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Abstract 
 

Metagenomics adds unrecognized lineages to the tree of life and enables a genome-resolved 
view of microbiome dynamics 

 
by 
 

Christopher Thomas Brown 
 

Doctor of Philosophy in Microbiology 
 

University of California, Berkeley 
 

Professor Jillian F. Banfield, Chair 
 

Microbes live in complex communities that have shaped the planet for billions of years. 
However, much is not known about their diversity and metabolic potential due to biases in 
methods that require cultivation or PCR amplification. Metagenomics circumvents these issues 
and can be used to obtain genome sequences for microbial community members. Approximately 
800 metagenome-derived complete and draft-quality genomes were reconstructed for 
groundwater-associated bacteria from a radiation of previously unrecognized and little-known 
phyla with essentially no isolated representatives. Unlike most other bacteria, these organisms 
consistently have small genomes, lack highly conserved ribosomal proteins, frequently have 
rRNA gene introns, and have significant metabolic limitations indicative of an obligate 
symbiotic lifestyle. Combined phylogenetic and genomic analyses enabled recognition of this 
group as the Candidate Phyla Radiation (CPR), a major feature of domain Bacteria that was 
subsequently determined to comprise >50% of all bacterial diversity. Using a newly developed 
method called iRep, it was determined that CPR organisms typically replicate slowly, although 
they did replicate rapidly under some conditions. These in situ measurements were possible 
because iRep uses draft-quality genomes and metagenome sequencing to determine replication 
rates based on changes in genome copy number that occur during genome replication. 

In contrast to groundwater ecosystems, the human microbiome typically contains 
microorganisms from only a few phyla. Application of metagenomics enabled strain-level 
resolution of the human microbiome, measurement of iRep replication rates, and proteomic 
analyses of activity. Microbiome samples were collected from premature infants during the first 
months of life, and both metagenomics and metaproteomics were used to detect shifts in the 
gastrointestinal tract microbiome. Results showed that genetically similar bacteria behave 
differently depending on community context, leading to substantial changes in overall proteome 
composition. The metagenomic approach enabled identification of considerable genomic novelty. 
Analysis of the first genome sequence for a member of the genus Varibaculum uncovered a 
diverse repertoire of sugar utilization pathways and anaerobic respiration capacity. iRep analysis 
documented highly variable replication rates during initial colonization, and significantly higher 
rates following antibiotic administration. This work has added large and small branches to the 
tree of life with corresponding genomic and metabolic information, linked microbial responses 
and metabolism to changing environmental conditions, and provided previously unobtainable 
information on in situ replication rates. 
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Introduction 
 

Microorganisms encompass the vast majority of life’s diversity, and have shaped the 
development of the planet over the last 3.5 billion years. These organisms drive biogeochemical 
cycles and contribute to human health and disease; however, much remains to be known about 
the organisms and metabolisms critical to these processes. This is in part due to the fact that only 
a small fraction of microbes have been isolated in the lab, the traditional method for studying 
them. PCR amplification and sequencing of marker genes, such as the 16S rRNA gene, have 
made it possible to inventory and conduct phylogenetic analyses of organisms without the need 
for cultivation. However, this approach does not provide information on metabolic potential, and 
both PCR primer biases (Brown et al., 2015) and gene copy number variation (Perisin et al., 
2015) obscure organism abundance measurements. Genome-resolved metagenomics can be used 
to obtain genomes for organisms without the need for cultivation, even for diverse microbial 
communities (Anantharaman et al., 2016b; Baker et al., 2010; Brown et al., 2015; Castelle et al., 
2013; Eloe-Fadrosh et al., 2016; Hug et al., 2013; Iverson et al., 2012; Nielsen et al., 2014; Seitz 
et al., 2016; Sharon et al., 2012; Tyson et al., 2004; Wrighton et al., 2012). Recovered genomes 
can be used to infer both the phylogeny and metabolic potential of the organisms, and in 
combination with metagenomics can enable accurate measurement of community composition.  
 
In the 1990s, 16S rRNA gene sequencing conducted in the Obsidian Pool at Yellowstone 
National Park identified several organisms that could not be grouped into any previously studied 
phylum (Hugenholtz et al., 1998). Notable amongst these phylum-level groups with no isolated 
representatives, so called “candidate phyla” or “candidate divisions,” were the OP11. Additional 
surveys expanded the known diversity of the OP11 to the extent that the group was subdivided 
into several phyla, including the OD1 (Harris et al., 2004). Decreases in the cost of DNA 
sequencing enabled a plethora of surveys that demonstrated that the OP11 and OD1 reside in 
marine and freshwater systems, sediments, groundwater, and a variety of other environments 
(Harris et al., 2004; Luef et al., 2015). However, it was not until 2012 that anything was known 
about the metabolism of these enigmatic organisms, when genome-resolved metagenomics was 
used to reconstruct 49 genome sequences (Wrighton et al., 2012). All of these genomes were 
small, and metabolic analysis indicated that the surveyed organisms participate in sulfur and 
hydrogen cycling, and have a fermentation-based metabolism. Additional metabolic and 
phylogenetic study of the OP11 and OD1 based on single-cell genome sequencing lead to the 
recognition of these groups as the Microgenomates and the Parcubacteria, respectively (Rinke et 
al., 2013). However, much of the diversity of these groups had yet to be explored. 
 
Since 2007, an alluvial aquifer adjacent to the Colorado River near the town of Rifle, CO has 
been a prominent site for subsurface research (Appendix 1.1, Appendix 1.2, Appendix 1.3, 
Appendix 1.4, Appendix 1.5, Appendix 1.6, Appendix 1.7, and Appendix 1.8) (Long et al., 
2016). The site began as a vanadium mill in the early 1920s, and both vanadium and uranium 
milling efforts persisted intermittently through the 1960s. This is the site where the first complete 
and draft-quality genome sequences for members of the Microgenomates (OP11) and 
Parcubacteria (OD1) were recovered (Kantor et al., 2013; Wrighton et al., 2012). The finding 
that these organisms have small genomes suggested that they may also have small cell sizes. In 
order to investigate this possibility, a cryogenic transmission electron microscopy study was 
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conducted on ultra-small cells capable of passing through 0.2 µm filters, which are often used for 
sterilization purposes. Metagenomic analysis showed that CPR bacteria dominated small-cell 
filtrates collected on 0.1 µm filters. Images of members of the Microgenomates, Parcubacteria, 
and a related group known as Katanobacteria (WWE3) documented striking morphological 
features of these organisms, including the presence of pili predicted based on genomic analysis, 
and demonstrated their ultra-small cell volumes (0.009±0.002 mm3) (Luef et al., 2015). 
Additional analysis of organism abundances on 0.2 and 0.1 µm filters suggests that particular 
CPR lineages are more likely than others to have ultra-small cell sizes (Appendix 2). 
 
To further investigate these organisms, we conducted metagenome sequencing of cells collected 
from groundwater on both the 0.2 and 0.1 µm filters. Metagenomics enabled reconstruction of 
~800 genomes from members of the Microgenomates, Parcubacteria, and other candidate phyla 
(Chapter 2) (Brown et al., 2015). Our phylogenetic and genomic analyses showed that these 
organisms are from a group of phyla comprising >15% of bacterial diversity, which we described 
as the Candidate Phyla Radiation (CPR). This more expansive sampling of CPR genomes 
showed that they are consistently small, and that the organisms have significant metabolic 
limitations strongly suggestive of a symbiotic lifestyle. In addition, rRNA gene introns were 
unusually common throughout this radiation, and specific CPR lineages were found to have 
unusual ribosome compositions. Phylogenetic analysis of both 16S rRNA gene sequences and 
concatenated ribosomal proteins showed that the Microgenomates and Parcubacteria are 
superphyla, and enabled identification of 25 phyla within these two groups (Brown et al., 2015). 
In subsequent collaborative work that involved phylogenetic analysis of organisms from all 
domains of life, it was determined that the CPR comprises >50% of all bacterial genetic diversity 
(Appendix 1.1) (Hug et al., 2016). In an additional study of multiple field experiments 
conducted at the Rifle site, we identified 47 new phyla from analysis of ~2,500 genomes 
recovered from metagenomes, 30 of which were from the CPR (Appendix 1.8) (Anantharaman 
et al., 2016b). We also identified and conducted a genome-informed metabolic analysis of 
organisms from novel phyla within the archaeal DPANN superphylum that, like CPR, 
consistently have small genomes with limited metabolic potential (Appendix 1.2) (Castelle et 
al., 2015).  
 
Unlike other systems, the human gut microbiome is composed of organisms from a small 
number of phyla. However, considerable species and strain level diversity exists and may have a 
substantial influence on microbiome function (Sharon et al., 2012). The human microbiome has 
been implicated in obesity (Ley et al., 2005), inflammatory bowel disease (Xavier and Podolsky, 
2007), necrotizing enterocolitis in premature infants (Mai et al., 2011; Morrow et al., 2013; 
Mshvildadze et al., 2010), and other chronic diseases such as type 1 and type 2 diabetes (Brown 
et al., 2011; Gilbert et al., 2016; Heintz-Buschart et al., 2016; Qin et al., 2012). Consequently, 
microbial colonization of the human gut at birth may be important to short and long-term health. 
Surveys of this period have characterized shifts in community composition related to early-life 
events (Bokulich et al., 2016; Koenig et al., 2011), but little is known about the implications of 
these changes due to a lack of a functional understanding of the organisms. This is in part due to 
the fact that commonly used 16S rRNA gene sequencing methods are limited in their ability to 
resolve metabolic differences between organisms. In contrast, genome-resolved metagenomics 
studies of the first weeks of life of premature infants uncovered microbial strain and phage 
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patterns critical to understanding the colonization process (Raveh-Sadka et al., 2016; Sharon et 
al., 2012). 
 
Using genome-resolved methods, we documented genomic novelty, including the first genome 
from a member of the genus Varibaculum, and community shifts during the third week of life for 
a premature infant (Chapter 1) (Brown et al., 2013). Metabolic analysis indicated that 
Varibaculum cambriense make use of a wide variety of carbon sources and electron acceptors for 
respiration. Comparative genomics uncovered important differences between related organisms 
with respect to respiratory metabolism and motility. Species and strain diversity was also present 
within the microbiome, further emphasizing the need for genome-resolved methods. 
 
In collaborative work, genotypic information was used to distinguish strains in co-hospitalized 
infants (Appendix 1.9). Results indicate that although infants are typically colonized by distinct 
strains (Raveh-Sadka et al., 2015; Sharon et al., 2012), some specific genotypes persist and 
colonize different infants at times separated by multiple years (Raveh-Sadka et al., 2016). In 
other collaborative work, it was found that identical bacterial strains were among the initial 
colonists of premature infant mouth, skin, and gut, and that strains associated with the mouth and 
skin were replicating faster than those in the gut (Olm et al., 2016). Subsequently, we have 
analyzed the microbiome of additional infants using both metagenomics and metaproteomics, in 
conjunction with our newly developed method for determining in situ replication rates. These 
techniques enabled investigation of organism-specific activity and dynamics during the process 
of microbial colonization, and showed that organisms in the premature infant gut can behave 
differently depending on their environment, and that these differences can drive overall 
microbiome function (Chapter 4). 
 
Culture-independent methods have revolutionized our understanding of microbial diversity, but a 
lack of information about in situ activity has limited our ability to identity the contributions of 
microbes to human and environmental health. We developed a new method, iRep, for 
determining in situ replication rates for bacteria, and used this method to obtain measurements 
from human and groundwater microbiomes (Chapter 3) (Brown et al., 2016). Application to 
CPR organisms showed that they sometimes replicate quickly, which was not predicted based on 
genomic features. Combined with our finding that human-associated organisms grow faster 
following antibiotic administration, this emphasizes that replication rates can be highly variable 
even for single organisms, and are not constant factors that can be determined in the lab. Overall, 
this work has added large and small branches to the tree of life, provided additional metabolic 
information for groups of bacteria for which little was previously known, and linked microbial 
responses and metabolism to changing environmental conditions. 
    



 

 vii  
 

Acknowledgements 
 
There are so many people that have helped me throughout graduate school. I must first thank 
Professor Jill Banfield for being an inspiring and supportive mentor. Without her advice and 
encouragement this dissertation would not have been possible. Jill has guided me through 
everything from metagenomics analysis to scientific writing and publishing, and even gave me 
my first pottery lesson. I will always remind myself to think like Jill. 
 
Although the people have changed over the years, the Banfield lab has always been a fun and 
enlightening environment for doing research and learning to be a scientist. There is not enough 
space to thank everyone, but I must give special thanks to Brian Thomas, Laura Hug, Cindy 
Castelle, Kelly Wrighton, Itai Sharon, Nicholas Justice, David “Dudu” Burstein, Sue Spaulding, 
Karthik Anantharaman, Alex Probst, Brandon “Bubba” Brooks, Rose Kantor, Tyler Arbour and 
Matt Olm. I would also like to thank our collaborators Dr. Michael Morowitz at the University of 
Pittsburgh School of Medicine, Dr. Robert Hettich at Oak Ridge National Laboratory, and Dr. 
Kenneth Williams at Lawrence Berkeley National Laboratory. I have also been fortunate to have 
great colleagues at UC Berkeley. Time talking about science with Matt Shurtleff and David 
Hershey is always well spent. 
 
I am also grateful for my undergraduate mentors Professor Eric Triplett and Professor Wayne 
Nicholson at the University of Florida. They not only showed me that it is possible to be a 
scientist, but that it is an endlessly rewarding occupation.  
 
Both my parents have always encouraged me to do what I am interested in. My mom has 
supported my interest in science from a young age. I will never forget the microscope I got for 
Christmas, or how I was allowed to take over the dining room table for weeks at a time 
conducting “experiments.” Those experiences left a lasting impression. My brother Danny has 
always been a best friend to me. I have also been fortunate to have the support of my Aunt Lynn 
and Uncle Mark Frikker. I cannot imagine having accomplished as much without all of their 
support. 
 
I am grateful for Emily Thompson, whose love and support make life fun and wonderful. Thank 
you for going on so many adventures with me. Biking across the country and finishing this 
degree would have been impossible without you by my side. You have always been there for me, 
through both the fun and difficult times. I look forward to all of our future adventures.  
 
Moving across the country would have been a daunting task without our California family: 
Maggie, Jessica, Anne, Margaret, Doug, John, and Faustene. Thank you for all of the times we 
have shared over the years.  
 



 

 1  
 

Chapter 1 

Genome resolved analysis of a premature infant gut microbial community reveals a 
Varibaculum cambriense genome and a shift towards fermentation-based metabolism 

during the third week of life 

C. T. Brown, I. Sharon, B. C. Thomas, C. J. Castelle, M. J. Morowitz,  
and J. F. Banfield 

Published in Microbiome, December 2013. 

