more expressions are retained in the bank, and the slower the enumeration.

Intermediate State Graph. The only change in the ISG is that a node NX now corresponds to a

vector of partially-updated stores, rather than a single store:

NX = ⟨σ1
X , . . .σ

n
X⟩ where σ

k
X = {x 7→ σ

k
end(x) | x ∈ X}∪{x 7→ σ

k
start(x) | x ∈ModE \X}

Importantly, the topology of the graph is unchanged, in the sense that the set of nodes and edges

is determined only by ModE and does not directly depend on n.

Synthesis algorithm. The synthesis algorithm remains largely the same. The expression enu-

merator is each node NX is now Enum(⟨σ1
X , . . .σ

n
X⟩). An expression e is valid for a variable x

on an edge (NX ,NX ′) if it is valid for every example: ∀1 ≤ k ≤ n.JeK(σ k
X) = σ k

X ′(x).

In the next section, we tackle synthesis of conditionals, which requires multiple ex-

amples; hence from now on we use these generalized versions of the ISG and the synthesis

algorithm.

3.5 Synthesizing Conditionals

In this section, we extend our block-level synthesis algorithm to support conditional

statements. We begin in Sec. 3.5.1 with a restricted setting where the solution has a single
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assignment in each branch of the conditional; Sec. 3.5.2 extends the algorithm to combine

conditionals with assignment sequences.

3.5.1 Single Conditional Assignment

Consider a block-level synthesis task E with multiple examples (|E | > 1) and a single

modified variable x (ModE = {x}), and assume that we are looking for a solution p∗ of the form:

if econd : x = ethen else : x = eelse

Unlike an unconditional assignment x = e, where we had to find a single expression e that is

valid for all examples E , in this case we have to find three expressions, econd, ethen, and eelse

such that:

1. ethen is valid for some subset of examples Ethen ⊂ E ;

2. eelse is valid for the rest of the example Eelse = E \Ethen; and

3. econd is a boolean expression that separates these two subsets, i.e., evaluates to True on

all Ethen and to False on all Eelse.

The general idea behind the synthesis algorithm is to use a single enumerator Enum(⟨σ1
start, . . . ,

σn
start⟩) to generate a stream of expressions, and keep track of promising candidates for ethen,

eelse, and econd, until we have encountered three expressions that together satisfy the above

requirements.

Partitions. Since we do not know in advance how to partition E into Ethen and Eelse, the algo-

rithm must consider all possible partitions π = ⟨E1,E2⟩. Note, however, that a solution for

⟨E1,E2⟩, can be transformed into a solution for the symmetric partition ⟨E2,E1⟩, by swap-

ping ethen and eelse and negating econd. Hence the algorithm only needs to explicitly track

half of all partitions (modulo symmetry); we denote this set of partitions of interest ΠE , with

|ΠE |= 2|E |−1.

Example 5. Consider a synthesis task E = {ε1,ε2} where ε1 = {x 7→ −1 } → {x 7→ 1} and
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ε2 = {x 7→ 2}→ {x 7→ 2}. There are four partitions of E :

π1 = ⟨E , /0⟩ π3 = ⟨{ε
2},{ε

1}⟩

π2 = ⟨{ε
1},{ε

2}⟩ π4 = ⟨ /0,E ⟩

For the purposes of synthesis, π2 and π3 are symmetric, and so are π1 and π4 (the latter pair

corresponds to an unconditional solution). Hence we select ΠE = {π1,π2}.

Storing candidate expressions. For each partition ⟨E1,E2⟩ ∈ ΠE , the algorithm maintains a

pair of variable assignments, ⟨A E1,A E2⟩. An assignment A E j maps each variable in ModE

(in this subsection, just x) to an expression e that is valid over E j: that is, ∀σstart → σend ∈

E j.JeK(σstart) = σend(x). The expressions stored in A E1 and A E2 are used as candidates for

ethen and eelse, respectively. Note that in total there is one variable assignment for each subset

of E .

In addition to the 2|E | variables assignments, the algorithm also maintains a single con-

dition store C , which maps every partition ⟨E1,E2⟩ ∈ ΠE to a boolean expression b that matches

this partition: that is, evaluates to True on E1 (∀σstart → σend ∈ E1.JbK(σstart) = True) and to

False on E2 (∀σstart → σend ∈ E2.JbK(σstart) = False). The expressions stored in C are used as

candidates for econd. Both A Ei and C are partial maps, i.e., some of their keys may be mapped

to ⊥.

Example 6. Fig. 3.8 shows two different states of the synthesis algorithm for the task from

Ex. 5. Each state is depicted as a degenerate ISG with only two nodes—Nstart and Nend—since

in this subsection we are not dealing with sequences of assignments. Instead of a single edge

connecting the two nodes, there are now two: one edge per partition π ∈ ΠE . Each edge is

labeled with the pair of assignments associated with its partition. The node Nstart is also labeled

with the condition store, which stores a boolean expression for each of the two partitions.

Synthesis algorithm. The algorithm begins by initializing all A E j(x) and C (π) to ⊥, except

71



𝜎𝑠𝑡𝑎𝑟𝑡
1 = {𝑥 ↦ −1}

𝜎𝑠𝑡𝑎𝑟𝑡
2 = {𝑥 ↦ 2}

𝜎𝑒𝑛𝑑
1 = {𝑥 ↦ 1}

𝜎𝑒𝑛𝑑
2 = {𝑥 ↦ 2}

𝑁𝑠𝑡𝑎𝑟𝑡

𝑁𝑒𝑛𝑑

𝜋1: True
𝜋2: ⊥

𝜋1 𝜋2

𝒜ℰ: x = ⊥
𝒜∅: x = ⊥

𝒜{𝜖1}: x = ⊥
𝒜{𝜖2}: x = ⊥

𝒞

𝜎𝑠𝑡𝑎𝑟𝑡
1 = {𝑥 ↦ −1}

𝜎𝑠𝑡𝑎𝑟𝑡
2 = {𝑥 ↦ 2}

𝜎𝑒𝑛𝑑
1 = {𝑥 ↦ 1}

𝜎𝑒𝑛𝑑
2 = {𝑥 ↦ 2}

𝑁𝑠𝑡𝑎𝑟𝑡

𝑁𝑒𝑛𝑑

𝜋1: True
𝜋2: x < 0

𝜋1 𝜋2

𝒜ℰ: x = ⊥
𝒜∅: x = x

𝒜{𝜖1} : x = -x
𝒜{𝜖2}: x = x

𝒞

Figure 3.8. Initial (left) and final (right) state of the synthesis algorithm for the task in Ex. 5.
Complete variable assignments and complete edges (partitions) are highlighted in red. On the
right, partition π2 is complete, because both of its variable assignments are complete, and it has
a condition in C .

C (⟨E , /0⟩) 7→ True. In each iteration, the algorithm draws one expression ei from the enumerator

and updates the state as follows:

1. For each partition ⟨E1,E2⟩ ∈ ΠE , the algorithm tests whether ei is valid over either of the

E j; in that case, A E j(x) is updated to ei unless already set to something other than ⊥.

2. If ei is a boolean expression that evaluates without errors on all examples, the algorithm

searches for a partition π ∈ ΠE such that ei matches π; if found, C (π) is updated to ei,

unless already set. Note that a matching partition π might not exist in ΠE , since ΠE only

stores half of the partitions; in this case, there must be a π ′ ∈ ΠE that is symmetric with

π , and moreover the expression not ei matches π ′. Hence, if a matching partition for ei is

not found, then the algorithm searches for one for not ei, and updates C accordingly.

The algorithm terminates as soon as some partition π∗ = ⟨E ∗
1 ,E

∗
2 ⟩ is complete, that is, C (π∗) ̸=

⊥ and both A E ∗
1 and A E ∗

2 are complete (do not contain ⊥). The algorithm returns a solution

where:

econd = C (π∗) ethen = A E ∗
1 (x) eelse = A E ∗

2 (x)

Example 7. For the synthesis task in Ex. 5, the state is initialized as shown in Fig. 3.8 (left).

The first iteration enumerates expression x, which is valid for the example ε2, and hence we

update A {ε2}(x) = x (and also, trivially, A /0(x) = x). A later iteration enumerates -x, which

is valid for ε1, updating A {ε1}(x) = -x. At this point, the partition π2 = ⟨{ε1},{ε2}⟩ has both
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of its variable assignments complete, but the partition itself is not yet complete, since it does

not have a condition in C . Once the enumerator yields the expression x < 0, we notice that it

evaluates to True on ε1 and to False on ε2, hence we update C (π2) = x < 0. At this point,

π2 is complete, and the algorithm terminates. This final state is depicted in Fig. 3.8 (right); the

highlighted partition creates the final solution:

if x < 0: x = -x else: x = x

Multiple solutions. Because expressions ethen and eelse might be valid on overlapping subsets

of examples, our algorithm may complete multiple partitions in the same iteration. Just like in

Sec. 3.4.2, we pick the solution with the smallest overall size in AST nodes, i.e., minimizing

size(econd)+ size(ethen)+ size(eelse). For the partition ⟨E , /0⟩, the size is computed simply as

size(ethen), since this solution can be simplified into an unconditional assignment.

3.5.2 Conditionals and Assignment Sequences

Finally, we present our block-level synthesis algorithm in all generality, combining

the notion of an ISG from Sec. 3.4.2 to handle sequential composition with partitions from

Sec. 3.5.1 to handle conditionals. In theory this approach can support programs with arbitrary

combinations of assignments, conditionals, and sequential composition, drawn from the gram-

mar:

p ::= x = e | p ; p | if e : p else: p

In practice, however, the full search space turns out to be too large, slowing down the search and

leaving the user to weed through many irrelevant solutions. Hence, the version of the algorithm

implemented in LOOPY and described in this section restricts the search space to programs with
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a single top-level conditional, with a sequence of assignments in each branch:

p ::= q | if e : q else: q

q ::= x = e | q ; q

Conditional ISG. To represent programs from this space, we generalize the notion of an ISG

from Def. 3 into a conditional ISG. We have already seen a simple conditional ISG with just

two nodes in Fig. 3.8. In general, to turn an ISG into a conditional ISG we simply clone every

edge 2|E |−1 times (one for each partition), and associate two variable assignments (instead of

one) with each edge. We also add a single condition store C , associated with the node Nstart.

Definition 4 (Conditional ISG). Given a synthesis task E = {ε1, . . . ,εn}, its conditional ISG is

a directed acyclic multi-graph where:

1. there is a node NX for each X ⊂ModE , which represents the vector of partially-updated

stores ⟨σ1
X , . . . ,σ

n
X⟩;

2. for each pair of states NX ,NX ′ such that X ⊊ X ′, and for each partition π ∈ ΠE , there is

an edge (NX ,NX ′)π ;

3. each edge (NX ,NX ′)π where π = ⟨E1,E2⟩ is labeled with a pair of variable assignments

A E1
(X ,X ′) and A E2

(X ,X ′), whose domain is X ′ \X .

4. the node Nstart is labeled with a condition store C .

Given a conditional ISG G and a partition π , we denote G /π the sub-graph of G spanned

by all the edges of the form (N,N′)π . Each G /π is a regular DAG (not a multi-graph), which

represents the current candidate solution for partition π .

Synthesis algorithm. The high-level structure of the algorithm is similar to that without condi-

tionals: i.e., each ISG node has an associated expression enumerator, and in each iteration a new

expression ei is produced at some node NX . State updates are a straightforward combination of

Sec. 3.4.2 and Sec. 3.5.1: namely, ei is tested for validity for both E1 and E2, for each outgo-
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if 0 <= x:
x = x

else:
x = -x

if 0 <= x:
else:

x = -x

if x < 0:
x = -x

1 2

x, y = x + z, y + z
x = x + z
y = y + z

3

if 10 > a:
a += 1
c = a + b
d = a + b
b -= 1

else :
a += 1
d = a + b
c = a - b
b -= 1

4

a += 1
d = a + b
if 10 > a:

c = a
else :

c = a - b
b -= 1

a

b

c

Figure 3.9. Examples of post-processing of synthesized conditional programs to make them
more readable.

ing edge (NX ,NX ′)⟨E1,E2⟩, and each variable x ∈ X ′ \X , and the assignment A
E j
(X ,X ′) is updated

accordingly. Whenever a boolean expression is enumerated at the node Nstart, the algorithm

additionally tests whether it matches any partitions and updates C accordingly. Note that we

are looking for a program with a single top-level conditional, where the condition is always

evaluated in the initial state; this is why the algorithm only needs one C , and the conditions are

produced by the enumerator at Nstart.

An edge (NX ,NX ′)⟨E1,E2⟩ is considered complete when both of its assignments A E1
(X ,X ′)

and A E2
(X ,X ′) are complete (i.e., do not contain ⊥). The algorithm terminates when there is a

partition π∗ such that:

• it has a condition in C : C (π∗) ̸=⊥, and

• the subgraph G /π has a path from Nstart to Nend along complete edges.

The algorithm then returns the solution if C (π∗) : qthen else: qelse, where qthen and qelse are

sequences of assignments collected from A Ethen
(X ,X ′) and A Eelse

(X ,X ′) along the complete path (with

⟨Ethen,Eelse⟩ = π∗). Once again, since multiple solutions may be discovered simultaneously,

the algorithm searches for a shortest complete path in each G /π , and then selects the smallest

program among these candidates.
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3.5.3 Post-Processing

Because the synthesis algorithm described in Sec. 3.5.2 generates programs in a re-

stricted form (a single top-level conditional with assignments to the same variables in both

branches), the resulting program is not always the most concise or natural. To improve readabil-

ity of synthesized programs, LOOPY post-processes the solution to simplify it before presenting

to the user.

More specifically, the following rewrite rules are repeatedly applied until a fixed point

is reached:

1. Removing self-assignment. A variable x ∈ ModE might be actually modified only in

one branch of the solution and not the other. In this case, the algorithm generates a self-

assignment x = x, which can be simply removed during post-processing, as shown in step

1⃝ in Fig. 3.9a.

2. Removing empty branches. As a result of applying other rules, one branch of the condi-

tional can become empty and can be removed. If the remaining branch is the else branch,

LOOPY turns it into the then branch and negates the condition, as shown in step 2⃝ in

Fig. 3.9a.

3. Splitting simultaneous assignments. The generated solutions might include simultane-

ous assignments even when they are not strictly required (recall the example in Sec. 3.4.1).

Our experience shows that a sequence of simple assignments is usually more familiar and

hence more readable than a simultaneous assignment. For this reason, LOOPY splits a

simultaneous assignment into a sequence of simple assignments whenever this is sound,

i.e., when there is no cross-variable dependency between left- and right-hand sides. Step

3⃝ in Fig. 3.9b shows an example of this rewrite; this is sound because x + z does not

use y and y + z does not use x. On the other hand, x, y = x + z, y + x cannot be

straightforwardly split, because the right-hand side assigned to y uses x, and specifically

its old value. Splitting assignments has the additional benefit that it makes other rewrite
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rules more likely to apply.

4. Factoring out unconditional code. Some of the assignments might be duplicated be-

tween the then and else branches, and hence can be factored out of the conditional. An

example is shown in step 4⃝ in Fig. 3.9c. More specifically, LOOPY extracts the identi-

cal prefix and suffix of assignments from the two branches, and places these statements

before and after the conditional, respectively. In order to maximize the common prefix/-

suffix, LOOPY also re-orders assignments inside each branch whenever this is sound; for

example in Fig. 3.9c the statement d = a + b is re-ordered before c = a + b (since there

is no dependency between the two) and becomes part of the common prefix.

3.6 Empirical evaluation

We design our experiments to answer the following research questions: overall, we want

to show that LOOPY requires less time and less input from the user than big-step synthesizers,

and yet generates correct and general programs most of the time.

(RQ1) Can LOOPY handle a wide range of synthesis tasks at interactive speeds?

(RQ2) Does LOOPY require less user input to synthesize correct programs with loops com-

pared to the state of the art?

(RQ3) Does enumerating programs using the conditional ISG affect LOOPY’s ability to solve

simple non-conditional synthesis tasks?

(RQ4) Are assignment sequences necessary to solve benchmarks with loops, or is simultaneous

assignment sufficient?

Implementation. We implemented LOOPY in Scala based on the algorithm in Sec. 3.5.2, using

a standard size-based bottom-up synthesizer as the expression enumerator in each ISG node.

Each enumerator has a vocabulary of 84 components, plus all the variables available in the

77



Table 3.1. Summary of the four benchmark suites used in LOOPY’s empirical evaluation.

Number of Avg. Avg. solution Avg. number Avg. iterations
Benchmark suite benchmarks |ModE | size (AST nodes) of examples per example
No control flow 61 1.7 8.9 1.6 –

LOOPY conditional 9 1.0 14.6 2.6 –
LOOPY 38 1.8 11.9 1.1 4.1

FRANGEL 23 1.0 7.9 1.0 6.0

before-state, and string literals extracted from the after-state. Our implementation is single-

threaded; there is much room for improvement via parallelism, as each ISG node can be handled

independently.

Benchmarks. We evaluated LOOPY on 131 benchmarks from four benchmark suites:

1. No control flow: a suite of 61 benchmarks from previous synthesizers that generate as-

signments without conditions or loops.

2. LOOPY conditional: a suite of 9 benchmarks that contain a conditional statement outside

the context of a loop.

3. LOOPY: a suite of 38 block-level synthesis tasks extracted from programs with loops via

live execution; the original looping programs are curated from competitive programming

and educational problems, as well as our user study tasks, described in Sec. 3.7.

4. FRANGEL: 23 benchmarks from FRANGEL’s ControlStructures benchmark suite [161].

The statistics for these benchmarks, including the size of specification provided, are shown in

Tab. 3.1. For each benchmark, we created a set of gold standard solutions to compare synthesis

results against. We next detail the process of selecting and converting FRANGEL’s benchmarks

for LOOPY.

Selection criteria. We selected 23 tasks from FRANGEL’s ControlStructures benchmark suite,

which tests manipulating list-like data structures in various ways. Of the 40 benchmarks in the

original suite, we excluded those with constructs not supported by LOOPY according to the

following criteria:
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− Benchmarks that contain chained conditionals or multiple chained loops. Such bench-

marks were broken up into multiple benchmarks and added to the LOOPY benchmarks

set.

− Benchmarks that contain unsupported types, where no comparable type exists in LOOPY

(e.g., matrices, benchmarks that hinge on null pointers).

− Benchmarks that require external library functions not present in the standard library.

Benchmark translation. Since FRANGEL synthesizes Java programs from end-to-end spec-

ifications, we converted FRANGEL’s benchmarks into Python and block-level specifications.

Additionally, the typical structure of a FRANGEL benchmark is a set of approximately five ex-

amples where one represents the general case and the remainder are mutations covering corner

cases. We converted the general case example from each of the selected FRANGEL benchmarks

to the LOOPY specification format using the following steps:

1. The representative example was translated from Java to Python; built-in Java collections

were replaced with Python lists or sets, and Java-specific elements such as null references

were removed if present.

2. We manually specified the intermediate variables (if needed) to synthesize the solution.

3. We manually specified the loop structure, typically a for loop over the elements or the

indexes of the input.

4. Starting with the representative example’s input, we provided the intermediate output

values for each iteration (typically six iterations).

5. FRANGEL’s gold standard solution was translated from Java to Python.

Additionally, benchmarks that can be solved by LOOPY without the use of a loop were also

added to the No Control Flow or LOOPY Conditional benchmark suite.
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(a) Correctly solved benchmarks (b) All benchmarks that did not time out

Figure 3.10. Performance of the LOOPY synthesizer on the full benchmark suite at 300s time-
out.

Experimental setup. All benchmarks were run on an AMD Ryzen 3800X processor, with the

JVM maximum heap size set to 24 GB.

3.6.1 RQ1: Synthesis at Interactive Speeds

To test RQ1, we ran LOOPY on all 131 benchmarks in our joint benchmark suite. We

set a timeout of five minutes, and measured the time to completion and the correctness of the

synthesis result for each of the benchmarks. We show the results in Fig. 3.10.

Results. Of the 131 benchmarks, LOOPY terminates on 125 (95%) within five minutes, and

correctly solves 99 (76%). However, since five minutes is far too long a wait within an actual

programming workflow, we would like to examine LOOPY at an interactive timeout, seven

seconds.

By a seven-second timeout, LOOPY terminates on 120 benchmarks (92%), it correctly

solves 96 (73%). This difference is small enough to consider the shorter timeout extremely

beneficial: most synthesis tasks still behave the same, but the wait is sufficiently short to prevent

the user from losing the context of their work. We therefore answer RQ1 in the affirmative.

3.6.2 RQ2: Specifications Required for LOOPY’s Interaction Model

To test whether LOOPY’s interaction model requires less specification effort than the

state of the art, we picked FRANGEL as our baseline and used their manually crafted Control-
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(c) FRANGEL end-to-end exam-
ples

Figure 3.11. The effect of the number of examples and the number of iterations from each
example on LOOPY using the FRANGEL benchmark set, and the number of examples provided
and required by FRANGEL.

Structures benchmarks. We performed two experiments:

1) We manually minimized the example sets in FRANGEL’s original benchmarks to the min-

imum set required for correctness. This gives us a lower bound on the number of end-to-

end examples that are necessary to use a big-step synthesizer.

2) We tested LOOPY with a varying number of examples and a varying number of loop

iterations per example.

Minimizing FRANGEL

FRANGEL’s original ControlStructures benchmarks have an average of 5.5 end-to-end

examples per benchmark. To minimize the example sets, we modified the benchmarks by suc-

cessively reducing the number of examples as long as the result remained correct. Because

FRANGEL uses stochastic search, we ran each modified benchmark three times with a timeout

of 30 seconds, and considered the result correct if it was correct in at least one of the three

attempts.

Results. The results are shown in Fig. 3.11c. For most benchmarks, FRANGEL needs most

of the original examples—an average of almost four end-to-end examples per benchmark. We

further observe that even though for some of the benchmarks half or more of the examples could

be removed, selecting those examples was far from intuitive. The original example set is more
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representative of a typical input to a big-step PBE synthesizer, since it was likely curated via

the usual method of adding examples as long as the result is incorrect.

Varying number of examples for LOOPY

To measure the size of user input LOOPY needs, we exercised it with varying numbers

of examples and loop iterations per example.

We translated each FRANGEL benchmark with all its original examples, excluding ex-

amples where the loop is not entered (e.g., an empty list as input). As mentioned above, each

FRANGEL benchmark file typically starts with a “main” example (sometimes two) demonstrat-

ing the main success scenario of the desired program, followed by mutations introducing corner

cases. Many of these are differentiating examples, which do not capture representative behav-

iors but rather distinguish the desired program from simpler programs. For this reason, we

cannot select n examples at random, as we may wind up with just the corner cases and nothing

demonstrating the core behavior. Therefore, we consider the examples in the order in which

they appear in the FRANGEL benchmark file.

For each FRANGEL benchmark, we run LOOPY on the first 1–4 examples, with the first

1–5 iterations of the loop for each example. The percentage of benchmarks that did not time out

and the percentage of benchmarks where LOOPY found the correct program appear in Fig. 3.11.

Results. LOOPY’s correctness peaks around 4–5 iterations of 2–3 examples, but even at five

iterations of one example, correctness is at 70%. This is despite several FRANGEL benchmarks

where the end-to-end specification requires at least two examples, such as the benchmark “Are

all list elements positive?”. Here, the end-to-end specification requires two examples: one

where the property holds and one where it does not. In LOOPY, however, it is sufficient to

invoke the program on a single list that does not satisfy the property, as long it has a prefix that

does. If we use all iterations of a single example (often more than five), LOOPY succeeds on all

FRANGEL benchmarks but one.

