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Abstract

Background: Loss of the endosulfatase HSulf-1 is common in ovarian cancer, upregulates heparin binding growth
factor signaling and potentiates tumorigenesis and angiogenesis. However, metabolic differences between isogenic
cells with and without HSulf-1 have not been characterized upon HSulf-1 suppression in vitro. Since growth factor
signaling is closely tied to metabolic alterations, we determined the extent to which HSulf-1 loss affects cancer cell
metabolism.

Results: Ingenuity pathway analysis of gene expression in HSulf-1 shRNA-silenced cells (Sh1 and Sh2 cells) compared
to non-targeted control shRNA cells (NTC cells) and subsequent Kyoto Encyclopedia of Genes and Genomics (KEGG)
database analysis showed altered metabolic pathways with changes in the lipid metabolism as one of the major
pathways altered inSh1 and 2 cells. Untargeted global metabolomic profiling in these isogenic cell lines identified
approximately 338 metabolites using GC/MS and LC/MS/MS platforms. Knockdown of HSulf-1 in OV202 cells induced
significant changes in 156 metabolites associated with several metabolic pathways including amino acid, lipids, and
nucleotides. Loss of HSulf-1 promoted overall fatty acid synthesis leading to enhance the metabolite levels of long
chain, branched, and essential fatty acids along with sphingolipids. Furthermore, HSulf-1 loss induced the
expression of lipogenic genes including FASN, SREBF1, PPARγ, and PLA2G3 stimulated lipid droplet accumulation.
Conversely, re-expression of HSulf-1 in Sh1 cells reduced the lipid droplet formation. Additionally, HSulf-1 also enhanced
CPT1A and fatty acid oxidation and augmented the protein expression of key lipolytic enzymes such as MAGL, DAGLA,
HSL, and ASCL1. Overall, these findings suggest that loss of HSulf-1 by concomitantly enhancing fatty acid synthesis
and oxidation confers a lipogenic phenotype leading to the metabolic alterations associated with the progression of
ovarian cancer.

Conclusions: Taken together, these findings demonstrate that loss of HSulf-1 potentially contributes to the metabolic
alterations associated with the progression of ovarian pathogenesis, specifically impacting the lipogenic phenotype of
ovarian cancer cells that can be therapeutically targeted.
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Background
Metabolic re-programming has recently emerged as a new
hallmark of cancer. Alteration of cellular metabolism in
cancer cells is proposed to increase the availability of es-
sential building blocks that support uncontrolled cellular
proliferation [1]. Most cancer cells, although diversified by
etiology and type, reprogram their metabolism to accumu-
late metabolic intermediates as sources of building blocks
[2]. The Warburg effect is one of the most important meta-
bolic alteration in cancer, in which neoplastic cells exhibit
higher glucose uptake and utilization by altering glucose
metabolism even in the presence of oxygen to produce lac-
tate from glucose and thereby decouples glycolysis from
mitochondrial oxidation [3]. Although alterations in
fatty acids (FAs) and lipid metabolism have received less
attention, recently, their importance in cancer metabolism
is being increasingly recognized. The total lipid pools re-
quired for membrane synthesis of dividing cells are derived
mainly from FAs and in part from acetyl CoA [4]. Cancer
cells meet their FAs demand mainly by increasing de novo
FA synthesis rather than from exogenous sources and
partly from acetyl CoA [5,6]. The activated FAs can then be
utilized in the synthesis of membrane phospholipids (PLs)
including phosphatidylcholine (PC), phosphatidylethanol-
amine (PE) in addition to sterols, sphingolipids, and lysoli-
pids to meet the energy demands and proliferation. The
rest of the activated FAs then function as signaling mole-
cules or esterified as triglycerols or sterol esters and stored
in lipid droplets (LDs) [7,8].
Accumulating evidence suggest that activation of onco-

genes such as MYC, NF-kB, K-RAS [2,9] and loss of tumor
suppressor genes (P53, LKB1/AMPK) [10-12] forms a
basis for altered metabolism of cancer cells. The onco-
genic activation of c-MYC turns on the Ras-Raf-MAPK
signaling pathway along with HIF1α and PI3K-Akt-mTOR
axis which transcriptionally stimulate the expression of
most glycolytic and glutaminolytic genes and subsequently
activate lipid metabolism [13]. Similarly, loss of tumor
suppressors forms the basis of the Warburg effect leading
to carcinogenesis. For example, p53 activates TIGAR to
reduce the cellular accumulation of fructose 2,6 bispho-
sphate, an allosteric activator of phosphofructo kinase, a
critical control point in glycolysis leads to decreased gly-
colysis [10]. Moreover, growth factor-mediated phosphor-
ylation of pyruvate kinase isoform 2 (PKM2) [14] and
mutations of genes in IDH1/2 [15] in the metabolic path-
ways such as glycolysis and the TCA cycle respectively
have been identified that support growth of the rapidly
proliferating cells and survive metabolic stress [16,17].
Human Sulfatase 1 (HSulf-1), an endosulfatase estab-

lished as a putative tumor suppressor in ovarian cancer, has
been shown to modulate the signaling of growth factors
and cytokines in tumor microenvironment [18]. Our previ-
ous work demonstrated that loss of HSulf-1 modulates
heparin-binding growth factors such as bFGF, VEGF, HGF,
PDGF, and heparin binding EGF (HB-EGF) signaling,
which plays an important role in tumor progression, me-
tastasis, and angiogenesis [19-22]. Moreover, serous tu-
mors with moderate to high levels of HSulf-1 had better
prognosis in terms of overall survival, implicating its crit-
ical role in the progression of ovarian cancer [23]. Our
more recent data demonstrated that HSulf-1 knockdown
clones in the OV202 ovarian cancer cell line (OV202Sh1
and Sh2 cells) have significantly increased the ability to
form anchorage-independent colonies in vitro and en-
hanced tumorigenicity in vivo [24]. Also, in breast cancer,
HSulf-1 is negatively regulated by HIF1α, but positively by
von Hippel-Lindau tumor suppressor gene [23,25,26].
These findings led us to hypothesize that HSulf-1 might
play a unique role to alter tumor microenvironment rais-
ing the possibility that its loss might alter the cellular me-
tabolism and levels of the resulting metabolites as a
downstream effect of altered growth factor signaling.
In the current study, global changes in metabolism were

investigated in HSulf-1 silenced OV202 cells by microarray,
metabolic data analysis, and Western blotting. Here, we for
the first time report that loss of HSulf-1 promotes overall
fatty acid synthesis and oxidation leading to a lipogenic
phenotype to promote cancer growth in ovarian cancer.

Methods
Cell culture
OV202 cell line was low-passage primary line established at
the Mayo Clinic [27]. OV202NTC, Sh1, Sh2, and Cl 11 cells
were cultured in 5% CO2-95% air humidified atmosphere at
37°C with minimal essential medium supplemented with
20% fetal bovine serum and 1 μg/ml puromycin, with non-
essential amino acids. All cell lines were tested using a
PCR-based assay and found to be free of Mycoplasma
contamination.