Abstract 
The premature infant gut has low individual but high inter-individual microbial diversity 
compared with adults. Based on prior 16S rRNA gene surveys, many species from this 
environment are expected to be similar to those previously detected in the human microbiota. 
However, the level of genomic novelty and metabolic variation of strains found in the infant gut 
remains relatively unexplored. To study the stability and function of early microbial colonizers 
of the premature infant gut, nine stool samples were taken during the third week of life of a 
premature male infant delivered via Caesarean section. Metagenomic sequences were assembled 
and binned into near-complete and partial genomes, enabling strain-level genomic analysis of the 
microbial community. We reconstructed eleven near-complete and six partial bacterial genomes 
representative of the key members of the microbial community. Twelve of these genomes share 
>90% putative ortholog amino acid identity with reference genomes. Manual curation of the 
assembly of one particularly novel genome resulted in the first essentially complete genome 
sequence for Varibaculum cambriense (strain Dora), a medically relevant species that has been 
implicated in abscess formation. During the period studied, the microbial community undergoes 
a compositional shift, in which obligate anaerobes (fermenters) overtake Escherichia coli as the 
most abundant species. Other species remain stable, probably due to their ability to either respire 
anaerobically or grow by fermentation, and their capacity to tolerate fluctuating levels of oxygen. 
Metabolic predictions for V. cambriense suggest that, like other members of the microbial 
community, this organism is able to process various sugar substrates and make use of multiple 
different electron acceptors during anaerobic respiration. Genome comparisons within the family 
Actinomycetaceae reveal important differences related to respiratory metabolism and motility. 
Genome-based analysis provided direct insight into strain-specific potential for anaerobic 
respiration and yielded the first genome for the genus Varibaculum. Importantly, comparison of 
these de novo assembled genomes with closely related isolate genomes supported the accuracy of 
the metagenomic methodology. Over a one-week period, the early gut microbial community 
transitioned to a community with a higher representation of obligate anaerobes, emphasizing 
both taxonomic and metabolic instability during colonization. 
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Introduction 
The human adult microbiota consists of 10-fold more cells than the human body (the majority 
reside in the gut) and 100-fold more genes than the human genome (Ley et al., 2006; Qin et al., 
2010; Whitman et al., 1998). The gut microbiota are involved in host nutrient acquisition 
(Turnbaugh et al., 2006), regulation and development of the host immune system (Lathrop et al., 
2011; Maslowski et al., 2009), and the modulation of host gene expression [7](Hooper et al., 
2001). All of these influences have the potential to seriously affect human health. Aberrations in 
gut microbiota membership and community structure, termed microbial dysbiosis, have been 
associated with obesity (Ley et al., 2005) and diseases such as inflammatory bowel disease 
(Xavier and Podolsky, 2007), both type 1 and type 2 diabetes (Brown et al., 2011; Qin et al., 
2012), and necrotizing enterocolitis in premature infants (Mai et al., 2011; Morrow et al., 2013; 
Mshvildadze et al., 2010). Although previous studies have focused on gut colonization (Koenig 
et al., 2011; Palmer et al., 2007), few have shown the process in a high-resolution manner 
(Morowitz et al., 2011; Sharon et al., 2012). Thus, much is still not known about the diversity, 
metabolic potential, or roles of early gut colonizers. 
 
Although the gut microbiota of infants is characterized by high levels of inter-individual 
diversity (beta diversity), community composition begins to look like that of adults within the 
first year of life (Palmer et al., 2007). In comparison with both adults and infants, premature 
infants have especially low individual diversity (alpha diversity), making them ideal subjects for 
high-resolution (species or strain-level) community genomics approaches (Morowitz et al., 2011; 
Sharon et al., 2012). Continued study of microbial colonization in the gut of premature infants 
may yield further insights into the details of this process and the implications of disease-
associated microbial dysbiosis. 
 
Community genomics, the use of genomes sequenced from natural microbial communities to 
understand the structure and metabolism of the community, has been successful in environments 
with varying levels of diversity (Castelle et al., 2013; Chivian et al., 2008; Hess et al., 2011; Hug 
et al., 2013; Morowitz et al., 2011; Sharon et al., 2012; Tyson et al., 2004; Wrighton et al., 2012). 
Recently, this approach has been applied to the human microbiome, where the genomes of 
abundant bacterial species were assembled from a premature infant (Morowitz et al., 2011) and, 
most recently, where increased sequencing depth allowed for genomes to be assembled for both 
high-abundance and low-abundance members of the microbial community found in the gut of 
another premature infant (including genomes for members that make up less than 0.05% of the 
microbial community) (Sharon et al., 2012). Both of these studies involved analysis of strain-
level variation within the human gut microbiome. In human adults, a draft genome of Shiga-
Toxigenic Escherichia coli O104:H4 was assembled from metagenome data taken from 
individuals involved in an outbreak, providing strain-level resolution of this pathogen (Loman et 
al., 2013). Strain-level analysis of microbial communities contrasts strongly with 16S rRNA-
based fingerprinting methods that characterize communities at a phylum to genus-level of 
resolution. This is primarily due to the added benefit of being able to directly determine the 
metabolic potential of strains in a particular community (which need not have been previously 
studied), and to identify metabolic variation between strains that may have highly similar or even 
identical 16S rRNA gene sequences (Sharon et al., 2011). In general, the study of infants enables 
development of an understanding of microbial colonization in humans, and can provide genomes 
for biologically and medically relevant, and oftentimes novel, species directly from their source 
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environments (without the bias of isolation or cell sorting, or single cell manipulation and 
genome amplification steps). 
 
Here, we investigate gut colonization in a relatively healthy premature infant during the third 
week of life with the objectives of comparing genomic novelty between the natural consortia and 
isolate strains, recovery and analysis of genomes from previously uncharacterized community 
members, and metabolic analysis of the microbial community. This period of early gut 
colonization was targeted for intensive sample collection because it is believed that aberrant 
colonization near this time can contribute to the pathogenesis of necrotizing enterocolitis (which 
was not observed in this infant). Our approach involves reconstructing complete and near-
complete genomes from DNA extracted from fecal samples to enable prediction of the roles of 
specific species and strains in the community. Time series abundance analysis is a key 
component of the approach because shifts in community composition can be detected, and also 
because organism abundance patterns greatly increase the accuracy with which assembled 
fragments can be assigned to specific organisms (binning; (Sharon et al., 2012)). We show that, 
even in the human gut, where many species can be represented by reference genomes, there are 
organisms with genomic potential not represented by reference sequences. Specifically, we 
report the first genome for the genus Varibaculum, a genus that has been implicated in human 
abscess formation, but that has not been associated with the human gut (Hall et al., 2003). 
 
Results 
Metagenome sequencing, assembly, binning, and annotation 
The nine samples collected on days of life 14 through 20 from the infant in our study resulted in 
35 gigabase pairs (Gbp) of paired-end Illumina DNA sequences with a length of 100 nucleotides. 
Filtering out human DNA and quality trimming resulted in 27.8 Gbp of Illumina reads with an 
average length of 93 bp. The iterative metagenome assembly method used resulted in 89.29% of 
high quality reads being assembled into 12,184 scaffolds longer than 400 bp (40.8 megabase 
pairs (Mbp), N50: 13,265 bp, longest scaffold: 608,611 bp). From the scaffolds larger than 400 
bp, 46,156 ORFs were predicted (average amino acid length: 254), 94.4% of which had a match 
to the UniRef90 database with an E-value less than or equal to 0.001. 
 
Scaffolds were clustered based on their time series abundance patterns using an ESOM, resulting 
in 25 bins (Figure 1.1, Supplementary Table 1.1, and Supplementary File 1.1). These bins 
represent complete, near-complete, and partial bacterial, plasmid, and viral genomes (Table 1.1) 
and 85.98% of high quality sequencing reads (Supplementary Table 1.2 and Supplementary 
Table 1.3). Six complete (circular) plasmids were assembled along with five putative phage 
fragments. Plasmid and phage fragments account for only 0.27% and 0.23% of the total sequence 
data, respectively; however, they account for the majority of the community in terms of relative 
abundance (41.7% and 16.6%; Supplementary Table 1.4 and Supplementary Table 1.5). 
 
Microbial genome identification and curation 
Well-defined genomes were binned for Clostridium butyricum, Enterococcus faecalis, 
Streptococcus anginosus, Streptococcus sp., and Varibaculum cambriense. However, some bins 
were not clearly delineated owing to the low abundance of the associated species (at the limits of 
sequencing detection), similar abundance patterns between species, or coverage miscalculations 
due to strain variation. This was the case for the bins of Actinomyces urogenitalis, Clostridium 
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bartlettii, two Escherichia coli strains, Leuconostoc sp., Negativicoccus succinicivorans, 
Propionibacterium sp., Staphylococcus sp., Streptococcus parasanguinis, Veillonella dispar, and 
two additional Veillonella species. Manual curation of these bins resulted in near-complete and 
partial genome reconstructions for these species, and revealed strain-resolved genomic novelty 
within the E. coli population (Table 1.1). 
 
We evaluated the completeness of each genome using a list of 26 single copy marker genes 
(Supplementary File 1.2 and (Raes et al., 2007)), revealing that the genomes for Actinomyces 
urogenitalis, Clostridium bartlettii, Clostridium butyricum, Enterococcus faecalis, 
Negativicoccus succinicivorans, Streptococcus anginosus, Streptococcus parasanguinis, 
Varibaculum cambriense, and Veillonella dispar (9 out of the 17 total genomes) are near-
complete (over 75% of marker genes could be identified) (Table 1.1). 
 
The genome for Varibaculum cambriense was reassembled and manually curated. Before 
reassembly, the genome was represented by 35 scaffolds with a total length of 2.25 Mbp and an 
N50 of 240,417 bp. Following reassembly and manual curation, the genome was assembled into 
three scaffolds, each terminated by a repeat sequence corresponding to a transposase gene. The 
three scaffolds include completely assembled 16S rRNA and 23S rRNA genes, a total length of 
2.28 Mbp, an N50 of 1,648,569 bp, and 105-fold sequencing coverage. The V. cambriense 
genome has a GC content of 52.5%. Approximately 70% of ORFs could be assigned to a 
putative function. All three scaffolds are connected to each other but their order cannot be 
determined; thus, all connections are resolved and we consider this genome to be essentially 
complete. Furthermore, all of the single copy marker genes used to assess genome completeness 
could be identified along with all 20 aminoacyl tRNA synthetase genes in the V. cambriense 
genome (Supplementary File 1.2). 
 
The assembled E. coli plasmid has the highest copy number of any assembled plasmid, phage, or 
bacterial member of the community (Table 1.1 and Supplementary Table 1.4). The plasmid 
contains a replication protein distinct from other Enterobacteriaceae plasmids, suggesting that it 
is novel (Figure 1.2). The largest plasmid (47.63 Kbp) is associated with Veillonella sp. - species 
A, and also contains a novel replication protein, indicating that this plasmid has not been 
previously studied. Two plasmids are related to known Staphylococcus plasmids and are highly 
correlated with one another (Pearson coefficient = 0.89), although they are not closely related to 
one another (based on their replication proteins). Based on the annotations and abundance 
patterns for these plasmids, their host is the Staphylococcus sp. for which we reconstructed a 
near-complete genome (Pearson coefficients of 0.45 and 0.62). Additionally, a complete plasmid 
genome was assembled and associated with S. parasanguinis (based on protein annotations and 
time series abundance patterns; Pearson coefficient = 0.99). 
 
Phylogenetic placement of EMIRGE 16S rRNA genes 
EMIRGE reconstructed 77 candidate 16S rRNA gene sequences, 14 of which could be 
associated with reconstructed genomes (Table 1.2 and Supplementary File 1.3). The 
discrepancy between the number of EMIRGE sequences and genomes suggests that EMIRGE is 
overestimating the number of OTUs. Genes constructed by EMIRGE that could not be assigned 
to genomes were related to Shigella (probably represented by binned E. coli genomes), 
Okadaella, Buttiauxella, Brevibacterium, and Citrobacter. Of these, low-abundance ORFs from 



 

 5  
 

the community could be assigned to the genus Brevibacterium at greater than 90% amino acid 
identity, and to Citrobacter, but at less than 90% amino acid identity, suggesting the possible 
presence of these genera in low abundance in the community. EMIRGE sequences that were not 
connected with bins were not analyzed further. 
 
The 16S rRNA gene sequences reconstructed with EMIRGE were used to build a phylogenetic 
tree to classify organisms in the community (Figure 1.3). The tree shows that many of the 
reconstructed genomes are from organisms very closely related to those with sequenced genomes, 
based on their 16S rRNA gene sequences. The tree highlights the lack of reference genomes for 
Varibaculum, although there are numerous 16S rRNA gene sequences from isolates and from 
clone libraries. Phylogenetic placement of the EMIRGE sequence for bin 20 confirms that this 
genome is from a member of the species V. cambriense (99.2% 16S rRNA gene sequence 
identity). 
 
Comparison of reconstructed genomes to reference genomes 
The 25 ESOM bins represent the genomes of 17 unique organisms from the microbial 
community. Of the nine reconstructed near-complete genomes, seven share over 90% ortholog 
amino acid identity with reference strains, while five share over 95% ortholog amino acid 
identity (with at least 60% of ORFs being defined as orthologs) (Table 1.2). Despite this high-
level of similarity, 14% of the ORFs predicted for near-complete reconstructed genomes do not 
have orthologs within their most closely related reference genomes. At the extreme, 57% of the 
predicted ORFs for Negativicoccus succinicivorans are not orthologous with genes found in the 
most closely related reference genome. Although the level of genomic divergence observed here 
does not fall outside of the range previously observed (Konstantinidis and Tiedje, 2005), this 
finding underscores the importance of genome reconstructions, as opposed to 16S rRNA gene 
sequence analysis, for inferring microbial metabolic potential. Of particular note, the genome for 
V. cambriense has an average ortholog amino acid sequence identity of 54% with the genome of 
its closest sequenced relative, Mobiluncus mulieris. 
 