It is also rather expected that providing just one iteration has a low success rate, even
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Figure 3.12. Differences in synthesis time and correctness between LOOPY and a single ex-
pression enumerator.

with multiple examples (see the leftmost column of Fig. 3.11a). It is similarly unsurprising that

LOOPY times out more often as the number of examples increases (see Fig. 3.11b), due to the

properties of Observational Equivalence we discussed in Sec. 3.4.2.

To conclude, LOOPY does quite well when provided fewer inputs than FRANGEL:

LOOPY solves most of the benchmarks using only five inputs (more specifically, five itera-

tions of one examples), while FRANGEL requires 5.5 examples on average. LOOPY reaches its

peak accuracy with 6–10 inputs, which is comparable with the number of examples FRANGEL

needs on its most demanding benchmarks. Moreover, we believe that multiple loop iterations

for one example are easier to provide than to come up with entirely new end-to-end examples,

which is supported by our user evaluation in Sec. 3.7. With this in mind, we answer RQ2 in

the affirmative.

3.6.3 RQ3: The Overhead of Conditional ISG

The goal of this experiment is to measure the overhead of maintaining multiple expres-

sion enumerators and keeping track of multiple example partitions. To this end, we compare

the full LOOPY algorithm from Sec. 3.5.2 to a baseline synthesizer, which consists of a single

bottom-up OE enumerator (of the same kind as used in each node of the ISG). Because the base-

line synthesizer cannot handle conditionals or sequential composition (it can only synthesize a
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single assignment statement), we restrict this experiment to the No Control Flow benchmark

suite. While none of these benchmarks require conditionals, some of them do require multiple

assignments. When solving these benchmarks with the baseline synthesizer we manually de-

compose them into independent single-assignment tasks and set the timeout of seven seconds

for each task. We then compare synthesis times and results between the baseline synthesizer

and the full LOOPY algorithm; the results are shown in Fig. 3.12.

Results. We first focus on synthesis times for those benchmarks that only require a single as-

signment (Fig. 3.12a). We notice that with the exception of two benchmarks synthesis times

remain mostly unchanged, as does the number of expressions enumerated. This is understand-

able because when a task has just one modified variable, the ISG contains only two nodes, Nstart

and Nend, and a single enumerator at Nstart (which is identical to the enumerator of the baseline

synthesizer). Hence, both algorithms are exploring exactly the same stream of expressions; the

only difference in performance comes from the fact that LOOPY has to test validity of each

expression against multiple partitions (and also test boolean expressions as candidates for the

condition store). The two outliers are benchmarks where the baseline synthesizer times out

while LOOPY finds a short but incorrect conditional solution.

For the benchmarks that require assigning multiple variables (Fig. 3.12b), LOOPY pre-

dictably takes longer, because it has to figure out the order of assignments, while for the baseline

synthesizer the order is predefined. Despite this handicap, LOOPY takes no longer than two sec-

onds to solve each benchmark that the baseline synthesizer can also solve.

There are five benchmarks that were correctly solved by the baseline synthesizer and

incorrectly solved by LOOPY (Fig. 3.12c); all five require multiple assignments. In three of

those, LOOPY finds a different order of assignments, which happens to match the examples;

in the remaining two, LOOPY introduces a spurious condition, which leads to a shorter but

incorrect solution.

Overall, using a conditional ISG has some effect on LOOPY’s ability to solve bench-
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Figure 3.13. Difference in running time and correctness between LOOPY & LOOPYsim.

marks without control flow, but this effect is small compared to the wealth of new bench-

marks that can now be solved.

3.6.4 RQ4: The Effect of Assignment Sequences

Maintaining an ISG with multiple enumerators enables LOOPY to synthesize assign-

ment sequences, which, as we illustrated in Sec. 3.4.2, may result in a simpler solution com-

pared to a single simultaneous assignment. In this experiment we evaluate whether this actually

happens in practice (and hence, whether the additional complexity and performance overhead

of the full ISG is justified). To this end, we created LOOPYsim, a version of LOOPY capable of

synthesizing only simultaneous assignments but not assignment sequences. LOOPYsim main-

tains a conditional ISG with only two nodes, Nstart and Nend. We ran LOOPYsim on our entire

benchmark suite and measured time to termination and correctness, compared to the original

LOOPY synthesizer. The results appear in Fig. 3.13.

Results. When it comes to synthesis times, on average, LOOPY tends to be slightly slower

that LOOPYsim, because of the overhead of multiple enumerators. Predictably, this effect is not

observed for any single-variable benchmarks, as the two ISGs are identical in this case. For most

other benchmarks, the performance overhead is small: most importantly, there are only two

benchmark where LOOPYsim finishes and LOOPY times out. There are also two benchmarks
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1 """

2 k-th digital root:

3 Compute the k-th digital root of a natural

4 number n, that is , replace n with the sum

5 of its digits k times.

6 >>> task (1798 , 3)

7 7

8 (because

9 1. 1 + 7 + 9 + 8 -> 25

10 2. 2 + 5 -> 7

11 3. 7 -> 7)

12 """

13 def task(n, k):

14 rs = n

15 return rs

16
17 task(1798, 3)

1 """

2 Extract Numbers:

3 Given a string containing numbers separated by

4 exactly one non -integer character , return a

5 list containing all the numbers in the string.

6 >>> task (’13 a7b42 ’)

7 [13, 7, 42]

8 """

9 def task(s):

10 rs = []

11 return rs

12
13 task(’13a7b42 ’)

Figure 3.14. The initial state of the study tasks, as provided to the users in VSCode.

where the opposite happens: LOOPY finishes and LOOPYsim times out9; this happens precisely

because the simultaneous assignment solutions are larger (in this case, sufficiently large to cause

a time out).

With regard to the quality of solutions, Fig. 3.13b shows that there are 21 benchmarks

that LOOPY solves correctly and LOOPYsim solves incorrectly. Note that we did not include

any programs with simultaneous assignments in the set of gold standard solutions, because we

consider them less readable. As a result, we consider a LOOPYsim solution “incorrect” whenever

it still contains a simultaneous assignment after post-postprocessing (even if it is semantically

equivalent to the gold standard). Out of these 21 incorrect solutions, 10 are actually larger in size

than the sequential version because they repeat sub-expressions instead of using an intermediate

variable.

To conclude, with the same number of timeouts and more correct programs, we find

assignment sequences to benefit LOOPY and answer RQ4 in the affirmative.

3.7 LOOPY in the Hands of Users

Block-level synthesis relies on user-generated block-level specifications, and we need

to support the assumption that these specifications are reasonable and convenient for users to

provide. To that end, we ran a preliminary qualitative user study focusing primarily on the

9In Fig. 3.13a there appear to be three such benchmarks, but one of them actually finishes right before the
timeout.
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question:

(RQ5) Is providing block-level specifications feasible for users?

Implementation. We modified our VSCode extension for Small-Step Live PBE [52], adding:

i) sketch holes with multiple variables, ii) separation between the before- and after-state in the

projection box, and iii) live execution of sketches with the user as oracle. A live PBE synthesis

task is then converted into a block-level synthesis task as described in Sec. 3.3.

Study method. We recruited five participants (one male, one female, one non-binary, and two

preferred not to state), with 4–10 years of programming experience for a two-hour study. Par-

ticipants were recruited online and screened by the question “In the past year, how often did

you use Python?”, selecting participants who reported more than “never” and less than “once a

day”.

The study was conducted over a remote-controlled Zoom session on the same desktop

machine used for the experiments in Sec. 4.7. In the first part of the study, users watched a

tutorial video and solved a training task (String Compression from Sec. 4.2), where they could

get assistance and were encouraged to ask questions. In the second part of the study, they were

asked to solve two study tasks (depicted in Fig. 3.14) and explain their thought process through-

out. Since the focus of the study was not on solving the tasks, but on providing specifications,

users were specifically asked to solve the tasks using a loop, and if they were struggling with the

algorithm after 20 minutes, we verbally provided an algorithmic hint. Each task had a 30 minute

time limit. At the end of the session, users were asked to fill a short survey about their expe-

rience, what they found helpful or frustrating, and what suggestions they have for improving

LOOPY.

Observations. Four users solved both tasks and the remaining one only solved the second task;

two users required a hint for one of the tasks. Given the small size and scope of the study,

we forgo a quantitative analysis of their sessions, and focus on qualitative responses and ob-
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servations. We found that users naturally provided block-level specifications where appropriate

without any notable issues in terms of the specification itself.

P1 and P3 explained they found LOOPY challenging because of the need to have a con-

crete algorithm in mind before providing the specification. P3 stated that “the hardest part for

me was the need to understand the structure of the skeleton before handing things to LOOPY—

how many and which variables I want, and on what to iterate”. We observed a related pattern,

where P1, P2 and P4 started with a small-step specification, and once they had a more holistic

view of the loop body tried again with a block-level specification for the entire loop body. P3

and P5 provided correct block-level specifications from the start. Given that P3 and P5 were

not notably more experienced than other participants, we think that this is most likely because

they had the complete algorithm in mind from the beginning, whereas other participants incre-

mentally discovered the algorithm and realized after a few tries that they would need to modify

multiple variables at once.

Users also found LOOPY useful in multiple ways. P1 and P2 both mentioned that it

was useful in writing more idiomatic code. P3 mentioned that they could have solved the tasks

without LOOPY, but it would have been more frustrating, and P4 found synthesizing loop bodies

less tedious than writing them manually, saying “anywhere there’s a loop, and I kind of know

what it’s supposed to do, [...] it’s much easier to just write the input-output examples for each

loop body iteration”.

Conclusions. While we would need a much larger-scale study to make strong empirical claims,

this study suggests that block-level specifications are indeed reasonable and intuitive to pro-

vide. Additionally, we notice that block-level specifications allow for a data-driven pattern of

exploratory programming, where the programmer explores different intermediate states instead

of code.

One major limitation of LOOPY (mentioned by P1, P4 and P5) was users wanting a

better understanding of why LOOPY fails when it does. This is not unique to LOOPY, e.g., it is
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discussed as a part of the “User-Synthesizer Gap” in our prior work [52].

3.8 Limitations

In this section, we discuss some of the limitations to LOOPY’s generality and usability,

one stemming from the interaction model and others from the UI design.

Correcting specifications. The current LOOPY UI makes it difficult for users to iterate on

their specifications. While the user is providing examples in the projection box, they can move

between variables and loop iterations and change their input (while live execution updates the

rest of the projection box accordingly). Once they launch the synthesis task, however, the

projection box disappears. If synthesis fails or produces a wrong result, the user cannot go back

and edit their input; instead, they have to restart the interaction, providing the entire specification

from scratch. Similarly, when the focus is inside the projection box, the user cannot modify the

surrounding code or the set of output variables of the hole without exiting from the box and

restarting the interaction.

The need to correct an erroneous specification has been pointed out by several of our

study participants. We believe this can be fixed just by changing the UI so that undoing a

synthesis task returns the user to the projection box with the latest specification. More complex

forms of storing and restoring specifications, however, are non-trivial to implement, especially

if the code surrounding the hole has changed, which invalidates the before-states inside the

specification.

While loops. We designed and tested LOOPY in the context of for loops iterating over a fixed

collection. In this context the number of loop iterations is known a-priori, making it natural

for the user to specify one iteration at a time, as shown in Fig. 3.2. Although live execution

and block-level synthesis generalize straightforwardly to while loops with a user-provided loop

condition, the user experience is far more confusing in that case, as the number of loop iterations

displayed in the projection box might change as the user is entering the specification. Specif-
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ically, assume that the user enters a hole in place of the entire body of a while loop. Upon

entering this hole’s projection box, the loop condition must evaluate to True, making the loop

infinite; in this case the projection box displays the first several iterations. The user can then

proceed to enter after-states for as many iterations as they would like. As soon as the state they

entered causes the loop condition to evaluate to False, however, any further iterations disappear

from the projection box. Next, assume that the body of the loop contains more code around the

hole. Now the number of iterations may change beyond the next iteration, making the change

even less comprehensible. Although this interaction is supported by LOOPY, we deemed it too

confusing for the user to include in our evaluation.

Comprehensions. LOOPY inherits the ability to synthesize Python’s list and dictionary com-

prehension from Small-Step Live PBE [52]. Unlike loops, however, the user cannot observe

individual iterations within a comprehension and specify intermediate values for the data struc-

ture it is building. Instead, a comprehension is handled and specified like any other expression

on the right-hand side of an assignment. This, however, is strictly a limitation of the current

UI implementation: the live PBE interaction model could certainly be applied to synthesize

comprehensions from block-level specifications.

3.9 Related Work

There is a long and rich history of work on program synthesis. Broadly speaking our

work distinguishes itself from prior work by providing a block-level synthesis approach and as-

sociated interaction model that allows small-step synthesis with control structures at interactive

speeds. We now discuss the most closely related work to LOOPY.

Synthesis with loops and recursion. Relatively few PBE tools support loops and recursion (or

equivalent higher-order functions). Perhaps the most closely related to LOOPY is FRANGEL

[161], which supports component-based synthesis for Java programs with control structures.

Because FRANGEL uses big-step (function-level) specifications, in principle it does not require
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users to have knowledge of the algorithm or intermediate variables. In practice, however, to

make the search tractable, FRANGEL requires users to provide a variety of examples including

base cases and corner cases, and so some knowledge of the algorithm is still required. Also, as

discussed more throughout the paper, FRANGEL’s approach is not fast enough for an interactive

setting.

Other PBE tools that efficiently support recursion and higher-order functions include

ESCHER [6], MYTH [135], SMYTH [117], λ 2 [54], BIGλ [164], and RESL [141]. There is

a general theme behind all these tools: efficient synthesis is achieved by extracting a local

specification for the recursive call (or the higher-order argument). Different tools use different

approaches to make such extraction possible. For example, MYTH requires the user examples

to be trace complete; λ 2 does not require trace completeness, but only works efficiently when

examples happen to be trace complete; RESL restricts iteration patterns to map and filter (as

opposed to general folds) which enables extraction of a local specification without a trace com-

pleteness requirement. LOOPY is similar to all these tools in that it uses local specifications of

loop bodies to achieve efficient synthesis, but uses a different approach to make this feasible:

LOOPY supports dependent (fold-like) loops, and leverages its interaction model to solicit local

specifications from the user.

Our solution to synthesizing loops by asking the user to provide more convenient spec-

ifications is partly inspired by ROUSILLON [29], a tool for web scraping by demonstration.

ROUSILLON can synthesize programs with loops that extract tabular data from a webpage

by making a “contract with a user” that they will demonstrate just the first row of the table;

ROUSILLON even supports nested loops using the same technique and domain-specific insights.

The main difference with our work is that ROUSILLON is a domain-specific end-user tool, and

all of its loops are essentially maps (from the DOM to a table), whereas LOOPY handles more

general loops in a context of a general-purpose programming environment.

Synthesis with conditionals. Our technique for generating conditional statements is related to
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the various techniques for condition abduction [104, 93, 8, 146, 161]. It is most related to the the

approach used by EUSOLVER [10], which enumerates programs until a set of programs covers

all input-output examples, and then attempts to synthesize a condition that separates the exam-

ples between branches; the main difference is that in EUSOLVER branches are just expressions,

whereas in LOOPY branches are sequences of assignments, so testing whether all examples are

covered is more involved. On the other hand, LOOPY only generates binary conditionals with

an atomic condition, whereas EUSOLVER uses decision tree learning to generate multi-branch

conditionals.

Synthesis with sequential composition. BRAHMA [65] proposes an efficient SMT encoding for

synthesizing straight-line programs with multiple assignments to intermediate variables. Their

problem is, however, very different from our assignment sequences: BRAHMA specifications

are still big-step (the relation between the inputs and a single output variable), and the values of

the temporary variables must be guessed by the synthesizer. Instead LOOPY takes advantage of

the fact that the final values of all variables are provided to perform synthesis more efficiently

using ISGs.

Synthesizers with limited support for control structures. There are also many other synthesiz-

ers in the literature, but compared to LOOPY they have limited support for control structures.

This includes some interactive synthesizers that integrate into a general-purpose programming

workflow, for example SNIPPY [52] and CODEHINT [57]; various other Python synthesizers,

for example TFCODER [160], AUTOPANDAS [16], WREX [41]; and synthesizers for other lan-

guages [49, 72, 119, 57, 85, 196]. These all handle one-liners or sequences of method calls,

with only limited support for control structures. In contrast, our proposed approach supports

control structures and generating multiple statements at once.

Bottom-up enumerative synthesis. Bottom-up enumerative synthesis is a technique that origi-

nated in TRANSIT [177] and ESCHER [6], and is used in many synthesizers [160, 14, 142, 141].

This technique was originally used for enumerating expressions; we build ISGs on top of it to
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develop an efficient algorithm for enumerating assignments to multiple variables and introduc-

ing conditionals.

Live Execution. LOOPY’s live execution uses concepts from live evaluation introduced by

[132] and further adapted by [117], such as evaluating around holes and pausing the evaluation

at holes that cannot be executed. Live execution is adapted from a functional domain to an

imparative one, and employs no logic for resolving holes, deferring instead to an oracle—the

user.
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Chapter 4

SOBEQ: Bottom-up Synthesis of Side-
Effects with Separation Logic

4.1 Introduction

Program Synthesis is the task of automatically generating a program that satisfies a

given specification. A popular specification for synthesizing general-purpose programs is input-

output examples, where a solution is defined as a program that, evaluated on each provided

input, produces the provided output. This is commonly referred to as Programming-by-Example

(PBE) [63, 51, 14, 56, 71]. PBE is notable because, unlike logic-based specifications [147, 167,

84], it does not require any specialized knowledge to use, and has thus been used to develop

synthesizers for end-users [63, 185] and novice programmers [52, 51].

For example, consider a synthesis specification for a JavaScript program where, given an

array of integers arr of length n, we want to return the sum of the smallest and largest elements

of the array. We might specify this problem with the example:

{arr 7→ [10,100,90,−1,2],n 7→ 5}→ 99

If we assume the value in arr is disposable, e.g., it can be sorted in place, the following is a

solution1 that we would like to synthesize:
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AST size 5:
⟨15⟩ ⟨2⟩

n + arr[0] arr[n - 1] · · ·

AST size 3:
⟨10⟩ ⟨[]⟩ ⟨4⟩

arr[0] arr.slice(n) n - 1 · · ·

AST size 2:
⟨[−1,2,10,90,100]⟩

arr.sort() · · ·

AST size 1:
⟨[10,100,90,−1,2]⟩ ⟨5⟩ ⟨0⟩ ⟨1⟩

arr n 0 1 · · ·

(a)

+

[]

sort 0

arr

arr

𝜄

-

n 1

arr ↦ −1,2,10,90,100𝜄

[]

(b)

Figure 4.1. (a) Bank of programs with their observed evaluation results used by classical OE to
enumerate pure programs. Size 2 contains arr.sort() that sorts in-place and makes composi-
tions with it incorrect. (b) AST of the target program, divided into the concrete states in which
each subexpression is evaluated.

arr.sort ()[0] + arr[n-1]

To solve this synthesis task, we can specify a set of components (operations, library functions,

etc.) and search the space of all programs that use those components. There are many of ways

to perform such a search, including constructing a representation of the space that can be tra-

versed [49, 119, 63] and encoding the problem for a solver [167, 88]. Such approaches place

heavy constraints on which components can be included. But the simplest form of search is to

enumerate the space of programs [47, 54, 70, 161] by applying the components, then test re-

sulting programs. Because the space of programs is astronomical, this approach is prohibitively

slow when implemented naively. Moreover, most mechanisms to prune the space are domain-

specific and restricted by the manual effort for handling each component individually.

Bottom-up Enumeration. One technique that does not require any domain-specific effort is

bottom-up enumeration with an Observational Equivalence (OE) reduction [177, 6]. Programs

are enumerated using the components, combining smaller programs into increasingly larger

ones. To prune its search space, it enumerates by constructing a bank of programs that are

representative of equivalence classes of programs that are observationally equivalent, i.e., pro-

1This program should use arr.sort((n1,n2) => n1 - n2), otherwise JavaScript sorts the string representations
of elements lexicographically. We elide the argument for brevity.

95



grams that, given the set of available inputs, evaluate to the same output value.

Each new program is obtained by applying a component from the component set to

smaller sub-expressions already in the bank. For example, in Fig. 4.1a applying + to the rep-

resentative of equivalence classes ⟨5⟩ and ⟨10⟩ will yield the program n + arr[0], which will

be banked as the representative of equivalence class ⟨15⟩. This bank allows the enumeration to

memoize the evaluation results of each program, and look them up when evaluating larger pro-

grams, rather than re-evaluating each program from scratch. OE reduces the space by keeping

only one program per equivalence class. This vastly reduces the search space while ensuring no

solution that existed in the un-reduced space is lost. Previous works use variations of this tech-

nique in synthesizers for C [177], Python [52, 51], JavaScript [141], Java [57], Selenium [108],

and OCaml [6, 127].

Enumeration with Side-Effects. However, a common limitation of these works is handling

side-effects. Notice that JavaScript’s sort() works in-place. In the example above, the call

to arr[n-1] evaluates to a different value if evaluated before arr.sort() versus after it. A

classical OE enumerator that performs its OE-reduction based on variable values in the inputs

would consider arr[n-1] to be in the equivalence class ⟨2⟩. However, unlike its equivalent

in languages like Python, arr.sort() also returns a self-reference, allowing the result to be

composed into larger expressions, as in our target program. If the enumeration itself does

not account for this, it will use the wrong memoized expression computed using the unsorted

value of arr in its candidates, yielding a result that does not actually satisfy the specifications.

Moreover, the enumeration may see another program whose value is really ⟨2⟩, and discard

arr[n-1] and never find this solution.

In other words, the classical bottom-up enumeration with OE described above loses its

correctness in the presence of side-effects. Previous works on bottom-up enumeration either

explicitly assume that all components are pure and cause no side-effects [127, 52, 185, 177, 6,

108], make assumptions that greatly reduce the space of intermediate states [51, 145], or ignore
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the issue, leading to an incorrect enumeration [57, 141].

Our appraoch. We introduce SOBEQ (Side-effects in OBservational EQuivalence), to our

knowledge the first bottom-up proof-directed synthesis technique. SOBEQ is a bottom-up enu-

merative algorithm proven correct in the presence of mutating components.

SOBEQ is based on Concrete Heap Separation Logic (CHSL), which is a representation

of the operational semantics of the language in the style of Separation Logic [151, 137]. For

example, in CHSL we would describe the mutating program n++ evaluated on the example’s

input as the triple {n 7→ 5}n++{n 7→ 6;5} where the precondition n 7→ 5 describes n’s initial

value, and the postcondition n 7→ 6;5 describes its value after mutation and its result. Instead of

searching for a program, SOBEQ searches for its CHSL derivation. This gives SOBEQ two key

advantages.

First, SOBEQ’s bank stores CHSL triples rather than programs. To build larger programs,

SOBEQ also applies each component to smaller triples in the bank, but unlike simple programs,

triples can only be combined according to the rules of the logic. This means programs always

compose in a way that forms a valid evaluation, and there is no risk of evaluating a program

in the wrong state. Moreover, OE can be determined by simply ignoring the program and

comparing the specifications surrounding each triple: two programs with the same pre- and

postcondition are guaranteed to behave the same, and so will also compose the same. This

maintains SOBEQ’s correctness in the presence of side-effects.

