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Abstract

Motivation: In the Wright–Fisher diffusion, the transition density function describes the time evolution

of the population-wide frequency of an allele. This function has several practical applications in popula-

tion genetics and computing it for biologically realistic scenarios with selection and demography is an

important problem.

Results: We develop an efficient method for finding a spectral representation of the transition density

function for a general model where the effective population size, selection coefficients and mutation

parameters vary over time in a piecewise constant manner.

Availability and implementation: The method, called SpectralTDF, is available at https://source

forge.net/projects/spectraltdf/.

Contact: yss@berkeley.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The transition density function (TDF) of the Wright–Fisher diffusion

describes the time evolution of the frequency of an allele (Ewens,

2004). The TDF is useful for understanding the effects of demography,

mutation and selection on genetic variation, and it is a key component

of a number of methods for inferring selection coefficients (Bollback

et al., 2008; Steinrücken et al., 2014; Williamson et al., 2004), predict-

ing allele fixation times (Waxman, 2011) and computing population

genetic statistics such as the site frequency spectrum (Živković et al.,

2015).

Most existing approaches for computing the TDF assume either

restrictive models of dominance (Kimura, 1955, 1957) or selective

neutrality (Griffiths, 1979; Shimakura, 1977; Vogl, 2014) or are

computationally slow for selection strengths commonly observed in

biological data (Barbour et al., 2000). However, Song and

Steinrücken (2012) and Steinrücken et al. (2013) recently developed

a numerically stable and computationally efficient method for find-

ing a spectral representation of the TDF for a general selection

model in the case of constant parameters (population size, mutation

rates and selection coefficients). Despite the utility of this new ap-

proach, assuming that model parameters remain constant over time

is often too restrictive for biological applications (Siepielski et al.,

2009).

Živković et al. (2015) have extended the spectral method of

Song and Steinrücken (2012) to handle piecewise-constant popula-

tion size functions. However, their approach requires a restricted
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model of selection in which the fitness of a homozygote is twice that

of a heterozygote (i.e. additive or genic selection). Furthermore, se-

lection parameters are assumed to remain constant over time, and

the model does not allow for recurrent mutations.

Here, we present the first method for computing the TDF under

arbitrary models of dominance and recurrent mutation while allow-

ing selection parameters, mutation rates and effective population

sizes to change over time in a piecewise constant manner.

2 Approach

We consider a biallelic locus with two alleles, A0 and A1, evolving in

a single panmictic population. In the corresponding Wright–Fisher

diffusion, Xt denotes the frequency of allele A1 at time t, measured

continuously in units of generations. We assume that either X0 is

given or the distribution of X0 is specified. The effective population

size, mutation rates and selection parameters are assumed to be con-

stant within each of K disjoint epochs. As illustrated in Figure 1, the

kth epoch has effective size Nk (diploid individuals) and duration sk.

Epoch boundaries are denoted by t0; t1; . . . ; tK, with tk ¼
Xk

i¼1
si.

Within the kth epoch, the per-generation probability that a copy

of allele A0 mutates to allele A1 is ak, and the per-generation prob-

ability that a copy of allele A1 mutates to allele A0 is bk. In addition,

selection acts in such a way that the relative fitness of an individual

carrying i copies of allele A1 is 1þ ski (i ¼ 1, 2).

The TDF pkðt; x; yÞ in epoch k is defined by

pkðt; x; yÞdy ¼ Pðy�Xtk�1þt < yþ dyjXtk�1
¼ xÞ, where tk�1 þ t < tk.

The TDF pkðt; x; yÞ satisfies the partial differential equation

@pkðt; x; yÞ=@t ¼ Lkpkðt; x; yÞ=2Nk, where Lk is the diffusion gener-

ator given by

Lk ¼
1

2
xð1� xÞ @

2

@x2
þ 1

2
½ak � ðak þ bkÞx�

@

@x

þ2xð1� xÞ½rk1ð1� 2xÞ þ rk2x� @
@x
:

(1)

See Song and Steinrücken (2012) for discussion on the appropriate

boundary conditions. In Equation (1), the parameters ak ¼ 4Nkak; bk

¼ 4Nkbk; rk1 ¼ Nksk1 and rk2 ¼ Nksk2 are the population-scaled

versions of the mutation and selection parameters.

Within each epoch, k, a spectral representation of the TDF

pkðt; x; yÞ can be obtained by employing the framework of Song and

Steinrücken (2012), who developed an efficient algorithm for finding

the eigenvalues and the eigenfunctions of the diffusion generator Lk.

The challenge in computing the TDF for the full model with K epochs

lies in knitting together the expressions for the densities pkðt; x; yÞ
across the different epochs. The method we implement involves an effi-

cient and numerically stable algorithm for carrying out this knitting

procedure using a polynomial interpolation method, which is detailed

in Supplementary Methods.

3 Implementation

Our algorithm has been implemented in JAVA. The inputs to the pro-

gram are the effective population sizes (number of diploid individuals)

N ¼ ðN1; . . . ;NKÞ; epoch durations s ¼ ðs1; . . . ; sKÞ; per-generation

mutation rates a ¼ ða1; . . . ; aKÞ and b ¼ ðb1; . . . ;bKÞ; selection par-

ameters s1 ¼ ðs11; . . . ; sK1Þ and s2 ¼ ðs12; . . . ; sK2Þ; initial allele fre-

quency X0 and the time t 2 ½0;T� at which the TDF will be evaluated.

A plot of the TDF evaluated at each epoch boundary point

(t ¼ s1; s1 þ s2 and T) in Figure 1 is shown in Figure 2. The full com-

mand options are detailed in the user manual distributed with the

software.

4 Discussion

Our implementation provides a fast and numerically stable method

for computing the TDF for a general model with piecewise-constant

population sizes and a broad range of time-varying mutation and se-

lection parameters. It also allows for a variety of initial conditions,

including a specified initial frequency and stationary distributions

under mutation-selection balance or mutation-drift balance.

The JAVA implementation is designed to be used either as a

stand-alone application or in combination with other methods.

For example, the code can be easily incorporated into the method

of Steinrücken et al. (2014), allowing the inference of selection par-

ameters from time series data sampled from populations with time-

varying demographic and selection parameters. In general, the

method we present provides a flexible and efficient tool for studying

the evolution of allele frequencies over time under complex evolu-

tionary scenarios.

Fig. 1. Diagram of the model. A population has constant size in each of K

epochs (N1 ¼ 1000; N2 ¼ 600; N3 ¼ 900). An allele, A1, at a locus of interest

evolves over time, subject to pressures of mutation and selection that are

constant within each epoch

Fig. 2. Plot of the TDF for the model shown in Figure 1 with the parameters

specified in the example in Section 3, evaluated at the times t1, t2 and T
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