Evidence for the importance of anaerobic metabolism and oxygen tolerance 
Several genomes encode cytochrome bd oxidase (Figure 1.4 and Table 1.3), a high oxygen 
affinity enzyme indicative of an ability to grow in the presence of low levels of oxygen, either by 
providing protection from reactive oxygen species or by using oxygen as a terminal electron 
acceptor during respiration (Das et al., 2005; Morris and Schmidt, 2013). The presence of 
fumarate, TMAO, DMSO, nitrate, nitrite, and nitric oxide reductase genes supports the notion 
that members of the community are capable of using several terminal electron acceptors to 
respire anaerobically (Figure 1.5). E. coli was the only organism found to encode heme-copper 
cytochrome oxidase genes, indicating its ability to use oxygen as an electron acceptor when 
present. To further assess the oxygen utilization capacity of the community, all binned and 
unbinned ORFs were searched for cytochrome c oxidase genes, which would indicate aerobic, or 
possibly aero-tolerant metabolism (Morris and Schmidt, 2013), but none were found. Taken 
together, we conclude that all organisms in the community are either obligate or facultative 
anaerobes. 
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Microbial abundance and community shifts 
Escherichia coli - strain A accounts for the greatest percentage of high quality sequence data and 
Propionibacterium sp. accounts for the least amount (33.45% and 0.03%, respectively; 
Supplementary Table 1.2). Species abundance patterns over the third week of life defined two 
phases of microbial community composition (Figure 1.6 Figure 1.7). The first phase is observed 
during DOL 14 to DOL 15, whereas the second covers DOL 18 to DOL 20. The first phase is 
defined by a dominant E. coli strain (a facultative anaerobe), and the second phase is dominated 
by obligate anaerobes (Streptococcus anginosus, Clostridium butyricum, and Veillonella dispar). 
Early in the second phase (first time point on DOL 18) there is an increase in the relative 
abundance of Streptococcus anginosus, followed by a stable abundance afterwards. This is 
followed by a spike in the abundance of Clostridium butyricum observed on the second time 
point taken on DOL 18, after which the relative abundance immediately decreases. There is no 
apparent clinical variable (for example, change in diet or medication) that accounts for the shift 
between phase one and phase two. The distinct difference in community composition between 
theses phases corresponds with a shift towards fermentation-based metabolism in the successors 
of initially dominant E. coli. 
 
V. cambriense is nearly undetectable during the first time point (0.15%) and remains at a low 
abundance throughout the time series (always ≤3%). It is interesting to note that Streptococcus, 
Escherichia, Veillonella, Actinomyces, and Enterococcus dominate the microbial community and 
that, similar to observations in other premature infants, no Bacteroides, Bifidobacterium, or 
Lactobacillus were observed throughout the time series (Caplan, 2009; Morowitz et al., 2011; 
Sharon et al., 2012). 
 
Metabolism of V. cambriense based on genomic analysis 
V. cambriense (strain Dora; Table 1.3 and Supplementary File 1.4) became the focus of further 
analysis for several reasons, including (i) the lack of reference genomes available for 
Varibaculum (Table 1.2 and Figure 1.3), (ii) the availability of a new, essentially complete 
genome (Table 1.1), and (iii) the fact that members of this genus are medically relevant and 
drastically understudied in the human gut (Chu et al., 2009; Hall, 2008; Hall et al., 2003). Further, 
Varibaculum have never been studied in the human gut at a species (or genome) level of 
resolution. Finally, there is some metabolic information in Bergey’s Manual of Systematic 
Bacteriology for cultured strains of V. cambriense (Whitman et al., 2012). 
 
V. cambriense cell wall and motility 
Genome analysis shows that genes involved in the lipopolysaccharide biosynthesis pathway are 
missing, confirming that V. cambriense does not have a Gram-negative cell envelope. The 
peptidoglycan biosynthesis pathway containing meso-diaminopimelate is complete. However, 
the β-lactam resistance pathway for peptidoglycan synthesis is incomplete, suggesting sensitivity 
to β-lactam antibiotics. No genes for flagella, pili, or chemotaxis were identified, indicating that 
this strain, like cultured members of this species, is not motile. 
 
V. cambriense transporters and resistance 
Twenty different sugar transport ORFs were identified, indicating that V. cambriense has the 
ability to use many different types of sugars. A putative sialic acid transporter is present, along 
with genes required for metabolizing N-acetylneuraminate (discussed later), suggesting that this 
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abundant component of both human and non-human cell-surface glycoproteins, human breast 
milk glycans, and intestinal mucins can be used as a nutrient. Additionally, a glycerol-3-
phosphate transporter, a putative phosphotransferase IIA system, a sodium-galactoside symporter, 
and multiple sugar transport system permease genes were identified. No acetate transporter was 
found, although several pathways were identified for converting pyruvate into acetate for the 
bidirectional conversion between acetyl-CoA and acetate. Complete KEGG modules suggest that 
V. cambriense can transport ribose, phosphate, nickel, lipopolysaccharides, and fructose. 
 
Although no complete antibiotic resistance pathways were identified, a drug resistance 
transporter (EmrB/QacA subfamily) and a methicillin resistance protein are coded for in the 
genome. V. cambriense has various resistance mechanisms, including an arsenate resistance 
pathway, the pathway for glycine betaine biosynthesis (a compound capable of protecting against 
osmotic stress; (Boch et al., 1997)), and a P-type ATPase for translocating copper and silver 
(suggesting Cu2+ tolerance). 
 
The genome contains the enzyme trehalose synthase, which is necessary for trehalose synthesis 
from β-maltose. The enzymes for synthesizing trehalose from glycogen were also identified, but 
not the enzymes for degrading trehalose. Trehalose has several biological roles, including that of 
structural component (Leslie et al., 1994) and stress protector (Strøm and Kaasen, 1993). The 
pathway for ppGpp is also encoded by the genome; this pathway is known for its role in 
regulating responses to nutrient or energy starvation and environmental stresses (Traxler et al., 
2008). 
 
V. cambriense nutrient sources 
Based on the genome, V. cambriense is able to use acetoacetate, ammonia, arabinose, ethanol, 
fructose, glucose, glycerol, glycogen, lactose, mannose, melibiose, ribose, sialic acid, starch, 
sucrose, and xylose as nutrient sources. It is interesting to note that cultured representatives of V. 
cambriense have not been shown to use either starch or xylose (Whitman et al., 2012). Fructose, 
glucose, glycerol, glycogen, lactose, mannose, melibiose, starch, sucrose, and xylose can all be 
directed to glycolysis, for which the complete pathway was identified. Unlike other members of 
the community, including A. urogenitalis (the other Actinomycetaceae), V. cambriense does not 
have the enzymes for the Entner-Doudoroff pathway (Figure 1.4). 
 
The genome encodes several neuraminidases (also known as sialidases), suggesting that V. 
cambriense is able to cleave various sialic acid species from host-derived substrates. Sialic acids 
are found terminally bound to cell-surface glycoproteins, human breast milk glycans, and mucins, 
but are only accessible by microbes once they have been cleaved from their substrate (David, 
2012; Lewis and Lewis, 2012; Vimr, 2013). The genome also contains a sialic acid transporter 
and the enzymes necessary for converting the predominant form of sialic acid found in humans, 
N-acetylneuraminate, to d-fructose-6-phosphate, which can in turn be fed into glycolysis. Thus, 
unlike many bacterial species, V. cambriense is probably able both to liberate sialic acids and to 
make use of them as a nutrient source. However, the genes for the pathway that converts N-
acetylneuraminate to CMP-N-acetylneuraminate are not present, making it unlikely that V. 
cambriense can coat its outer membrane with sialic acids as other species do to evade the host 
immune system (Severi et al., 2007). 
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The pathway for degrading N-acetylglucosamine, a derivative of glucose that is found in chitin, 
fungal, and prokaryote cell walls, was identified. A near-complete pathway was identified for 
converting myo-inositol to dihydroxyacetone phosphate, acetyl-CoA, and CO2 (while reducing 
two NAD+ to NADH). However, no pathways for butyrate or cellulose metabolism could be 
found, nor genes involved in mucin protein degradation, nor evidence for CO2 fixation (no 
evidence could be found for the presence of pyruvate formate-lyase). 
 
V. cambriense pentose phosphate pathway 
The V. cambriense genome is missing both glucose-6-phosphate dehydrogenase and 6-
phosphogluconolactonase, primary components of the oxidative branch of the pentose phosphate 
pathway. However, as is expected for a facultative anaerobe, the non-oxidative pathway is 
complete. The presence of a gluconate transporter and ribose transport system suggests that the 
pentose phosphate pathway could use these precursors to produce d-glyceraldehyde-3-phosphate, 
which in turn could enter the methylerythritol phosphate pathway and create isopentenyl 
diphosphate and dimethylallyl diphosphate (fundamental units of isoprenoid biosynthesis), and 
geranyl diphosphate (a crucial precursor of menaquinone biosynthesis). Likewise, d-fructose-6-
phosphate produced in the pentose phosphate pathway can be fed into glycolysis or can 
participate in the synthesis of UDP-N-acetyl-d-glucosamine, a necessary precursor of cell wall 
peptidoglycan. Another branch from d-erythrose-4-phosphate in the pentose phosphate pathway 
could lead to the biosynthesis of chorismate, an important biochemical intermediate. Overall, 
these pathways indicate the sources of several key metabolic precursors. 
 
V. cambriense fermentation and degradation reactions 
The presence of lactate dehydrogenase suggests that pyruvate produced from glycolysis can be 
fermented to lactate; however, consistent with isolate metabolic data, no pathways were found to 
consume lactate (Whitman et al., 2012). We identified that the α, β, and γ subunits of pyruvate-
ferredoxin oxidoreductase (EC:1.2.7.1) are successively encoded on the V. cambriense genome 
(the δ subunit could not be identified). This enzyme uses an oxidized ferredoxin to ferment 
pyruvate and produce H+, CO2, and acetyl-CoA, which can subsequently be converted into either 
acetate or ethanol. Although the directionality of ethanol interconversion is difficult to infer from 
protein sequences alone, it is possible that the reverse of the ethanol fermentation reaction can 
occur without additional enzymes, resulting in the formation of acetyl-CoA from ethanol with a 
gain of two NADH. Additionally, the pathway for acetoacetate degradation through the 
intermediate acetoacetyl-CoA, which has a net yield of one molecule of acetyl-CoA, also exists. 
In E. coli, acetoacetate can function as a total source of carbon and energy through this pathway 
(Pauli and Overath, 1972), and this may be the case for V. cambriense. 
 
V. cambriense tricarboxylic acid cycle 
There is strong evidence for a tricarboxylic acid (TCA) cycle and respiratory capacity in the V. 
cambriense genome. Two of the three components of the pyruvate dehydrogenase complex are 
encoded by the genome (the E1 component could not be identified). If functional, V. cambriense 
could convert pyruvate into acetyl-CoA (which could be used in the TCA cycle) using either this 
enzyme or pyruvate-ferredoxin oxidoreductase. The genome encodes the enzymes for converting 
acetyl-CoA into succinate. The TCA cycle can then continue by converting succinate into 
fumarate using succinate dehydrogenase/fumarate reductase (EC:1.3.99.1). Four subunits are 
required for this enzyme, but only three were identified (the iron-sulfur subunit, flavoprotein 



 

 9  
 

subunit, and cytochrome b556 subunit are co-localized on the genome). No evidence could be 
found for the membrane anchor subunit, which may be due to the presence of a small scaffolding 
gap in this region of the genome, or may indicate the existence of a divergent form of this 
enzyme. The presence of fumarate lyase provides a way for fumarate to be converted into malate, 
thus continuing the cycle. The form of malate dehydrogenase that converts malate into 
oxaloacetate by reducing NAD+ to NADH and H+ is present, but not the form of the enzyme that 
uses a quinone. Taken together, V. cambriense encodes a complete TCA cycle. 
 
V. cambriense anaerobic respiration 
Several components of an anaerobic respiratory chain were identified. The large and small 
subunits of the hydrogenase enzyme (containing iron-sulfur clusters, EC:1.12.99.6) and all 14 
subunits of NADH dehydrogenase (EC:1.6.5.3) were identified, indicating that both hydrogen 
acquired from the environment and NADH produced by glycolysis, the TCA cycle, and substrate 
degradation reactions (ethanol degradation, for example) can be used as electron donors during 
anaerobic respiration. 
 
Identification of fumarate reductase (EC:1.3.99.1), nitrate reductase (EC:1.7.99.4), and dimethyl 
sulfoxide (DMSO) reductase (EC:1.8.5.3), suggests that fumarate, nitrate, and DMSO can all be 
used as terminal electron acceptors. Phylogenetic analysis of the nitrate reductase and DMSO 
reductase catalytic subunits supports the functional roles of these genes (Figure 1.5). 
Furthermore, owing to the presence of a TAT signal sequence in the V. cambriense nitrate 
reductase, the active site is located on the outside of the cytoplasmic membrane, as is common in 
Archaea (Pauli and Overath, 1972). Also, the five signature residues suggested as being involved 
in nitrite and nitrate binding are conserved (Martinez-Espinosa et al., 2007). We also identified 
genes encoding a nitrate-nitrite transporter, but no other reactions that produce or consume 
nitrate or nitrite (the organism does not fix nitrogen, for example). No reactions for forming 
DMSO, or transporters for DMSO could be identified. The nitrite resulting from nitrate reduction 
could be further reduced by several other community members, several of which have the 
capacity to further reduce nitric oxide to nitrous oxide (Escherichia coli - strain A, 
Staphylococcus sp., Veillonella dispar, and Veillonella sp. - species A), although no species is 
predicted to be able to reduce nitrous oxide (Table 1.3). 
 
As is common in gram-positive bacteria, V. cambriense does not have the genes required for the 
formation of ubiquinones. However, a near-complete pathway is present for the biosynthesis of 
menaquinones, electron mediators essential during fumarate, DMSO, and nitrate reduction 
(Wissenbach et al., 1990). All subunits of the F-type H+-transporting ATPase were identified, 
indicating that V. cambriense is able to produce ATP from the generated proton gradient. 
 
As noted, V. cambriense is not capable of aerobic respiration. However, both subunits of the 
cytochrome bd complex were identified. This cytochrome along with cysteine synthase and 
superoxide dismutase (also identified) can protect against oxidative stress and contribute to 
limited oxygen tolerance (Das et al., 2005; Rolfe et al., 1978). Consistent with cultured strains, 
no evidence was found for catalase production (Hall et al., 2003; Whitman et al., 2012). 
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Other metabolic pathways found in V. cambriense 
The genome contains complete amino acid biosynthesis and degradation pathways and all 20 
aminoacyl tRNA synthetase genes. Complete pathways were found for riboflavin (vitamin B2) 
and vitamin K2 biosynthesis. The pathway for the synthesis of folate (vitamin B6) is incomplete; 
however, some crucial and unique enzymes to the pathway were identified, suggesting that this 
organism may also be able to synthesize this vitamin (approximately 30% of ORFs do not have a 
predicted function and could be responsible for this and other pathways). The combination of 
these functions indicates that V. cambriense may exist symbiotically with its human host under 
certain conditions. 
 