Second, CHSL can reason about the local effects of programs: they do not need to

mention parts of the state that the program does not touch. For instance, {n 7→ 5}n++{n 7→ 6;5}

does not specify anything about arr, because n++ will behave the same way in all concrete

states where the value of n is 5. This representation is compact, with each triple describing

the behavior in many, potentially infinitely many, concrete states. Moreover, we can find more

general triples, ones that provide the same result and the same mutations for more concrete

states. Discarding the less general programs lets us compact the space even further.
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We implemented SOBEQ as a synthesizer for JavaScript programs that can create non-

pure expressions and sequences of expression statements. We evaluated our synthesizer on 46

benchmarks curated from the literature, from STACKOVERFLOW and from competitive program-

ming website LEETCODE. SOBEQ’s solutions are, overwhelmingly, not overfitted and do not

contain spurious mutations. Moreover, SOBEQ’s runtime and number of benchmarks solved is

comparable with state of the art synthesis of general mutations, but unlike previous state of the

art, SOBEQ is both deterministic and proved correct.

The main contributions of this paper are as follows:

▷ A formulation of the PBE problem with side-effects as the search for a derivation in a

restricted Separation Logic, CHSL.

▷ The SOBEQ algorithm, a bottom-up enumerative algorithm that searches for a derivation

with an OE-reduction.

▷ An implementation of SOBEQ in a JavaScript synthesizer, evaluated on 46 benchmarks

curated from the literature, STACKOVERFLOW and LEETCODE.

4.2 Overview

In this section, we present SOBEQ through the example introduced in Sec. 6.1. First, we

present SOBEQ’s notation for mutating programs, which is compact compared to the real space

of programs. Next, we show how this helps us enumerate programs correctly. Finally, we show

how ordering programs by generality helps us prune the space even further.

4.2.1 Mutating programs

We begin with a reminder of programs and their construction in Observational Equiva-

lence [141, 6, 177], then show how we modify them to correctly reason about side-effects.

Classical OE-reduction Program Bank. Bottom-up enumeration with an OE-reduction uses a

set of components, C , to solve a synthesis task specified by a vector of input-output examples,

E , where each example is of the form ι → ω . For each enumerated program, we then compute
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arr 7→ [−1,2,10,90,100]∗n 7→ 5:
{arr 7→ [−1,2,10,90,100]∗n 7→ 5;100}

arr[n-1] · · ·

arr 7→ [10,100,90,−1,2]∗n 7→ 5:
{arr 7→ [10,100,90,−1,2]∗n 7→ 5;2} {arr 7→ [10,100,90,−1,2]∗n 7→ 5;−1}

arr[n-1] arr[n-(1 + 1)] · · ·

arr 7→ [−1,2,10,90,100]:
{arr 7→ [−1,2,10,90,100]; [−1,2,10,90,100]} {arr 7→ [−1,2,10,90,100];−1}

arr arr[0] · · ·

arr 7→ [10,100,90,−1,2]:
{arr 7→ [10,100,90,−1,2]; [10,100,90,−1,2]} {arr 7→ [10,100,90,−1,2];10}

arr arr[0]

{arr 7→ [−1,2,10,90,100]; [−1,2,10,90,100]} {arr 7→ [−1,2,10,90,100];−1}

arr.sort() arr.sort()[0] · · ·

n 7→ 5:
{n 7→ 5;5} {n 7→ 5;4} {n 7→ 6;5}

n n - 1 n++ · · ·

emp:
{emp ;0} {emp ;1} {emp ;−1}

0 1 -1 · · ·

Figure 4.2. The precondition bank used to enumerate the program in Fig. 4.1b. Each program
is additionally labeled with its postcondition comprising an assertion and its result.

the label of its equivalence class. In classical OE, this label is JpK(ι), or its evaluation result,

for each ι in the examples. In our example, arr has the observed behavior [10,100,90,−1,2] on

the provided input, so its equivalence class is labeled ⟨[10,100,90,−1,2]⟩.

To enumerate the space of programs, we use a bank to store previously seen programs,

as seen in Fig. 4.1a: each program in the bank represents an equivalence class of programs,

according to its label. For each component t ∈C with arity k, we collect all k-tuples of programs

already in the bank and use them as arguments to apply t. This is generally done with some

notion of iterations, e.g., enumerating programs by increasing AST height, or, as in Fig. 4.1a,

number of AST nodes. For instance, when enumerating programs of AST size 5, the enumerator

considers the component array dereference, which has an arity of 2. Among pairs of programs

collected from the bank with a total size of 4 will be the program arr, representative of the

equivalence class ⟨[10,100,90,−1,2]⟩, and the program n - 1, representative of ⟨4⟩. Applying

array dereference will yield arr[n - 1] with the observed behavior ⟨2⟩. Crucially, we do not

have to evaluate the full program arr[n - 1] to get this value: we can use the observed values

[10,100,90,−1,2] and 4 and only compute the final step.

When a program is enumerated from an equivalence class that has no representative in
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the bank—i.e., no program in the bank has the same label—it is added to the bank to be used

when constructing larger programs. This is the case with arr[n - 1], which is added to the

bank at size 5. On the other hand, if another representative of the equivalence class already exists

in the bank, we simply discard the program. If a program’s observed values are equal to the

provided outputs, the program is a solution. Since we only use discovered equivalence classes

(i.e., programs) to construct larger programs, the effect of this pruning technique compounds.

The problems with side-effects. We quickly run into issues when C contains components with

side-effects. The next step in solving our example is to enumerate arr.sort()[0] + arr[n -

1]. But, as we are about to see, using the classical approach this program will not be evaluated

correctly, and it may even be pruned away.

We already saw how the subprogram p1 = arr[n - 1] was enumerated and labeled ⟨2⟩,

and p2 = arr.sort()[0] will be enumerated similarly: at size 4, it will be enumerated using

arr.sort() (size 2) and 0 (size 1), and added to the bank as a representative of ⟨−1⟩.

The source of our problem is that OE is a dynamic programming algorithm: when con-

structing the larger p2 + p1, the enumerator does not evaluate the full program. Instead, it uses

the memoized observed values and adds: ⟨−1+ 2⟩ = ⟨1⟩. However, since p2 modifies arr,

p2 + p1 actually evaluates to 99 on the input ι . Worse, this erroneous value means the syn-

thesizer will consider p2 + p1, our solution, equivalent to p1 + p2, as well as to 1, so it will

certainly be discarded. While a seemingly simple solution is to just evaluate the program in

full each time, ensuring labels are correct, this might be expensive depending on the operation,

and more importantly, would not be sufficient. If the synthesizer sees the constant value 2, e.g.,

by enumerating 1 + 1, this would cause the larger—and seemingly equivalent—arr[n - 1] to

be discarded. OE hinges on the enumeration only discarding a program when it already has a

suitable replacement, but arr[n - 1] evaluated after arr.sort() has no equivalent program in

the bank.

Rethinking the program representation. The problem above is caused by not distinguishing
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between the same program when evaluated using different values of arr. Likewise, we must

also consider programs that return the same value, but their effect on variables is different: e.g.,

both n and n++ evaluate to 5, but n++ changes n whereas n does not.

Our first step, then, is to include this information alongside the program: we represent

each program in our space as a triple in Concrete Heap Separation Logic (CHSL), a flavor

of Separation Logic [151, 137] representing only concrete values: the precondition records

the variables before its evaluation, and the postcondition comprises two elements, an assertion

recording the variables after evaluation and the (concrete) result of the evaluation, like so:

{arr 7→ [10,100,90,−1,2]}arr.sort(){arr 7→ [−1,2,10,90,100]; [−1,2,10,90,100]}

where arr 7→ [−1,2,10,90,100] denotes the local heap after arr is sorted in-place, and [−1,2,10,

90,100] denotes the self-reference returned by sort(). For the remainder of the section we will

use arrorig for the original array value and arrsort for its sorted value, for brevity.

Notice that because all values are concrete, we can still rely entirely on evaluation rather

than on domain-specific logical inferences. CHSL is defined in Sec. 4.3.1.

In this representation, we can tell apart {arr 7→ arrorig}arr{arr 7→ arrorig;arrorig} and

{arr 7→ arrsort}arr{arr 7→ arrsort;arrsort}, or arr evaluated on the original and the sorted array.

Once arr is modified by sort(), we need the second one.

Notice that these pre- and postconditions do not encode fully-concrete states; this makes

our representation of the space more compact. The triple {arr 7→ arrorig}arr.sort(){arr 7→

arrsort;arrsort} leaves n unconstrained, taking advantage of the fact that only constraining arr

is sufficient to represent all variable valuations relevant for this program. In other words, we

only need to constrain the footprint of the program.

CHSL includes the notion of the separating conjunction ∗ to indicate separate parts of

the heap (or, in our case, variable store) that can be reasoned about locally. Thanks to aliasing

restrictions of the synthesizer’s target language detailed in Sec. 4.3.1, any two variables can
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be separated with ∗. E.g., the assertion arr 7→ arrorig ∗ n 7→ 5 describes the concrete initial

state. With this we can now further borrow from Separation Logic when considering evaluation

sequences.

4.2.2 Enumeration and heaps

A bottom-up enumeration composes larger programs from smaller ones, or, in other

words, selects a sequence of arguments to apply component t to. To evaluate such a composition

the arguments to t are first evaluated in sequence, and their results are then passed to t for

evaluation. With a mutation-free component set, any sequence of arguments is fine: since all

programs begin at a precondition that describes the initial state and end at a postcondition that

still describes the initial state, evaluating any sequence of programs is correct. However, let us

consider two programs in our space, arr[0] and arr.sort()[0] enumerated with classical OE

in Fig. 4.1a.

The first is now the triple tr1 = {arr 7→ arrorig}arr[0]{arr 7→ arrorig;10} and the sec-

ond is tr2 = {arr 7→ arrorig}arr.sort()[0]{arr 7→ arrsort;−1}. If we consider the application

of + to two possible argument pairs, (tr1, tr2) and (tr2, tr1) we can more easily see that for

the composition to behave as expected, i.e., to apply CHSL’s EVAL rule (defined in Fig. 4.4),

the postcondition of each argument must be equal to the precondition of the next one in the

sequence; this means all mutations are accounted for.

This means we cannot compose (tr2, tr1) under any binary operator, but the enumerator

can—and will—select (tr1, tr2) as arguments to +. All that remains, then, is for EVAL to use the

language interpreter to apply + and add the two precomputed results 10+−1, and get: {arr 7→

arrorig}arr[0] + arr.sort()[0]{arr 7→ arrsort;9} whose precondition is the precondition of

tr1, and, as + has no additional effect, whose postcondition contains the compounded effects of

the arguments.

If we partition our bank of programs by the program’s precondition, as in Fig. 4.2,

then the enumerator can create correct sequences of arguments by construction, starting with
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some triple as the first argument, then fetching all suitable next children according to their

precondition.

Discovering more preconditions. Let us consider how we enumerate the last subprogram of

our target program, arr[n - 1]. The enumerator applies array dereference to two arguments.

The first is {arr 7→ arrsort}arr{arr 7→ arrsort;arrsort}, or arr evaluated on the already-sorted

array. Importantly, this is a program that will not be enumerated if the enumerator only looks

for programs that start at preconditions describing the initial state. However, it is necessary for

the bottom-up construction of the target program.

To this end, whenever a new assertion is discovered by the enumerator, e.g., when a

mutating component is evaluated, creating a never-before-seen assertion in the postcondition,

as enumerating {arr 7→ arrorig}arr.sort(){arr 7→ arrsort;arrsort} does, this assertion is added

to the precondition bank. Along with this assertion, the enumerator also adds each variable in

the newly-discovered assertion with its newly discovered value to the bank as well. In our case,

the triple {arr 7→ arrsort}arr{arr 7→ arrsort;arrsort} that we need is also added to the bank.

Programs with different footprints. Now that we have the first argument to the array derefer-

ence, let us consider the second. {n 7→ 5}n - 1{n 7→ 5;4} is enumerated at the initial value of

n, i.e., without the need for its precondition to be discovered. However, when the enumerator

tries to compose both into a sequence to provide them as arguments to [], it runs into a prob-

lem: the EVAL rule does not apply here. The assertion in the postcondition of the first argument,

arr 7→ arrsort, is different than the precondition of the following argument, n 7→ 5.

However, we clearly see that these two assertions deal with separate parts of the heap,

and do not interfere with each other. This means we can apply the FRAME rule: if we add the

constraint n 7→ 5 to both the precondition and postcondition of the first triple, and likewise add

arr 7→ arrsort to both pre- and postcondition of the second triple, the more constrained triples

are now composable. Then the enumerator can then apply array dereference to them, yielding

{arr 7→ arrsort ∗ n 7→ 5}arr[n - 1]{arr 7→ arrsort ∗ n 7→ 5;100}. The full derivation is shown
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EVAL

FRAME

EVAL
{n 7→ 5}n{n 7→ 5;5}

FRAME
{emp}1{emp;1}

{n 7→ 5}1{n 7→ 5;1}
{n 7→ 5}n - 1{n 7→ 5;4}

{arr 7→ arrsort ∗n 7→ 5}n - 1{arr 7→ arrsort ∗n 7→ 5;4}
{arr 7→ arrsort ∗n 7→ 5}arr[n - 1]{arr 7→ arrsort ∗n 7→ 5;100}

FRAME
{arr 7→ arrsort}arr{arr 7→ arrsort;arrsort}

{arr 7→ arrsort ∗n 7→ 5}arr{arr 7→ arrsort ∗n 7→ 5;arrsort}

Figure 4.3. Using FRAME and EVAL to enumerate arr[n - 1]. Recall arrsort is the constant
value [−1,2,10,90,100].

in Fig. 4.3. Then similarly, the same extension—this time, adding n 7→ 5 to tr2 argument and

nothing to the second—is applied to allow the enumerator to compose the target program.

We notice that in this case, this will discover a new assertion not as a postcondition as

we did when sort() mutated arr but as a precondition, and if this were not the target program,

the enumerator would continue to enumerate more programs with this new assertion as their

precondition.

4.2.3 Equivalence and mutation

So far, we showed how the enumerator composes programs, but we did not show how

the OE-reduction works. Now that we have a new representation of programs, we can re-define

how each triple is observed and labeled, so that the label vector suits our needs.

In classical OE, the observed value for each example is the program’s evaluation result,

but this is now insufficient: while in the precondition arr 7→ [10,100,90,−1,2] the program

arr[1] evaluates to 100, if we discard all the following programs that evaluate to 100 we will

also discard the arr[n - 1] that is evaluated after the array is sorted. Likewise, n and n++ with

the same precondition are distinct in that they return the same value given the same precondition,

but have a different effect on the state.

Generally, we can see that we can label a triple with its pre- and postcondition, including

the result. Once those are identical, any programs that form a valid triple with them would be
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interchangeable, i.e., can be swapped for each other with no change to a larger evaluation. In

Fig. 4.2, the precondition component is expressed by the precondition the triple is stored under

in the bank, while the postcondition appears above each program.

Generality of equivalence classes. The equivalence class labels above define an equivalence

relation for OE. However, in this setting, we can do even better: there are cases where we want

to discard programs even though one is not equivalent to the other. Let us consider two triples,

tr3 = {arr 7→ arrorig}arr.length{arr 7→ arrorig;5} and tr4 = {emp}5{emp ;5}, where emp is

the unconstrained heap.

Both triples have the same evaluation result (5), and the same effect (no effect), but

different assertions at the pre- and postconditions. But they are not completely different: if we

select a frame axiom R = arr 7→ arrorig, we can bridge their difference: {emp∗R}5{emp∗R;5}

is equivalent to tr3. Under this condition, we say that tr4 is more general than tr3: it describes a

program that behaves the same over more concrete states. If we let the more general equivalence

class subsume less general ones, we arrive at a more compact (but still correct) representation

of the space. While we cannot tractably apply this additional reduction to the entire space, we

can at least discard less general programs once more general ones exist in the bank.

Temporary values and variables. Once we employ this tactic, will tr4 also subsume tr5 = {n 7→

5}n{n 7→ 5;5} the same way it subsumed tr3? Likewise, in Fig. 4.2, why does {emp} -1{emp

;−1} not subsume {arr 7→ arrsort}arr[0]{arr 7→ arrsort;−1} and {arr 7→ arrorig ∗n 7→ 5}

arr[n - (1+1)]{arr 7→ arrorig ∗n 7→ 5;−1}, which are still in the bank?

If we let this happen, the programs will no longer be interchangeable, and some will

break entirely, e.g., the application of ++. While {n 7→ 5}n++{n 7→ 6;5} uses tr5 as its argument,

5++ does not compile. Likewise, replacing arr within arr.sort() with the array literal with

arr’s value would produce a different effect, indicting they should be separate programs.

To solve this, we separate programs returning a temporary value from those whose value

is accessible from the program variables. We do this by using an evaluation result comprising
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two components: the value returned by the evaluation, and the location of that value, where

all temporary values are given the same location ⊥ to unify them. This way, tr3 and tr4 both

return 5@⊥, but tr5 returns 5@n. Once the definition of the postcondition deals in results

rather than values, both equivalence and subsumption are correct and will differentiate between

the two. Fig. 4.2 omits this for simplicity, but does still separate {emp} -1{emp;−1} with

result −1@⊥ from {arr 7→ arrsort}arr[0]{arr 7→ arrsort;−1} with result −1@arr[0] and from

{arr 7→ arrorig ∗n 7→ 5}arr[n-(1+1)]{arr 7→ arrorig ∗n 7→ 5;−1} with result −1@arr[3].

Defining the Solution. We are almost finished: like classical OE, we continue iteratively enu-

merating programs into the bank until a solution is found. Our final step is to reconsider the

definition of a solution to a synthesis specification.

When enumerating a program in a non-mutating space with an OE-reduction using the

examples’ inputs, a solution is a program that is labeled by (i.e., that evaluates to) the provided

outputs. In SOBEQ this is insufficient: the enumerator can find a program returning the correct

value in some precondition. To be correct when evaluated on the concrete example inputs, we

require a solution’s precondition describe the concrete initial state ι . In our example, arr 7→

arrorig ∗n 7→ 5 trivially describes ι—it is equal to it—but so does n 7→ 5, for example.

Moreover, our example started with the assumption that the values arr are disposable,

but this may not be the case. We therefore allow the user to constrain the effects of the program,

e.g., prohibiting arr from mutating, forcing a solution where arr is copied, or requiring that

arr be modified to a new value of [100,90,10,2,1], which means the maximum value will need

to be obtained with arr.reverse()[0]. These would constrain the postcondition of a solution

as well.

Thus, to be a solution, a triple must: 1) return the values of the example outputs, 2) have

a precondition that describes ι , and 3) satisfy any provided constraint on the postcondition.

SOBEQ is, to our knowledge, the first proof-directed synthesis algorithm that works bottom-up.

It is also the first bottom-up enumerative synthesizer for general mutating components that has
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Input variables Identifiers x ∈ Vars
Literal values v ∈ K
Assertion a ∈ A ::= emp | x 7→ v∗A

Assertions a⃗, P⃗, Q⃗ ∈ A ×·· ·×A
Location l ∈ M ::= ⊥ | v | v[n], n is an integer literal
Result(s) r ∈ R ::= v@l, r⃗ ∈ R×·· ·×R

Postcondition {Q⃗;⃗r}

{P⃗1}c1{P⃗2 ;⃗r1} {P⃗2}c2{P⃗3; r⃗2} · · · {P⃗k}ck{P⃗k+1; r⃗k}
t ∈ C ,arity(t) = k ∀i.(t(ri

1, . . . ,r
i
k),P

i
k+1)→(ri,Qi)

{P⃗1}t(c1, . . . ,ck){Q⃗;⃗r}
EVAL

{P⃗}c{Q⃗;⃗r}
{P⃗∗ R⃗}c{Q⃗∗ R⃗;⃗r}

FRAME

Figure 4.4. CHSL syntax and inference rules

a correctness guarantee: if a solution exists in the space spanned by C , SOBEQ will find an

equivalent solution.

4.3 Enumerative Synthesis and Side-Effects

In this section we will define the basic elements with which we construct SOBEQ: pro-

grams and their evaluation, and the synthesis task.

We therefore begin with the building blocks for our revised definition of the synthesis

task, followed by the definition of the program space and observational equivalence in that

space.

4.3.1 Concrete Heap Separation Logic

In this section, we introduce Concrete Heap Separation Logic (CHSL), a notation for

operational semantics in the style of Separation Logic.

The heap. In CHSL, we use a heap notation to reason locally about the concrete values as-

signed to variables from the input. We can reason locally about each individual variable because

SOBEQ’s target language does not allow assignments, and so as long as nothing is aliased at the

input—we enforce this when generating the synthesis task—each variable is separate from all

others and can be separated from them via ∗.

CHSL assertions. CHSL reasons about concrete values assigned to variables. As such, a CHSL

assertion comprises heaplets of the form x 7→ v where v is a concrete value.

This also means we can trivially transform a state (partial function) σ into an assertion

describing an identical heap s.t. x1 7→ σ(x1) ∗ · · · ∗ xn 7→ σ(xn) for all xi ∈ dom(σ). We often
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use the partial function for a variable valuation interchangeably with its assertion equivalent,

i.e., use σ as a shorthand for the assertion above.

To describe a vector of states σ⃗ , corresponding to the vector of examples E , CHSL

likewise uses a vector of assertions. We therefore also define a vector separating conjunction

s.t. P⃗∗ R⃗ = ⟨Pi ∗Ri⟩i.

Values with location. In the presence of side-effects, we must also consider that some values

are accessible from our heap. As shown in Sec. 4.2, this is important for the semantics of com-

ponents that modify their arguments (e.g. arr.sort()), and more importantly for components

that return a self-reference and are therefore composable, as in arr.sort().reverse(), where

both sort and reverse mutate arr.

To support this, a result r ∈ R comprises two components: a value and that value’s

location, l ∈ M that can be a variable, a variable at a concrete index, or ⊥. We use ⊥ to

indicate a value inaccessible via any of the variables asserted over, i.e., a temporary value. We

decompose the result as r = v@l.

Triples. A triple in CHSL comprises a precondition P⃗∈A k (where |E |= k), the program p, and

a postcondition. Our postconditions have two components: i) an assertion Q⃗ ∈ A k, and ii) the

evaluation results of p on P⃗. As with variable values, the values in results are concrete. Notice

that vectors of assertions and results form a conjunction: {P⃗}p{Q⃗;⃗r} means {P1}p{Q1;r1},

{P2}p{Q2;r2}, and so on until {Pk}p{Qk;rk} all hold.

We consider {P⃗}p{Q⃗;⃗r} to be a valid triple if it accurately tracks the evaluation of p

on P⃗. In other words, assuming a (deterministic) small-step operational semantics for programs

the behavior of which is defined by the interpreter of the language: →: (P,A )→ (R,A ), we

say {P⃗}p{Q⃗;⃗r} is valid if ∀1 ≤ i ≤ k.(p,Pi)→(ri,Qi).

Because SOBEQ will be enumerating triples, it is crucial that it can construct valid

triples.

The EVAL rule. When constructing a new triple, the EVAL rule denotes the use of the interpreter
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to ensure the resulting triple is valid. Because an evaluation of an AST node will first evaluate

its children in sequence, then use the results to evaluate the node’s operation, EVAL requires a

sequence of triples. As in the classical Hoare Logic SEQUENCE rule, EVAL requires matching

midconditions. However, since we often want to form a sequence from triples where Qi ̸= Pi+1,

we use the FRAME rule to find a larger composed heap where the midconditions do match.