ShRNA
HSulf-1 short-hairpin (sh) RNA1 (Sh1- AGCTACCCT
GGGTTCCTTTGT) which targets the 3′-untranslated
region (UTR) was cloned into lentiviral vector pLKO.1-
puro as described previously [27]. HSulf-1 shRNA2 (Sh2-
CGTCGAATTTGAAGGTGAAAT) and nontargeted
control shRNAs (NTC shRNA- ACTTACGAGTGAC
AGTAGATT) cloned into the lentivirus vector pLKO.1-
puro were chosen from the human library (MISSION
TRC-Hs 1.0) and purchased as glycerol stock from Sigma.
Transfection with Fugene (Roche) was performed accord-
ing to the manufacturer's instructions. Transducted cells
were selected with 1 μg/ml puromycin.

Rescue of HSulf-1 in Sh1 cells
pcDNA-HSulf-1 plasmid was cloned as described previ-
ously [19]. Since Sh1 shRNA targeted the 3′UTR of HSulf-
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1, we rescued the expression of HSulf-1 in this cell line
with CMV-driven WT expression construct and selected
stable clone C11 as previously described [19]. Vector only
transfected cells served as controls.

Microarray expression data analysis
OV202 NTC, Sh1, and Sh2 cells in triplicates were profiled
using Illumina Human HT-12 3.0 Expression Beadchip
array as previously described [28]. Microarray expression
data were analyzed on the log2 scale. Data quality was
assessed via box and whisker plots along with residual and
pair-wise MVA plots before and after normalization
[29,30]. All arrays were normalized together using fastlo, a
non-linear normalization similar to cyclic loess which runs
in a fraction of the time [31]. Both supervised and un-
supervised analyses were performed. Supervised analysis
to determine differentially expressed genes was performed
using Significance Analysis of Microarrays (SAM) [32].
For SAM analysis for unpaired samples, Biometric Re-
search Branch (BRB)-ArrayTools (Version 3.7.0, devel-
oped by Dr. Richard Simon and Amy Peng Lam.) was
used with Delta set to 0.822, resulting in false discovery
rate <5%. Unsupervised clustering was performed using
the one minus correlation metric with average linkage.
Heat maps were generated for visualization. Pathway ana-
lysis was performed using Ingenuity Pathway Analysis (In-
genuity® Systems, www.ingenuity.com).

Liquid chromatography/mass spectrometry
(LC/MS, LC/MS2)
The LC/MS portion of the platform was based on a Waters
ACQUITY UPLC and a Thermo-Finnigan LTQ mass spec-
trometer, which consisted of an electrospray ionization
(ESI) source and linear ion-trap (LIT) mass analyzer. The
sample extract was split into 2 aliquots, dried, then recon-
stituted in acidic or basic LC-compatible solvents, each of
which contained 11 or more injection standards at fixed
concentrations. One aliquot was analyzed using acidic
positive ion optimized conditions and the other using basic
negative ion optimized conditions in two independent in-
jections using separate dedicated columns. Extracts recon-
stituted in acidic conditions were gradient eluted using
water and methanol both containing 0.1% Formic acid,
while the basic extracts, which also used water/methanol,
contained 6.5 mM ammonium bicarbonate. The MS ana-
lysis alternated between MS and data-dependent MS2

scans using dynamic exclusion.

Gas chromatography/mass spectrometry (GC/MS)
The samples destined for GC/MS analysis were re-dried
under vacuum desiccation for a minimum of 24 h prior to
being derivatized under dried nitrogen using bistrimethyl-
silyl-triflouroacetamide (BSTFA). The GC column was 5%
phenyldimethyl silicone and the temperature ramp is from
40°C to 300°C in a 16-min period. Samples were analyzed
by a Thermo-Finnigan Trace DSQ fast-scanning single-
quadrupole mass spectrometer using electron impact
ionization. The instrument was tuned and calibrated for
mass resolution and mass accuracy on a daily basis. The
information output from the raw data files was automatic-
ally extracted as discussed below.

Data extraction and compound identification
Peaks were identified using Metabolon's proprietary peak
integration software. Compounds were identified by com-
parison to library entries of purified standards or recurrent
unknown entities. Identification of known chemical en-
tities was based on comparison to metabolomic library en-
tries of purified standards. As of this writing, more than
2,600 commercially available purified standard com-
pounds had been identified and registered into LIMS for
distribution to both the LC and GC platforms for deter-
mination of their analytical characteristics. The combin-
ation of chromatographic properties and mass spectra
gave an indication of a match to the specific compound or
an isobaric entity. Metabolon data analysts use proprietary
visualization and interpretation software to confirm the
consistency of peak identification among the various sam-
ples. Library matches for each compound were checked
for each sample and corrected if necessary.

Normalization
Raw data from each sample was normalized to protein
concentration as measured by Bradford assay prior to
statistical analysis.

Sample accessioning
Each sample received was accessioned into the Metabolon
LIMS system and was assigned by the LIMS, a unique
identifier, which was associated with the original source
identifier only. This identifier was used to track all sample
handling, tasks, and results. The samples (and all derived
aliquots) were bar-coded and tracked by the LIMS system.
All portions of any sample were automatically assigned
their own unique identifiers by the LIMS when a new task
was created; the relationship of these samples was also
tracked. All samples were maintained at −80°C until
processed.

Sample preparation
The sample preparation process was carried out using
the automated MicroLab STAR® system from Hamilton
Company (Reno, NV, USA). Recovery standards were
added prior to the first step in the extraction process for
QC purposes. Sample preparation was conducted using
a proprietary series of organic and aqueous extractions to
remove the protein fraction while allowing maximum re-
covery of small molecules. The resulting extract was

http://www.ingenuity.com
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divided into four fractions; two for analysis by LC and one
for analysis by GC and a forth as a spare. Samples were
placed briefly on a TurboVap® (Zymark, Hopkinton, MA,
USA) to remove the organic solvent. Each sample was then
frozen and dried under vacuum. Samples were then pre-
pared for the appropriate instrument, either LC/MS or GC/
MS.

QA/QC
For QA/QC purposes, a number of additional samples are
included with each day's analysis. Furthermore, a selection
of QC compounds is added to every sample, including
those under test. These compounds are carefully chosen
so as not to interfere with the measurement of the en-
dogenous compounds. These QC samples are primarily
used to evaluate the process control for each study as well
as aiding in the data curation.

Metaboanalyst
Differently expressed metabolites between Sh1/Sh2 and
baseline conditions were firstly mapped to KEGG me-
tabolites IDs according to Human Metabolome Database
(HMDB; URL: http://www.hmdb.ca/) [33]. Then, pathway
analysis was performed to highlight relevant metabolic
pathways defined in KEGG database (http://www.genome.
jp/kegg/), using an on-line tool named MetaboAnalyst
(http://www.metaboanalyst.ca/) [34,35]. Specifically, two
types of pathway analysis were done: one is over-
representation analysis using hypergeometric test [35],
asking if differentially expressed metabolites are par-
ticularly enriched in a same pathway; the other is path-
way topology analysis summarizing relative-betweeness
centrality [34], investigating potential pathway impact
of observed metabolite changes based on known path-
way topology relationships.