Abundance of Varibaculum in the healthy adult human microbiota 
We searched data from the HMP, surveying the V3-5 region of the 16S rRNA gene in order to 
assess the abundance and distribution of Varibaculum in the human microbiota (Figure 1.8) (The 
NIH HMP Working Group et al., 2009). Out of the 5,000 samples taken from 235 healthy human 
subjects, only 90 had hits for Varibaculum (0% oral, 0.31% stool, 1.42% nasal, 3.92% skin, and 
10.56% vaginal samples encompassing 24.68% of subjects). In only 29 of these (from 25 
different individuals) was the relative abundance of Varibaculum greater than 0.05%, while this 
genus never represented more than 2.5% of any sample. On average, the most abundant 
organism in communities studied by the HMP represent 14.42% of the total community 
(standard deviation of 14.11%), and in communities with Varibaculum, the most abundant 
organism represented 20.48% (standard deviation 10.96%). Varibaculum was most abundant in 
samples from the antecubital fossa (skin) and the vagina. Only one stool sample had hits for 
Varibaculum, where it represented only 0.02% relative abundance. Although Varibaculum is not 
uncommon, it is never a dominant community member in the large, healthy, adult population 
surveyed by the HMP. 
 
Comparative genomics of V. cambriense 
Comparing the genome for V. cambriense with available genomes for members of the family 
Actinomycetaceae revealed few unique genes, most of which are phage-associated or are not 
annotated. Several of these unique genes corresponded with folate, butanoate, and benzoate 
metabolism (among other pathways), but no complete pathways could be established from this 
set. However, there is considerable metabolic variation within the Actinomycetaceae (Figure 1.4 
and Supplementary File 1.5). Only members of the genus Mobiluncus are motile, encoding 
genes for both flagella and chemotaxis. Nitrate reductase is common in the family, but not 
encoded by Actinomyces coleocanis, Actinomyces graevenitzii, Arcanobacterium haemolyticum, 
some strains of Mobiluncus curtisii, nor Mobiluncus mulieris, while nitrite reductase and nitric 
oxide reductase are found only in the Actinomyces. DMSO reductase is found only in 
Mobiluncus curtisii, Actinomyces urogenitalis, Arcanobacterium haemolyticum, and V. 
cambriense. Taken together, the Actinomycetaceae rely on several different terminal electron 
acceptors for anaerobic respiration. 
 
Although genes were identified for riboflavin biosynthesis in V. cambriense, these genes are not 
common in the Actinomycetaceae. Several species of Actinomyces and members of the microbial 
community of the premature infant in our study (but not the A. urogenitalis genome 
reconstructed from the community) encode the genes for trehalose biosynthesis, suggesting a 
possible interrelationship between these species and V. cambriense, which only encodes the 
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genes for trehalose degradation (Figure 1.4). In the Actinomycetaceae, pyruvate-ferredoxin 
oxidoreductase, mentioned previously for its importance in converting pyruvate into acetyl-CoA, 
is found only in V. cambriense and members of Mobiluncus. Neuraminidases, which are required 
for cleaving sialic acids from glycoproteins, human breast milk glycans, and intestinal mucins, 
are distributed throughout the Actinomycetaceae. However, most members of the family are 
missing transporters for sialic acids, although the presence of the enzymes for their degradation 
suggests that a currently uncharacterized transporter exists for these species (Supplementary 
File 1.6). Members of the Actinomycetaceae and the microbial community in the gut of this 
infant engage in diverse metabolisms. Clustering based on select metabolic characters shows that 
V. cambriense is more metabolically similar to other Actinomycetaceae than to other members 
identified in the gut of this infant, despite significant metabolic overlap among community 
members (Figure 1.4). 
 
Discussion 
Genome reconstructions facilitated prediction of the metabolic roles of individual bacterial 
members in the context of their community. Applied to the gut microbiome of a premature male 
infant, the time series abundance information also provided by this method revealed strain-
specific dynamics during the third week of life. Comparison of reconstructed genomes to the 
genomes of isolate strains revealed genomic novelty, even among members of this relatively 
simple microbial community. However, overall similarities between most reconstructed and 
reference genomes validated the de novo genome binning strategy. 
 
Metabolic analysis revealed a community consisting of facultative anaerobes and obligate 
(fermentative) anaerobes. The facultative anaerobe Escherichia coli was initially dominant in the 
time series, but was replaced by obligate anaerobes (Streptococcus anginosus and Clostridium 
butyricum) during a switch to a community dominated by fermentation-based metabolism. This 
shift emphasizes the instability of the infant gut in terms of both membership and metabolism, 
and could be the result of several factors previously observed in the human gut. For example, 
dominance of species from the family Enterobacteriaceae (including E. coli) has been associated 
with either high oxygen levels or the availability of nitrate (a natural byproduct of the host 
immune response) (Winter et al., 2013a). Thus, this shift could be the result of decreased 
availability of either nitrate or oxygen, either of which could be depleted by E. coli during 
respiration. Decreased inflammation could also decrease available nitrate and decrease the 
competitive advantage of E. coli over obligate fermenters (Winter et al., 2013b). In terms of the 
gut environment, succession during early life is driven by the presence of oxygen (Eckburg et al., 
2005), and replacement of E. coli with obligate fermenters is suggestive of a decrease in oxygen; 
however, we cannot rule out the hypothesis that this shift in relative abundance is stochastic. 
Regardless of the mechanism, this represents a dramatic shift in community composition with the 
potential to affect host metabolism. 
 
Although the abundance of S. anginosus and E. coli appeared to equilibrate by the end of the 
time series, the drop in abundance of C. butyricum after its initial spike suggests a potential 
competition between the two obligate anaerobes. Interestingly, S. anginosus and C. butyricum 
have different clinical presentations. S. anginosus is commonly observed in association with 
abscess formation (Takahashi et al., 2011), while C. butyricum is usually considered a beneficial, 
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butyrate-producing commensal (Woo et al., 2011). In this case, the microbe more likely to be 
beneficial in the gut environment is outcompeted. 
 
To explore the potential role of a species not commonly observed or previously characterized 
from the human gut, we manually curated and metabolically analyzed the genome of 
Varibaculum cambriense (strain Dora), resulting in the first genomic sampling of a member of 
the genus Varibaculum. Strains of V. cambriense isolated from human cerebral and skin 
abscesses, intrauterine contraceptive devices, and the human vagina have been used to show that 
it is an anaerobic, catalase-negative, gram-positive, diphtheroid-shaped bacterium (Hall et al., 
2003; Whitman et al., 2012). However, genome analysis revealed additional insight into the 
metabolic potential of this organism and informed which substrates V. cambriense may use for 
anaerobic respiration. V. cambriense is metabolically similar to common gut inhabitants, and is 
predicted to use various carbon sources, respire anaerobically (using fumarate, nitrate, and 
DMSO), and produce lactate during fermentation. 
 
Several community members (including V. cambriense) are predicted to use myo-inositol as a 
nutrient source. This is interesting because myo-inositol plays a role in eukaryotic cell messaging 
and is found in breast milk and infant formula, although it is generally not found in solutions 
used for intravenous feeding (Pereira et al., 1990). Inositol has been shown to benefit premature 
infants with respiratory ailments (Hallman et al., 1992), suggesting that microbial degradation of 
this compound would decrease its health benefits. In contrast, the potential for V. cambriense to 
produce essential vitamins suggests a beneficial contribution by this organism to its human host. 
 
Although this infant was fed fortified breast milk (an abundant source of glycan-bound sialic 
acids) during the time period studied, only V. cambriense, Streptococcus sp., and Streptococcus 
parasanguinis, all low-abundance members of the gut community, have neuraminidases 
(enzymes that cleave sialic acids) and enzymes for sialic acid degradation. Although the E. coli 
genome does not encode a neuraminidase, it has a sialic acid transporter and degradation 
machinery. Thus, low-abundance community members may be making sialic acids available to E. 
coli. It has been shown that some pathogenic species incapable of accessing bound sialic acids 
are able to make use of sialic acids cleaved by commensal organisms to promote their own 
growth (Ng et al., 2013). 
 
The ability of V. cambriense to degrade, but not produce, trehalose suggests a possible 
dependency on other members of the microbial community able to produce this disaccharide. 
Furthering community interrelationships, nitrite produced by V. cambriense during anaerobic 
respiration can by further utilized by community members capable of nitrite and nitric oxide 
reduction. 
 
Conclusion 
This study underlines the higher resolution insight that can be obtained using genome-centric 
metagenomic approaches. Strain-resolved community dynamics revealed two phases in 
colonization during the third week of life of a premature infant. The phases were distinguishable 
based on the dominance of either respiratory or fermentation-based metabolism. Comparison of 
V. cambriense with other members of the microbial community revealed similarities with 
traditional gut inhabitants, while comparisons with other members of the family 
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Actinomycetaceae illustrate how the metabolic diversity of this family could mislead species-
level functional analysis based on 16S rRNA gene sequencing. Analysis of reconstructed 
genomes enabled strain-specific metabolic potential to be determined for the microbial 
community, and suggested potential community interdependencies. 
 
Methods 
Patient, samples, and sequencing 
We studied the colonization of the gut of a male (birth weight 1,205 g) born via Caesarean 
section during the 31st week of pregnancy to a mother with chronic hypertension and 
superimposed pre-eclampsia. The patient was born at Comer Children’s Hospital at the 
University of Chicago. He was administered total parenteral nutrition (TPN) soon after 
admission, but started bolus nasogastric feeding on his second day of life (DOL). The patient 
was weaned from TPN as he began increasing feeds with fortified breast milk. TPN was 
discontinued on DOL 6. The patient reached full feeds on DOL 8, continuing to be fed on 
fortified breast milk. The patient was never intubated but did briefly receive supplemental 
oxygen. He received antibiotics (ampicillin and gentamicin) only during the first 48 hours of life. 
Stool samples were collected on the following days of life: 14, 15, 18, 19, and 20. Samples were 
collected twice daily, except for DOL 14, and stored at −80°C. The patient was discharged in 
good health on DOL 53. 
 
Microbial DNA was extracted from frozen fecal samples using the QIAamp DNA Stool mini-Kit 
(Qiagen) with modifications (Zoetendal et al., 2006). DNA was sequenced on an Illumina 
HiSeq2000 sequencer for 101 cycles from each DNA fragment end using the TruSeq SBS 
sequencing kit (version 2). Sequencing data were handled with pipeline 1.7 according to the 
manufacturer’s instructions (Illumina, San Diego, CA). The protocol for sample collection and 
processing was approved by the Institutional Review Board of The University of Chicago (IRB 
#15895A). All samples were collected with the consent of the infant’s mother. 
 
Metagenome assembly, binning, and annotation 
Environmental shotgun DNA sequences for all samples were processed and assembled as 
previously described (Sharon et al., 2012). Sequences were quality trimmed and human DNA 
was filtered out prior to assembly. Sequences from all samples were co-assembled in a multistep, 
iterative approach, in which optimal parameters (coverage and k-mer length) for assembly of 
genomes from specific populations or groups of populations were selected. Velvet (Zerbino and 
Birney, 2008) was used to assemble the data and the resulting assembly was subjected to quality 
controls that detect miss-assemblies based on regions of zero insert coverage. 
 
All scaffolds longer than 400 base pairs (bp) were annotated by first predicting open reading 
frames (ORFs) using the metagenome implementation of Prodigal (Hyatt et al., 2010) and then 
searching translated ORFs against the UniProt UniRef90 database (Suzek et al., 2007) using 
USEARCH (Edgar, 2010) with an E-value threshold of 0.001. The coverage of each scaffold was 
determined by mapping reads using BowTie2 (Langmead and Salzberg, 2012) with the 
parameters -best and -e 200. Coverage was calculated as the total number of sequence bases 
mapped to a scaffold divided by the length of the scaffold. 
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Clustering of scaffolds into genome bins was conducted as previously described (Sharon et al., 
2012). Specifically, the Databionic implementation of an emergent self-organizing map (ESOM; 
(Ultsch, 2005)) was used to cluster scaffolds longer than 400 bp based on their time series 
abundance patterns (after first breaking scaffolds into 1.5 Kbp fragments) (Supplementary File 
1.1). This allowed us to bin scaffolds into near-complete and partial genomes. Genome bins were 
assessed in part by coloring fragments clustered on the ESOM based on the best BLAST 
(Altschul et al., 1990) hit of each scaffold against the NCBI NT database (Pruitt et al., 2012) 
(Figure 1.9). Bins were manually extracted by contouring fields on the ESOM. Genome 
completeness was determined by comparing the length of each putative genome with the most 
closely related reference genome and by searching for 26 universal single copy marker genes 
(Supplementary File 1.2 and (Raes et al., 2007)). 
 
Manual curation of microbial genome bins 
Each genome bin was evaluated based on its size, coverage, and the presence of single copy 
genes. Single copy genes were used to estimate genome completeness and to determine whether 
multiple genomes were being clustered into a single bin. Incomplete bins may be the result of 
several factors: (i) low coverage can prevent an entire genome from being assembled; (ii) 
sequence variation can cause genomic regions unique to strains to assemble separately, 
sometimes generating very small contigs that cannot be binned; (iii) strain-specific genomic 
regions will be binned separately from shared regions if the time series abundance patterns of the 
strains differ; and (iv) inherent noise in coverage calculations can result in scaffolds representing 
a genome being placed in separate bins. Bins with similar taxonomic affiliations were evaluated 
in order to determine whether their scaffolds were split into different bins owing to strain 
variation or noise in coverage calculations. Such bins were subsequently combined into a single 
genome bin if they did not contain redundant single copy genes. Other bins with similar 
taxonomic affiliations but with overall different time series abundance patterns were considered 
to be the result of strain variation. 
 
The genome assembled and binned for V. cambriense was reassembled and manually curated. 
This involved analyzing the read mapping for the entire metagenome assembly and capturing the 
reads (along with their pairs) that mapped to scaffolds in the V. cambriense bin. These reads 
were then used in several Velvet assemblies, in which the parameters for k-mer length and 
expected coverage were altered. Genome size was estimated based on the size of the bin and 
used to evaluate the Velvet assemblies. The best assembly based on expected length and N50 
was checked for miss-assemblies (scaffolds were split at regions with zero insert coverage) and 
then manually curated. 
 
The genome for V. cambriense was manually curated using a suite of in-house scripts designed 
to extend scaffolds by recruiting paired-reads that extend from existing scaffolds. These paired-
reads were assembled independently using Velvet. Their resulting contigs were compared with 
existing scaffolds, based on their sequence similarity determined by BLAST. Regions of high 
similarity between the newly assembled contigs and existing scaffolds oftentimes reveal 
scaffolds that could be combined with one another (Sharon et al., 2012). 
 