The FRAME rule. Generally, all triples in the space contain only their footprint in their pre-

and postcondition. However, the EVAL rule requires a sequence of arguments with matching

midconditions, and, as the example in Fig. 4.3 shows, in this compact representation this is not

always the case.

We recall that the frame rule allows us to reason about a larger heap by equally extending

the pre- and postcondition with an additional assertion called the frame axiom.

Fortunately, in CHSL, frame axioms are very easy to find. To prepare a pair of arguments

for EVAL, then, one of two things is true: either for every i, Qi
1∪Pi

2 is still a partial function (i.e.,

if the same variable appears in both, it maps to the same value) and Ri
1,R

i
2 are found by their

difference, or the two triples cannot form a valid sequence.

4.3.2 Problem definition

Since SOBEQ uses CHSL triples to solve a PBE problem, we must re-state the PBE

problem for CHSL. In this section we define what it means for a CHSL triple to represent our

target program, define a translation from a PBE task, and explain how additional specifications,

constraining the program’s effects on the state, can also be supported.

Usually, the Programming by Example (PBE) task is defined as follows: given a vector

of input-output examples E = ⟨ιi → ωi⟩i, find a program p over a set of components C where

for every input ιi, evaluating the program on ιi, denoted JpK(ιi), is equal to the provided output

ωi. We first want to translate this into a goal of the shape {P} {Q;r}.

Examples in CHSL. We denote the vector of input states I⃗ = ⟨ιi | ιi → ωi⟩i. The direct transla-

tion of E to CHSL, then, is {⃗I} { ;⟨ωi@ ⟩i}. In other words, any postcondition will satisfy our
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specification, and the correct values can be at any location.

Constraining effect. We notice that the user may want to constrain specific mutations as well as

the value. We let the programmer attach to each example any constraints on the effect, e.g., the

value of n must be 9, or arr must end in its initial value [10,100,90,−1,2]. To do this, we let the

user provide an effect constraint q : Vars → K , the constrained target value for any variable,

where if x ̸∈ dom(q), x is unconstrained.

The SOBEQ task. The user, then, does not need to know about CHSL. Much like the original

E , they provide a vector Φ⃗ such that each ϕ ∈ Φ⃗ is a pair of example and effect constraint:

ϕ = (ι → ω,q). If they are unconcerned with effects, this is identical to providing E .

We then turn Φ⃗ into a synthesis goal in CHSL:

Definition 5. (SOBEQ synthesis goal) Given a specification Φ⃗, our goal G
Φ⃗

is:

G
Φ⃗
= {⃗I} {⟨qi ∗ ⟩i;⟨ωi@ ⟩i}

and the SOBEQ task is to find a triple {σ⃗}p{σ⃗ ′;⃗r} that matches G
Φ⃗

.

4.3.3 The program space

Now that we have SOBEQ’s specifications, we define the space in which it performs the

search. In the remainder of this section, we recall the definition of classical OE, define the space

in the presence of mutations, and partition that space into equivalence classes.

The full program space of a synthesizer with a component set C is every program using

the components in C (including the variables in I⃗). We denote this set LC M. This set is infinite,

but more importantly highly redundant, e.g., contains both x + 1 and x + 0 + 1, and more

relevant to our mutating domain, arr.sort() and arr.sort().sort().

Classical Observational Equivalence. In a problem domain with no side-effects, observational

equivalence unifies programs with the same evaluation results on the example inputs. This

is expressed in the equivalence relation ≡E that deems two programs p1, p2 (observationally)
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equivalent if ∀ι → ω ∈ E .Jp1K(ι) = Jp2K(ι). The OE-reduced space LC MOE is then defined

using ≡E . This idea was first suggested by Udupa et al. [177], Albarghouthi et al. [6] and is in

wide use today.

When performing a classical bottom-up enumeration (CBE), the vector of observed re-

sults is used as the label of the equivalence class, and each vector is only added to the bank

of programs once, alongside the first program described by it, meaning any observationally

equivalent programs are discarded.

A program space with side-effects. In the presence of side-effects, the space of possible pro-

grams no longer comprises only programs evaluated in the initial states I⃗. As we saw in Sec. 4.2,

composition in this space requires subprograms that are evaluated in a modified state. We there-

fore rely on assertions to describe the states in which sub-programs are evaluated, and the states

after their evaluation.

Defining the program space. The full space of programs for a set of operations C that includes

side-effects is constructed inductively from smaller valid triples via applications of EVAL, ap-

plying the FRAME rule when necessary. We separate the terms with arity 0 into two subsets:

literals lits and variables Vars, and for each variable t ∈ Vars denote the range of possible values

for t’s type as Kt . define the full space of programs LC M:

Definition 6 (Full program space). We define the full program space LC M as
⋃

i≥0 LC M(i) where

LC M(i) is defined inductively as follows:
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LC M(0) ={{ ⃗emp}t{ ⃗emp;
−−−→
v@⊥}|t ∈ lits,v ∈ K is the value of t}∪

{{σ⃗}t{σ⃗ ;⟨vi@t⟩i}|t ∈ Vars, σ⃗ = ⟨t 7→ vi⟩i, v⃗ = Kt ×·· ·×Kt}

LC M(n) = LC M(n−1)∪
{
{P⃗}t(p1, . . . , pk){Q⃗;⃗r}|

t ∈ C ,arity(t) = k > 0,{σ⃗i}pi{σ⃗
′
i ;ri} ∈ LC M(n−1),

∃R⃗1, . . . , R⃗k.

EVAL of t on {σ⃗i ∗Ri}pi{σ⃗
′
i ∗Ri;ri} is {P⃗}t(p1, . . . , pk){Q⃗;⃗r}

}
Finally, given LC M, we can define the OE-reduced space that SOBEQ will enumerate.

4.3.4 SObEq: observational equivalence with side effects

As we showed in Sec. 4.2, classical OE’s ≡E is no longer useful for the program space

in Def. 6. We need our equivalence relation to encompass every aspect of the goal ϕ (Def. 5).

The formalization of OE by Peleg et al. [141] defined two properties for equivalence:

interchangeability, i.e., two equivalent programs can be used interchangeably within a larger

program, and consistency, i.e., two equivalent programs will either both satisfy or both not

satisfy the specification.

To satisfy consistency we must include everything that participates in Def. 5. The value

returned by the expression, and the postcondition, which should include any constrained effect.

We also need the state on which the program will be evaluated to check whether it describes I⃗.

As we saw in Sec. 4.2, to satisfy interchangeability we need the location of the value as

well: while the literal [2,3,1] and a variable x whose valuation is [2,3,1] return the same value,

they are not interchangeable under a larger program like ?.sort(), where they would lead to

different postconditions. Moreover, to be able to swap a program in, its postconditions must be

the same.

Combined, then, our equivalence relation simply compares the triple excluding the pro-
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gram:

Definition 7. (SOBEQ equivalence relation) We define the equivalence relation for Φ⃗ = ⟨(ιi →

ωi,qi)⟩i to be

{σ⃗1}p1{σ⃗
′
1;⃗r1} ≡Φ⃗

{σ⃗2}p2{σ⃗
′
2;⃗r2} ⇐⇒ σ⃗1 = σ⃗2 ∧ σ⃗

′
1 = σ⃗

′
2 ∧ r⃗1 = r⃗2

Or in other words, equivalence does not look at the program, only at its specifications.

Subsumption of equivalence classes. In Sec. 4.2, we considered the two triples tr3 = {arr 7→

[10,100,90,−1,2]}arr.length{arr 7→ [10,100,90,−1,2];5@⊥} and tr4 = {emp}5{emp;5@⊥}.

While tr3 and tr4 are not observationally equivalent under Def. 7—since emp ̸= arr 7→ [10,100,

90,−1,2]—tr4 is more general than tr3: it produces the same result (5@⊥) and the same effect

( /0) from more concrete states. If tr4 can absorb tr3, we can arrive at a more compact represen-

tation of the space.

This property of a program that differs by only a more general pre- and postcondition

forms a partial order.

Definition 8 (Generality ordering of triples). Given a specification Φ⃗, we define

{P⃗1}p1{Q⃗1;⃗r1} ⊑Φ⃗
{P⃗2}p2{Q⃗2;⃗r2} ⇐⇒ ∃R⃗.{P⃗1}p1{Q⃗1 ;⃗r1} ≡Φ⃗

{P⃗2 ∗ R⃗}p2{Q⃗2 ∗ R⃗;⃗r2}

In other words, the larger program is the more general way to achieve the same result and the

same effect, as in the order of predicate abstraction [62].

While ⊑
Φ⃗

is clearly not an equivalence relation (the existence of a frame axiom is not

symmetrical) so it cannot be used to partition the space into classes, we notice that replacing a

triple with one that is larger according to ⊑
Φ⃗

does preserve the two properties of an OE-relation,

interchangeability and consistency, in one direction. Originally [141], interchangeability states

that if two programs are equivalent, replacing them within a larger program will result in an
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equivalent larger program, and consistency states that given a specification ϕ , if two programs

are equivalent, either both satisfy ϕ or neither one does. Under ⊑, however, a slightly weaker—

but still useful—version holds.

Interchangeability under ⊑
Φ⃗

means that given t ∈C with arity(t) = k, and k triples tr j =

{P⃗j}p j{Q⃗ j ;⃗ri},1 ≤ j ≤ k, and R⃗i s.t. EVAL can be applied on t and {P⃗j ∗ R⃗ j}p j{Q⃗ j ∗ R⃗ j ;⃗r j} to

infer {P⃗}t(p1, . . . , pk){Q⃗;⃗r}, and a triple tr′i = {P⃗′
i }p′i{Q⃗′

i; r⃗′i} s.t. tri ⊑Φ⃗
tr′i for some 1 ≤ i ≤ k,

then

1. There exists R⃗′i s.t. EVAL can still be applied on t when replacing {P⃗i ∗ R⃗i}pi{Q⃗i ∗ R⃗i;⃗ri}

with {P⃗′i ∗ R⃗′
i}p′i{Q⃗′

i ∗ R⃗′
i; r⃗′i} to infer {P⃗′}t(p1, . . . , p′i, . . . , pk){Q⃗′; r⃗′}, and

2. {P⃗}t(p1, . . . , pk){Q⃗;⃗r} ⊑
Φ⃗
{P⃗′}t(p1, . . . , p′i, . . . , pk){Q⃗′; r⃗′}

Consistency under ⊑
Φ⃗

means that for goal G , if {P⃗1}p1{Q⃗1;⃗r1} ⊑
Φ⃗
{P⃗2}p2{Q⃗2;⃗r2},

then if there exists R⃗1 s.t. {P⃗1 ∗ R⃗1}p1{Q⃗1 ∗ R⃗1;⃗r1} matches G , then there exists R⃗2 s.t. {P⃗2 ∗

R⃗2}p2{Q⃗2 ∗ R⃗2 ;⃗r2} matches G . It’s important to notice that the ⇔ of the equivalence ver-

sion of consistency is now ⇒: if {P⃗1}p1{Q⃗1 ;⃗r1} is a result, so is {P⃗2}p2{Q⃗2;⃗r2}, but since

{P⃗2}p2{Q⃗2;⃗r2} is more general P⃗2 might cover ι even if P⃗1 did not.

Lemma 4.3.1. Interchangeability and consistency are preserved under ⊑.

The proof of Theorem 4.3.1 is found in Sec. 4.A.1.

With the program space LC M and the SOBEQ equivalence relation and generality order-

ing, we are ready to search for a program. The next section will construct the OE-reduced space

via enumeration.

4.4 The SObEq Enumeration

In this section, we describe the construction of the OE-reduced space. We first describe

the structure of the space, then the enumeration algorithm and specifically selecting children for
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applied terms, and finally, we describe how the enumeration can find equivalence classes that,

by virtue of their generality, subsume other equivalence classes.

Classical Bottom-Up Enumeration Algorithm. A bottom-up enumeration consists of applying

each t ∈ C to k-tuples of child programs from the bank of previously seen programs, where

arity(t) = k. Each newly enumerated t(p1, . . . , pk) is then evaluated, and if an equivalence class

labeled by the vector of its observed values is not yet represented in the bank, it is added to the

bank. The enumeration of programs is done according to some ordering, e.g., height, number

of AST nodes, or probability score [14]. This would usually be facilitated by the structure of

the bank to allow for easier retrieval of relevant child-programs.

The precondition bank. In our setting, we want to bank our discovered triples according to

their precondition: for each vector of assertions a⃗ we keep a separate bank for all the discovered

programs whose precondition vector is a⃗.

There are two reasons for this: first, when composing a k-tuple of arguments to t, finding

a sequence that EVAL is enabled for can be performed constructively rather than by filtering all

possible k-tuples. For each sequence of length k−1 with postconditions Q⃗k−1, the enumeration

can preemptively rule out any next child options from assertion vectors a⃗ that will never form a

valid sequence, i.e., have different values assigned to the variables appearing in both Q⃗k−1 and

a⃗. In algorithm 1 we call this construction COLLECTCHILDREN.

Second, and even more importantly, this allows us to track what assertions have been

discovered by the enumeration. If the enumeration produces a triple {⃗a}p{⃗a′;⃗r} where a⃗′ has

not yet been seen, then a new bank will be initialized for a⃗′.

Initializing a new bank. When a new assertion a⃗ is discovered by the enumeration, two things

happen: first, if a⃗ was discovered as a precondition, a new section of the bank is constructed

for a⃗. Second, even if a⃗ does not have a triple ready to add to it (i.e., it was discovered as a

postcondition), we add all variables that can be used in a⃗ to the bank. To preserve the invariant

that all programs are banked with their footprint, we construct and add {ax}x{ax;rx} where

115



ax = ⟨x 7→ ai(x)⟩i and rx = ⟨ai(x)⟩i for each x in a⃗, also initializing a bank for ax if needed.

In algorithm 1, both steps of the initialization together are denoted INITBANK(⃗a).

At the beginning of the enumeration, the bank is trivially initialized with the empty

assertion ⃗emp for literals and with ⟨x 7→ ιi(x)⟩i for each variable x in the input.

Enumerating terms. The main enumeration is not very different from the CBE enumeration:

the enumerator selects t ∈C with arity(t) = k > 0, and composes as arguments for it all k-tuples

of triples {P⃗i}pi{Q⃗i;⃗ri} that EVAL can be applied to with t from triples already in the bank.

The application of EVAL then constructs a new triple {P⃗}t(p1, . . . , pk){Q⃗;⃗r} that can

then be observed: we use its pre- and postcondition assertions and its results as the label for its

equivalence class. This label is searched for in the bank for precondition P⃗. If the bank for P⃗

has an equivalent program, {P⃗}t(p1, . . . , pk){Q⃗;⃗r} is discarded, and if no equivalent program

was previously seen, {P⃗}t(p1, . . . , pk){Q⃗;⃗r} is added to the bank for P⃗.

However, because we also have at our disposal ⊑
Φ⃗

(Def. 8), we can do even better.

Using more general triples. Under the order relation ⊑
Φ⃗

, more general triples can subsume

less general ones in the course of enumeration, even though they are not strictly equivalent.

However, we must consider two cases where this can happen: (i) the less general triple being

enumerated after the more general triple is in the bank, and (ii) a more general triple being

enumerated later.

Handling (i) is simple enough: when the enumerator enumerates {σ⃗}p{σ⃗ ′;⃗r}, even

if there is no representative for the equivalence class of {σ⃗}p{σ⃗ ′;⃗r}, the enumerator checks

whether some {σ⃗2}p2{σ⃗ ′
2; r⃗2} s.t. {σ⃗}p{σ⃗ ′;⃗r} ⊑

Φ⃗
{σ⃗2}p2{σ⃗ ′

2; r⃗2} already exists in the bank,

and if it does, discards {σ⃗}p{σ⃗ ′;⃗r}. This is efficiently done by searching the bank with the

label a more general program would have, each time replacing the assertion components in the

label for all a⃗ in the bank that are more general than σ⃗ .

Handling (ii), however, is a larger feat. Theoretically, once we enumerate the more

generic triple {σ⃗}p{σ⃗ ′;⃗r}, we can find all less-general triples {σ⃗2}p2{σ⃗ ′
2; r⃗2} and replace them
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Algorithm 1: The SOBEQ enumeration

Input : Set of specifications Φ⃗ = ⟨(ιi → ωi,qi)⟩i, variables Vars specified in
example inputs

Output: Program p composed of components C s.t. that satisfies Φ⃗

Globals: Precondition bank bank, mapping from assertion to an OE bank
1 initialAsserts := { ⃗emp}∪{⟨x 7→ ιi(x)⟩i | x ∈ Vars}
2 foreach a⃗ ∈ initialAsserts do INITBANK(⃗a);
3 repeat // until timeout

4 foreach t ∈ C , k = arity(t)> 0 do
5 foreach {σ⃗1 ∗R1}p1{σ⃗ ′

1 ∗R1 ;⃗r1}· · ·{σ⃗k ∗Rk}pk{σ⃗ ′
k ∗Rk; r⃗k} ∈

COLLECTCHILDREN(bank,k) do
6 {σ⃗}p{Q⃗;⃗r} := EVAL

(t,{σ⃗1 ∗R1}p1{σ⃗ ′
1 ∗R1;⃗r1}· · ·{σ⃗k ∗Rk}pk{σ⃗ ′

k ∗Rk; r⃗k})
7 if ∃R⃗.{σ⃗ ∗ R⃗}p{Q⃗∗ R⃗;⃗r} matches G

Φ⃗
then return p;

8 if ∀⃗a ∈ keys(bank).∃R⃗.(⃗a∗ R⃗ = σ⃗ ∧ R⃗ ⊆ Q⃗)⇒ (⃗a, Q⃗\ R⃗,⃗r) ̸∈ bank(⃗a)
then

9 if σ⃗ ̸∈ keys(bank) then INITBANK(σ⃗);
10 bank(σ⃗) += {σ⃗}p{Q⃗;⃗r}
11 end
12 if Q⃗ ̸∈ keys(bank) then INITBANK(Q⃗);
13 end
14 end
15 until timeout;

with {σ⃗}p{σ⃗ ′;⃗r}: removing them from the bank, and replacing p2 with p in any compositions.

But if this was not expensive enough on its own, this is where Theorem 4.3.1 comes into play:

this replacement can weaken the pre- and postconditions of the compositions, causing a cascade

of weakening more and more triples in the bank. Somewhere during this cascade, a triple that

did not satisfy Φ⃗ because P⃗ did not describe I⃗ might have its precondition weakened such that

the new precondition does describe I⃗, turning an already-enumerated program into a solution.

When even just the replacement of a single triple is expensive (see Sec. 4.7.5), such a cascade

operation is downright prohibitive. As such, we elect to only incorporate (i) into SOBEQ.

4.4.1 The enumeration algorithm

We can now compose the complete SOBEQ enumeration, seen in algorithm 1.
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Lines 1–2 of the algorithm initialize the enumeration by calling INITBANK, which op-

erates as described above, to create the basic programs for ⃗emp and for each of the variables’

initial values.

Line 4 selects the next component for application. Components with an arity of 0 do

not need to be considered, as they are handled exclusively by INITBANK. Next, on line 5 COL-

LECTCHILDREN iteratively constructs all k-tuples of children EVAL is enabled for by limiting

the preconditions from which the next child can be selected. COLLECTCHILDREN returns each k

triples already updated with the frame axioms R1, . . . ,Rk to a unified composed heap.

Line 6 then applies EVAL to construct the new triple, and if it is a solution to the synthesis

task it will be returned by line 7. If not, line 8 checks whether an equivalent or subsuming

program already exists in the bank via its equivalence class label: notice that precondition a⃗

in the bank is deemed relevant if there exists a frame axiom R⃗ s.t. R⃗ both matches a⃗ to σ⃗ and

all values in R⃗ are unchanged in Q⃗ (i.e., R⃗ truly is a frame). Every a⃗ in the bank lookup uses

the relevant equivalence class label, with a⃗ as its precondition and subtracting the frame axiom

from its postcondition assertion. If no triple is found, the new triple is added to the bank. If

either the pre- or postcondition assertion do not exist in the bank, INITBANK is called for them

to generate triples for their variables.

4.5 Correctness of SObEq

In this section, we present the correctness theorems of both the SOBEQ enumeration and

SOBEQ’s reduction of the space. We begin with the enumeration of the space.

4.5.1 Correctness of the SObEq enumeration

Def. 6 defines a space LC M where LC M(0) starts with all possible values of each variable v,

and, inductively, will cover all possible concrete states. Our enumeration, however, starts from

⟨x 7→ ιi(x)⟩i, i.e., only from the variable values in the inputs, and only enumerates programs

using other preconditions as it discovers them. Many σ⃗ ∈ A × ·· · ×A will simply not be
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reached by the enumeration.

We therefore define the reachable program space (first without, and later with the obser-

vational equivalence reduction), and introduce a correctness theorem for its enumeration, i.e.,

that it will not lose a solution that exists in the full program space.

Definition 9 (Reachable Program Space). We define a reachable program space from some

initial states I⃗ to be LC Mreach =
⋃

i≥0 LC Mreach
(i) , where

LC Mreach
(0) = {{ ⃗emp}t{ ⃗emp;

−−−→
v@⊥}|t ∈ lits,v ∈ K is the value of t}

∪
{
{σ⃗}t{σ⃗ ;⃗r}|t ∈ Vars, σ⃗ = ⟨t 7→ ιi(t)⟩i,⃗r = ⟨ιi(t)@t⟩i

}
LC Mreach

(n) = LC Mreach
(n−1)

∪
{
{P⃗}t(p1, . . . , pk){Q⃗;⃗r}|t ∈ C ,arity(t) = k > 0,{σ⃗i}pi{σ⃗ ′

i ;∈}LC M(n−1),

∃R⃗1, . . . , R⃗k.EVAL of t on {σ⃗i ∗Ri}pi{σ⃗ ′
i ∗Ri;ri} is {P⃗}t(p1, . . . , pk){Q⃗;⃗r}

}
∪
{
{⃗at}t{⃗at ;⃗r}|t ∈ Vars, a⃗t = ⟨t 7→ σi(t)⟩i ,⃗r = ⟨σi(t)@t⟩i,

{σ⃗}p{σ⃗ ′; r⃗′} ∈ LC Mreach
(n−1)∨{σ⃗ ′}p{σ⃗ ; r⃗′} ∈ LC Mreach

(n−1)

}
Theorem 4.5.1. If a valid solution {σ⃗}p{σ⃗ ′;⃗r} exists in LC M, then {σ⃗}p{σ⃗ ′;⃗r} ∈ LC Mreach.

In Sec. 4.A.2, we prove Theorem 4.5.1 by showing that all programs that can be reached

in a sequence from the initial state inLC M also exist in LC Mreach.

4.5.2 Correctness of the SObEq reduction

Next, we show that the SOBEQ enumeration (algorithm 1) is correct: its reduction will

not lose any solutions.