Western blot analysis
Western blot analysis was performed as described previ-
ously [36]. Whole cell lysates were analyzed with the fol-
lowing antibodies: FASN, ASCL1 (Cell signaling), SREBP1c,
PLA2G3, HSulf-1 (Abcam, AB96533), CPT1A, HSL,
DAGLA, β-tubulin (GeneTex) and β-actin (Sigma-Aldrich).

Real-time PCR
Quantitative real-time PCR (qRT-PCR) was carried out
using SYBR-Green PCR Master Mix (Applied Biosys-
tems, Foster City, CA, USA), with specific primers for
the genes shown in this study. GAPDH or 18S ribosomal
subunit (Applied Biosystems) were used as internal control
in a Light Cycler kit (BioRad Chromo 4). Normalization
across samples was carried out using the average of the
constitutive human gene 18S and/or GAPDH primers and
calculated as previously described [18]. Binding efficiencies
of primer sets for both target and reference genes were
similar.

Bodipy staining
Cells (50,000) were seeded on a coverslip in a 24-well plate
and were grown for 24 hours in the presence of complete
growth medium. Cells were washed and fixed in 4% para-
formaldehyde for 10 min at room temperature before
staining with 1 μg/ml BODIPY (493/503; Sigma, St. Louis,
MI, USA) in PBS for 10 min at room temperature. Cover-
slips were washed with PBS and mounted in a slide with
Prolong Gold Antifade Reagent (Invitrogen). BODIPY
stained cells were examined under inverted confocal fluor-
escence microscope (Zeiss).

Transient transfection
To determine the effect of PLA2G3 on lipid droplet bio-
genesis OV202 NTC cells were transiently transfected
with plasmids containing empty vector or cDNA encoding
PLA2G3. After 24 h of transfection, we performed BOD-
IPY staining to visualize lipid droplets. PLA2G3 plasmid
was obtained on a MTA from Addgene.

Fatty acid synthesis
Cells were washed twice in cold PBS and resuspend in
lysis buffer (50 mM Tris-HCl, pH 7.4, 1 mM EDTA, 150
mM NaCl and PMSF. Cells were sonicated and homoge-
nized by dounce homogenizer followed by centrifugation
at 13,000 rpm for 15 min at 4°C. The supernatant was col-
lected and proteins were measured by Bradford assay, and
100 μg of protein was used to conduct FASN activity
assay. FASN activity was measured by protocol described
by Vazquez-Martin et al. [37]. Briefly, 100 μg of protein
was incubated with 240 μM NADPH, 30 μM acetyl CoA
and 50 μM malonyl CoA in assay buffer (200 mM potas-
sium phosphate, pH 6.6, 1 mM DTT, 1 mM EDTA) and
oxidation of NADPH was measured by monitoring the ab-
sorbance at 340 nM over the period of the time. Results
presented here compares FASN activity monitored for 10
min. Values are presented as nanomolar NADPH oxidized
per minute per milligram of protein.

Fatty acid oxidation
Oxygen consumption rate was measured using a Seahorse
Bioscience XF24 flux analyzer. 5 × 104 cells were seeded
per well in triplicates in MEM-α containing 20% FBS in
an XF24 well culture microplates and incubated overnight
in a 37°C/10% CO2 incubator. The assay medium for FAO
is low-buffered KHB buffer (110 mM NaCl, 4.7 mM KCl,
2 mM MgSO4, 1.2 mM Na2HPO4, 2.5 mM glucose ad-
justed to pH 7.4) supplemented with 0.5 mM carnitine.
For induction of FAO, BSA conjugated palmitate was
injected to a final concentration of 50 μM. XF analyses
were performed in the XF Extracellular Flux Analyzer

http://www.hmdb.ca/
http://www.genome.jp/kegg/
http://www.genome.jp/kegg/
http://www.metaboanalyst.ca/
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(Seahorse Bioscience, Billerica, MA, USA). Three basal
rates were measured prior to automated injection of pal-
mitic acid (50 μM) coupled to BSA vehicle or BSA vehicle
alone. After treatment for 55 min, the carnitine palmitoyl
transferase-1 inhibitor, Etomoxir (ETO, 50 μM), was
added. Oxygen consumption rates were measured by
using time-resolved method (Seahorse Bioscience XF24)
(21). Data were normalized to protein content (assayed
after completion of measurements).

Proliferation assay
Equal number of cells (1 × 105) was plated in triplicate in
12-well plates. OV202NTC, Sh1, and Sh2 cells were
counted after 24, 48, and 72 h using a cellometer (Nexelom,
Lawrence, MA, USA). For Etomoxir treatment, Equal num-
ber of cells (1 × 105) were seeded in 12-well plates in tripli-
cate and treated with increasing concentration of Etomoxir
(0 to 100 μM) for 24 h and total cell numbers were counted
using cellometer.

Results
Loss of HSulf-1 comprehensively altered major metabolic
pathways
We recently reported that HSulf-1 knockdown clones
in the OV202 ovarian cancer cell line (OV202Sh1 and
Sh2 cells) have significantly increased ability to form
anchorage-independent colonies in vitro and enhanced
tumorigenicity in vivo [24]. Consistent with these observa-
tions, our growth assays showed enhanced growth rate in
Sh1 and Sh2 cells compared to NTC cells (Additional
file 1: Figure S1). Here, to elucidate the function of puta-
tive tumor suppressor HSulf-1 in the metabolism of ovar-
ian cancer, we performed gene expression profiling of
stably knockdown HSulf-1 clonal lines OV202 Sh1 and
Sh2 cells (referred to from hereon as Sh1 and Sh2) com-
pared to HSulf-1 expressing non-targeted control cells
(OV202NTC, referred to as NTC) [26] in triplicates using
Illumina HumanHT 12 v3 platform [28]. Unbiased hier-
archical clustering and heat maps showed that genes in
several different pathways were differentially expressed in
Sh1 and Sh2 compared to NTC cells (Figure 1A). We
found that over 1,645 and 780 genes were differentially
expressed in Sh1 and Sh2 cells, respectively, compared to
NTC at 2.6 FC (p and FDR <0.0001). We identified 500
and 280 altered genes in Sh1 and Sh2 cells respectively
by significance analysis of microarrays (SAM) [32] from
the comprehensive list of 2,752 genes which encoded all
known human metabolic enzymes and transporters re-
ported by Possemato et al. [38]. Ingenuity pathway
analysis (http://www.ingenuity.com) for these genes
showed that most genes were differentially regulated in
the fatty acid/lipid pathways in Sh1 and Sh2 cells com-
pared to NTC cells (Additional file 2: Table S1, Figure 1B).
We next explored the 271 genes in the lipid related
pathways from our microarray data by unsupervised clus-
tering (Figure 1C) and found that 26% (73 of 271) genes
were differentially expressed in Sh1 and Sh2 cells com-
pared to NTC cells (Figure 1D), indicating that tumor sup-
pressor HSulf-1 possibly regulates the lipid metabolism in
ovarian cancer cells.