Open reading frames for the manually curated V. cambriense genome were annotated using an 
in-house pipeline that includes BLAST-based homology searches against the NCBI NR (Pruitt et 
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al., 2012), KEGG (Kanehisa et al., 2012), UniRef90, and COG (Tatusov et al., 2001) databases, 
in addition to HMM-based functional domain recognition searches using InterProScan (Zdobnov 
and Apweiler, 2001). Metabolic analysis of the functional predictions for the V. cambriense 
genome was completed using Pathway Tools (Karp et al., 2002) and KEGG (Supplementary 
File 1.4 and Supplementary File 1.5). 
 
Plasmid and phage genomes 
Plasmid genomes were identified by searching for potentially circular scaffolds by computing the 
Needleman-Wunsch (Needleman and Wunsch, 1970) global alignment for the first and last 100 
bp of the scaffold. Scaffolds with high overlap identity were further analyzed by searching those 
scaffolds for genes indicative of plasmids (such as plasmid replication and maintenance proteins). 
Putative phage fragments were identified by searching for phage-related genes (such as the 
capsid or tail fibers) on unbinned scaffolds and on scaffolds binned along with a genome. Phage 
scaffolds binned with bacterial genomes have significantly higher coverage than the bacterial-
associated scaffolds. 
 
Plasmids were associated with individual species in the community by comparing the abundance 
patterns of each plasmid with each species and by leveraging plasmid phylogenetic annotations. 
To narrow down the list of possible host organisms for each plasmid, Pearson correlation 
coefficients were calculated on the abundance pattern of each plasmid compared with each 
bacterial species. Putative phage fragments were associated with species based on initial ESOM 
binning, searching for integration sites in reconstructed genomes, and by comparing the relative 
abundance patterns of phage with bacterial species (assisted by the Pearson correlation 
coefficient). 
 
Plasmid novelty and diversity were determined by building a phylogenetic tree of plasmid 
replication proteins. Sequences representative of closely related plasmid replication proteins 
were acquired by searching the NCBI NR database using BLAST. The amino acid sequences 
were aligned using MUSCLE (Edgar, 2004) and a phylogenetic tree was reconstructed using 
FastTree2 (Price et al., 2010) with the Jones-Taylor-Thornton model of amino acid evolution and 
by assuming a single rate of evolution for each site (known as the CAT approximation) 
(Stamatakis, 2006). Local support values were calculated with the Shimodaira-Hasegawa test 
(Shimodaira, 2001) and the tree was formatted using FigTree (tree.bio.ed.ac.uk/software/figtree/). 
 
Coverage and abundance calculations 
Coverage was calculated for each scaffold based on mapped reads. Absolute abundance, average 
coverage, and relative abundance were calculated for reconstructed genomes at each time point, 
in order to represent changes in microbial community structure (Supplementary Table 1.2, 
Supplementary Table 1.3, Supplementary Table 1.4, and Supplementary Table 1.5). 
Genome coverage was calculated as the number of bases mapped to the genome divided by the 
total length of the genome. Relative abundance was calculated for a genome by taking the 
average coverage of the genome and normalizing it by the sum of the average coverage values 
for all genomes. Thus, relative abundance is the abundance of a genome taken as a percent of the 
total abundance of all genomes. Absolute abundance was calculated for each genome by dividing 
the total number of sequence bases that mapped to the genome by the total number of bases 
associated with reads used in the assembly. Rank abundance was calculated from the relative 
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abundance of each genome from the combined read mapping of the time points in each phase of 
community colonization (phases were defined after observing community abundance patterns 
across the time series). Plots of relative abundance were created using the R plot function r-
project.org/). 
 
Microbial community composition based on EMIRGE 16S rRNA genes 
EMIRGE (Miller et al., 2011) was used to reconstruct 16S rRNA gene sequences from the 
metagenomic data (Supplementary File 1.3). The closest relatives of each sequence were found 
by searching a TaxCollector (Giongo et al., 2010) version of the Ribosomal Database Project 
(RDP) database (Maidak et al., 1997) and the GreenGenes (DeSantis et al., 2006) database using 
BLAST. Reconstructed 16S rRNA gene sequences were connected with genomes based on 
several criteria. First, paired-end sequences were used to link scaffolds carrying fragments of 
16S rRNA gene sequences to genome scaffolds. Then, coverage and taxonomic information, 
from both marker genes and for the genome overall, were used to refine associations when 
paired-read connections were inconclusive. More 16S rRNA gene sequences were reconstructed 
by EMIRGE than could be represented by genome bins; thus, a subset of low-abundance 16S 
rRNA gene sequences were assumed to be either incorrectly reconstructed or from very rare 
community members, and thus were disregarded during further analyses. 
 
Reconstructed 16S rRNA gene sequences were aligned along with sequences from their closest 
relatives and additional species previously reported to be in the infant gut. Sequences were 
aligned with PyNAST (Caporaso et al., 2010a) using the GreenGenes alignment of operational 
taxonomic units (OTUs) classified at 97% sequence similarity as a template. FastTree2 was used 
to construct the phylogenetic tree using the generalized time-reversible model for nucleotide 
evolution and the CAT approximation. Local support values were calculated with the 
Shimodaira-Hasegawa test. The tree was rooted with the 16S rRNA gene sequence for 
Halobacterium salinarum and formatted using FigTree. 
 
Comparison of genomes with reference genomes 
Each complete, near-complete, and partial bacterial and plasmid genome was compared to the 
genome of its closest sequenced relative. Both complete and draft genomes from NCBI were 
used in the comparison. The most closely related bacterial genomes were determined using 
reconstructed 16S rRNA gene sequences, ribosomal protein L5, ribosomal protein S15, and hits 
to other protein sequences in UniRef90. Aligning reconstructed plasmid genomes to all available 
sequenced plasmid genomes identified their most closely related relatives. Once selected, each 
genome was compared to its reference genome. The shared amino acid identity between each 
reconstructed and reference genome was calculated as the average amino acid identity of 
reciprocal best USEARCH hits between the two genomes (putative orthologs). 
 
Evaluating community oxygen tolerance and respiration capability 
Community oxygen tolerance and respiration capacity were evaluated based on the presence of 
specific genes in the metagenome. To assess the oxygen utilization capacity of the community, 
all predicted ORFs were searched for cytochrome c oxidase, cytochrome bd oxidase, and heme-
copper cytochrome oxidase genes based on assignments from UniRef90. To evaluate the 
potential for the community to use various terminal electron acceptors in anaerobic respiration, 
UniRef90 annotations were searched for the presence of fumarate, trimethylamine N-oxide 
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(TMAO), dimethyl sulfoxide (DMSO), nitrate, nitrite, and nitric oxide reductase genes. To 
confirm the annotations for these genes in the V. cambriense genome, a phylogenetic tree was 
reconstructed with the amino acid sequences of the putative catalytic subunits for the nitrate 
reductase and DMSO reductase genes. The tree was reconstructed using MEGA5 (Tamura et al., 
2011) to produce a maximum-likelihood phylogeny calculated with 100 bootstrap replicates 
based on the Jones-Taylor-Thornton model of amino acid evolution. All positions containing 
alignment gaps and missing data were eliminated based on pairwise sequence comparisons 
(pairwise deletion option). 
 
Analysis of Human Microbiome Project data 
The Human Microbiome Project (HMP) (The NIH HMP Working Group et al., 2009) hosts 
QIIME (Caporaso et al., 2010b) output files for the HMP 16S rRNA Clinical Production Phase I 
and the HMP 454 Clinical Production Pilot studies (NCBI SRA projects SRP002395 and 
SRP002012, respectively), which together consist of over 5,700 samples. The 16S rRNA gene 
variable region 3 to 5 (V3-5) was sequenced for all samples and the 16S variable region 1 to 3 
(V1-3) was sequenced for a subset of 2,911 samples. The OTU abundance matrices were 
downloaded for each dataset (V3-5 and V1-3) and the abundance of each OTU was calculated as 
a percent of total reads for each sample. These tables were used to evaluate the relative 
abundance of Varibaculum across samples and body sites in the HMP data collected for healthy 
human adults. 
 
Comparative genomics 
Although there are no previously sequenced genomes for any member of the genus Varibaculum, 
several complete and draft genomes are available for members of the family Actinomycetaceae. 
These genomes, along with the genomes reconstructed from the microbial community of this 
premature infant, were used in a comparative analysis. Each genome was annotated by finding 
reciprocal best USEARCH hits between each genome and a subset of the KEGG database 
containing only prokaryotic protein sequences with KOs (with a minimum bit score of 40 and 
maximum E-value of 0.01). Metabolic functional potential was compared across genomes by 
identifying gene sequences associated with specific metabolic functions in each genome (see 
Supplementary File 1.6 for a complete list of these proteins and their associations). These 
findings were visualized by normalizing the number of genes identified for each function and 
then using the R pheatmap library to produce a heatmap clustered using the complete linkage 
method on a Euclidean distance matrix. 
 
Data Availability 
All data have been made publically available and can be accessed through NCBI GenBank Short 
Read Archive (SRS470507), DDBJ/EMBL/GenBank (AZMA00000000, AZMB00000000, 
AZMC00000000, AZMD00000000, AZME00000000, AZMF00000000, AZMG00000000, 
AZMH00000000, AZMI00000000, AZMJ00000000, AZMK00000000, AZML00000000, 
AZMM00000000), and ggKbase (ggkbase.berkeley.edu/DORA/organisms). 
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Supplementary Tables 
Supplementary Table 1.1 | ESOM bins. Assembly and classification of scaffolds clustered into 
bins using an ESOM. Each bin was compared to a sequenced microbial genome by identifying 
orthologs. Orthologs were identified by finding reciprocal best hits from pair-wise protein 
sequence searches between each bin and the genome of a sequenced relative. 
 
Supplementary Table 1.2 | Absolute abundance of reconstructed genomes. Percent of total 
reads used in the metagenome assembly that could be mapped to reconstructed genomes at each 
time point and as a total.  
 
Supplementary Table 1.3 | Coverage of reconstructed genomes. Coverage of reconstructed 
genomes at each time point and as a total.  
 
Supplementary Table 1.4 | Relative abundance of reconstructed genomes. Relative 
abundance of reconstructed genomes at each time point and as a total.  
 
Supplementary Table 1.5 | Relative abundance of bacterial genomes. Relative abundance of 
reconstructed bacterial genomes at each time point and as a total.  
 
Supplementary Files 
Supplementary File 1.1 | ESOM data. 
 
Supplementary File 1.2 | Single copy genes in reconstructed genomes. 
 
Supplementary File 1.3 | EMIRGE reconstructed 16S rRNA gene sequences. 
 
Supplementary File 1.4 | V. cambriense Pathway Tools data. 
 
Supplementary File 1.5 | KEGG annotations. 
 
Supplementary File 1.6 | Metabolic features for comparative genomics. 
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Figure 1.1 | Emergent self-organizing map (ESOM) binning of the metagenome assembly. 
ESOM showing the clustering and binning of de novo assembled metagenomic data. Each point 
represents a fragment of an assembled scaffold. Clustering of data points is based on the time 
series abundance pattern of each assembled scaffold. Dark lines between clusters show definitive 
separation of genome bins. Colors designate the genome bin for each scaffold fragment. 
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Figure 1.2 | Phylogeny of plasmid replication protein genes. Plasmid novelty and diversity is 
shown using plasmid replication proteins. Protein sequences were aligned using MUSCLE and a 
phylogenetic tree was constructed using FastTree2 with the Jones-Taylor-Thornton model of 
amino acid evolution and the CAT approximation. Local support values were calculated with the 
Shimodaira-Hasegawa test. Sequences from plasmids reconstructed from the microbial 
community are shown in red. 
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Figure 1.3 | Phylogeny of EMIRGE 16S rRNA genes. Reconstructed 16S rRNA gene 
sequences were aligned along with sequences from their closest relatives in addition to species 
previously identified in the infant gut. Sequences were aligned with PyNAST using the 
GreenGenes alignment of OTUs classified at 97% sequence similarity as a template. The 
phylogenetic tree was constructed with FastTree2 using the generalized time-reversible model 
for nucleotide evolution and the CAT approximation. Local support values were calculated with 
the Shimodaira-Hasegawa test. The tree was rooted with the 16S sequence for Halobacterium 
salinarum and formatted using FigTree. Sequences reconstructed with EMIRGE from the 
microbial community are shown in blue, and reference sequences with an associated sequenced 
genome are shown in red. 
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Figure 1.4 | Metabolic analysis of reconstructed community and isolate genomes. Genomes 
reconstructed from the microbial community were compared with each other and with the 
genomes of cultured isolates previously sequenced for members of the family Actinomycetaceae. 
Each genome was annotated with KEGG and the genes that matched specific metabolic features 
were counted (Supplementary File 1.5). The number of genes identified for each group was 
normalized across genomes to facilitate coloring and clustering. The number of genes identified 
for each feature in each genome is shown. 
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Figure 1.5 | Phylogenetic analysis of the catalytic subunits of the dimethyl sulfoxide 
(DMSO) reductase superfamily. Proteins assigned to the DMSO reductase superfamily in this 
study are indicated by red stars.  
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Figure 1.6 | Relative abundance of bacterial species over time. Relative abundances were 
calculated for bacterial species at nine different time points during the third week of life of a 
premature male infant. (a) Shows dominant taxa and (b) shows low-abundance species across the 
time series. During this period, the colonization process is defined by two distinct phases based 
on the dominance of either facultative (phase 1) or obligate (phase 2) anaerobes. 
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Figure 1.7 | Rank abundance of bacterial species during phases of colonization. Rank 
abundance was determined from the relative abundance of each species during each phase of 
microbial colonization. Taxonomic identification and metabolic analysis was completed based 
on genome reconstructions from the shotgun-sequenced microbial community. The colonization 
process is broken into two distinct phases defined by the dominance of either (a) facultative 
anaerobes during phase one or (b) obligate anaerobes during phase two. 
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Figure 1.8 | Relative abundance of organisms from the genus Varibaculum in Human 
Microbiome Project samples. The relative abundance of Varibaculum organisms was 
determined for each sample analyzed as part of the Human Microbiome Project. These samples 
were characterized by sequencing the V1-3 (a) and V3-5 (b) regions of the 16S rRNA gene. 
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Figure 1.9 | ESOM clustering of de novo assembled metagenomic data. Each point represents 
a fragment of an assembled scaffold. Clustering of data points is based on the time series 
abundance pattern of each assembled scaffold. Dark lines between clusters show definitive 
separation of genome bins. Data points are colored based on the best BLAST hit of each scaffold 
compared against the NCBI NT database (coloring is independent of the assembly and binning). 
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Table 1.1 | Assessment of genomes reconstructed from the shotgun-sequenced microbial 
community: assembly, binning, phylogeny, and genome completeness. 
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Table 1.2 | Comparison of reconstructed genomes and 16S rRNA gene sequences with those 
from reference databases. Reconstructed genomes were compared with the genomes of isolate 
strains. Reconstructed 16S rRNA genes were searched against sequences in the RDP and 
GreenGenes databases to aid classification. 
 