Definition 10 (SObEq-Reduced Program Space). Given the specifications Φ⃗ and the equiva-

lence relation ≡
Φ⃗

(Def. 7) and order relation ⊑
Φ⃗

(Def. 8) they induce, we define the reduction

reduce(Φ⃗,S−1,S ) =
{

s(c) = {σ⃗}p{σ⃗ ′;⃗r} | c ∈ S /≡
Φ⃗
,

∀{P⃗}p′{Q⃗; r⃗′} ∈ S ∪S−1.{σ⃗}p{σ⃗ ′;⃗r} ̸⊑
Φ⃗

{P⃗}p′{Q⃗; r⃗′}
}
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where s(c) selects a representative of equivalence class c, and / ≡
Φ⃗

partitions the space into

equivalence classes based on ≡
Φ⃗

. We then define the space after the SOBEQ reduction to be⋃
i≥0 LC MS

(i) where LC MS
(i) is also defined inductively:

LC MS
(0) = reduce(Φ⃗, /0,LC Mreach

(0) )

LC MS
(n) =LC MS

(n−1)∪ reduce
(

Φ⃗,LC MS
(n−1),

{
{P⃗}t(p1, . . . , pk){Q⃗;⃗r}|t ∈ C ,arity(t) = k > 0,{σ⃗i}pi{σ⃗ ′

i ;⃗ri} ∈ LC MS
(n−1),

∃R⃗1, . . . , R⃗k.EVAL of t on {σ⃗i ∗Ri}pi{σ⃗ ′
i ∗Ri;ri} is {P⃗}t(p1, . . . , pk){Q⃗;⃗r}

}
∪
{
{⃗at}t{⃗at ;⃗r}|t ∈ Vars, a⃗t = ⟨t 7→ σi(t)⟩i,⃗r = ⟨σi(t)@t⟩i,

{σ⃗}p{σ⃗ ′; r⃗′} ∈ LC MS
(n−1)∨{σ⃗ ′}p{σ⃗ ; r⃗′} ∈ LC MS

(n−1)

})
Then to show that the SOBEQ enumeration using ≡

Φ⃗
and ⊑

Φ⃗
is correct, we re-introduce

the correctness theorem [141, Theorem 7.2] for an OE-reduced enumeration in our terms:

Theorem 4.5.2 (Correctness of the reduced enumeration). Given {σ⃗1}p1{σ⃗ ′
1; r⃗1} ∈ LC Mreach

and a goal G
Φ⃗

, if there exists R⃗1 s.t. {σ⃗1 ∗ R⃗1}p1{σ⃗ ′
1 ∗ R⃗1; r⃗1} matches G

Φ⃗
, then there exists

{σ⃗2}p2{σ⃗ ′
2; r⃗2} ∈ LC MS and a R⃗2 s.t. {σ⃗2 ∗ R⃗2}p2{σ⃗ ′

2 ∗ R⃗2; r⃗2} also matches G
Φ⃗

.

The detailed proof is in Sec. 4.A.3.

4.6 Implementation

Our implementation of the SOBEQ algorithm (algorithm 1) is a synthesizer for Java-

Script programs implemented in Scala. The component set C contains 54 components for

integers, strings, arrays, and sets, including nine mutating operations: postfix increment for

integers, the array functions sort, reverse, splice, push, pop, shift, and the set functions

add and delete.2 C also includes the variables from E and a sequence operator for any two

expressions. We allow a task to include additional string constants provided by benchmarks

from the literature [9, 14] or interaction models [52, 51].
2JavaScript strings are immutable, so C includes no mutating components for strings.
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Preserving immutability. The effect constraints in Φ⃗ can specify that a variable has not changed

in the postcondition of the solution σ⃗ ′. But because we only reason about the pre- and postcon-

dition of a triple, not the path between them, effect constraints cannot distinguish between, e.g.,

x and --(++x). This is generally desirable as it marks --(++x) as redundant, but this will only

be discovered when applying --. If the user wants x to always be immutable, we can do better.

We add to our task specifications the ability to mark a variable as immut. Once the user

has asked that x be immutable, there is no reason to construct ++x at all: a triple {σ⃗}p{σ⃗ ′;⃗r}

where ⟨σi(x)⟩i ̸= ⟨σ ′
i (x)⟩i is discarded immediately, and σ⃗ ′ is not initialized in the bank. Any

programs with the precondition σ⃗ ′ assume a mutation of x, so if x is marked as immut, eliminat-

ing the entire precondition entirely is correct.

4.7 Experimental Evaluation

We empirically evaluate SOBEQ on our implementation. All our experiments used a

server with Intel Xeon Gold 6338 2 GHz3 and 128GB of RAM, with the JVM maximum heap

size set to 110 GB, and a timeout of one hour.

Benchmarks. We evaluated SOBEQ on a set of 46 benchmarks, curated from previous syn-

thesizers [161, 14, 51], programming exercises on LEETCODE.COM, and questions on STACK-

OVERFLOW.COM. We split the benchmarks into two sets: ▷ Mutating: 10 benchmarks requiring

mutation to be solved in C . ▷ Pure: 36 benchmarks that can be solved by pure expressions.

Research Questions. We aim to answer the following research questions:

RQ1) Can SOBEQ solve a variety of synthesis tasks correctly?

RQ2) How does SOBEQ compare to the state-of-the-art in enumerative synthesis with side

effects?

RQ3) What impacts the size of the space discovered by SOBEQ?

RQ4) What is the overhead of SOBEQ when mutation is prohibited?

3This processor has 32 cores/64 threads, but our implementation is single-threaded.
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RQ5) How does subsumption of equivalence classes affect enumeration?

4.7.1 RQ1: Benchmark results

Our implementation successfully solved 38 (83%) of the benchmarks, 8 (80%) from

the Mutating set, and 30 (83%) from the Pure set. 42% of the benchmarks were solved in

less than 5 seconds. Excluding timeouts, the benchmarks were solved in an average of 1m 49s

(SD=352s), and median time of 0.09s. Fig. 4.5a plots benchmarks solved over time according to

the components used in the solution, i.e., Pure benchmarks with mutating solutions are counted

as mutating. We see that mutating solutions are found as quickly as pure ones, and in fact all

mutating solutions are found under 5 seconds.

We manually inspected the solution to each benchmark to check if the solution is over-

fitted to the examples in Φ⃗, and if it contains spurious mutations which are not required to

satisfy Φ⃗. One benchmark had an overfitted solution, and four of the Pure benchmarks were

solved with a non-Pure solution. Three of these used a splice function to find a shorter solu-

tion. The other used push, which returns the new length of the array, to avoid using the larger

array.length + 1.

Overall, we answer RQ1 in the affirmative. SOBEQ successfully solved the vast ma-

jority of the benchmarks with generalizable solutions, and without spurious mutations.

4.7.2 RQ2: Comparison to FRANGEL

We compare SOBEQ to FRANGEL [161], a stochastic synthesizer considered the state

of the art in synthesizing general programs with mutations. We defined a custom grammar for

FRANGEL that contains the same set of components as our implementation, and disabled the

enumeration of loops, conditionals, and assignments. FRANGEL’s enumeration is not deter-

ministic, so we ran FRANGEL five times on each of the 46 benchmarks, and compared the best,

worst and median performance to SOBEQ in Fig. 4.5b. We use FRANGEL’s median times for

the rest of this analysis.
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(a) RQ1: Performance of SOBEQ
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Figure 4.5. (a) The number of benchmarks SOBEQ solves over time, split into benchmarks
solved with mutating components and benchmarks solved only with pure components. (b) No.
of benchmarks solved over time. FRANGEL is stochastic, so its line shows median values with
the range showing the maximum and minimum.

SOBEQ is able to solve more benchmarks (32 vs. 24) in the first five seconds, and

shows comparable performance overall, with FRANGEL having the same mean time of 1m

49s (SD=329s). Performance on individual benchmarks varies, with SOBEQ faster on 24, and

FRANGEL on 18 benchmarks, including four benchmarks which SOBEQ solves in under two

seconds but FRANGEL times out on, and three benchmarks which FRANGEL solves in under

two minute but SOBEQ times out on. This is not surprising given the difference in enumera-

tion techniques. We also inspected the solutions manually, and found that FRANGEL had more

overfitted solutions, with four benchmarks with overfitted solutions in all five runs, and an-

other four overfitting in at least one run. FRANGEL only had one spurious mutation in all its

runs. To answer RQ2, SOBEQ shows comparable performance to FRANGEL, while being

deterministic, and finding fewer overfitted solutions.

4.7.3 RQ3: The size of the search space

We inspected the precondition bank at the end of each run from Sec. 4.7.1 to see how

many assertions were discovered. We found that the number of precondition in the bank varied

widely across different benchmarks. Aside from the total number of programs enumerated,

the main determinant of the number of assertions was the type of variables defined in each
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(b) RQ4: Comparison with CBE

Figure 4.6. (a) No. of preconditions in the bank at termination/timeout, compared with total no.
of programs enumerated for that benchmark. The shape and color of each point indicates the
number of mutable variables available in that benchmark’s Φ⃗. (b) Time to termination/timeout
for each Pure benchmark with SOBEQ, compared to a classical bottom-up enumeration with
OE. Points at (timeout,timeout) not shown.

benchmark’s example inputs. C has a varying number of mutating components for each type

(one for integers, two for sets, and six for arrays) and these had a significant effect on the

enumerated space. More specifically, benchmarks with only string and boolean variables did not

discover any new assertions outside the initial preconditions and their compositions, while the

rest discovered assertions depending on the number of mutating components for each variable

type. As Fig. 4.6a shows, benchmarks with one integer discover modestly more assertions than

those with none, those with an array form a far steeper slope, and the benchmark with one set

falls in between. To answer RQ3, the size of the search space is largely determined by the

number of mutating components in C .

In addition, Fig. 4.7 shows the distribution of precondition sizes for each of our bench-

marks.

4.7.4 RQ4: Overhead of SOBEQ

If C does not have any mutating components, SOBEQ would not discover any assertions

outside the initial preconditions and their compositions. This reduces it to a classical bottom-up
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enumeration in terms of the space of programs it describes. In this experiment we measured

what happens in practice: the more fine-grained equivalence classes resulting from using the

result rather than just the value in the equivalence class labels, and the additional overhead from

creating a compound heap for sub-programs with different variables, means that our implemen-

tation will have an overhead compared to a traditional bottom-up synthesizer.

To measure the overhead, we restricted our C to just the non-mutating components, and

compared its performance on Pure benchmarks against a version that enumerates all programs

in the initial concrete state, and uses the classical value-based equivalence relation for an OE-

reduction. This version uses the same enumeration algorithm as SOBEQ, but with all programs

enumerated and evaluated on the initial concrete state. Thus it is equivalent to classical OE with

height-based enumeration. By removing the mutating components for this evaluation, we avoid

the correctness issues in classical OE, while controlling for performance differences caused by

having different grammars.

As expected, in this restricted context CBE significantly outperforms SOBEQ (time com-

parison shown in Fig. 4.6b). Classical enumeration solved the benchmarks an average of 2.59

times faster (Median=2.52), and it was able to solve two additional benchmarks in the one hour

timeout.

Overhead aside, we found that another reason for this difference in performance is the

enumeration order. Unlike classical OE, which prioritizes children by the order that they were

enumerated, SOBEQ adds an external order by assertions. While this does not have as large an

impact in the early iterations, as the bank grows this can lead to large differences in time, and

to a different solution being found first. For instance, for the outlier benchmark in Fig. 4.6b

with SOBEQ time of 1900s, SOBEQ was not only 7 times slower, but it found a solution with a

different subprogram. For this, and the two benchmarks which only classical solved within the

timeout, the solution is of height 4, by which point the exponential nature of the search space

means that different child enumeration orders can have a large effect on performance. For

RQ4, we found that SOBEQ has a significant overhead compared to classical enumeration,
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caused by the more fine-grained equivalence classes, the overhead of creating compound

heaps, and the different enumeration order.

4.7.5 RQ5: Ablation of subsumption of equivalence classes

We performed an ablation of using ⊑
Φ⃗

instead of ≡
Φ⃗

in the enumeration. As noted in

Sec. 4.4, a more general triple can be enumerated before or after its less general counterpart. To

investigate the impact of possible actions, we tested SOBEQ in three configurations: (1) Equiv:

only use ≡
Φ⃗

, i.e., add less general triples to the bank, (2) Discard: use ⊑
Φ⃗

to discard less general

triples when more general ones exist in the bank, i.e., SOBEQ’s behavior, and (3) Replace: use

⊑
Φ⃗

to discard less general triples whether they are newly enumerated or already in the bank.

The Replace configuration requires replacing the program discarded from the bank, but does

not perform the cascading operation described in Sec. 4.4.

We found that subsumption did not have a large effect on performance, but that overall

the Discard configuration was the fastest. Compared to it, Equiv solved the benchmarks an

average of 1.09 times slower (SD=0.36), and Replace solved them an average of 1.02 times

slower (SD=0.14). The main reason for the small effect size is that only a small number of

enumerated programs are subsumed, with a mean of 3.60% of programs discarded (SD=4.32%,

Median=1.86%), and only 1.93% of programs replaced (SD=3.04%, Median=0.31%). Because

of this, the overhead of subsumption was competing against the small benefits, with the cheaper

discard operation being effective, while the more expensive replace operation was not. To

answer RQ5, subsumption of equivalence classes has a small effect on performance, with

the cheaper discard operation being the most effective.

4.8 Related work

Syntax- and Component-Guided Synthesis. Syntax-Guided Synthesis (SyGuS) [7] is a form

of the synthesis problem providing a specification along with a grammar defining its program

space. It can also describe a form of synthesis where programs are constructed by syntax rules.
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The latter is essentially identical to Component-Based Synthesis, where the synthesizer is pro-

vided with a list of functions and operations spanning the program space. Both of these formu-

lations are tackled by many synthesis strategies: enumerative [103, 161, 14, 48, 70, 57, 82, 164,

25, 198, 102], SMT [88, 12, 150, 3] and SAT [167, 172] based, by traversing constructed repre-

sentations of the space such as VSAs [89, 99, 199], version spaces [163] and Petri-nets [49, 69].

Proof-directed synthesizers. A specific form of enumerative synthesis is one that attempts to

create a proof for a proof goal, where the resulting program follows the proof. This idea is

not new [170], and some deductive type-driven synthesizers describe their program search as a

proof search [69, 135]. However, other works’ goals are more expressive than types: refinement

types [146], relational specifications [93], select/update operators [128], Separation Logic, and

even natural language [34]. Importantly, proof searches are overwhelmingly deductive, or per-

form a top-down search of the proof space. To our knowledge, SOBEQ is the first synthesis

proof search that enumerates the proof space bottom-up.

Synthesis with Separation Logic. Separation Logic proofs are a popular vehicles for proof-

directed synthesis. They have been successfully used for parallelizing non-parallel code [21],

but are most often used to synthesize heap-manipulating programs. SUSLIK [147] performs

a deductive search with inferences about the symbolic heap to generate programs performing

pointer operations. CYPRESS [84] extends this with the ability to synthesize recursive auxil-

iaries, ROBOSUSLIK [35] extends it with read-only borrows, and RUSSOL [55] applies it to

Rust programs, leveraging Rust’s type system to simplify the required specification from for-

mal assertions to functional annotations of Rust functions. All these tools accept assertions as

their specification, hinge on manually-crafted inference rules, and employ solvers. SOBEQ, in

contrast, requires only specifications of variable and result values, and does not require a solver,

only an interpreter.

Observational equivalence. Observational Equivalence [177, 6] is a popular way to reduce the

size of the space when enumerating bottom-up. The original formulation of OE is for a spec-
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ification by examples, but RESL [141] generalized OE to encompass other specifications on

programs as well; this generalization also introduced the notions of interchangeability and con-

sistency that SOBEQ’s correctness relies on. SYMETRIC [53] relaxes OE to observational sim-

ilarity by using clustering rather than equivalence to choose a representative, then performing

repair on the resulting program. While this unifies equivalence classes like SOBEQ’s subsump-

tion, correctness of SYMETRIC’s solutions hinges on the success of repairing its intermediate

result.

Many of the synthesizers that use OE only synthesize pure programs [142, 14, 141,

6, 185, 127] (we include [141] in this list, despite its misuse of Array.sort being part of the

motivation for this work), others employ synthesis with OE to produce pure expressions that are

then used in assignments or other larger mutating expressions [113, 114, 177, 52, 51], creating

a top-level program with side effects. Two interesting approaches to deal with effects under OE

are LENS [145] and ARBORIST [108]. ARBORIST synthesizes calls to fold by iteratively refining

the space of reachable intermediate states, terminating only if this refinement terminates. LENS

synthesizes assembly code by discovering all intermediate states in a reduced state-space, then

continuously refining that search. Both hinge on the ability to unify equivalent programs without

discarding any programs using an OE implementation that does not use a bank like SOBEQ does,

and which is only tractable under very strict assumptions.

Synthesis with side effects. The problem of synthesizing mutating snippets has been worked

around in many ways. SL proof-directed approaches assume an extremely limited target lan-

guage of mutations that can be described by the proof. SKETCH[167], TRANSIT [177], SNIPPY

[52], SIMPL [165] and COZY [113, 114] assume expressions are pure, then use them in specific

mutating contexts validated by other means (e.g., SMT). SYPET [49] and FRANGEL [161] rely

on other means for getting programs—Java APIs’ rich type systems and drawing them at ran-

dom, resp.—and only then evaluate them. LOOPY [51] works in a domain where intermediate

states caused by mutations are bounded and enumerates paths between these states; similarly
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LENS [145] reduces all registers to 8-bit in order to construct the full space of intermediate states.

RBSYN [70] performs a type-guided top-down enumeration from a syntax including effect holes

that can be filled with annotated mutating methods; expressions not within effect holes have

a purity assumption, limiting how effectful components are composed, unlike SOBEQ that can

use mutating operations anywhere. COBALT [128] also separates pure and impure expressions,

using a conflict-driven enumeration to search for a proof matching its goal using provided API

annotations. CODEHINT [57] has the most elaborate solution, evaluating and then undoing in-

memory side effects of candidate expressions. SOBEQ sheds the assumptions that expressions

are pure, that intermediate states are known in advance, and that annotations guide the search.

Moreover, SOBEQ comes with a formal guarantee unlike the two most general previous solu-

tions: FRANGEL, which randomly draws programs, and CODEHINT, which considers only the

first provided example when searching for candidate programs.
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4.A Proofs of Theorems and Lemmas

4.A.1 Proof of Theorem 4.3.1

Interchangeability under ⊑
Φ⃗

means that given t ∈C with arity(t) = k, and k triples tr j =

{P⃗j}p j{Q⃗ j ;⃗ri},1 ≤ j ≤ k, and R⃗i s.t. EVAL can be applied on t and {P⃗j ∗ R⃗ j}p j{Q⃗ j ∗ R⃗ j ;⃗r j} to

infer {P⃗}t(p1, . . . , pk){Q⃗;⃗r}, and a triple tr′i = {P⃗′
i }p′i{Q⃗′

i; r⃗′i} s.t. tri ⊑Φ⃗
tr′i for some 1 ≤ i ≤ k,

then

1. There exists R⃗′i s.t. EVAL can still be applied on t when replacing {P⃗i ∗ R⃗i}pi{Q⃗i ∗ R⃗i;⃗ri}

with {P⃗′i ∗ R⃗′
i}p′i{Q⃗′

i ∗ R⃗′
i; r⃗′i} to infer {P⃗′}t(p1, . . . , p′i, . . . , pk){Q⃗′; r⃗′}, and

2. {P⃗}t(p1, . . . , pk){Q⃗;⃗r} ⊑
Φ⃗
{P⃗′}t(p1, . . . , p′i, . . . , pk){Q⃗′; r⃗′}

Proof: interchangeability. Because tr1 ⊑
Φ⃗

tr′1, there exists R⃗′ s.t. {P⃗′
i ∗ R⃗′}p′i{Q⃗′

i ∗ R⃗′; r⃗′i} ≡
Φ⃗

{P⃗i}pi{Q⃗i;⃗ri}. Therefore, let us select R⃗′
i = R⃗i ∗ R⃗′, which will keep the composed heap for the

sequence exactly as it was, making all midconditions equal again. Since r⃗i = r⃗′i, EVAL is still

applicable.

While sufficient to prove (1), we also notice that it is possible to select a better R⃗′i if some

x ∈ dom(P⃗i) is removed from P⃗i and now exists only in the frame axioms. We denote R⃗′ j for all

tr j new frame axioms without any such x. We now apply EVAL to the sequence with the new

frame axioms and, since all ri remain the same, infer {P⃗′}t(p1, . . . , p′i, . . . , pk){Q⃗′;⃗r} where there

exists R⃗ comprising the difference between R⃗i and R⃗′
i that proves {P⃗}t(p1, . . . , pk){Q⃗;⃗r} ⊑

Φ⃗

{P⃗′}t(p1, . . . , p′i, . . . , pk){Q⃗′;⃗r}.

Consistency under ⊑
Φ⃗

means that for goal G , if {P⃗1}p1{Q⃗1 ;⃗r1} ⊑ {P⃗2}p2{Q⃗2 ;⃗r2},

then if there exists R⃗1 s.t. {P⃗1 ∗ R⃗1}p1{Q⃗1 ∗ R⃗1 ;⃗r1} matches G , then there exists R⃗2 s.t. {P⃗2 ∗

R⃗2}p2{Q⃗2 ∗ R⃗2;⃗r2} matches G .

Proof: consistency. Since {P⃗1 ∗ R⃗1}p1{Q⃗1 ∗ R⃗1;⃗r1} matches G , we know that P⃗1 ∗ R⃗1 = I⃗, q⃗ ⊆

Q⃗1∗ R⃗1, and ∀vi@li ∈ r⃗1.ωi = vi. Because {P⃗1}p1{Q⃗1;⃗r1}⊑ {P⃗2}p2{Q⃗2 ;⃗r2}, ∃R⃗.{P⃗1}p1{Q⃗1;⃗r1
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} ≡
Φ⃗
{P⃗2 ∗ R⃗}p2{Q⃗2 ∗ R⃗;⃗r2}, so r⃗1 = r⃗2, P⃗1 = P⃗2 ∗ R⃗, and Q⃗1 = Q⃗2 ∗ R⃗. From this, ∀vi@li ∈

r⃗2.ωi = vi, P⃗2 ∗ R⃗ ∗ R⃗1 = I⃗, and q⃗ ⊆ Q⃗2 ∗ R⃗ ∗ R⃗1. In other words, there exists R⃗2 = R⃗ ∗ R⃗1 s.t.

{P⃗2 ∗ R⃗2}p2{Q⃗2 ∗ R⃗2;⃗r2} matches G .

4.A.2 Proof of correctness for LC Mreach

Theorem 4.A.1 (Theorem 4.5.1). If a valid solution {σ⃗}p{σ⃗ ′;⃗r} exists in LC M, then

{σ⃗}p{σ⃗
′;⃗r} ∈ LC Mreach

We denote a program that can be part of a valid execution sequence starting at the start

states I⃗ as reachable. In our program representation, this means I⃗ satisfies the preconditions of

the sequence. Programs that are not reachable are irrelevant for us, as they cannot participate

in any solution. We define a helper predicate for a program {σ⃗}p{σ⃗ ′;⃗r} being reachable at

iteration n as follows:

reach({σ⃗}p{σ⃗ ′;⃗r},n)≜ ∃R⃗.⃗σ ∗R = I⃗∨

∃{σ⃗0}p0{σ⃗ ′
0; r⃗0}, . . . ,{σ⃗i}pi{σ⃗ ′

i ; r⃗i} ∈ LC M(n−1).