Loss of HSulf-1 altered global metabolic profile in ovarian
cancer cells
To determine whether loss of HSulf-1 has effect in cellu-
lar metabolism, we performed unbiased global metabolic
profiling using the Metabolon platform (Metabolon Inc,
Durham, NC, USA) in Sh1 and Sh2 cells compared to
NTC. The samples were extracted using Metabolon’s
standard solvent extraction method from cells in loga-
rithmic phase with 5 biological replicates for each sam-
ple and distributed into equal parts for analysis on the
GC/MS and LC/MS/MS platforms. Hierarchical cluster-
ing revealed that metabolite levels of Sh1 and Sh2 cells
cluster together separately from control NTC (Figure 2A).
Our initial principal component analysis (PCA) [39] re-
vealed that Sh1 and Sh2 cells had specific group of metab-
olites which were different from NTC cells (Figure 2B).
Additionally, t test in each principal component dimen-
sion showed that PCA differences between Sh1-Sh2 and
NTC cells mainly reside in the first and second principal
components, with statistically significant p values of 1.8e
− 10 and 4.5e − 6, respectively. Consistent with this, two-
dimensional PCA plots showed differences between Sh1-
Sh2 and NTC are mainly in the first and second PC di-
mensions (Figure 2C,D,E). We also performed linear re-
gression analysis to evaluate association of each principal
component vs. major metabolite classes, to determine if
lipid class is one of the dominant factors determining
the first and second principal components. The associ-
ation was evaluated in a multivariate regression model
(Additional file 3: Figure S2), where coefficients of first/
second PCs were treated as dependent variable, and
metabolite class labels were regarded as independent
variables. This analysis showed that the lipid class has
statistically significant association with both first and
second PC dimensions, with p values = 5.0e − 3 and
1.4e − 3, respectively. Interestingly, the peptide class,
despite its relatively small size, also has significant asso-
ciations with both first and second PC dimensions,
while the amino acid class has significant association
with the first principal component.
Moreover, this analysis showed a total of 338 known

metabolites altered by the loss of HSulf-1 in Sh1 and
Sh2 cells. Among them, Sh1 and Sh2 cells had a total of
193 and 188 biochemical, respectively, which were sig-
nificantly altered (p < 0.05, Welch's t test) compared to
NTC cells (Figure 2F, Additional file 4: Table S2, and
Additional file 5: Table S3). Additionally, with the loss of

http://www.ingenuity.com
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Figure 1 Microarray analysis of differentially expressed genes in OV202NTC, Sh1, and Sh2 cells. (A) Unsupervised hierarchical clustering
normalized expression values of 20,090 selected probe sets for NTC, Sh1, and Sh2. Each class is represented by three biological replicates. Red:
expression values above the average across all samples; blue: expression values below the average across all samples. (B) Ingenuity pathway analysis of
metabolic genes. The most statistically significant metabolic pathways identified in the confirmed cell-specific marker list are listed according to their p
value (−Log) (blue bars) and the ratio of list genes found in each pathway over the total number of genes in that pathway (Ratio, orange squares). The
threshold line corresponds to a pathway enrichment p value of 0.05. (C) Unsupervised hierarchical clustering normalized expression values of 271
selected lipid pathway related probe sets for NTC, Sh1, and Sh2. Each class is represented by three biological replicates. Red: expression values above
the average across all samples; blue: expression values below the average across all samples. (D) The most differentially expressed lipid pathway related
genes (73 of the 271 genes in A, FDR = <1%). The statistical difference was tested according to t test using ‘genefilter’ package in R, and multi
hypothesis-testing corrected FDR was estimated using ‘fdrtool’ package in R. The black arrow indicates genes analyzed by real-time and/or western blot
analysis in this study.

Figure 2 Metabolite profile of ovarian cell line expressing HSulf-1 (NTC) and HSulf-1 downregulates Sh1 and Sh2 cells. (A) Heatmap
showing 338 biochemicals in lysates from 5 replicates each of OV202 cells expressing HSulf-1 (NTC), HSulf-1 Sh1 and Sh2 cells arranged by unsupervised
clustering. (B) Three-dimensional sample PCA plot of log-transformed normalized concentration of 338 biochemicals, where samples were colored by NTC,
Sh1, and Sh2 cell-types. (C, D, E) 2-D PCA plots: two-dimensional PCA plots between paired principal components (first PC vs. second PC; second PC vs.
third PC; first PC vs. third PC). x-/y-axis corresponds to loadings of specified PC dimension and each point is a metabolite sample, with black, green, and red
colors indicating NTC, Sh1, and Sh2 conditions, respectively. (F) Table showing significantly altered biochemical in Sh1 and Sh2 cells compared to NTC cells.
Welch's two-sample t test was used to identify biochemicals that differed significantly between experimental groups. A summary of the numbers of
biochemicals that achieved statistical significance (p≤ 0.05), as well as those approaching significance (0.05 < p < 0.10), are shown along with the Venn
diagram of shared metabolites between Sh1 and Sh2 cells. (G) Pie chart of percentage of common altered metabolites in Sh1 and Sh2 cells in
major pathways.
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HSulf-1, 129 and 114 metabolites were downregulated,
whereas 64 and 74 metabolites were upregulated in Sh1
and Sh2 cells, respectively. Also, 40% of these biochemi-
cals were altered in the same direction in Sh1 and Sh2
cells compared to NTC cells (p = <0.05, with false discov-
ery rate (FDR) <0.05, Additional file 6: Table S4). Interest-
ingly, we found that among all the metabolites altered,
28% were lipids, 22% were amino acids, whereas sugar
and dipeptide comprised 7% (Figure 2G), implicating that
loss of HSulf-1 mediates a global metabolic alteration in
ovarian cancer with changes in the lipid class being a
major contributor.
However, some metabolites were differentially altered in

the Sh1 and Sh2 cells. The differentially changed metabo-
lites between these ShRNAs could also be a function of the
level of knockdown and where the ShRNAs could have in-
tegrated. The extent of knockdown in Sh1 targeting the
3'UTR was close to 100%. However, with Sh2 RNA target-
ing the open reading frame, there was still some level of
HSulf-1 present (Figure 1A, [24]).