Genome Genome 
size (bp) 

Closest relative with 
sequenced genome 

Closest relative 
genome size 

(bp) 

% ORFs 
orthologous 

Average % 
amino acid ID 
of orthologs 

EMIRGE EMIRGE 
16S % ID 

Escherichia coli - strain 
A/B - plasmid 3,225 Salmonella enterica subsp. 

enterica serovar Newport str. 
SL254 plasmid 

684 20 93.9   
Escherichia coli - strain A 

- phage 3,920       
Enterococcus faecalis - 

plasmid 5,231 Enterococcus faecalis 62 
plasmid 1,295 100 100   

Streptococcus anginosus 2,108,491 Streptococcus anginosus 1 2 
62CV uid62163 1,821,055 67.7 95.2 S. anginosus 99.8 

Escherichia coli - strain A 5,662,200 Escherichia coli S88 uid62979 5,032,268 47.7 97.5 E. coli O83:H1 str. 
NRG 85 99.9 

Actinomyces urogenitalis - 
phage 2,996       

Veillonella dispar 2,445,194 Veillonella dispar ATCC 
17748 2,118,767 60 91.6 V. dispar 99.3 

Veillonella sp. - species A 
- phage 20,453       

Veillonella sp. - species B 
- phage 16,533       

Actinomyces urogenitalis 2,604,957 Actinomyces urogenitalis DSM 
15434 2,702,812 67.1 98.7 A. urogenitalis 99.9 

Clostridium butyricum 4,350,784 Clostridium butyricum 5521 4,540,699 73.5 96.5 C. butyricum 99.3 

Veillonella sp. - species A 
- plasmid 47,631 Caldicellulosiruptor 

kristjanssonii 177R1B plasmid 3,674 3.6 38.8   

Veillonella sp. - species A 2,664,763 Veillonella dispar ATCC 
17748 2,118,767 47.1 95.6 Veillonella sp. oral 

taxon 158 91.2 

Enterococcus faecalis 2,960,721 Enterococcus faecalis OG1RF 2,739,625 79.1 98.8 E. faecalis OG1RF 98.7 

Staphylococcus sp. - 
plasmid B 2,539 Staphylococcus haemolyticus 

JCSC1435 plasmid 402 100 99.8   
Staphylococcus sp. - 

plasmid A 2,556 Macrococcus caseolyticus 
JCSC5402 plasmid 997 33.3 80.3   

Staphylococcus sp. - 
phage 2,423       

Escherichia coli - strain B 633,084 Escherichia coli S88 uid62979 5,032,268 52.7 82.3   

Varibaculum cambriense 2,247,641 Mobiluncus mulieris ATCC 
35239 2,533,633 56 53.9 V. cambriense 99.2 

Streptococcus 
parasanguinis - plasmid 8,975 Enterococcus faecium 

Aus0004 plasmid 1,192 14.3 32.4   

Veillonella sp. - species B 639,180 Veillonella dispar ATCC 
17748 2,118,767 62.5 86.7 V. parvula DSM 

2008 90.3 

Clostridium bartlettii 2,685,446 Clostridium bartlettii DSM 
16795 2,972,256 81.7 98.1 Clostridium sp. 

MDA2315 99.4 

Negativicoccus 
succinicivorans 1,508,898 Bacillus coagulans 36D1 3,552,226 45 43.4 N. succinicivorans 98 

Staphylococcus sp. 1,509,765 Staphylococcus epidermidis 
ATCC 12228 2,499,279 78.3 98.4 S. epidermidis 

ATCC 12228 96.2 

Propionibacterium sp. 336,576 Propionibacterium 5 U 
42AFAA 2,532,807 46.4 82.4 Propionibacterium 

sp. H456 99.4 

Streptococcus 
parasanguinis 2,822,032 Streptococcus parasanguinis 

ATCC 15912 2,153,652 45 94.3 S. parasanguinis 98.9 

Leuconostoc sp. 566,369 Leuconostoc citreum KM20 1,796,284 66.7 96   

Streptococcus sp. 1,915,777 Streptococcus M334 2,207,013 67.6 93.9   
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Table 1.3 | Metabolism of bacterial members of the microbial community. Presence (*) and 
absence of components required for anaerobic respiration and the predicted oxygen requirement 
of each member of the bacterial community. 
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Chapter 2 

Unusual biology across a group comprising more than 15% of domain Bacteria 

C. T. Brown, L. A. Hug, B. C. Thomas, I. Sharon, C. J. Castelle, A. Singh, M. J. Wilkins,  
K. C. Wrighton, K. H. Williams, and J. F. Banfield 

Published in Nature, July 2015. 

Abstract 
A prominent feature of the bacterial domain is a radiation of major lineages that are defined as 
candidate phyla (CP) because they lack isolated representatives. Bacteria from these phyla occur 
in diverse environments (Harris et al., 2004) and are suggested to mediate carbon and hydrogen 
cycles (Wrighton et al., 2012). Genomic analyses of a few representatives suggested that 
metabolic limitations have prevented their cultivation (Albertsen et al., 2013; Kantor et al., 2013; 
Rinke et al., 2013; Wrighton et al., 2012; 2014). We reconstructed 8 complete and 789 draft 
genomes from bacteria representing >35 phyla and documented features that consistently 
distinguish these organisms from other bacteria. We infer that this group, which may comprise 
>15% of the bacterial domain, has shared evolutionary history and describe it as the Candidate 
Phyla Radiation (CPR; Figure 2.1). All CPR genomes are small and most lack numerous 
biosynthetic pathways. Due to divergent 16S rRNA gene sequences, 50-100% of organisms 
sampled from specific phyla would evade detection in typical cultivation-independent surveys. 
CPR organisms often have self-splicing introns and proteins encoded within their rRNA genes, a 
feature rarely reported in bacteria. Further, they have unusual ribosome compositions. All are 
missing a ribosomal protein often absent in symbionts, and specific lineages are missing 
ribosomal proteins and biogenesis factors considered universal in bacteria. This implies different 
ribosome structures and biogenesis mechanisms, and underlines unusual biology across a large 
part of the bacterial domain. 
 

Introduction 
We sampled microbial communities from an aquifer adjacent to the Colorado River near the 
town of Rifle, CO, USA in 2011. Groundwater was filtered through a 1.2 µm pre-filter and cells 
collected on serial 0.2 and 0.1 µm filters (Figure 2.2). Post-0.2 µm filtrates were targeted 
because CPR bacteria were predicted to have ultra-small cells based on their small genomes 
(Wrighton et al., 2012). Groundwater was sampled prior to and during an acetate amendment 
experiment that reproduced conditions that generated the first genomes from CPR bacteria 
(Castelle et al., 2015; Luef et al., 2015; Wrighton et al., 2012; 2014) (Supplementary Table 2.1). 
Total DNA and RNA were extracted from filters and sequenced. We obtained 224 Gbp of 
paired-end metagenomic sequence from 12 samples (150 bp reads, 6 time points, 0.2 and 0.1 µm 
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filters; Supplementary Table 2.2). Sequence assembly generated 3.9 Gbp of contiguous 
sequences ≥5 Kbp. We also obtained 181 Gbp of metatranscriptomic sequence from six samples 
(50 bp reads, 0.2 µm filters). 
 

Results and Discussion 
Assembled scaffolds were binned into genomes based on their GC content, DNA sequence 
coverage, abundance pattern across samples, and taxonomic affiliation (binning was validated 
with a tetranucleotide sequence signature method; Figure 2.3). Overall, we reconstructed >1,750 
genome bins from microbial community sequence data. Here, we focus on genomes from CPR 
bacteria and TM6, which represented >60% of bins. Included in our analyses of the CPR are 
members of the Parcubacteria (OD1), Microgenomates (OP11), WWE3, Berkelbacteria 
(ACD58), Saccharibacteria (TM7), WS6, Peregrinibacteria (PER), Kazan, and previously 
unrecognized lineages (CPR1 through 3). In total, 789 draft-quality (≥50% complete) genomes 
were reconstructed (Table 2.1). We manually curated eight genomes to completion: the first 
three from Microgenomates, two from Parcubacteria, one each from Kazan and Berkelbacteria, 
and an additional genome from Saccharibacteria. All complete and draft genomes are small and 
most are <1 Mbp in length (Supplementary Table 2.3 and Supplementary Table 2.4). 
 
In total, 1,543 bacterial 16S rRNA genes ≥800 bp were assembled and curated to eliminate 
assembly errors (713 sequences clustered at 97% identity; Supplementary File 2.1). Relative 
abundance measurements show enrichment of CPR organisms in small-cell filtrates, suggesting 
they have ultra-small cells (Figure 2.4). This finding is supported by a recent microscopy study 
(Luef et al., 2015). Surprisingly, 31% of 16S rRNA genes encoded a large (≥10 bp) insertion 
sequence (max: 2,004 bp, mean: 519 bp, standard deviation: 372 bp; Supplementary Table 2.5). 
Insertions are found in phylogenetically diverse members of CPR phyla (Figure 2.1, 
Supplementary File 2.2, and Supplementary File 2.3). Insertion sites are clustered in several 
distinct locations on the 16S rRNA gene, both in variable and conserved regions (Figure 2.5). 
Most insertions ≥500 bp encode a catalytic RNA intron (group I or II) and/or an open reading 
frame (ORF), suggesting they are self-splicing. Encoded proteins frequently belong to families of 
homing endonucleases (LAGLIDAG 1-3 and GIY-YIG). However, 25% are not similar to 
known protein families or to each other. These may represent novel endonucleases or may no 
longer be functional, since loss of function is common in homing endonucleases (Burt and 
Koufopanou, 2004). 
 
Four members of the Thiotrichaceae are the only bacteria known to have self-splicing introns 
within their 16S rRNA genes (Salman et al., 2012). An extensive search for insertions in genes 
from our study and the Silva database (Quast et al., 2013) suggests their rarity in bacteria outside 
the CPR (Figure 2.6 and Supplementary Table 2.6). Especially rare are insertions encoding 
predicted self-splicing introns and/or ORFs. However, these genes need not be functional if the 
genome encodes additional, insertion-free copies. Importantly, all complete CPR genomes have 
only one copy of the 16S rRNA gene (this study and others (Albertsen et al., 2013; Kantor et al., 
2013)). Sequencing coverage analysis of draft genomes further indicates that a single copy is 
typical for these lineages (Figure 2.7 and Supplementary Table 2.7). 
 
Mapping metatranscriptomic sequences to assembled 16S rRNA genes showed that insertions 
are not retained in transcribed RNAs, and are likely rapidly degraded (Supplementary Table 
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2.8). However, it is possible that spliced sequences are rendered inaccessible to sequencing after 
hybridizing, circularizing, or, in some cases, due to their small size. Regardless of their fate, 
splicing establishes these insertions as introns. Self-splicing is expected if insertions encode a 
catalytic RNA intron; however, splicing could also occur via an RNase III-mediated mechanism 
(Evguenieva-Hackenberg, 2005). Several genes contain multiple introns. For example, one of the 
complete genomes we obtained encodes a 16S rRNA gene with four introns (Figure 2.8). 
 
CPR bacteria frequently encode introns in 23S rRNA genes with features similar to those in 16S 
rRNA genes (Figure 2.9, Supplementary Table 2.5, Supplementary Table 2.8, and 
Supplementary File 2.4). However, these introns and encoded proteins share little sequence 
similarity with one another (Supplementary Table 2.9). It remains a puzzle as to why introns in 
critical, highly transcribed rRNA genes do not make these organisms uncompetitive, as their 
transcription is costly, even though formation of nonfunctional ribosomes is avoided by splicing. 
 
Insertions in rRNA genes are found in Coxiella and Rickettsiales-lineage endosymbionts (Baker 
et al., 2003; Raghavan et al., 2008). Interestingly, one member of the Parcubacteria, Candidatus 
Sonnebornia yantaiensis, is intracellular (Gong et al., 2014), but does not contain an insertion in 
its 16S rRNA gene (Figure 2.1). However, there is no evidence that an intercellular lifestyle is 
typical across CPR lineages, although a strong dependence on other community members is 
likely (Kantor et al., 2013; Wrighton et al., 2014). 
 
Metagenomic analyses are PCR-independent and, therefore, not biased by primers designed 
based on expectations of sequence conservation. As a consequence, our sampling indicated that 
many CPR organisms would evade detection by 16S rRNA gene amplicon surveys. Primer 
binding analysis showed that primers extensively used in microbial surveys (515F and 806R 
(Caporaso et al., 2012)) would likely not bind to 16S rRNA genes of ~50% of Microgenomates, 
~50% of Saccharibacteria, 60% of WWE3, and 100% of WS6 sequences sampled here (Figure 
2.10). In fact, these primers would likely miss ~20% of all bacteria detected in this study, 
including organisms outside the CPR. Further, introns in these genes would interfere with 
amplification, both because they occur in regions targeted by primers, and as they increase the 
length of the target sequence. In addition to being excluded during size-selection of amplicons, 
intron-containing genes are less likely to amplify compared with shorter, intron-free genes 
(Salman et al., 2012). Thus, several barriers have prevented identification of many CPR bacteria. 
 
Removal of introns from 16S rRNA gene sequences, followed by structural alignment 
(Nawrocki, 2009), was critical to establishing a reliable phylogeny. The new phylogenetic 
analysis shows that the CPR is monophyletic (Figure 2.1), a result also evident in concatenated 
ribosomal protein trees (Supplementary File 2.2), and seen in prior analyses (Baker and Dick; 
Kantor et al., 2013; Quast et al., 2013; Rinke et al., 2013; Wrighton et al., 2012; 2014). 
Phylogenetic analysis defined 35 phyla within the CPR (see below), which encompasses a 
proposed superphylum “Patescibacteria,” previously suggested to include just three phyla (Rinke 
et al., 2013). 
 
 Recently, Yarza et al. suggested the existence of ~1,500 bacterial phyla using a 75% 16S rRNA 
gene sequence identity threshold (Yarza et al., 2014). This contrasts with the current view, which 
includes 29 established phyla and ~60 CP. Using the Yarza et al. definition, we estimate that the 
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CPR consists of >250 phyla (Figure 2.1 and Supplementary File 2.2). With the addition of 
>550 Mbp of CPR genome sequence, there is sufficient sampling to clearly resolve 14 phyla 
within the Parcubacteria and 11 phyla within the Microgenomates, which have sufficient 
sequence divergence to account for >120 and >60 phyla, respectively. We propose that these 25 
phyla be recognized because i) complete and/or draft genomes are available, ii) they are 
monophyletic lineages in both 16S rRNA gene and concatenated ribosomal protein trees, and iii) 
they pass an approximate 75% 16S rRNA gene sequence identity threshold. Importantly, 
regardless whether previous phyla designations or new criteria (Yarza et al., 2014) are used, the 
CPR comprises >15% of domain Bacteria. 
 