∃R⃗0, . . . , R⃗i+1.∀0 < j ≤ i.(σ⃗ ′
j−1 ∗ ⃗R j−1) = (σ⃗ j ∗ R⃗ j)∧

σ⃗ ′
i ∗ R⃗i = σ⃗ ∗ R⃗i+1∧

∃R⃗′ .⃗σ0 ∗ R⃗0 ∗ R⃗′ = I⃗

Proof. We show by induction over n that all programs in LC M(n) whose precondition holds for

I⃗, or have some precondition σ⃗ and can form a valid execution trace starting a precondition that

holds for I⃗, will also be in LC Mreach
(n′) for some n′. I.e.,

∀{σ⃗}p{σ⃗
′;⃗r} ∈ LC M(n).reach({σ⃗}p{σ⃗

′;⃗r},n) =⇒ ∃n′.{σ⃗}p{σ⃗
′;⃗r} ∈ LC Mreach

(n′)

This implies that for any solution {σ⃗}p{σ⃗ ′;⃗r} ∈ LC M(n), ∃n′.{σ⃗}p{σ⃗ ′;⃗r} ∈ LC Mreach
(n′) as well,

which is what T heorem 4.5.1 states.
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For n = 0: For all {σ⃗}p{σ⃗ ′;⃗r} ∈ LC M(0), p = t ∈ C . Since there is no LC M(−1), the sec-

ond disjunct of reach is irrelevant. That leaves ∃R⃗.⃗σ ∗R = I⃗, where by definition {σ⃗}t{σ⃗ ′;⃗r} ∈

LC Mreach
(0) : σ⃗ = σ⃗ ′ is either ⃗emp or the initial values of variable t.

For n ≥ 1: We begin by assuming the IH:

∀{σ⃗}p{σ⃗ ′;⃗r} ∈ LC M(n−1).reach({σ⃗}p{σ⃗ ′;⃗r},n−1) =⇒ ∃n′.{σ⃗}p{σ⃗ ′;⃗r} ∈ LC Mreach
(n′)

Then for all {σ⃗}p{σ⃗ ′;⃗r} ∈ LC M(n) where reach({σ⃗}p{σ⃗ ′;⃗r},n), there are two cases:

1. If p = t (i.e., arity(t) = 0):

i. if σ⃗ = ⃗emp or σ⃗ = ⟨x 7→ ιi(x)⟩i, then {σ⃗}p{σ⃗ ′;⃗r} ∈ LC Mreach
(0) .

ii. for other σ⃗ , but reach({σ⃗}p{σ⃗ ′;⃗r},n), then from reach there exist a sequence of

triples {σ⃗ j}p j{σ⃗ ′
j; r⃗ j} ∈ LC M(n−1) and matching frame axioms R⃗ j s.t. σ⃗i ∗ R⃗i = σ⃗ ∗

Ri+1, ∃R⃗′ .⃗σ0 ∗ R⃗0 ∗ R⃗′ = I⃗, and σ⃗ ′ = σ⃗ since t has no effect.

By the IH, there exists an n′ where all {σ⃗ j}p j{σ⃗ ′
j ;⃗r j} ∈ LC Mreachn′.

Since t is not at its original values, it is modified by some some {σ⃗ j}p j{σ⃗ ′
j ;⃗r j} ∈

LC Mreach
(n′) , so by Def. 9, {⟨t 7→ σ ′

j(t)⟩i}t{⟨t 7→ σ ′
j(t)⟩i; r⃗′} was added to LC Mreach

(n′+1).

In all cases, ∃n′.{σ⃗}p{σ⃗ ′;⃗r} ∈ LC Mreach
(n′) .

2. If p is of the form t(p1, . . . , pk) (i.e. arity(t) = k > 0), then its children {σ⃗ j}p j{σ⃗ ′
j ;⃗r j} ∈

LC M(n−1),1 ≤ j ≤ k and ∃.R⃗1, . . . , R⃗k s.t. EVAL can be applied to them. σ⃗ = σ⃗1 ∗ R⃗1.

Since we know there is a frame axiom R⃗i+1 s.t. σ⃗ ∗ R⃗i+1 = σ⃗i ∗Ri, this means that the

same one can be used for the sequence of arguments to t. This implies that for each

{σ⃗ j}p j{σ⃗ ′
j ;⃗r j}, reach({σ⃗ j}p j{σ⃗ ′

j ;⃗r j},n−1).

And so, by the induction hypothesis, ∃n j.{σ⃗ j}p j{σ⃗ ′
j ;⃗r j} ∈ LC Mreach

(n j)
, and if we let n′′ =

max(n j), by the definition of LC Mreach
(n) , ∀1 ≤ j ≤ k.{σ⃗ j}p j{σ⃗ ′

j ;⃗r j} ∈ LC Mreach
(n′′) . Since all
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the child sub-expressions of p exist in LC Mreach
(n′′) , p will be enumerated in LC Mreach

(n′′+1), and

so if we let n′ = n′′+1, {σ⃗}p{σ⃗ ′;⃗r} ∈ LC Mreach
(n′) .

4.A.3 Proof of correctness of LC MS

Theorem 4.A.2 (Correctness of the reduced enumeration). Given {σ⃗1}p1{σ⃗ ′
1; r⃗1} ∈ LC Mreach

and a goal G
Φ⃗

, if there exists R⃗1 s.t. {σ⃗1 ∗ R⃗1}p1{σ⃗ ′
1 ∗ R⃗1; r⃗1} matches G

Φ⃗
, then there exists

{σ⃗2}p2{σ⃗ ′
2; r⃗2} ∈ LC MS and a R⃗2 s.t. {σ⃗2 ∗ R⃗2}p2{σ⃗ ′

2 ∗ R⃗2; r⃗2} also matches G
Φ⃗

.

First, we show programs are not lost, and equivalent programs in the space still exist:

Lemma 4.A.3. If there exists a triple {σ⃗1}p1{σ⃗ ′
1; r⃗1} ∈ LC Mreach

(n) then there is a triple

{σ⃗2}p2{σ⃗
′
2; r⃗2} ∈ LC MS

(n)

s.t. {σ⃗1}p1{σ⃗ ′
1; r⃗1} ⊑Φ⃗

{σ⃗2}p2{σ⃗ ′
2; r⃗2}

In other words, the reduced space has an interchangeable program under ⊑
Φ⃗

.

Proof. n = 0: this is true by the definition of LC MS
(0).

n > 0: We assume

∀{σ⃗1}p1{σ⃗
′
1; r⃗1} ∈ LC Mreach

(n−1).∃{σ⃗2}p2{σ⃗
′
2; r⃗2} ∈ LC MS

(n−1).{σ⃗1}p1{σ⃗
′
1; r⃗1} ⊑Φ⃗

{σ⃗2}p2{σ⃗
′
2; r⃗2}

For each {σ⃗}p{σ⃗ ′;⃗r} in LC Mreach
(n) :

1. If p = t (i.e., arity(t) = 0):

i. if ∃R⃗.⃗σ ∗ R⃗ = I⃗, then by our base case {σ⃗2}p2{σ⃗ ′
2; r⃗2} ∈ LC MS

(0).
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ii. if ¬∃R⃗.⃗σ ∗ R⃗ = I⃗, then by definition of LC Mreach
(n) ,

∃tr1, . . . trk ∈ LC Mreach
(n−1).tri = {σ⃗i}pi{σ⃗

′
i ; r⃗i}

and ∃R⃗1, . . . , R⃗k+1 and σ⃗ = ⟨(t 7→ σ⃗k ∗Rk)i(t)⟩i. By the induction hypothesis, there

exist tr′1, . . . , tr
′
k ∈ LC MS

(n−1) s.t. tri ⊑Φ⃗
tr′i. Since the value of t changed since the

initial state, it was changed by (i.e., cannot be in the frame of) some tri, so it was also

changed by tr′i. So by definition of LC MS
(n), the triple {σ⃗}t{σ⃗ ;⃗r} will be enumerated

in LC MS
(n) at the latest.

2. If p= t(p1, . . . , pk): there exist tr1, . . . , trk ∈ LC Mreach
(n−1), tri = {σ⃗i}pi{σ⃗ ′

i ;⃗ri} s.t. ∃R⃗1, . . . , R⃗k

to enable EVAL, and σ⃗1 ∗ R⃗1 = σ⃗ . so by the IH there exist tr′1, . . . , tr
′
k ∈ LC MS

(n−1), tr
′
i =

{σ⃗ ′′
i }p′i{σ⃗ ′′′

i ;⃗r′} s.t. ri = r′i, and for each tr′i there exists R⃗′i that is the frame axiom for

tri ⊑Φ⃗
tr′i: σ⃗ ′′

i ∗ R⃗′i = σ⃗i and σ⃗ ′′′
i ∗ R⃗′i = σ⃗ ′

i . Therefore, we can use R⃗1 ∗ R⃗′1, . . . , R⃗k ∗ R⃗′
k to

apply EVAL on tr′1, . . . , tr
′
k. Since ri = r′i, the result will still be r⃗, and will have the same

effect, i.e., starting at P⃗′ = σ⃗1 ∗ R⃗1 ∗ R⃗′′1 where R⃗′′1 is the minimal necessary frame axiom

for eval (R⃗′′1 ⊆ R⃗′1) EVAL will yield postcondition assertion Q⃗ ⊆ σ⃗ ′.

By Theorem 4.3.1, {σ⃗}p{σ⃗ ′;⃗r} ⊑
Φ⃗
{P⃗}t(p′1, . . . , p′k){Q⃗;⃗r}, and since all its components

are in LC MS
(n−1) it will be enumerated by LC MS

(n).

We are now ready to prove our theorem:

Proof of Theorem 4.5.2. Given a triple {σ⃗}p{σ⃗ ′;⃗r} ∈ LC Mreach s.t. there exists R⃗ where {σ⃗ ∗

R⃗}p{σ⃗ ′ ∗ R⃗;⃗r} matches G
Φ⃗

, we know from Theorem 4.A.3 that there is a {σ⃗ ′′}p′{σ⃗ ′′′; r⃗′} ∈

LC MS s.t. {σ⃗}p{σ⃗ ′;⃗r} ⊑ {σ⃗ ′′}p′{σ⃗ ′′′; r⃗′}. From Theorem 4.3.1 for consistency, we get that if

{σ⃗ ∗ R⃗}p{σ⃗ ′ ∗ R⃗;⃗r} matches G
Φ⃗

, then there exists R⃗′ s.t. {σ⃗ ′′ ∗ R⃗′}p′{σ⃗ ′′′ ∗ R⃗′; r⃗′} matches G
Φ⃗

,

or in other words, there exists a solution in LC MS.
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4.B Evaluation Results

4.B.1 The size of the search space
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Figure 4.7. The number of programs enumerated with each pre-condition in the bank at termi-
nation or timeout.
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Chapter 5

LEAP: Live Exploration of AI-Generated
Programs

5.1 Introduction

Recent advances in large language models have given rise to AI-powered code sugges-

tion tools like GitHub Copilot [60], Amazon CodeWhisperer [11], and ChatGPT [133]. These

AI programming assistants are changing the face of software development, automating many

of the traditional programming tasks, but at the same time introducing new tasks into the de-

veloper’s workflow—such as prompting the assistant and reviewing its suggestions [13, 129].

Development environments have some catching up to do in order to provide adequate tool sup-

port for these new tasks.

In this paper, we focus on the task of validating AI-generated code, i.e.,, deciding

whether it matches the programmer’s intent. Recent studies show that validation is a bottle-

neck for AI-assisted programming: according to Mozannar et al. [129], it is the single most

prevalent activity when using AI code assistants, and other studies [179, 110, 187, 19] report

programmers having trouble evaluating the correctness of AI-generated code. Faced with dif-

ficulties in validation, programmers tend to either under-rely on the assistant—i.e.,, lose trust

in it—or to over-rely—i.e.,, blindly accept its suggestions [190, 153, 181, 173]; the former can

cause them to abandon the assistant altogether [13], while the latter can introduce bugs and

security vulnerabilities [144]. These findings motivate the need for better validation support in
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AI-assisted programming environments.

This paper investigates the use of Live Programming (LP) [74, 183, 175] as a way to

support the validation of AI-generated code. LP environments, such as Projection Boxes [105],

visualize runtime values of a program in real-time without any extra effort on the part of the

programmer. We hypothesize that these environments are a good fit for the validation task, since

LP has been shown to encourage more frequent testing [24] and facilitate bug finding [203] and

program comprehension [37, 36, 26]. On the other hand, validation of AI-generated code is

a new and unexplored domain in program comprehension, which comes with its unique chal-

lenges, such as multiple AI suggestions for the programmer to choose from, and frequent con-

text switches between prompting, validation, and code authoring [129], which cause additional

cognitive load [187]. Hence, the application of LP to the validation setting warrants a separate

investigation.

To this end, we constructed a Python environment that combines an existing LP en-

vironment [105] with an AI assistant similar to Copilot’s multi-suggestion pane. Using this

environment, we conducted a between-subjects experiment (N = 17) to evaluate how the avail-

ability of LP affects users’ effectiveness and cognitive load in validating AI suggestions. Our

study shows that Live Programming facilitates validation through lowering the cost of inspect-

ing runtime values; as a result, participants were more successful in evaluating the correctness

of AI suggestions and experienced lower cognitive load in certain types of tasks.

5.2 Related Work

Validation of AI-Generated Code

A rapidly growing body of work analyzes how users interact with AI programming

assistants. Studies show that programmers spend a significant proportion of their time vali-

dating AI suggestions [13, 129, 19]. Moreover, a large-scale survey [110] indicates that 23%

of their respondents have trouble evaluating correctness of generated code, which echoes the

findings of lab studies [179, 13] and a need-finding study [187], where participants report dif-
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ficulties understanding AI suggestions and express a desire for better validation support. Barke

et al. [13] and Liang et al. [110] find that programmers use an array of validation strategies,

and the prevalence of each strategy is closely related to its time cost. Specifically, despite

the help of execution techniques built into the IDE for validating AI suggestions [173], ex-

ecution is used less often than quick manual inspection or type checking because it is more

time-consuming [13, 110] and interrupts programmers’ workflows [187]. The lack of valida-

tion support designed for AI-assisted programming, as Wang et al. [187] identify, leads to a

higher cognitive load in reviewing suggestions. The high cost of validating AI suggestions,

according to some studies [190, 153, 181], can lead to both under-reliance—lack of trust—and

over-reliance—uncritically accepting wrong code—on the part of the programmer.

Comparatively fewer existing papers explore interface designs to support validation of

AI-generated code: Ross et al. [153] investigates a conversational assistant that allows pro-

grammers to ask questions about the code, while Vasconcelos et al. [180] targets over-reliance

by highlighting parts of generated code that might need human intervention; our work is com-

plementary to these efforts in that it focuses on facilitating validation by execution.

Validation in Program Synthesis

Another line of related work concerns the validation of code generated by search-based

(non-AI-powered) program synthesizers. Several synthesizers help users validate generated

code by proactively displaying its outputs [41, 202, 85] and intermediate trace values [141],

although none of them use a full-fledged LP environment. The only system we are aware of

that combines LP and program synthesis is SNIPPY [52], but it uses LP to help the user specify

their intent rather than validate synthesized code.

Live Programming

Live Programming (LP) provides immediate feedback on code edits, often in the form of

visualizations of the runtime state [74, 183, 175]. Some quantitative studies find that program-

mers with LP find more bugs [203], fix bugs faster [95], and test a program more often [24].
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Others find no effect in knowledge gain [83] or efficiency in code understanding [26]. Still,

qualitative evidence points to the helpfulness of LP for program comprehension [37, 36, 26]

and debugging [90, 83]. In contrast to these studies, which evaluate the effectiveness of LP

for comprehending and debugging human-written code, our work investigates its effectiveness

for validating AI-generated code, a setting that comes with a number of previously unexplored

challenges [129, 187].

5.3 LEAP: the Environment Used in the Study

To study how Live Programming affects the validation of AI-generated code, we im-

plemented LEAP (Live Exploration of AI-Generated Programs), a Python environment that

combines an AI assistant with LP. This section demonstrates LEAP via a usage example and

discusses its implementation.

Example Usage
Naomi, a biologist, is analyzing some genome sequencing data using Python. As part

of her analysis, she needs to find the most common bigram (i.e.,, two-letter sequence) in a

DNA strand.1 To this end, she creates a function dominant bigram (line 3 in fig. 5.1); she has a

general idea of what this function might look like, but she decides to use LEAP, an AI assistant,

to help translate her idea into code.

Naomi adds a docstring (line 5), which conveys her intent in natural language, and a test

case (line 24), which will help her validate the code. With the cursor positioned at line 7,

she presses and to ask for suggestions.

Within seconds, a panel opens on the right containing five code suggestions; Naomi

quickly skims through all of them. The overall shape of Suggestion 3 looks most similar

to what she has in mind: it first collects the counts of all bigrams into a dictionary, and

1This is one of the programming tasks from our user study, and each of Naomi’s interactions with LEAP has
been observed in some of our participants.
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Figure 5.1. LEAP is a Python environment that enables validating AI-generated code sugges-
tions via Live Programming.

Users prompt the AI assistant via comments and/or code context. The Suggestion Panel
shows the AI-generated suggestions. Pressing a Preview button inserts the suggestion into the
editor. Users can inspect the runtime behavior of the suggestion in Projection Boxes [105], which are
updated continuously as the user edits the code.

then iterates through the dictionary to pick a bigram with the maximum count.

Naomi decides to try this suggestion, pressing its Preview button; LEAP inserts the code

into the editor and highlights it (lines 8-18).

As soon as the suggestion is inserted, Projection Boxes [105] appear, showing runtime

information at each line in the program. Inspecting intermediate values helps Naomi

understand what the code is doing step by step. When she gets to line 18, she realizes

that the dictionary actually has two dominant bigrams with the same count, and the code

returns the last one. She realizes this is not what she wants: instead, she wants to select

the dominant bigram that comes first alphabetically (ag in this case).

One option Naomi has is to try other suggestions. She clicks on the Preview button for Suggestion

2; LEAP then inserts Suggestion 2 into the editor, in place of the prior suggestion, and the PROJECTION

BOXES update instantly to show its behavior. Naomi immediately notices that Suggestion 2 throws an
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exception inside the second loop, so she abandons it and goes back to Suggestion 3, which got her closer

to her goal.

To fix Suggestion 3, Naomi realizes that she can accumulate all dominant bigrams in a list, sort

the list, and then return the first element. She does not remember the exact Python syntax for sorting

a list, so she tries different variations—including l = l.sort, l = l.sort(), l = sort(l), l =

l.sorted(), and so on. Fortunately, LEAP’s support for LP allows Naomi to get immediate feedback

on the behavior of each edit, so she iterates quickly to find one of the correct options: l = sorted(l).

Note that Naomi’s workflow for using Suggestion 3—validation, finding bugs, and fixing bugs—relies

on full LP support, and would not work in traditional environments like computational notebooks, which

provide easy access to the final output of a snippet but not the intermediate values or immediate feedback

on edits.

Implementation

To generate code suggestions, LEAP uses the text-davinci-003 model [134], the largest

publicly available code-generating model at the time of our study. To support live display of runtime

values (fig. 5.1 ), we built LEAP on top of PROJECTION BOXES, a state-of-the-art LP environment for

Python [105] capable of running in the browser. As the control condition for our study, we also created

a version of LEAP, where PROJECTION BOXES are disabled, and instead the user can run the code

explicitly by clicking a Run button and see the output in a terminal-like Output Panel.

5.4 User Study

We conducted a between-subjects study to answer the following research questions:

RQ1) How does Live Programming affect over- and under-reliance in validating AI-generated code?

RQ2) How does Live Programming affect users’ validation strategies?

RQ3) How does Live Programming affect the cognitive load of validating AI-generated code?

Tasks

Our study incorporates two categories of programming tasks, Fixed-Prompt and Open-Prompt

tasks.
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In Fixed-Prompt tasks, we provide participants with a fixed set of five AI suggestions that are

intended to solve the entire problem. We curated the suggestions by querying Copilot [60] and LEAP

with slight variations of the prompt. Fixed-Prompt tasks isolate the effects of Live Programming on

validation behavior by controlling for the quality of suggestions. We created two Fixed-Prompt tasks,

each with five suggestions: (T1) Bigram: Find the most frequent bigram in a given string, resolving ties

alphabetically (same task in section 5.3); (T2) Pandas: Given a pandas data frame with data on dogs

of three size categories (small, medium, and large), compute various statistics, imputing missing values

with the mean of the appropriate category. These tasks represent two distinct styles: Bigram is a purely

algorithmic task, while Pandas focuses on using a complex API. Pandas has two correct AI suggestions

(out of five) while Bigram has none, a realistic scenario that programmers encounter with imperfect

models.

In Open-Prompt tasks, participants are free to invoke the AI assistant however they want. This

task design is less controlled than Fixed-Prompt, but more realistic, thus increasing ecological validity.

We used two Open-Prompt tasks: (T3) String Rewriting: parse a set of string transformation rules and

apply them five times to a string; (T4) Box Plot: given a pandas data frame containing 10 experiment

data records, create a matplotlib box plot of time values for each group, combined with a color-coded

scatter plot. Both tasks are more complex than the Fixed-Prompt tasks, and could not be solved with a

single interaction with the AI assistant.

Participants and Groups

We recruited 17 participants; 5 self-identified as women, 10 as men, and 2 chose not to disclose.

6 were undergraduate students, 9 graduate students, and 2 professional engineers. Participants self-

reported experience levels with Python and AI assistants: 2 participants used Python ‘occasionally’, 8

‘regularly’, and 7 ‘almost every day’; 7 participants declared they had ‘never’ used AI assistants, and 8

used such tools ‘occasionally’.

There were two experimental groups: “LP” participants used LEAP with PROJECTION BOXES,

as described in fig. 5.1; “No-LP” participants used LEAP without PROJECTION BOXES, instead execut-

ing programs in a terminal-like Output Panel. Participants completed both Fixed-Prompt tasks and one

Open-Prompt task. We used block randomization [43] to assign participants to groups while evenly dis-
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tributing across task order and selection and balancing experience with Python and AI assistants across

groups. The LP group had 8 participants, and No-LP had 9.

Procedure and Data

We conducted the study over Zoom as each participant used LEAP in their web browser. Each

session was recorded and included two Fixed-Prompt tasks (10 minutes per task), two post-task surveys,

one Open-Prompt task (untimed), one post-study survey, and a semi-structur-ed interview. A replication

package2 shows the full details of our procedure, tasks, and data collection.

For quantitative analysis, we performed closed-coding on video recordings of study sessions

to determine each participant’s subjective assessment of their success on the task; we matched this data

against the objective correctness of their final code to establish whether they succeeded in accurately vali-

dating AI suggestions. We also measured task duration—proportion of time Suggestion Panel (fig. 5.1 )

was in focus—and participants’ cognitive load (via five NASA Task Load Index (TLX) questions [75]).

We used Mann-Whitney U tests to assess all differences except for validation success, which we analyzed

via Fisher’s exact tests.

In addition, we collected qualitative data from both Fixed-Prompt and Open-Prompt tasks. We

noted validation-related behavior and quotes, which we discussed in memoing meetings [28] after the

study. Through reflexive interpretation, we used category analysis [197] to assemble the qualitative data

into groups. We then revisited notes and recordings to iteratively construct high-level categories.