Alteration of lipid metabolites upon HSulf-1 loss
The lipogenic phenotype characterized by the activation
of lipid metabolism is recognized as a universal feature
of most cancers [40,41]. Apart from the fatty acid (FA)
uptake, cancer cells requires de novo FA biosynthesis
to synthesize new membranes, to store energy in lipid
droplets and to form the lipidic platform for signaling
in membrane level in lipid rafts for increased signaling
of cell growth receptors [42,43]. Moreover, circulating
lipids also play a significant role in cancer cell growth,
migration, and invasion [44,45]. Of the 156 common
metabolites altered in Sh1 and Sh2 cells, 44 (28%) me-
tabolites belonged to the lipid class including long-
chain FAs, lysolipids, sphingolipids, glycerolipids, ei-
cosanoids, and carnitine (Additional file 6: Table S4),
in which 20 metabolites were upregulated (45%). Using
the Kyoto Encyclopedia of Genes and Genomics (KEGG)
database, we mapped these metabolites to major pathways
impacted with alterations in the key junctions [34,35].
These included linoleic acid, glycerophospholipid, arachi-
donic acid (Additional file 7: Figure S3), and sphingolipid
pathways [46,47]. Consistent with these data, we found
that among the 20 long-chain fatty acid metabolites de-
tected, 13 metabolites were significantly increased by 2–6-
fold including palmitate, stearate, and oleate, while the
remaining 7 long-chain FAs did not show any significant
differences in both Sh1 and Sh2 cells (Figure 3A). Of note,
docosadienoate (22:2n6), 10-nonadeconoate and eicoseno-
ate (20:1n9) levels were increased approximately sevenfold
compared to NTC. Additionally, all the detected branched
fatty acid metabolites were augmented (Figure 3B) while
five of six essential fatty acids detected were increased
2–5.5-fold (Figure 3C).
The key structural lipids in cell membranes are the
glycerol-phospholipids including phosphatidyl-choline,
phosphatidyl-ethanolamine, phosphatidyl-serine, phos-
phatidyl-inositol, and phosphatidic acid in addition to
other lipids, such as sterols, sphingolipids, and lyso-
phospholipids. Sphingolipids such as ceramide, sphingo-
sine, and sphingosine-1-phosphate are bioactive lipids
which can dictate the signaling including growth factor
responses, inflammation, apoptosis, and proliferation
[48]. Our metabolite analysis revealed that HSulf-1
deficiency was closely associated with increased levels
of sphinganine (FC = 21.79, p = <0.001), sphingosine
(FC = 5.08, p = <0.001), palmitoyl sphingomyelin (FC = 1.62,
p = <0.0047, and FC = 1.52, p = <0.001), and stearoyl
sphingomyelin (FC = 6.24, p = <0.001 and FC = 5.30,
p = <0.001) (Figure 3D). Additionally, we found that
knockdown of HSulf-1 expression also largely affected the
metabolite levels of choline/inositol pathway (Figure 3E)
and lysophospholipids (Figure 3F) including reduced
glycerophosphorylcholine (GPC) (FC = −1.5, p = 0.0940 in
Sh1 cells only) and glycerol 3-phosphate (G3P) (FC = −1.6,
p = 0.0154 and FC = −1.9, p = <0.001). Altogether, these
results implicated a key role of HSulf-1 in increased lipid
metabolism and signaling.

Deficiency of HSulf-1 in ovarian cancer induced higher
expression of ‘lipogenic genes’
All the lipid molecules in cells are derived in part from
acetyl CoA, and many contain FAs. These FA building
blocks come from either exogenous sources or from de
novo FA synthesis. Thus, malignant cells synthesize
their own FA de novo and thereby exhibit a preference
over exogenous FA uptake, while most normal human
cells prefer exogenous sources [49]. Our microarray
analysis showed that mRNA levels of lipogenic en-
zymes fatty acid synthase (FASN), sphingosine kinase 1
(SPHK1), PLA2G4A, PLA2G3, sterol regulatory element-
binding transcription factor 1 (SREBF1), and peroxisome
proliferator-activated receptor (PPARγ) are also upregu-
lated upon loss of HSulf-1 (Figure 4A). Consistent with
the increased levels of these genes and lipid metabolites,
qRT PCR and immunoblotting showed enhanced mRNA
(Figure 4B) and protein (Figure 4C) expressions of FASN,
SPHK1, PLA2G4A, PLA2G3, SREBF1, and PPARγ in the
Sh1 and Sh2 cells compared to the NTC cells. The in-
crease in the mRNA and protein expression of FASN
along with the increased production of several long chain
FAs in Sh1 and Sh2 cells indicated that fatty acid synthesis
was enhanced in HSulf-1 silenced cells. To confirm, we
also measured the enzymatic activity of FASN and found
almost twofold higher activity of FASN in Sh1 and Sh2
cells compared to NTC cells (Figure 4D). These data sug-
gest that loss of HSulf-1 can increase the activity of FASN
to enhance FA synthesis.