A striking finding from analysis of complete and draft genomes (see statistical assessment in 
Methods) is unusual ribosome composition in CPR bacteria. All CPR and TM6 bacteria lack 
ribosomal protein L30 (rpL30; Table 2.1, Figure 2.11, Supplementary Table 2.10, and 
Supplementary File 2.5). Apparently non-essential in bacteria (Akanuma et al., 2012), this 
protein is commonly present except in some symbionts, parasites, Cyanobacteria, and throughout 
the Planctomycetes-Verrucomicrobia-Chlamydiae (PVC) superphylum (Lagkouvardos et al., 
2014; Lecompte, 2002; Yutin et al., 2012). Although loss of ribosomal protein L25 is often seen 
in conjunction with absence of rpL30 (Lecompte, 2002), TM6 (not within the CPR) is the only 
CP studied here where this is the case. This suggests different trajectories of ribosome evolution 
between the CPR and other lineages without rpL30. 
 
WS6, WWE3, Saccharibacteria, and almost all Microgenomates are missing ribosomal protein 
L9 (rpL9; Table 2.1). RpL9 is thought to be universal in bacteria (Yutin et al., 2012), and is 
involved in both initiation of ribosome assembly (Nowotny and Nierhaus, 1982) and maintaining 
translation fidelity (Atkins and Björk, 2009), yet culture-based studies suggest it does not 
contribute to fitness (Akanuma et al., 2012). Of the three complete Microgenomates genomes, 
one encodes rpL9. This rpL9 sequence is phylogenetically related to Parcubacteria sequences 
(Supplementary File 2.2), suggesting acquisition by lateral gene transfer. 
 
Ribosomal protein L1 (rpL1) is absent from a group within the Parcubacteria that potentially 
includes >90 phyla. We refer to this group as OD1-L1 (Figure 2.1). No other organisms are 
known to lack rpL1, a large protein that forms a prominent feature of the large subunit 
(Schuwirth, 2005). This ribosome initiator protein (Nowotny and Nierhaus, 1982) controls its 
own expression (Nevskaya, 2005), and loss of rpL1 results in severe growth defects (Akanuma et 
al., 2012). Absence of rpL1 in this diverse clade suggests alternative mechanisms of ribosome 
regulation, possibly involving an analogous protein and/or an alternative ribosome structure. 
 
The ribosomal protein biogenesis factor GTPase Der is missing from almost all organisms 
lacking either rpL9 or rpL1 (Figure 2.11). Der is essential for ribosome production and is 
conserved throughout bacteria (Shajani et al., 2011). Thus, in addition to having unusual 
ribosome composition, many CPR bacteria likely employ alternative ribosome assembly 
methods. Although some CPR bacteria have both atypical ribosomes and rRNA introns, these 
features are not directly linked and thus are not compensatory. 
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Conclusion 
Typically, bacteria within a phylum have widely varying genome sizes and metabolic capacities. 
In contrast, organisms throughout the CPR have consistently small genomes and similar 
metabolic limitations. Specifically, all have incomplete tricarboxylic acid cycles and lack 
electron transport chain complexes, including terminal oxidases and reductases; some lack ATP 
synthase (Figure 2.11). With the notable exception of the Peregrinibacteria, most have 
incomplete nucleotide and amino acid biosynthesis pathways. CPR bacteria are likely obligate 
fermenters dependent on other organisms for survival, although they could support respiring 
organisms by excreting fermentation end products. Overall, these characteristics, in addition to 
unusual ribosomes, a high frequency of rRNA introns, and a distinct phylogeny, establish the 
CPR as a subdivision within domain Bacteria. 
 

Methods 
Groundwater sampling and geochemical measurements 
We studied groundwater microbial communities from an aquifer adjacent to the Colorado River 
near Rifle, CO, USA at the Rifle Integrated Field Research Challenge (IFRC) site. Aquifer well 
CD-01 (39°31’44.69” N, 107°46’19.71” W; 1,617.5 meters above mean sea level) was observed 
from August 23 to December 22, 2011, during which a 79-day acetate amendment experiment 
was conducted (Figure 2.2 and see (Castelle et al., 2015; Luef et al., 2015)). This well had been 
subjected to an acetate stimulation experiment during the previous year (Luef et al., 2012; 
Williams et al., 2011). Acetate (15 µM target concentration within the aquifer) was administered 
to the alluvial aquifer through a series of injection wells, and microbial biomass was sampled 
from groundwater pumped from a down gradient monitoring well. Approximately 100 liters of 
groundwater was sampled from a depth of 5 m below ground surface (bgs) through a 1.2 µm pre-
filter, and cells were collected on serial 0.2 and 0.1 µm filters (Supor disc filters; Pall 
Corporation, NY), with the specific objective of enriching for organisms with small cell sizes. 
Filters were immediately frozen after collection in a dry ice and ethanol bath. See 
Supplementary Table 2.1 for sampling dates and the amount of groundwater filtered over the 
course of the experiment. Geochemical measurements were made on samples collected 5 m bgs. 
The HACH phenanthroline assay and sulfide reagent kits were used to measure ferrous iron and 
sulfide concentrations, respectively (Hach Co., Loveland, CO). Acetate and sulfate 
concentrations were measured by ion chromatography, as previously described (Williams et al., 
2011). Briefly, acetate and sulfate concentrations were measured with a Dionex ICS-2100 fitted 
with an AS-18 guard and analytical column (Dionex Co., Sunnyvale, CA). 
 
Metagenome and metatranscriptome sequencing 
Six time points spanning a range of geochemical conditions were chosen for metagenomic and 
metatranscriptomic analysis (Figure 2.2 and Supplementary Table 2.1). DNA was extracted 
from ~1.5 g of each frozen filter using the PowerSoil DNA Isolation Kit (MO-BIO Labs Inc., 
Carlsbad, CA) with the following modifications: DNA was concentrated by sodium 
acetate/ethanol precipitation with glycogen, and DNA was eluted in 50 µl TRIS buffer. DNA 
library preparation and sequencing was conducted at the Joint Genome Institute (Walnut Creek, 
CA). Total DNA was sequenced on an Illumina HiSeq (Illumina Inc., San Diego, CA), 
producing 150 bp paired reads with a targeted insert size of 500 bp. Sequence data were 
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processed using version 1.8 of the Illumina CASAVA pipeline, and all reads were trimmed based 
on quality scores using Sickle (Joshi) (default parameters; Supplementary Table 2.2). 
 
RNA was extracted from the 0.2 µm filters using the Invitrogen TRIzol® reagent, followed by 
genomic DNA removal and cleaning using the Qiagen RNase-Free DNase Set kit and the Qiagen 
Mini RNeasyTM kit. An Agilent 2100 Bioanalyzer (Agilent Technologies, Inc., Santa Clara, CA) 
was used to assess the integrity of the RNA samples. The Applied Biosystems SOLiDTM Total 
RNA-Seq kit was used to generate the cDNA template library. The SOLiDTM EZ Bead system 
(Life Technologies, Grand Island, NY) was used to perform emulsion clonal bead amplification 
to generate bead templates for SOLiDTM platform sequencing. Samples were sequenced at 
Pacific Northwest National Laboratory on the 5500XL SOLiDTM platform. The 50 bp single 
reads were trimmed using Sickle (default parameters; Supplementary Table 2.2). 
 
Metagenome assembly, annotation, and genome binning 
Total community DNA was assembled individually for each sample using IDBA_UD (Peng et 
al., 2012) with default parameters (Supplementary Table 2.2). 16S and 23S rRNA gene 
sequences were identified from all assembled sequences and curated using an automated method 
(see below). Scaffold coverage was calculated by mapping reads back to the assembly using 
Bowtie2 (Langmead and Salzberg, 2012) with default parameters for paired reads. All scaffolds 
≥5 Kbp were included when binning genomes from the metagenome assembly. These scaffolds 
were annotated by first predicting open reading frames (ORFs) using the metagenome 
implementation of Prodigal (Hyatt et al., 2010), and then using USEARCH (–ublast) (Edgar, 
2010) to search protein sequences against UniRef90 (Suzek et al., 2007), KEGG (Kanehisa et al., 
2012; Minoru Kanehisa, 2000), and an in-house database composed of ORFs predicted from 
genomes of candidate phyla (CP) organisms. The in-house database includes previously 
published genomes (Castelle et al., 2013; Hug et al., 2013; Kantor et al., 2013; Wrighton et al., 
2012; 2014) and genomes from ongoing work. Scaffolds were binned based on their GC content, 
DNA sequence coverage, abundance pattern across samples, and taxonomic affiliation, both 
automatically with the ABAWACA algorithm (see below) and manually using ggKbase tools 
(ggkbase.berkeley.edu). Bins generated by ABAWACA were manually inspected within 
ggKbase. Reported here are genomes binned for organisms associated with the Candidate Phyla 
Radiation (CPR; Figure 2.1 and Supplementary Table 2.3) and TM6 (a phylum of organisms 
with similar characteristics). 
 
To test the accuracy of this binning method, 20 draft-quality genomes were randomly selected 
from a sample with a high proportion of CPR genomes (GWA2). These genomes were 
fragmented and then re-clustered based on tetranucleotide signatures using an Emergent Self-
Organizing Map (ESOM), as previously described (Dick et al., 2009). Tetranucleotide 
frequencies were calculated for 5-10 Kbp scaffold fragments. The number of occurrences of each 
tetranucleotide in each fragment was normalized based on the total number of times the 
tetranucleotide was observed across all fragments, and then these values were log-transformed, 
standardized so they would follow a normal distribution, and then scaled from 0-1. Normalized 
tetranucleotide values for each fragment were standardized so they would also follow a normal 
distribution. The resulting matrix was used to train an ESOM for 100 epochs using esom_train.pl 
(Norman) (downloaded October 2014). The ESOM was visualized using the Databionic ESOM 



 

 37  
 

Tools software (Ultsch, 2005). Coloring fragments (data points) in the ESOM based on the 
genome each fragment originated from enabled validation of these genome bins (Figure 2.3). 
 
ABAWACA genome binning 
ABAWACA was used to generate preliminary genome bins for each sample. This algorithm 
assesses different characteristics of assembled scaffolds to bin them into genomes. Here, we used 
a combination of mono-, di-, and tri- nucleotide frequencies and coverage values calculated by 
mapping DNA sequences from all samples to the scaffolds from the sample being binned. This 
algorithm uses the given information in a hierarchical clustering fashion as follows. First, all 
scaffolds are broken into 5 Kbp segments called data points, and the properties of each data point 
are computed. The binning process begins with a single bin that contains all scaffolds and 
proceeds by iteratively splitting this and subsequent bins. All non-final bins are evaluated during 
each iteration. The algorithm searches for a single value for one of the characteristics that will 
result in the best separation of the scaffolds into two bins. Separation quality is calculated based 
on the number of data points that were assigned correctly given the separation of the scaffolds. 
Once a split has been made, scaffolds are separated into the bin with the majority of the data 
points representing the scaffold. Bins are approved if the quality score exceeds a predefined 
threshold, and both bins consist of at least 50 data points. A bin is considered final if no 
separation can be made; otherwise, it undergoes further rounds of binning. 
 
Genome assessment and finishing 
Genome bins were associated with CPR lineages based on phylogenetic analysis of 16S rRNA 
genes and/or ribosomal proteins (see below). When these phylogenetic markers were not present 
for a particular genome bin, taxonomic placement was achieved based on a consensus of the 
taxonomic assignments given to ORFs based on their similarity to ORFs from CPR 
representatives in the CP database described above. Genome completeness was assessed using a 
modified version of a previously reported list of universal single copy genes (SCGs) for bacteria 
(Supplementary Table 2.3 and see (Raes et al., 2007)). Several SCGs were not included as they 
were found to be unsuitable for the CPR, either because these genes were too divergent in CPR 
genomes to be reliably detected, or because members of the CPR do not encode these genes. For 
example, the genes for ribosomal proteins L1 and L9 are not encoded in the genomes of many 
CPR organisms (see main text). SCGs were identified based on a reciprocal best BLAST 
(Altschul et al., 1990) hit procedure using a database of SCG protein sequences from a 
representative set of genomes. First, SCG proteins from the database were searched against all 
protein sequences in a given genome to identity SCG candidates (blastall –p blastp –F F –e 1e-2). 
Then, these candidate proteins were searched against the SCG protein sequence database to 
confirm the assignment (blastall –p blastp –F F –e 1e-5 –b 1 –v 1). SCGs were considered to be 
present if they were identified by the reciprocal hit method, and the best alignment with a 
database sequence covered ≥50% of the protein sequence.  
 
In order to be included in this study as a draft genome, a bin must have contained at least 50% of 
these SCGs with less than 1.125 copies of the genes (indicating that the bin does not contain 
significant contamination from other genomes). In order to make consistent comparisons with 
previously sequenced genomes from the CPR, all available genomes were re-assessed using 
these methods (Supplementary Table 2.4). 
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Several high-quality genome bins were selected for manual curation and genome finishing. 
Binned scaffolds were connected with one another by extending scaffolds and searching for 
overlaps. Scaffold extension was achieved by assembling reads mapped to the ends of scaffolds. 
Assembly errors were detected by manually inspecting the read mapping for these genomes. 
Genomes were only considered to be complete if they were circular, did not contain gaps, and 
were, based on complete visual inspection of mapped reads, free of assembly errors. Assembly 
errors can be identified as regions that do not have read support (i.e. reads may map but with 
mismatches, or regions may not be supported by paired reads). These regions can be manually 
corrected. Genomes were also checked for the presence of “orphaned pairs,” which could 
indicate alternative assembly paths. The complete genome for GWB1_sub10_OD1-complete was 
obtained by first assembling 1/10 of the sequence data for sample GWB1, binning scaffolds 
based on GC content, coverage, and taxonomic affiliation, and then genome finishing as 
described above. 
 