5.5 Results

5.5.1 RQ1: Over- and Under-reliance on AI Assistants

To investigate if Live Programming affects over- and under-reliance, we measured whe-ther

participants successfully validated the AI suggestions in the Fixed-Prompt tasks, as described below. We

also compared task completion times and participants’ confidence in their solutions (collected through

post-task surveys). However, neither result was significantly different between the two groups, so we do

2http://bit.ly/leap-study-package
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Figure 5.2. Success in validating AI suggestions across groups for Fixed-Prompt tasks. “Com-
pleted” means the participant submitted a solution they were satisfied with by the time limit,
and “Timeout” means they did not. We deem the validation successful if a participant either
submitted a solution that was correct (dark blue) or timed out when attempting to fix the cor-
rectly identified bugs in their chosen suggestion (light blue).

not discuss them below.3

We found six instances of unsuccessful validation, all from the No-LP group. As described in sec-

tion 6.5, we compared subjective and objective assessments of code correctness on the two Fixed-Prompt

tasks, which resulted in four outcomes: (1) Complete and Accurate, where the participant submitted a

correct solution within the task time limit, (2) Complete and Inaccurate, where the participant submitted

an incorrect solution without recognizing the error, (3) Timeout after Validation, where the participant

formed an accurate understanding of the correctness of the suggestions but reached the time limit be-

fore fixing the error in their chosen suggestion, and (4) Timeout during Validation, where the participant

reached the time limit before they had finished validating the suggestions. We consider (1) and (3) to be

instances of successful validation, (2) to be an instance of over-reliance on the AI suggestions, and (3)

to be an instance of under-reliance, as the participant did not successfully validate the suggestions in the

given time. As fig. 5.2 shows, we found three instances of over-reliance in the Bigram task and three in-

stances of under-reliance in the Pandas task, all from the No-LP group, though the overall between-group

difference was not significant (p = .206 for both tasks).

Participants with over-reliance did not inspect enough runtime behavior.

3In median times, the LP group completed the Pandas task faster by 35 seconds (p = .664,U = 31). For
Bigram, LP participants were slower by 3 minutes and 51 seconds (p = .583,U = 42), though this difference
changes to faster by 10 seconds if we exclude those who solved the task incorrectly. For Pandas, both groups had
the median ratings of confidence in correctness as “Agree” on seen inputs (p = .784,U = 30) and “Neutral” on
unseen inputs (p = .795,U = 33). For Bigram, the LP group had the median rating of confidence in correctness
on seen inputs as “Agree”, while the No-LP group had “Strongly Agree” (p = .097,U = 19.5). As for confidence
in correctness on unseen inputs, the median for the LP group was “Neutral”, and that for the No-LP group was
“Agree” (p = .201,U = 22.5).
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The three No-LP participants with over-reliance in Bigram (P5, P12, P15) made a similar mis-

take: they accepted one of the mostly-correct suggestions (similar to Suggestion 3 in section 5.3) and

failed to notice that ties were not resolved alphabetically. Among the three participants, P5 did not run

their code at all. P12 and P15 both tested only one suggestion on the given input and failed to notice the

presence of two bigrams of the same count (and the fact that other suggestions returned different results).

In addition, P15 cited “reading the comments on what it was doing” as a key factor for choosing the

suggestion they did. That suggestion began with a comment stating that it resolved ties alphabetically,

but the following code did not do so.

Participants with under-reliance lacked affordances for inspecting runtime behavior. The three No-LP

participants who under-relied on AI suggestions (P7, P9, P15) tried to use runtime values for validation

but struggled with doing so. P9 previewed and ran multiple suggestions but did not add any print

statements to the code, and so they could only see the output of one of the suggestions, which ended

in a print statement. P15 ran all suggestions and did add a print statement to each to inspect the

final return value, but the need to change the print statement and re-run each time made this process

difficult, and they lost track of which suggestions they considered the most promising, saying “I forgot

which ones looked decent.” Finally, P7’s strategy was to print the output of subexpressions from various

suggestions in order to understand their behavior and combine them into a single solution, but this was

time-consuming, so they did not finish.

5.5.2 RQ2: Validation Strategies

Our participants had access to two validation strategies: examination (reading the code) and

execution (inspecting runtime values). The general pattern we observed was that participants first did

some amount of examination inside the Suggestion Panel—ranging from a quick glance to thorough

reading—and then proceeded to preview zero or more suggestions, performing further validation by

execution inside the editor. To this end, No-LP participants in most tasks ran the code and added print

statements for both final and intermediate values; LP participants in all tasks inspected both final and

intermediate runtime values in PROJECTION BOXES (by moving the cursor from line to line to bring

different boxes into focus), and occasionally added print statements to see variables not shown by
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Figure 5.3. Percentage of time spent in the Suggestion Panel across the two groups for Fixed-
Prompt tasks.

default. Below we discuss notable examples of validation behavior, as well as differences between the

two groups and across tasks.

LP participants spent less time reading the code

We use the time the Suggestion Panel was in focus as a proxy for examination time; fig. 5.3

shows this time as a percentage of the total task duration. The No-LP group spent more time in the

Suggestion Panel compared to LP for both Fixed-Prompt tasks. The difference is significant in the

Pandas task (p = .02,U = 11,medianLP = 14.05%,medianNo−LP = 30.47%) but not in Bigram (p =

.14,U = 20,medianLP = 24.70%,medianNo−LP = 36.57%). We also collected this data for the Open-

Prompt tasks, even if this data should be interpreted with caution due to the unstructured nature of the

tasks (e.g.,, different participants invoked the assistant different numbers of times and got suggestions

of different quality). The results are consistent with the Fixed-Prompt tasks—i.e.,, No-LP participants

spent more time in the Suggestion Panel—but the difference is not significant, and the effect in Box

Plot is very small (p = .14,U = 3.5,medianLP = 6.25%,medianNo−LP = 15.49% for String Rewriting;

p = .67,U = 6,medianLP = 8.10%,medianNo−LP = 8.70% for Box Plot).

Participants relied on runtime values more in API-heavy, one-off tasks

According to fig. 5.3, both groups spent more time examining the code in Bigram, while in Pan-

das they jumped to execution more immediately (medianPandas = 16.96%,medianBigram = 31.67%, p =

.04,U = 206). This difference in validation strategies between the two tasks was also reflected in the

interviews. For example, P1 described their strategy for Pandas as follows: “I didn’t look too closely

in the actual code, I was just looking at the runtime values on the side.” Instead, in Bigram, partici-

pants cared more about the code itself, preferring suggestions based on their expected algorithm, data
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structure, or style (e.g., P15 “was really looking for the dictionary aspect”), with the most popular at-

tribute being “short”/“readable”, cited by 10 out of 17 participants. One explanation participants gave

for the difference in behavior is that Pandas is an API-heavy task, and when dealing with unfamiliar

APIs, reading the code is just not very helpful: “When it’s using more jargony stuff that doesn’t translate

directly into words in your brain, then seeing the preview makes it clearer” (P3). Another explanation

they gave is that Pandas was perceived by the participants as a one-off task, i.e.,, it only needed to work

on the one specified input, whereas Bigram was perceived as general, i.e.,, it needed to work on “any

sort of string [. . . ] not only [. . . ] the specific string that was tested” (P3); this was not explicit in the

instructions, but in retrospect it is a reasonable assumption, given the problem domains and structure of

the starter code. On the other hand, some LP participants conjectured that with more familiarity with

Live Programming, they would rely on runtime values more, even in tasks like Bigram: “If I were to use

this tool again I would preview more immediately, just because I think I was very focused on whether it

produced how I would solve the problem vs. whether it solved the problem correctly” (P4).

LP participants benefitted from visualizing intermediate values

We looked into the validation strategies used in Bigram to identify the tie-resolution issue in AI

suggestions (excluding P17 because they wrote the code from scratch). In the input we provided, it was

hard to identify the most common bigram at a glance, which made it difficult to validate suggestions just

by looking at the final result. Five out of eight LP participants found the issue by inspecting intermediate

values and noticing that multiple bigrams in the input have the same count (the other three relied on

custom test cases and code examination). In the No-LP group, three out of eight participants failed to

identify the issue and of the remaining five who succeeded, only one (P6) relied on intermediate values to

do so. In addition, multiple LP participants (P1, P3, P4) mentioned the usefulness of intermediate values

in the interview, especially for long suggestions. P1 said: “Because it’s a block of text as a suggestion,

having projection boxes is more important [. . . ] my thought was ‘let me go line by line to see what is

going on’.” In contrast, a No-LP participant (P9) remarked that they “had to really look through the

code and try to visualize it in [their] mind.”
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Figure 5.4. NASA Task Load Index (TLX) results for the Fixed-Prompt tasks: Bigram on the
left, and Pandas on the right. Higher scores indicate higher cognitive load (in case of Perfor-
mance this means higher failure rate).

LP participants used liveness features for validation and debugging

For validation, LP participants made use of full liveness, i.e.,, the ability to see the immediate

effects of their edits. Five participants in Pandas added auxiliary calculations to double-check the cor-

rectness of the final output, e.g.,, the mean of specific cells in the input table, comparing it to the output

table. When it comes to debugging, LP participants made multiple rounds of trial and error guided by

liveness. In fact, the example in section 5.3 was inspired by P4’s debugging process in the Bigram task.

Also, in Box Plot, P1 made many repeated edits in an AI suggestion to tune the placement of a label,

guided by error messages and incorrect outputs to figure out the precise usage of an unfamiliar API call.

In the interview, they noted: “I was definitely using the projections [...] as I was editing the suggestions

to see if my intended changes actually were followed through.”

5.5.3 RQ3: Cognitive Load in Validation

LP participants experienced significantly lower cognitive load in the Pandas task but not
the Bigram task.

In Pandas, we found that LP participants experienced significantly lower cognitive load in four

out of five aspects of NASA-TLX [75]: mental demand (p = .039,U = 14.5), performance (p = .048,

U = 15.5), effort (p = .015,U = 11), and frustration (p = .0004,U = 0). We find no significant differ-

ences in responses to the Bigram task, but LP participants reported slightly higher performance measures

(medianLP = 3,medianNo−LP = 2), which stand for higher failure rates.
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No-LP participants found it hard to distinguish between the suggestions.

Participants from both the No-LP (P9, P14, P17) and LP (P3, P16) groups commented on the

utility of seeing multiple suggestions at once: “[Seeing multiple suggestions] gave me different ways to

look at the code and gave me different ideas” (P9) and “multiple suggestions gave points of comparison

that were useful” (P14). However, some No-LP participants (P6, P7, P15, P17) said they found the

suggestions hard to distinguish. They noted the difficulty of differentiating just by reading the code

because “the suggestions [were] all almost the same thing” (P7), and suggested that “the tool did not

really help with choosing between suggestions” (P15). In comparison, some in the LP group (P1, P16)

commented that PROJECTION BOXES made selection easier; P1 said: “Being able to preview, edit, and

look at the projection boxes before accepting a snippet was very helpful when choosing between multiple

suggestions.”

5.6 Discussion

Live Programming lowers the cost of validation by execution

Although both LP and No-LP participants had access to runtime values as a validation mech-

anism, those without LP needed to examine the code to decide which values to print, add the print

statements, run the code, and match each line in the output to the corresponding line in the code. If they

wanted to inspect a different suggestion, they had to repeat this process from the start. Meanwhile, LP

participants could simply click on the suggestion to preview it and get immediate access to all the rele-

vant runtime information, easily switching between suggestions as necessary. In other words, LP lowers

the cost—in terms of both time and mental effort—of access to runtime values. As a result, we saw LP

participants relied on runtime values more for validation, as they spent less time examining the code in

general—and significantly so for the Pandas task—and more often used intermediate values to find bugs

in Bigram (section 5.5.2). Our findings are consistent with prior work [13, 110], which demonstrated that

programmers more often use validation strategies with lower time costs. Hence, by lowering the cost of

access to runtime values, Live Programming promotes validation by execution.
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The lower cost of validation by execution prevents over- and under-reliance

As discussed in section 5.5.1, we found six instances of unsuccessful validation in our study,

all from the No-LP group, over-relying on AI suggestions in the Bigram task, and under-relying in

Pandas. We attribute these failures to the high cost of validation by execution: those who over-relied

on the suggestions did not inspect the runtime behavior of the suggestions in enough detail, while those

with under-reliance lacked the affordances to do so effectively, and so ran out of time before they could

validate the suggestions. Our results echo prior findings [181] that relate the cost of a validation strategy

to its effectiveness in reducing over-reliance on AI. We conclude that the lower cost of validation by

execution in Live Programming leads to more accurate judgments of the correctness of AI-generated

code.

Validation strategies depend on the task

section 5.5.2 shows that participants overall spent significantly more time examining the code

in Bigram than in Pandas and also paid more attention to code attributes in the former. Participants

explained the difference in their validation strategies by two factors: (1) Pandas contained unfamiliar

API calls, the meaning of which they could not infer from the code alone; and (2) they perceived Pandas

as a one-off task, which only had to work on the given input. We conjecture that (1) is partly due to

our participants being LP novices: as they get more used to the environment, they are likely to rely on

previews more, even if they are not forced into it by an unfamiliar API (as P4 mentioned in section 5.5.2).

(2), though, is more fundamental: when dealing with a general task, correctness is not all that matters;

code quality becomes important as well, and LP does not help with that.

In Open-Prompt tasks, code examination was less prevalent in the overall task duration, because

in these tasks participants spent a significant amount of time on activities besides validation (e.g.,, de-

composing the problem and crafting prompts). It might seem surprising, however, that we did not see

any difference in examination time between the two groups in Box Plot, which is an API-heavy, one-off

task, similar to Pandas. This might be because, in Box Plot, the cost of validation by execution was

already low for No-LP participants: this task did not require inspecting intermediate values, because the

effects of each line of code were reflected on the final plot in a compositional manner (i.e.,, it was easy

to tell what each line of code was doing just by looking at the final plot).

150



In conclusion, Live Programming does not completely eliminate the need for code examination

but reduces it in tasks amenable to validation by execution.

Live Programming lowers the cognitive load of validation by execution

In Pandas, LP participants experienced lower cognitive load in four out of five TLX categories

(section 5.5.3). This confirms our hypotheses that LP lowers the cost of validation by execution, and that

Pandas is a task amenable to such validation. More specifically, we conjecture that, by automating away

the process of writing print statements, LP reduces workflow interruptions, which were identified as

one of the sources of increased cognitive load in reviewing AI-generated code [187].

In Bigram, however, we did not observe a similar reduction in cognitive load; in fact, LP partic-

ipants reported higher cognitive load in the “performance” category (i.e.,, they perceived themselves as

less successful). Our interpretation is that the cognitive load in this task was dominated by debugging

and not validation, and whereas all participants in the LP group engaged in debugging, only two-thirds

of the No-LP group did so. Finally, the higher “performance” ratings from the LP group were from those

who ran out of time trying to fix the code, and hence were aware that they had failed. These findings

show that Live Programming by itself does not necessarily help with debugging a faulty suggestion. As

we saw in section 5.5.2, it can be helpful when the user has a set of potential fixes in mind, which they

can quickly try out and get immediate feedback on. But when the user does not have potential fixes in

mind, they need to rely on other tools, such as searching the web or using chat-based AI assistants.

From these findings, we conclude that Live Programming lowers the cognitive load of validating

AI suggestions when the task is amenable to validation by execution.

5.7 Conclusion and Future Work

We investigated an application of Live Programming in the domain of AI-assisted programming,

finding that LP can reduce over- and under-reliance on AI-generated code by lowering the cost of vali-

dation by execution. Our study is necessarily limited in scope: we focused on self-contained tasks due to

LP’s limited support for complex programs [175, 105] and its need for small demonstrative inputs [166].

We hope that our findings inform future studies on code validation and motivate further research into

AI-LP integration. To that end, we highlight key opportunities below.
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To offer liveness, LP places several burdens on the user. The user must provide a complete

executable program and a set of test cases, and then look through potentially large runtime traces for

the relevant information. AI may alleviate these burdens by filling in missing runtime values [169] for

incomplete programs, generating test cases [96, 192], and predicting the most relevant information to be

displayed at each program point. Looking beyond the validation of newly generated code, there are also

opportunities for AI-LP integration for debugging and code repair [192]. In combination, AI-LP would

tighten the feedback loop of querying and repairing AI-generated code: users could validate code via LP,

request repair using the runtime information from LP [52], and further validate the repair in LP.
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Chapter 6

COLDECO: An End User Spreadsheet In-
spection Tool for AI-Generated Code

6.1 Introduction

In the past two years, large language models (LLMs) [30, 31, 109, 200] have emerged as a

practical tool for synthesizing code from natural language. Their commercialization in assistive features

such as GitHub Copilot [60, 156] is transforming programming for professional programmers. Still,

these tools rely on the expertise of professional programmers to evaluate the (often incorrect) output of

the model. The promised value in these tools is only realised through the interactive evaluation and repair

of such generated fragments by an expert programmer. However, due to their potential for empowerment,

the question arises: how do we design tools specifically to help less skilled users understand and debug

AI-generated programs?

6.1.1 Background: AI for end-user programming

Without a formal education in programming, most individuals are unfamiliar with and have diffi-

culties with the abstract concepts such as variables, functions, parameters, etc., that make up the notional

machine with which a programmer understands how a program functions [42]. Spreadsheets provide

mechanisms for individuals unfamiliar with these concepts to have a direct and concrete understanding

of their data and transformations on it (such as sums, etc.) due, among other things, to their simplified

models of control flow and naming [106, 162, 92, 157]. Spreadsheets can provide a graduated experi-

ence that allows a range of individuals, from non-programmers to professional programmers, to solve
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problems using the tools with which they are most comfortable [130, 40]. Our research investigates

the application of AI in synthesizing code solutions for end-user programmers, people like the many

spreadsheet users who need to code as part of their work but who are not professional programmers [94].

There have been many successful attempts to empower spreadsheet users to define computations

without having to learn a formal programming language. The most widely deployed example is FLASH-

FILL, a programming-by-example string transformation feature that ships commercially [64]. More re-

cently, commercial spreadsheets have introduced AI-powered features for data analytics by synthesizing

pivot tables or charts via automatic recommenders or natural language queries [39, 59]. These tools give

rise to a new challenge: How do we enable end users to evaluate the correctness of machine-generated

computations without inspecting the underlying code?

The only recent work we are aware of that targets this challenge for AI-powered spreadsheet

programming is grounded abstraction matching (GAM), a new interaction style, which explains AI-

generated code to end users in natural language [112]. While GAM helps the user confirm that the

model’s understanding of the problem matches their intent, it does not necessarily help them discover

and diagnose errors, when the intent leads to unexpected behavior on the given data.

6.1.2 This paper: COLDECO, an inspection tool for end users

To assist end-user programmers with discovering and diagnosing errors in AI-generated code,

COLDECO augments natural-language descriptions in the style of GAM with two complementary fea-

tures, illustrated in Fig. 6.1.

First, users can decompose a generated solution into intermediate helper columns [27] to un-

derstand how the problem is solved step by step (see Sec. 6.2.4). Creating helper columns is a common

spreadsheet practice for manually simplifying complex formulas. By automating helper column creation,

we encourage users to explore the concrete impact of different parts of the code on their data.

Second, users can view a filtered table of summary rows, which highlights interesting cases in

the program (see Sec. 6.2.3). We introduce an analysis that captures all the unique behaviors that the

code displays on the user’s data, allowing them to quickly understand the effect of different paths through

the code.
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Figure 6.1. Initial view (top). Decomposing “Abbreviation” (middle). Decomposing “text
concatenation” (bottom).

In general, a debugging experience involves both finding the source of the error (diagnosis) and

fixing the error (repair). In COLDECO, we apply the familiar concepts of helper columns, grouping, and

filtering in spreadsheets to assist the diagnostic aspect of debugging; we leave considerations of repair

for future work (see Sec. 6.7).

Our paper makes the following contributions:

• We present COLDECO, the first end-user inspection tool for comprehending code produced by

LLMs for tabular data tasks. COLDECO is an Excel add-in that provides three interrelated inter-

active components: (1) a decomposition of the solution into intermediate values which are added
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back to the table in the form of helper columns, (2) summary rows highlighting distinct behaviors

in the solution, and (3) a description of the solution expressed in natural language.

• We evaluate this approach with a user study (n = 24) of spreadsheet users of varying expertise

completing several debugging tasks. We find that users were able to inspect the results of code

generated by an LLM and to find faults when this code was incorrect. Participants regard all

three components as useful. Spreadsheet users also indicated that COLDECO may provide value

in collaboration by affording users the ability to explain code solutions to colleagues, and better

understand complex formulas themselves. We received design feedback for future intelligent user

interfaces for end-user debugging of LLMs.

6.2 COLDECO, by example

A data analyst named Kim is cleaning up a spreadsheet of responses to an online form. As a part

of their task, they want to create a column of people’s initials to use as a part of a unique identifier. Kim

has experience with Excel, including using some formulas, but they are not very comfortable with string

manipulation functions. So, rather than write a formula themself, they decide to use an LLM to generate

the solution and verify it using COLDECO.

6.2.1 Generating the solution

Kim is using a spreadsheet environment that integrates a query box to create new colum-ns using

natural language. Kim writes their instruction: Create a column “Abbreviation” concatenating the first

character of each part of the name, and the spreadsheet queries the LLM to generate code that will

compute a new calculated column. The calculated column is added to the spreadsheet and COLDECO

is automatically opened as a side pane (Fig. 6.1, top). By convention, additional calculated columns

are formatted in green. A cursory glance at the first few rows in the table seems to confirm that the

output is reasonable, but Kim would like to make sure the solution is correct, so they turn to COLDECO’s

inspection features to understand how the output was generated.
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6.2.2 A first inspection

The COLDECO pane has two views, Inspect Columns (1a) and Inspect Rows (1b). The first view

provides information about the calculated columns (here: “Abbreviation”), including a description of the

calculation generated using natural language templates (1a). The description reveals that the calculation

is taking the first letter from each of the “First Name”, “Middle Name”, and “Last Name” columns, and

appears sensible to Kim.

The Inspect Rows view clusters the rows from the input table by their behavior in the calculation

and depicts one example—a summary row—from each cluster (1b). Kim notices there are two clusters,

and while the second cluster, with nine rows, behaves correctly, the first cluster, with two rows, is missing

the output in the “Abbreviation” column. What initially appeared to be a correct solution is not producing

the right output on some of the rows.

6.2.3 Analyzing the summary rows

Kim makes a further inspection of the summary rows to understand the problem. The Inspect

Rows view (1b) only depicts a subset of the columns from the original table, including the output column

(“Abbreviation”) and the columns referenced by the calculation (“First Name”, “Middle Name”, and

“Last Name”). Since this view only shows the columns that affect the output, Kim can more easily see

that the empty output seems to be related to the empty middle names.

6.2.4 Inspecting the helper columns

To confirm their hypothesis, Kim looks back at the Inspect Columns view, and clicks Expand

Abbreviation Helper Columns to break down the output into its helper columns (Fig. 6.1, middle).

This brings about the tree view (2a), which visualizes the structure of the computation. The tree

view shows that the output is comprised of two helper columns, one combining the first letter of “First

Name” and “Middle Name”, and the other just getting the first letter of “Last Name”. The names of helper

columns are generated using natural language templates similarly to column descriptions. By looking at

the values in the table (2b), Kim sees that the “1st letter of Last Name” column is correct for all rows,

but for those without a middle name, the “text concatenation” column is showing a red EMPTY, indicating
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that something went wrong there. COLDECO automatically highlights cells that contain errors, where

EMPTY is analogous to Excel’s #VALUE!.

Investigating further, Kim selects the “text concatenation” column, and clicks Expand once more

(Fig. 6.1, bottom). This creates two new helper columns, for the first letter of the first and middle names

respectively. Both the Inspect Columns and Inspect Rows views are synchronized with the grid, such

that selecting a column in one of them will update the other views. Kim selects the “text concatenation”

column to update the summary rows (3a).

With the intermediate values visible, Kim sees that indeed the program correctly computes the

first letter of the first and last names. But for rows without a middle name, computing the first letter fails,

and that error propagates, causing the output to be empty as well.

6.3 Related Work

To the best of our knowledge, COLDECO is the first end-user inspection tool for debugging

LLM-generated code for data-centric tasks.