Figure 3 (See legend on next page.)
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Figure 3 Loss of HSulf-1-mediated increase in fatty acids, sphingolipids, and lysolipids. The samples were extracted using Metabolon's
standard solvent extraction method from cells in logarithmic phase having five biological replicates for each sample and distributed into equal parts
for analysis on the GC/MS and LC/MS/MS platforms. (A) Fold increase of long-chain fatty acids were calculated by the average metabolite level of
Sh1/NTC and Sh2/NTC. *p = 0.02 to 0.09; **p = 0.002 to 0.01; ***p < 0.001 compared to NTC. (B) Branched chain fatty acids and (C) essential fatty acids
were calculated by the average metabolite level of Sh1/NTC and Sh2/NTC. p values for both branched chain fatty acids and essential fatty acids were
*p = 0.01 to 0.02; **p = 0.002 to 0.01; ***p < 0.001 compared to NTC. (D) Fold increase of sphingolipids were calculated by the average metabolite level
of Sh1/NTC and Sh2/NTC. *p = 0.01 to 0.09; **p = 0.002 to 0.008; ***p < 0.001 compared to NTC. (E) Choline/inositol pathway metabolites' fold change
and (F) membrane lysolipids were calculated as mentioned earlier. P values for choline/inositol pathway was *p = 0.009 to 0.09; **p = 0.002 to 0.008;
***p < 0.001 whereas *p = 0.01 to 0.02; **p = 0.002 to 0.009; ***p < 0.001 for membrane lysolipids compared to NTC.
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Interestingly, FASN, SPHK1, PLA2G4A, PLA2G3, SRE
BF1, and PPARγ are the key enzymes which are localized
and involved in the biogenesis of lipid droplets (LD)
[50-54]. The FAs are activated by covalent modification by
CoA via fatty-acyl-CoA synthetases and esterified to gly-
cerol generating triglycerides or sterol esters that are stored
in lipid droplets [42]. Accumulation of cytoplasmic LDs
forms a basis of increased growth and chemoresistance in
neoplastic cells [40,55]. To explore whether increased ex-
pression of above enzymes resulted in LD formation, we
imaged the LDs by bodipy staining which clearly showed
increased LDs in Sh1 and Sh2 cells. As expected, there were
very few LDs in the NTC cells (Figure 4E). To confirm
Figure 4 Enhanced expression of lipogenic genes in ovarian cancer. (
genes by supervised clustering (Red, overexpressed and green, downregulated
SREBP1c (SREBF1), SPHK1, PLA2G3, PLA2G4A (c-PLA2) and PPARγ mRNA by quant
***p< 0.001 compared to NTC cells. (C) Western blot analysis of FASN, SREBF1,
expressed as fold change in Sh1 and Sh2 cells compared to NTC cells. Results a
One-factor ANOVA was used to analyze the differences in FASN activity betwe
(**p≤ 0.01). (E) Bodipy (green) and DAPI (blue) staining of the lipid droplets in N
(F) Immunoblot analysis of HSulf-1 in Sh1 vec, and Sh1 Cl 11, where β-actin wa
lipid droplets and nuclei respectively in Sh1 vec and Sh1 Cl 11 cells. (H) Bodipy
to PLA2G3 construct by transient transfection in OV202NTC cells shows LDs on
whether HSulf-1 was directly involved in LD biogenesis, we
also rescued the expression of HSulf-1 in Sh1 cells by stable
transfection of CMV-driven HSulf-1 expression construct
(clone 11) with vector-transfected Sh1 cells served as con-
trols (Figure 4F,G). Bodipy staining revealed that rescue of
HSulf-1 significantly reduced the number of lipid droplets
in Sh1 (Sh1 clone 11) compared to Sh1 vector control with
many LDs (Figure 4G) demonstrating that loss of HSulf-1
promotes LD biogenesis. Additionally, transient transfec-
tion of PLA2G3 into OV202NTC cells showed increased
LDs in these cells compared to vector-transfected controls
(Figure 4H), suggesting a role of PLA2G3 in loss of HSulf-
1 mediated LD biogenesis.
A) Heat map of a subset of significantly altered lipid pathway-related
genes in Sh1 and Sh2 compared to NTC cells). (B) Normalized levels of
itative RT-PCR in NTC and Sh1 and Sh2 cells. *p < 0.05; **p< 0.01;
PPARγ, PLA2G3 with beta tubulin as loading control. (D) FASN activity is
re means (columns) of two independent experiments made in triplicate.
en each experimental condition. All statistical tests were two-sided
TC, Sh1, and Sh2 cells imaged in Carl Zeiss LSM 510S confocal microscope.
s used as loading control. (G) Bodipy (green) and DAPI (blue) staining of
staining of LDs following enhanced expression of empty vector compared
ly in PLA2G3 transfected cells.
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Loss of HSulf-1 facilitates enhanced β-oxidation and
lipolysis
The analysis of metabolite data additionally revealed the
increased levels of acetylcarnitine (FC = 3.74, p = <0.001
and FC = 3.22, p = <0.001), butyrylcarnitine, hexanoylcar-
nitine and octanoylcarnitine in HSulf-1 silenced cells.
Moreover, increased levels of oleolycarnitine were 16.84-
and 6.64-fold in Sh1 and Sh2, respectively (Figure 5A).
Carnitine is important for shuttling FAs across mitochon-
drial membranes for oxidation and so the escalation of
carnitine level enhances β-oxidation support the increased
growth of ovarian cancer. To determine if β-oxidation was
enhanced in Sh1 and Sh2 cells, we measured the mRNA
and protein level of carnitine palmitoyltransferase 1
(CPT1A) and the results showed a higher level of CPT1A
in both in Sh1 and Sh2 cells (Figure 5B). The increase in
the expression of CPT1A mRNA along with increased
production of several of the long chain FAs in Sh1 and
Sh2 cells indicated that these cells may utilize long chain
FAs by β-oxidation to generate more ATP to accommo-
date increase proliferation. Next, to confirm this notion,
we determined the fatty acid oxidation (FAO), and results
showed that FAO was higher both in Sh1 and Sh2 com-
pared to NTC cells upon addition of palmitate (Figure 5C).
Subsequently, we demonstrated that Etomoxir, a spe-
cific inhibitor of CPT1A, decreased FAO more sig-
nificantly in Sh1 and Sh2 cells compared to NTC
cells. We also demonstrated that Sh1 and Sh2 cells
were more sensitive toward Etomoxir treatment than
NTC confirming a major role of FAO in their survival
(Additional file 8: Figure S4).
Since FAs are stored in lipid droplets and released by

the action of lipolytic enzymes, we determined the expres-
sion of monoacylglycerol lipase (MAGL), diacylglycerol
lipase alpha (DAGLA), long-chain acyl-CoA synthetase
(ACSL1), and hormone-sensitive lipase (HSL). Immuno-
blot analysis showed that the expression of these enzymes
was upregulated in Sh1 and Sh2 cells compared to NTC
cells (Figure 5D), demonstrating that loss of HSulf-1 acti-
vates beta oxidation and lipolysis.

Altered metabolism in amino acid and peptide super
pathways in cells with loss of HSulf-1
In addition to the altered lipid metabolism, the metabolo-
mic analysis revealed that amino acids and their deriva-
tives were the second most class of metabolites altered in
HSulf-1 knockdown cells (Additional file 4: Table S2).
Most of the amino acids including serine, threonine, as-
partate, asparagine, alanine, phenylalanine, tyrosine, tryp-
tophan, arginine, ornithine, proline, and methionine were
decreased in the range of −1.36- to −3.33-fold (p < 0.05)
in both OV202 Sh1 and Sh2 cells. In contrast, glycine
was increased marginally in Sh1 and Sh2 cells (range
1.08- to 1.1-fold; p < 0.001 for each). Interestingly, we
found significant upregulation of cysteine (eight to
tenfold, p < 0.001) and its derivatives, hypotaurine
(FC = 2.38, p = <0.001 and FC = 1.99, p = <0.0244) and tau-
rine (FC = 9.91, p = <0.0032 and FC = 5.38, p = <0.0090) in
both Sh1 and Sh2 cells (Additional file 4: Table S2). We
also observed alterations of N-acetylated amino acids
including N-acetyl-alanine, serine, and threonine resulted
from the action of N-acetyltransferases on acetyl-CoA
and L-amino acids where all the six N-acetylated amino
acid tested were downregulated. The amino acid-
derived antioxidant, both reduced and oxidized gluta-
thione levels were lower in HSulf-1-deficient cells.
Additionally, among different dipeptide molecules, gamma-
glutamylglutamate (FC = 3.73, 2.77 in Sh1 and Sh2,
p = <.0001) and gamma-glutamylmethionine (FC = 7.31,
6.23 in Sh1 and Sh2 respectively, p = <.0001) levels were
increased upon loss of HSulf-1. This enhancement may
be particularly relevant as increased expression of gamma-
glutamylglutamate is reported to be associated with tumor
progression and drug resistance observed in human
malignancies [56]. Additionally, a significant increase of
pro-hydroxy-proline, (FC = 2.05, p = 0.0057 and FC = 1.92,
p = 0.0088) a dipeptide, also demonstrated in Sh1 and
Sh2 cells. Pro-hydroxy-proline is a marker of collagen
and extracellular matrix degradation (Additional file 4:
Table S2).