The only other work we are aware of with the goal of helping spreadsheet users harness the power

of LLMs is grounded abstraction matching (GAM) [112]. GAM generates natural-language descriptions

of LLM-generated programs, which enable end users to both confirm the model’s understanding of their

request and to iteratively refine the request if needed. While GAM and COLDECO have a similar target

audience, and in fact, our tool incorporates natural-language descriptions similar to those in GAM, the

main focus of COLDECO is on two novel mechanisms—helper columns and row summaries—that enable

the user to concretely see the effect of the generated code on their data. Apart from GAM, the two

most relevant lines of work are those on (1) inspecting synthesized code, and (2) debugging tools for

spreadsheets.

6.3.1 Inspecting LLM-Generated Code

There is a growing body of work studying how programmers interact with LLM-power-ed coding

assistants [190, 156, 179, 13, 204, 129, 124, 110], and, in particular, how they evaluate and debug

LLM-generated code. These studies show that programmers spend a significant proportion of their time
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inspecting generated code [13, 129] and often have trouble understanding [179] and debugging [13] such

code, or evaluating its correctness [110]. Moreover, both programmers [13, 110] and data scientists [124]

use multiple sources of information when evaluating AI-generated code, including inspecting the code

itself as well as executing the code and inspecting its behavior on concrete inputs. While these studies

do not focus on end users, they generally motivate the need for better tool support for understanding and

debugging LLM-generated code; in the context of end-user programming there is an additional challenge

that the user has no option to inspect the code.

6.3.2 Code Inspection in Program Synthesis

Research on more traditional (search-based) program synthesis has explored multiple ways to

help users inspect and disambiguate generated programs, for example, by displaying intermediate val-

ues [141] or generating informative examples [202, 85]; unlike COLDECO, these tools assume that the

programmer can always fall back on examining the code. A separate line of research focuses on finding

relevant data [45, 44, 152] akin to summary rows. These use different techniques, and are complementary

to COLDECO.

A more closely related work to ours is FLASHPROG [121], which introduces user interactions for

disambiguating multiple synthesized solutions for end-user tasks. Like COLDECO, FLASHPROG aims

to improve user confidence in the synthesis result without seeing the code, but it is closely tied to the

underlying synthesis algorithm and does not support decomposing solutions.

6.3.3 Debugging Tools for Spreadsheets

The two core features of COLDECO, helper columns and summary rows, are inspired by pre-

vious work in end-user programming and spreadsheet research. Automatically created helper columns

have been used before to debug user-written formulas [158] or inspect the behavior of code “foraged”

from the web [97]. The main difference between these and COLDECO is our interaction model, where

the user interactively decomposes the program via the tree view. Our summary rows take inspiration

from templates [4], LISH [73], gradual structuring [125], object spreadsheets [122], and calculation

view [155]. Each of these addresses the challenge of comprehending and manipulating a large dataset by

abstracting it into a smaller structure, which can be a single exemplar row or formula. COLDECO finds
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a new application for these ideas—evaluating and debugging AI-generated code.

6.4 Design and Implementation

The primary design concept behind COLDECO is to use the familiar structure of the grid to in-

spect and debug programs. Expansion in the horizontal direction by decomposing helper columns enables

users to understand the particular behaviour of an input. Contraction in the vertical direction through fil-

tering or grouping (constructing summary rows) enables users to understand classes of behaviour across

all inputs.

The concepts underpinning COLDECO are general purpose. Whilst in this paper we focus on

adding a computed column to a table, the design extends to inspecting any expression-based program.

By viewing an expression as a function of its inputs, such as SQRT(32 + 42) ≡ (λ (a,b).SQRT(a2 +

b2))(3,4), we can tabulate the function by creating a column for each parameter and the body. Additional

rows correspond to combinations of inputs.

COLDECO can be viewed as embedding existing programming language concepts into the grid

using widely adopted table interactions. Expanding to add helper columns is like “stepping-in” using a

debugger, and contraction via summary rows is like program slicing and case analysis.

6.4.1 Decomposition and helper columns

The tree view of the computed columns allows the user to further decompose them. Decompos-

ing a column simultaneously updates the table with the additional columns, and updates the tree view.

For illustration we present the Python pandas code that is associated with the example in Fig. 6.1. The

code produced from the user query is:

df["Abbreviation"] = df["First Name"].str[0] \

+ df["Middle Name"].str[0] \

+ df["Last Name"].str[0]

When the expression associated with a computed columns contains no sub-redexes, such as df["First

Name"].str[0], the expand button in the view is disabled. In our design we also considered other
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modalities for decomposing columns, such as context menus triggered from the grid, but limitations in

the prototyping framework made this difficult. Consequently, we focused only on the inspection view.

When a user decomposes a column we extract the subexpressions and assign them as new

columns to the data frame, which is then recomputed. For example, decomposing the "Abbreviation"

column produces the following code that corresponds to Fig. 6.1 (middle). Column names are abbrevi-

ated using (...).

df["text ..."] = df["First ..."].str[0] + df["Middle ..."].str[0]

df["1st letter ..."] = df["Last ..."].str[0]

df["Abbr ..."] = df["text ..."] + df["1st letter ..."]

6.4.2 Summary rows

When an input table is large it can be difficult to verify that a generated solution satisfies the

requirements. Summary rows are an automatic technique to highlight these significant inputs for end-

users, who would otherwise be unaware of such programming techniques [78].

The core idea behind the implementation of summary rows is that we group rows by the com-

posite behaviors of their columns, where behavior is defined by a partitioning of values. We chose this

design because it naturally extends onto the concept of a table, with the intent that table partitioning pro-

vides an approachable way to understand program case analysis. As we discuss in Sec. 6.6.5, some users

still faced challenges understanding row summaries but identified extensions that would significantly

improve comprehension of row summaries. We now describe the implementation in detail.

To compute the summary rows we derive a key for each row. The key is derived by considering

the fully decomposed table, regardless of view state, and applying a series of tagging predicates to every

value in that row; the key is formed from the disjoint union of tags in the row. The tags include attributes

such as type, sign, and truthiness. The table in Fig. 6.1 has two unique tag sets, with the distinguishing

tag being the type of the “Middle Name” column which is string or EMPTY1.

1The columns derived from the middle name that are also subsequently empty, such as the first letter, also
contribute distinguishing tags. We omit the full list for brevity.
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6.5 User Study

We conducted an hour-long within-subjects study with 24 participants to answer the following

research questions:

(RQ1) Do COLDECO’s features enable users to correctly diagnose generated code outputs in spread-

sheets?

(RQ2) How does decomposing the output into helper columns affect users’ ability to diagnose the out-

put?

(RQ3) What are users’ perception of the usefulness of each of the features for inspecting COLDECO’s

output?

6.5.1 Participants

For this study, we recruited 24 participants, 10 women and 14 men, across 12 professions. 19

participants reported having “a lot of experience” with spreadsheet software, but all had at least some

experience. All participants also had some experience writing spreadsheet formulas, with 8 using “a va-

riety of different functions” and the others only using “a few basic functions such as SUM and AVERAGE”.

For traditional programming languages, 18 participants were at least “moderately experienced” program-

mers, with the others knowing only enough for “small infrequent tasks” or with little to no experience.

6.5.2 Tasks

Each participant was asked to solve 4 tasks inspired by the WREX study [41], and Excel ques-

tions on StackOverflow2. Each task includes a table of data3, a task description, and a pre-written query

for COLDECO4:

A1) Given a table of purchase data, create a column containing the total amount paid after discounts

and reimbursements for each entry.

2https://stackoverflow.com/questions/tagged/excel-formula
3Taken from [41, 138, 148] or created for the study.
4You can find the the study material in the technical report [50].
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A2) Given a table of TV shows, create a column containing “Yes” if a show’s popularity is ≥ 1,000 or

it has a vote average of ≥ 8.0 with at least 10,000 votes.

B1) Given a table of event dates and locations, create a column containing the duration of each event

in hours.

B2) Given a table of books, create a column which rounds the price of each book such that the last

digit of the rounded price is the nearest 4, 5, or 9.

The query given for A1 and B1 resulted in a correct solution, while A2 and B2 had bugs affecting a small

set of the rows. We grouped the tasks into two pairs (A1, A2) and (B1, B2) of approximately the same

difficulty (A1 and B1 are simpler and A2 and B2 are more complex).

For each task, participants were asked to use a pre-written query to generate an output, and use

COLDECO’s inspection features to diagnose if the output matches the task’s description. To finish the

task, they were asked if the output is correct (their “diagnosis”), their confidence in their diagnosis, and

(if they diagnosed it as incorrect) what query they would try next to get a correct output.

Since the focus of the study is validating COLDECO’s output, not completing tasks, we con-

trolled for the variability in input queries by providing users with the query to use, and did not ask them

to try to get to a correct output. Asking them about the query they would try next enabled us to confirm

that participants diagnosed the correct cause for incorrect outputs.

6.5.3 Study protocol

We study two configurations of COLDECO, HC and No-HC, which differ in the availability of

the helper columns feature (the No-HC version does not have the Expand button in the Inspect Columns

view). We chose to isolate the effects of the helper columns in particular, since COLDECO has multiple

interacting features and column decomposition is the most novel aspect. We did not compare against a

traditional “control” condition, since we were not aware of any comparable tools, and we believe that

access to COLDECO’s features would likely be trivially better than having access to no debugging tools

at all.

We had four randomly-assigned groups of 6 participants, based on the condition they were as-

signed to first (HC-first vs. No-HC-first) and the task pair (A-first vs. B-first).
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Figure 6.2. The number of participants whose
diagnosis for each was correct, incorrect, or
they ran out of time.
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Strongly Agree Agree Neutral Disagree Strongly Disagree NA

Figure 6.3. Participants’ agreement with the
sentence “I am confidence about my answer”.

The study was conducted remotely via video conferencing, with participants controlling COLD-

ECO on the investigator’s machine. Each study session began with a tutorial of the tool (using the example

covered in Sec. 6.2), followed by a warm-up where users were asked to repeat the tutorial steps and ask

any questions. They then performed the first pair of tasks, followed by a mid-study survey, the second

pair of tasks and the post-study survey, ending with a semi-structured interview.

Users had at most 7 minutes to perform each task. If any task exceeded that limit, the investigator

informed the participant that they were out of time, and moved to the next task or survey. Participants

were encouraged to think-aloud throughout the study.

The participants who saw the No-HC condition first were given the column decomposition portion

of the tutorial after the mid-study survey, while those in HC were simply informed that they will not have

access to the Expand button for the second pair of tasks. Each group only answered questions about

column decomposition in the survey immediately following their use of the feature.

6.6 Results

Users completed task A1 with a mean time of 4.37 minutes (SD=1.42), A2 in 4.63 minutes

(SD=1.46), B1 in 3.38 minutes (SD=1.40) and B2 in 4.67 minutes (SD=1.23), excluding time-outs.

Since this was a think-aloud study, we do not compare times across conditions.

6.6.1 Correctness and confidence

Users across both conditions performed well (Fig. 6.2) and were confident (Fig. 6.3) on the

simpler tasks, but they did not perform as well in A2 and B2. We attribute this to time pressure, where
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users were not able to inspect the outputs with the same level of detail, and it is possible that the additional

cognitive load caused by the more complicated tasks impacted users’ performance. Given these results

we answer RQ1 with a tentative yes: without the artificial time constraint imposed by the study,

users are able to correctly diagnose generated code, though future studies are needed to confirm that this

generalizes to longer and more complex tasks.

11 8 4 1

11 6 6 1

10 2

10 2

14 9 1

16 7 1

8 2 2

5 6 1

Mid Study Post Study

Decomposing to see Descriptions is Useful

Decomposing to see Values is Useful

Summary Rows are Useful

Descriptions are Useful
Strongly Agree

Agree

Neutral

Disagree

Strongly Disagree

Figure 6.4. The results from the surveys. For each question, participants were asked to select
their agreement with the statement on a five-level Likert scale. Note that participants in each
condition only answered questions about decomposition in the survey immediately following
their use of the feature, so the last 2 rows show 12 responses each.

6.6.2 The effect of column decomposition

Fig. 6.2 shows a lower performance on A2 for the HC group—six incorrect diagnoses vs. three for

No-HC—although this difference was not statistically significant (Fisher’s Exact Test). The significantly

lower confidence (Wilcoxon Rank Sum Test, p = 0.046) for A2 in this group (Fig. 6.3), and the fact that

we don’t see this effect in B2, suggests that this is not due to decomposition misleading users. Rather,

we hypothesize that it is due to the program used in A2: it was a chain of if-else statements, with a bug in

the final case. Users needed to decompose the program four times before reaching the values they were

interested in. So the complexity of the interaction, combined with relatively little experience with the

tool may have overwhelmed and frustrated users.

So to answer RQ2, we did not find evidence of significant improvements resulting from the

presence of helper columns based only on the quantitative results. We believe, however, this is due to the

limitations in our study design (the combination of time pressure and the complexity of the task); indeed,

our qualitative evaluation of helper columns, discussed below, is much more positive.
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6.6.3 Survey results

Fig. 6.4 presents participants’ answers to the mid- and post-study surveys. There was no sig-

nificant difference between the conditions, so we report the responses to shared questions in aggregate.

In the post-study survey, users rated both the natural-language descriptions (M = 4.50, SD = 0.722) and

summary rows (M = 4.625, SD = 0.576) highly. We also found a significant improvement in the ratings

for summary rows between the mid- and post-study surveys (Wilcoxon Signed Rank test, p = 0.016). As

we discuss in 6.6.5, this suggests a learning effect for this feature, which we found to be harder to learn

than others.

Since participants only had access to column decomposition in half of the study, we included

questions about that feature only in the survey immediately following that half (the mid-study survey for

HC-first, the post-study survey for No-HC-first). Despite the lower performance noted above, participants

rated decomposition highly, for inspecting both the values (M = 4.5, SD = 0.798) and the descriptions

(M = 4.33, SD = 0.651) of helper columns.

6.6.4 Ranking the features

As a part of the post-study interview, we asked participants to rank the three features (see

Fig. 6.5). We found that there was a diversity of preferences for the features, with no clear preference

shared by all. Two participants, P21 and P23, ranked decomposition and natural-language descriptions

in combination as their first choice. P1 similarly ranked them together, but in last place. P4 considered

all features equally useful. The summary rows tended to be ranked lower than others.

Given the ranking and survey results, we can answer RQ3: participants found all three features

useful, and there was no clear preference for any one feature. However, the summary rows feature was

ranked lower than others, which we attribute to its steeper learning curve.

6.6.5 Qualitative analysis

We transcribed the semi-structured interviews and participants’ comments, and the first author

performed an inductive thematic analysis of the transcript (through open-coding) [23]. Here, we discuss

notable themes from the analysis, and how they pertain to the results above.
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Figure 6.5. The number of participants who ranked each feature in a particular position. Some
ranked two or all three features equally.

Decomposition affords better transparency and analysis

Participants were positive about decomposition, and many commented on its utility during the

survey and while ranking the features. Several participants stated that decomposition afforded them a

better understanding of the steps involved in the output (P7, 14, 17, 19, 23), with P19 referring to it as

a “show-your-work button”, and P23 saying that decomposition “makes it less [...] like a black box”.

Others (P15, 19, 21, 22) noted its role in finding the precise cause of an error, saying that it helps “drill

the formula down” (P22) and “pinpoint exactly which part of the prompt is not working well” (P15).

COLDECO for collaboration

Participants were excited to use COLDECO for collaboration with their colleagues. P11 and

P15 noted that the helper columns would help them explain their work to someone else. P6 and P19

commented that natural-language descriptions would help them understand complex formulas written

by others. And P6 and P15 considered using natural-language descriptions to automatically document

their spreadsheets.

Difficulties with summary rows

We found that users tended to struggle with forming a usable mental model of the summary

rows, instead preferring to manually inspect the values in the grid. P6 mentioned that “I don’t really

understand it, so I wanted to look at the table myself”, and P20 stated “I still don’t know what it means.”

Users’ comments indicate that this is not due to the nature of the information presented in the summary

rows view, but rather that lack of transparency makes it hard to understand how it works and how it can

be useful.
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Confirming the learning effect noted in Sec. 6.6.3, some users mentioned that they needed prac-

tice to use summary rows effectively. P2 noted that “I feel like once I start using it I might get a grasp

of what’s happening there”, and P14 only used it for their last task, saying “I think I [didn’t] understand

[summary rows] before this [...] Maybe I got used to it, because it’s my fourth time using this program.”

Others mentioned that more transparency would help their understanding. P4 suggested that

“it would be helpful in [summary rows], when it’s showing different categories, to specify what the

differences are”, and similarly P5 wanted “a drop-down that would give you a description”. P3, P7 and

P21 called for the ability to click on groups to see more example rows for that group, while P21 suggested

using a different color to distinguish each behavior.

The usefulness of the information presented in the summary rows view is further confirmed by

users who did form a usable mental model of the view, and noted its effectiveness in finding errors,

especially in combination with other features. P12 found it very helpful “because it brings the different

outcomes and behaviors to the front of the screen very quickly.” And P16 and P22 mentioned that it

would be the first feature they would use, as it lets them quickly check for multiple or incorrect behaviors.

Decomposition design suggestions

Alongside the broadly positive response, some participants noted certain limitations with the

current design of column decomposition and suggested improvements (P4, 12, 17, 19, 24). The main

issue was that, with the more complex tasks, the number of times the output could be decomposed grew,

resulting in a large number of helper columns and a more complex tree view.

For instance, P24 noted that “As I kept expanding, I kept seeing the other columns for the other

cases [...] so it got confusing which ones were related to just [...] ones I was actually interested in at that

time”. As a solution to this, P19 mentioned wanting the ability to selectively expand subexpressions,

imagining a design in which they could “highlight part of the formula that I’m interested in and say

‘Show me this as a helper column” ’.

6.6.6 Threats to validity

The most notable threat to internal validity of our study is the time limit for each task, which

led to some participants timing out, particularly for the more complex tasks A2 and B2. However, users
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were quite effective at using the tool despite the time limit, which suggests that given more time, users’

effectiveness and perceptions may improve. Another threat to internal validity is Participant Response

Bias [38]. Following recommendations from [176], we tried to mitigate inflation in subjective ratings

and qualitative feedback by presenting multiple designs within COLDECO to the participants.

Our most significant threat to external validity is that a majority of our participants had moderate-

to-high programming experience. Our participants nevertheless present an important subset of spread-

sheet users, as they have a variety of professions and formula experience. Another threat to external

validity is that the tasks and data may not represent Excel’s real-world use cases. To address this, we

used real questions from StackOverflow to inform our tasks, and used real-world data where applicable.

6.7 Discussion

COLDECO was built to help us understand how to help users diagnose faults in AI-generated

code solutions for tabular data problems. Our study identified the following areas for improvement.

Handling complicated tasks. Users found that for a more complex task, the number of helper

columns shown could become overwhelming. An improvement would provide a program slicing [189]

capability that could prune the helper columns to only show immediately relevant columns to the calcu-

lation of a particular value.

Explaining summary rows. Some users did not understand the meaning or purpose of the row

summaries. Based on this feedback, improvements include better documentation, generating natural lan-

guage explanations of the groupings, or including automatically generated insights about core differences

between the groupings.

Handling different kinds of input and output data. Our prototype supports diagnosing errors

for a limited, but important, subset of Excel tables (single flat column-major tables). Because code-

generating AI can produce code solutions for a wider variety of contexts, it is important to consider how

the approaches we outline generalize. Similarly we focused on code that generates columns of results

but more general outputs, such as single values and new tables, must be considered.
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6.8 Conclusion

In the near future, LLMs will be used both by professional programmers and non-professional

users to write code. Giving end users confidence and trust in the code that AI systems generate is one of

the most important design challenges in empowering millions more to program.

We present COLDECO, a new spreadsheet user experience designed to give users confidence that

the code being generated by the LLM is correct. To the best of our knowledge, COLDECO is the first

end-user inspection tool for comprehending code produced by LLMs for tabular data tasks. COLDECO

provides summary rows, which highlight collections of rows that exhibit distinct behaviors in the code,

and helper columns, which map the results of sub-computations back on the table.

We evaluate COLDECO using a within-subjects user study (n = 24) where participants are asked

to verify the correctness of programs generated by a language model. In both quantitative and qualitative

measures, our subjects found row summaries and helper columns were valuable in understanding the AI-

generated code solutions. We found that while all three features are independently useful, participants

preferred them in combination. Users especially noted the usefulness of helper columns and natural

language explanations, but wanted more transparency in how summary rows are generated to assist with

understanding and trusting them.

Topics for future work include understanding the application of COLDECO in collaborative set-

tings for explaining and understanding existing formulas. This aspect of using COLDECO was high-

lighted by our users and further investigation is needed. While COLDECO focused on detecting and

diagnosing potential errors, a natural and important extension of this capability is the ability to repair

errors once they are found. Integrating repair into the COLDECO experience is an important topic for

further study.
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Chapter 7

Conclusion

This dissertation explored the human-centered dimensions of Program Synthesis, looking at both

enumerative and LLM-based approaches to generating code. It considered interfaces and interactions for

providing specifications and validating the resulting code, and expanded bottom-up synthesis algorithms

with support for side-effects and control structures. In this last chapter, I briefly touch on future directions

for the work discussed in this dissertation. This is, by nature, speculative, but I hope that the reader will

be informed and inspired to explore some of the ideas that, if circumstances had permitted, I would have

done myself.

7.1 Future Works

In his 2013 revision of the levels of liveness, aside from the 4 levels in Fig. 1.3, Tanimoto

introduced two new levels with an eye towards the future [175]. Named “Tactically” and “Strategically

Predictive” respectively, he focused on the ability of some future agent (possibly through the use of

machine learning) to assist the programmer by predicting small-scale code edits and additions for level

five, and larger-scale changes to the whole software at level six. The recent works on LLM-driven code

generation, including LEAP, can be seen as instantiations of level five liveness.

But, as I mentioned in Ch. 1, the focus of this dissertation, as well as a majority of research

on human-centered program synthesis, is on synchronous program synthesis of a particular form: the

user provides a specification, waits for the synthesizer, and validates the results. However, this is far

from the only possible interaction, and with the flexibility that LLMs provide, we have the opportunity

172



to explore many other ways in which similar techniques can assist programmers. One such interaction

is conversational [153], using chat interfaces to allow for a more flexible interaction with an LLM. But

here I would like to suggest two other promising designs, one for each new level of liveness.

A True Programmer’s Assistant. The first is to invert the relationship between the human and the syn-

thesizer. Typical synthesizers generate the code, and leave the arguably more arduous and tedious task of

validation to the user. But we can design an inverted interaction where the user drives the programming,

and the synthesizer “looks over the shoulder” of the programmer, making helpful suggestions, looking

up relevant documentation or library functions, and catching human error. As far as I am aware, no such

tools have been developed at time of writing, though the Programmer’s Assistant [153] users expressed

an interest in such an assistant that is more “proactive”, and others [87, 124] have offered discussion

towards such a design.

Asynchronous Program Synthesis. The other design is to leverage the flexibility of LLMs for asyn-

chronous synthesis. LLMs are capable of breaking down a given task into intermediate steps [188]

and repairing and refining their work [118], both of which can significantly improve their performance.

Doing so is too slow and costly for a synchronous model, but in an asynchronous setting where the syn-

thesizer is given one major task and may generate larger amounts of code, or modify multiple parts of a

codebase, the cost may be justified. And we could leverage existing interfaces such as issue trackers for

specification, and testing and code review to allow for better human validation after the fact, a feature

that previous work suggests would also address users’ concerns about AI-generated code [190].
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