Discussion
Aberrant cellular metabolism in cancer is now well
known and is directly related to tumorigenesis in most
of the cancers [57,58]. Multiple signaling pathways and
several molecules are involved in the synthesis and deg-
radation of the lipids and also the activities of lipid me-
tabolizing enzymes are regulated by a complex interplay
between metabolic, tumor suppressor, and oncogenic
signaling [59]. Though loss of HSulf-1, a putative tumor
suppressor gene, was well known to promote tumorigen-
esis, angiogenesis [22,23], and invasion [20] in breast
[18,21] and ovarian [23,24] cancers, the role of HSulf-1
was never elucidated in altered metabolism of ovarian
cancer cells so far. Thus, in the present study, we have
shown that loss of the putative tumor suppressor, HSulf-
1 promotes altered metabolic pathways including lipid,
amino acid, and nucleotide. Of the several pathways al-
tered by loss of HSulf-1, the lipid and amino acid
pathway-related metabolites accounted for 50% of the
total altered metabolites identified. In ovarian cancer, al-
tered lipid metabolism was detected in patients during
early and late stages of disease compared to healthy con-
trols [60,61]. In contrast to lipid pathway-related metabo-
lites, there are very few reports on the alteration in the
amino acid levels in OVCa. We found a significant down-
regulation of most of the amino acids with loss of HSulf-1
consistent with Zhang et al.'s report where they showed



Figure 5 Loss of HSulf-1 induced enhanced β-oxidation and lipolytic enzymes. (A) The samples were extracted using Metabolon's standard
solvent extraction method from cells in logarithmic phase having five biological replicates for each sample and distributed into equal parts for analysis
on the GC/MS and LC/MS/MS platforms. Fold increase of carnitine and its derivatives were calculated by the average metabolite level of Sh1/NTC and
Sh2/NTC. *p= 0.01 to 0.09; **p = 0.001 to 0.009; ***p< 0.001 compared to NTC. (B). Levels of CPT1A in NTC, Sh1, and Sh2 cells determined by real-time
PCR and Western blot analysis. *p < 0.05; **p < 0.01; ***p < 0.001 compared to NTC. (C) FAO in terms of OCR in pmol/min/mg of protein was monitored
using a Seahorse Bioscience Extracellular Flux Analyzer in real time (mean ± S.D., n= 3). Cells treated with etomoxir (50 μM), an inhibitor of carnitine
palmitoyltransferase 1, served as a positive control. Changes in the FAO induction in Sh1 and Sh2 cells are compared with that of NTC cells.
Etomoxir-induced inhibition of FAO in Sh1 and Sh2 cells are compared with the FAO inhibition in NTC (p≤ 0.01 and p≤ 0.001). (D) Immunoblot analysis
of MAGL, DAGLA, HSL, ASCL1 in NTC, Sh1, and Sh2 where tubulin used as internal loading control.
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presence of lower levels of amino acids in the serum of pa-
tients with esophageal adenocarcinomas [62]. This down-
regulation could be due to differences in uptake from the
media, increased utilization, and/or catabolism since in-
creased demand for utilization of amino acids has been re-
ported in other cancers [63,64]. Other studies have shown
an increase in amino acid levels in the serum of patients
with colon and breast cancers [65,66]. While the majority
of amino acids were downregulated, we found significant
upregulation of cysteine and its derivatives hypotaurine
and taurine in Sh1 and Sh2 cells. Significant upregulation
in cysteine, taurine, and hypotaurine could be the result of
increased levels of cysteine dioxygenase type I (CDO1)
[67-69] in Sh1 and Sh2 cells (data not shown). While tau-
rine is reported to be downregulated in cancer [70], it is
also reported to be increased in tumors of the prostate,
squamous cell carcinoma and liver metastasis [71,72].
Additionally, levels of myo-inositol and taurine concentra-
tions both in vivo and in vitro are correlated with cell
density of the tumors [73].
Additionally, we also saw an increase in the dipeptide

pro-hydroxy-pro in Sh1 and Sh2 cells. Increase in pro-
hydroxy-proline is consistent with the report that major
cartilage ECM proteins type II collagen and aggrecan
were significantly lower in HSulf−/− chondrocytes sug-
gesting that loss of HSulf-1 may regulate the overall bal-
ance of cartilage matrix synthesis and degradation [74].
Consistent with this, significant alterations in several
UDP-glycosylation moieties, including UDP-acetylglu-
cosamine/UDP-acetylgalactosamine UDP-glucose, UDP-
glucuronate, and UDP-galactose are also supportive of
changes in extracellular matrix remodeling with reduced
HSulf-1 expression.
The major pathway identified by both ingenuity pathway

analysis and metabolic profiling was the alterations in the
lipid pathway. Lipids are as important building blocks as
carbohydrates to form the basic skeleton of rapidly dividing
cells, and therefore, large amounts of FAs are required to
accommodate high rates of proliferation in cancer cells [4].
Additionally, the source of FAs may determine the
phospholipid composition of membranes. Moreover, it was
reported that in high-grade ovarian cancer, long-chain fatty
acids were elevated [75]. Our results indicate that with
the loss of HSulf-1, there was a significant increase in
the long-chain FAs along with branched and essential
FAs in ovarian cancer. These high levels of FAs in ovar-
ian cancer with the absence of HSulf-1 indicate a major
role of HSulf-1 in FA synthesis. This enhanced produc-
tion of FAs might meet the structural needs of highly
proliferative ovarian cancer cells' requirement, when the
tumor suppressor HSulf-1 is lost.
Sphingolipids and lysolipid or lysophospholipids are

bioactive lipid molecules which play pivotal role in can-
cer pathogenesis. The most important sphingolipids are
ceramide and sphingosine-1-phosphate and the balance
between these two define the cell's fate. In cancer,
sphingolipid metabolism is altered and includes changes
in the levels of sphingolipids and the enzymes involved
in their metabolism [76]. Lysolipids with their various
FA side chains are also bioactive lipids which mainly
function as growth-stimulating factor and induce cell
proliferation, differentiation, and cell migration [77].
Herein, we report an increase in sphingolipids including
sphinganine, sphingosine, palmitoylsphingomyelin along
with altered choline/inositol and lysolipid content. Interest-
ingly, according to the KEGG database, metabolite mapping
and glycerophospholipid, arachidonic, and sphingolipid
metabolisms were identified as key junctions. These re-
sults clearly indicate that with the loss of HSulf-1, the cell
remodeled its own lipid synthesis in a manner to supply
both structural and signaling lipids to malignant cells.
In cancer cells, the increased lipid synthesis is due to the

higher expression and activity of lipogenic enzymes
[78,79]. Changes in the expression and activity of enzymes
involved in lipid metabolism are regulated by metabolic
and oncogenic signalling pathways [80,81]. We identified
enhanced expression of FASN, SREBF1, SPHK1, and
PPARγ related to lipid biogenesis. Upregulation of these
key lipogenic enzymes with the loss of HSulf-1 were
further corroborated by their mRNA and protein ex-
pressions. Moreover higher enzymatic activity of FASN
strongly supports the enhanced biogenesis of FAs with
HSulf-1 loss. Additionally, phospholipase-related genes
PLA2G3, PLA2G4A, PNPLA2, PLA2G4C, and PNPLA6
involved in lipolysis were also found to be higher in Sh1
and Sh2. Interestingly, PLA2G3 is an important enzyme in
lipid metabolism and implicated in LD biogenesis [50,52].
Recently, it was reported that cancer cells contain in-
creased numbers of lipid droplets compared with normal
tissue [82] which are storage sites for triglycerides and
cholesterol to be used as energy source. Loss of HSulf-1
induced an increase in PLA2G3 expression that may lead
to the accumulation of LD in ovarian cancer. Furthermore,
reduction in the number of LDs with the rescue of HSulf-
1 expression in Sh1 cells establishes a direct connection to
the loss of a putative tumor suppressor HSulf-1 and en-
hanced LD biogenesis in ovarian cancer.
In accordance with these results, we also demonstrated

lower level of carnitine along with higher level of carni-
tine derivatives suggestive of enhanced transport of FAs
through the mitochondrial membrane. More import-
antly, the augmented CPT1A level in Sh1 and Sh2 cells
strongly support the possibility of enhanced β-oxidation.
Increased and altered FA synthesis in cancer is a well-
accepted phenomenon; however, enhanced expression and
activity of lipolytic enzymes in tumor cells is a recent ob-
servation. In prostate cancer, malignant cells solely rely on
FAO as their energy resource [83]. Here, we report that
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loss of HSulf-1 also promotes enhanced FAO in Sh1 and
Sh2 cells compared to NTC. Consistent with increased
lipolysis, our results indicated a significant increase in the
expression of important lipolytic enzymes including
MAGL, DAGLA, HSL, and ASCL1 in Sh1 and Sh2 cells
compared to NTC cells. Higher MAGL expression has
been shown to stimulate pro-tumorigenic signals and pro-
motes survival, tumor growth, and migration [84]. In this
regard, the relationship between synthesis, storage, and
utilization of free fatty acids (FFA) through beta oxidation
for energy production is very poorly understood. While
the prevailing belief that cells that have increased FA syn-
thesis usually do not undergo beta oxidation, it has also
been suggested that newly synthesized FFA are immedi-
ately converted into neutral lipids and stored in lipid drop-
lets [84]. The FFAs are released by the action of lipases
such as mono-acyl glycerol (MAGL) which is then used
for new membrane synthesis, lipid signaling and beta oxi-
dation for energy production for the anabolic reactions.
Our data seems to support this hypothesis since the Sh1/
Sh2 cells have both increased the rate of FA synthesis and
beta oxidation compared to NTC cells. The FFA may be
immediately converted to neutral lipids and stored in lipid
droplets to be released under stress conditions.
Increasing evidence indicates that metabolic alterations

induced by loss of tumor suppressor genes are common
in cancer [16]. These alterations are critical for growth
and survival of cancer cells. This is the first comprehen-
sive report on metabolic alterations induced by loss of
HSulf-1, a putative tumor suppressor gene in ovarian and
breast cancer. Our results clearly indicate that loss of
HSulf-1 remodels lipid metabolism in ovarian cancer. It is
well accepted that HSulf-1 is a major regulator of growth
factor-mediated signaling and altered the tumor micro-
environment in ovarian cancer; however, how HSulf-1 dir-
ectly reconstructs the lipid metabolism in terms of FA
synthesis, lipolysis, and enhanced LD formation is yet to
be unraveled. A better understanding of the function of
HSulf-1, its role in energy metabolism (glycolysis, TCA cy-
cles, PPP) and its regulation on target genes involved in al-
tered cellular metabolism could lead to a better
understanding of tumorigenesis as well as development of
new targeted therapy.

Conclusions
HSulf-1 is reported to be an important tumor-suppressor
gene and its expression is lost in a majority of ovarian tu-
mors. This study demonstrates a significant alteration of
cellular metabolism upon loss of HSulf-1 in OV202 cells.
Microarray analysis and metabolite profiling is performed
to ascertain the impact of HSulf-1 on the overall meta-
bolic changes including alterations in lipid and amino acid
pathways. The major finding from our study shows the
metabolic reprogramming of cells toward an enhanced
lipid metabolism upon absence of HSulf-1. Cells adopt a
lipogenic phenotype which is manifested with an excess
fatty acid synthesis and an upregulated beta-oxidation.
Furthermore, HSulf-1-deficient cells accumulate a huge
amount of cytoplasmic lipid droplets to accommodate the
excessive fatty acid syntheses. The present findings are
supported by the increasing evidences of enhanced lipid
metabolism in cancer cells facilitating cell survival, prolif-
eration, and signaling. Our results indicate that, loss of
HSulf-1 is enabling the cells to synthesize more lipids to
expedite the high proliferation rate and survival.

Additional files

Additional file 1: Figure S1. Loss of HSulf-1 induced enhanced
proliferation in OV202 cells. Equal number of cells of NTC, Sh1, and Sh2
were plated in triplicates (1 × 105) and counted after 24, 48, and 72 h.
The increase in cell count in both Sh1 and Sh2 were statistically significant
in 48 h (*p < 0.05) and 72 hr (**p < 0.001). These experiments were repeated
twice.

Additional file 2: Table S1. Microarray analyses of OV202 cells upon
HSulf-1 loss.

Additional file 3: Figure S2. Multivariate regression results between
major metabolite classes. The eight major metabolite classes are amino acid,
carbohydrate, cofactors and vitamins, energy, lipid, nucleotide, peptide, and
xenobiotics. ‘Estimate’ and ‘Std. Error’ are estimate of regression coefficient
and estimation of standard-deviation error; ‘t value’ is the t statistics for each
coefficient estimate, and ‘Pr(>|t|)’ is the corresponding p value for each
coefficient estimate.

Additional file 4: Table S2. Changes in major metabolic pathways
including amino acids, lipids and nucleotides. List of metabolites identified
through mass spectrometry and the super-pathway and sub-pathway for
them are shown. The green- and red-shaded boxes are metabolites that are
downregulated and/or upregulated in Sh1 and Sh2 cells compared to NTC
cells respectively. The p values and the platform used to identify these
metabolites are also shown.

Additional file 5: Table S3. Global metabolic changes upon HSulf-1 loss.
List of significantly altered metabolites in Sh1 and Sh2 cells compared to
NTC cells in different pathways (XLS). Heat map of statistically significant
biochemical profiles in this study. By paired comparisons, shaded cells
indicate p≤ 0.05 (red indicates that the mean values are significantly higher
compared untreated control; green values significantly lower). Blue-bolded
text indicates 0.05 < p < 0.10. All data were normalized using Bradford
protein concentration (red—upregulated, green—downregulated, and
blue—approaching significance).

Additional file 6: Table S4. Alterations in lipid metabolites. Lipid
metabolic pathways in Sh1 and Sh2 cells compared to NTC cells. Heat
map of statistically significant (p ≤ 0.05, FDR < 0.05) biochemicals are
shown. Red indicates that the mean values are significantly higher by
comparison with untreated control; green values significantly lower.
All data were normalized using Bradford protein concentration
(red—upregulated, green—downregulated.

Additional file 7: Figure S3. Metaboanalyst pathway analysis. (A)
Statistics for pathways with major change based on high impact (linoleic
acid metabolism) or p value (pathways glycerophospholipid, arachidonic,
and sphingolipid metabolic pathways). (B) Of the 12 highly significant KEGG
pathways plotted according to global test p value (intensity of color in the
vertical axis) and impact factor (size of the circles in the horizontal axis), all 4
belong to the lipid pathways.

Additional file 8: Figure S4. Effect of etomoxir on cellular growth with
increasing concentration of Etomoxir treatment (0 to 100 μM) in NTC,
Sh1, and Sh2 cells (n = 2). At 60 μM and onwards, the cell growth
inhibition was statistically significant (p < 0.05) in both Sh1 and Sh2 cells
compared to NTC.
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