Identification of rRNA genes and insertions 
16S and 23S rRNA gene sequences were identified based on Hidden Markov Model (HMM) 
searches using the cmsearch program from the Infernal package (Nawrocki et al., 2009) 
(cmsearch –hmmonly –acc –noali –T –1). Importantly, all identified gene sequences were 
curated to remove assembly errors before any analysis was conducted (see below). To identify 
16S rRNA gene sequences, all assembled contigs were searched against the manually curated 
structural alignment of the 16S rRNA provided with SSU-Align (Nawrocki, 2009). Since the 
SSU-Align 16S rRNA gene covariance model did not include sequences with insertions, large 
gaps in the alignment between each sequence and the model revealed the boundaries of 
insertions. Because no equivalent model existed for the 23S rRNA gene, we built a sequence-
only model from the manually curated seed alignment maintained by the Comparative RNA Web 
(Cannone et al., 2002) (Supplementary File 2.4). While this model did not contain secondary 
structure information, it was appropriate for identifying 23S rRNA genes, and the boundaries of 
insertion sequences, from sequence-based HMM alignments, as was done for 16S rRNA genes. 
In order to identify the location of rRNA gene insertions with respect to well-studied Escherichia 
coli sequences, all bacterial rRNA gene sequences found to encode insertions were aligned 
against models consisting of only the respective rRNA from E. coli strain K12 substrain DH10B 
(Figure 2.5, Figure 2.9, and Supplementary Table 2.5). 
 
Similarity of rRNA insertions to previously studied structural RNA families (e.g. group I and 
group II catalytic RNAs) was determined by searching full rRNA sequences against Rfam 
(Burge et al., 2012) using cmscan (also from Infernal; Supplementary Table 2.5). Regions of 
the rRNA with significant alignments to a structural RNA family (passed model inclusion 
threshold) were considered as positive hits if at least 25% of the alignment overlapped with an 
insertion. These rRNA structural families were of particular interest for determining whether or 
not insertions encode catalytic RNAs potentially capable of self-splicing from containing RNA 
sequences (Figure 2.5 and Figure 2.9). RNA secondary structure was predicted for selected 
intervening sequences using the Andronescu 2007 model (Andronescu et al., 2007) implemented 
in Geneious v. 7.1.5 (Kearse et al., 2012) (Figure 2.8). 
 
ORFs encoded within rRNA insertion sequences were identified by first predicting ORFs across 
full rRNA genes, and then selecting ORFs encoded within insertion regions. In order to exclude 
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false ORF predictions, at least 90% of the ORF had to overlap with an insertion. Insertion-
encoded ORFs were searched against Pfam (Finn et al., 2013) in order to associate encoded 
proteins with known families (Figure 2.5, Figure 2.9, and Supplementary Table 2.5). In some 
cases, Phyre2 (Kelley and Sternberg, 2009) was used to model protein sequences and provide 
further support for identified homing endonucleases (Figure 2.8). Insertions and ORFs identified 
within 16S and 23S rRNA genes were compared with one another using BLAST 
(Supplementary Table 2.9). In order to assess the prevalence and types of intervening 
sequences previously sampled in 16S rRNA genes from bacteria, version 115 of non-redundant 
SILVA (Quast et al., 2013) was analyzed using the same methods (Figure 2.6 and 
Supplementary Table 2.6). Importantly, all insertions ≥10 bp were removed prior to multiple 
sequence alignment and phylogenetic analysis of 16S rRNA gene sequences. 
 
Bacterial community composition based on assembled 16S rRNA genes 
The composition of the bacterial community was determined based on assembled and curated 
16S rRNA gene sequences. Each sequence was given a taxonomic assignment based on the 
phylogenetic analysis described below. Coverage of all assembled 16S rRNA gene sequences 
was determined for each sample by stringently mapping reads using Bowtie2 (no mismatches 
allowed). For each sample, the coverage of all sequences belonging to each lineage of interest 
was summed, and then converted to a percent relative abundance in order to observe the 
composition of each filtrate, and shifts in the community across the time series (Figure 2.4). 
 
16S rRNA gene copy number 
16S rRNA gene copy number was estimated for all complete and draft genomes based on two 
assessments. First, the number of assembled 16S rRNA gene sequences was determined. Second, 
coverage of 16S rRNA gene regions was compared with the coverage of the rest of the genome 
in order to determine relative copy number. Relative copy number was calculated because of the 
likeliness of assembling only one 16S rRNA gene for organisms with multiple, identical copies 
of the gene. Due to the conserved nature of the 16S rRNA gene, it is common for these regions 
to have inflated coverage values based on default mapping parameters due to inaccurate 
assignment of reads to sequences from other organisms. To avoid this, both genome and 16S 
rRNA gene coverage values were calculated based on reads that mapped with zero mismatches. 
Relative copy number was calculated as: (16S rRNA gene coverage)/(genome coverage). Copy 
number for each genome was determined by whichever value was greatest, the number of 
assembled genes or relative copy number (Figure 2.7 and Supplementary Table 2.7). Only ten 
CPR genomes were found to encode more than one copy of the 16S rRNA gene; however, since 
these genes were not similar to one another, it is more likely that these rare cases were binning 
errors. 
 
rRNA gene transcript analysis 
In order to determine the fate of rRNA insertion sequences, RNA transcript sequences recovered 
from 0.2 µm filters were stringently mapped to assembled, curated rRNA genes. In order to 
prevent short reads from erroneously matching to either rRNA genes or insertions, zero 
mismatches were allowed between reads and assemblies. Coverage was calculated separately for 
16S rRNA gene and predicted insertion regions, and then the values compared with one another 
(Supplementary Table 2.8). Most insertions were found to have zero coverage. However, in 
some cases very low coverage of insertion regions was found. In almost all cases these low 
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coverage values were the result of a small portion of the insertion region being covered by RNA 
sequence, likely the result of a small difference between predicted and actual insertion regions, 
but possibly the result of partial recovery of spliced insertion sequences. 
 
16S rRNA gene primer binding analysis 
The level of sequence divergence of the 16S rRNA genes assembled here from metagenome data, 
compared with sequences from existing databases, suggests that they would elude PCR-based 
analysis. We assessed the binding affinity of commonly used 16S rRNA gene survey primers 
515F and 806R (Caporaso et al., 2012; Gilbert et al., 2010). Assembled 16S rRNA gene 
sequences were clustered at 97% sequence identity using USEARCH (–cluster_smallmem –
query_cov 0.50 –target_cov 0.50 –id 0.97) in order to remove redundant sequences from the 
analysis. Because some of the sequences are not complete, only those spanning the 515-806 
region of the E. coli 16S rRNA gene were included. Primer binding was assessed with 
PrimerProspector (Walters et al., 2011) using default parameters (Figure 2.10). 
 
Phylogenetic analysis 
Phylogenetic analysis was carried out using several different marker sequences in order to best 
survey the diversity within the groundwater microbial community, and to robustly assign 
taxonomy to complete and draft genomes. Markers included the 16S rRNA gene, ribosomal 
proteins encoded by a syntenic block of genes, and ribosomal protein S3 (rpS3). The syntenic 
block encodes the genes for ribosomal proteins L - 2, 3, 4, 5, 6, 14, 15, 16, 18, 22, 24 and S - 3, 8, 
10, 17, 19, hereafter referred to as rp16. In the rp16 analysis, individual protein sequence 
alignments were concatenated for phylogenetic inference. Unlike in previous metagenomic 
studies, near-complete 16S rRNA gene sequences were assembled commonly enough to be able 
to infer phylogeny for many community members. However, rp16 was also used for 
phylogenetic analysis because i) it is encoded in genomes as a syntenic block and is found in 
only one copy, and thus can be used as a proxy for a particular genotype independent of binning, 
ii) it encodes ribosomal proteins that provide a robust phylogenetic signal, and iii) it is assembled 
more frequently from metagenome sequence data compared with the 16S rRNA gene (Hug et al., 
2013). RpS3 was also independently used as a phylogenetic marker because of its strong 
phylogenetic signal, despite having a relatively short protein sequence. In cases where a genome 
did not contain any of these markers (Supplementary Table 2.3), taxonomic assignment was 
made based on whole genome comparisons to the database of reference genomes described 
above. In all cases, metagenome assembly was necessary for providing a robust phylogenetic 
analysis. 
 
After removing insertions ≥10 bp from 16S rRNA gene sequences from this and previous studies, 
sequences were aligned with SSU-Align. SSU-Align classifies sequences as bacteria, archaea, or 
eukarya, and then generates separate alignments for sequences from each domain. The resulting 
Stockholm-formatted bacterial multiple sequence alignment was converted to FASTA, and all 
alignment insert columns were removed. This resulted in a 1,582 bp alignment. All sequences 
with ≥800 bp of aligned sequence were used for phylogenetic analysis. Several archaeal 
reference sequences were chosen for the phylogenetic root, aligned to the bacterial 16S rRNA 
gene model provided with SSU-Align, and concatenated with the bacterial multiple sequence 
alignment. A maximum-likelihood phylogeny was inferred using RAxML (Stamatakis, 2014) 
with the GTRCAT model of evolution and 100 bootstrap re-samplings (Supplementary File 2.2 
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and Supplementary File 2.3). A subset of the tree was annotated using GraPhlAn (Segata and 
Huttenhower) (Figure 2.1). 
 
Rp16 ORFs were identified by searching all ORFs encoded on scaffolds ≥5 Kbp against 
databases of each of these ribosomal proteins. Searches were carried out with USEARCH (–
ublast). Syntenic groups of ORFs were selected if at least three of the ribosomal proteins in rp16 
could be identified with an E-value ≤1 x 10-6. This allowed for identification of all instances of 
each ribosomal protein in rp16 encoded within assembled scaffolds. For each ribosomal protein, 
all identified protein sequences along with reference sequences were aligned to their respective 
Pfam HMM profile using hmmalign from the HMMER 3.0 package (Eddy, 2011). Protein 
sequence alignments were converted from Stockholm format to FASTA, alignment insert 
columns were removed, and the 16 protein alignments concatenated. This resulted in a 1,935 
amino acid (aa) alignment. All sequences with ≥1,000 aligned residues were kept for 
phylogenetic analysis. Because of the size of the multiple sequence alignment, phylogenetic 
analysis was carried out in two steps. First, FastTree2 (Price et al., 2010) was used to infer the 
phylogeny of the entire sequence set using the Jones-Taylor-Thornton model of amino acid 
evolution (JTT) and by assuming a single rate of evolution for each site, the “CAT” 
approximation (additional options: –spr 4 –mlacc 2 –slownni). Then, sequences associated with 
the CPR and TM6 were selected, along with representatives of the Archaea and Chloroflexi, in 
order to infer a maximum-likelihood phylogeny using RAxML with the LG + alpha + gamma 
model of evolution and 100 bootstrap re-samplings (see (Hug et al., 2013) for choice of 
evolutionary model). Archaea were included as a root for the tree, and Chloroflexi as a root for 
the CPR. Notably, the CPR is evident as a monophyletic group in both of these analyses, and in 
the 16S rRNA gene phylogeny (Figure 2.1 and Supplementary File 2.2). 
 
Phylogenies were inferred from individual protein sequences for rpS3 and ribosomal protein L9 
(rpL9). All rpS3 protein sequences were identified from metagenome ORFs by searching protein 
annotation descriptions. The same was done for rpL9, except only sequences associated with 
CPR genome bins were included. Erroneously annotated sequences were excluded based on the 
alignment score inclusion threshold for their respective Pfam HMM profiles (aligned using 
hmmalign), followed by manual removal of non-rpS3 or rpL9 sequences. Sequences were 
combined with reference sequences and aligned. RpS3 sequences were aligned to Pfam HMM 
profile PF00189 using the same procedure as was described for the rp16 protein sequences (see 
above). RpL9 was aligned using MUSCLE (Edgar, 2004). All sequences with ≥50 aligned aa 
residues were used for phylogenetic analysis using RAxML with 100 bootstrap re-samplings and 
an evolutionary model chosen using ProtTest (Abascal et al., 2005) (Supplementary File 2.2). 
The ProtTest 2.4 server(Abascal et al., 2005) was run on the Pfam seed alignment for rpS3 and 
on a random subset of the rpL9 alignment, indicating that the LG + gamma, and the LG + 
gamma (with fixed base frequencies) evolutionary models should be used for rpS3 and rpL9, 
respectively. 
 
All phylogenetic trees were visualized using Dendroscope (Huson and Scornavacca, 2012). 
 
Identification of novel phyla 
The number of phyla within the CPR, Parcubacteria (OD1), and Microgenomates (OP11) was 
estimated by counting 16S rRNA gene sequence clusters created based on a 75% sequence 
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identity threshold. After removing insertions ≥10 bp, sequences were clustered using USEARCH 
(–cluster_smallmem –query_cov 0.50 –target_cov 0.50 –id 0.75). This threshold and method for 
estimating the number of phyla were proposed by Yarza et al. These authors proposed that phyla 
could be identified as monophyletic lineages composed of members distinguished by 
approximately this level of sequence divergence. We classified new phyla based on this and 
additional, strict criteria. Clusters of 16S rRNA genes that share ≥75% sequence identity were 
used to assess the divergence and coherence of deep branches of the phylogenetic tree 
(Supplementary File 2.2). Bootstrap support values were often higher for lineages primarily 
composed of one or few clusters, validating the use of this threshold. Lineages were proposed as 
phyla if i) they formed a monophyletic group in the 16S rRNA gene phylogeny, ii) 16S rRNA 
genes were approximately 25% divergent from other lineages, iii) they were also supported by 
the rp16 concatenated ribosomal protein phylogeny, and iv) representative complete and/or draft 
genomes were available. Names for these phyla were proposed based on the names of lifetime 
achievement award recipients in microbiology (Figure 2.1, Table 2.2, and Supplementary File 
2.2). Genomes were associated with these phyla using the 16S rRNA gene and/or rp16 
phylogenies (Supplementary Table 2.3). 
 
Sequence curation 
Assembled 16S rRNA genes, 23S rRNA genes, and scaffold regions encoding rp16 genes were 
curated in order to identify and fix assembly errors prior to assessment of insertions in rRNA 
genes and/or phylogenetic analysis. For curation, these genes were extracted along with 2 Kbp of 
sequence from each side. Assembly errors, typically short regions of misassembled sequence 
associated with scaffolding contigs with one another, were identified as regions with zero 
coverage by stringently mapped paired-end reads. Only one mismatch per read was permitted 
and only paired reads were included in the analysis. Regions with 1x coverage were only allowed 
if at least 3 bp on either side of the read overlapped with other reads, with zero mismatches in the 
overlap region. When an assembly error was detected, read pairs mapped (Bowtie2) to a 1 Kbp 
region surrounding the error were collected and re-assembled using Velvet (Zerbino and Birney, 
2008). Reads were collected for re-assembly as long as at least one read in the pair mapped with 
two or fewer mismatches. Velvet was run by iterating from kmer 21 to 71, increasing by 10 in 
each iteration. Re-assembled fragments were then merged with the original assembly based on 
overlap of ≥10 bp. All assembly modifications were verified with a subsequent round of error 
detection. If an error could not be corrected, the original scaffold was split at the position of the 
error. In addition to error correction, reads mapped to the ends of scaffolds were re-assembled 
and used to extend scaffolds, or the ends of broken scaffolds, when possible. Following curation, 
genes of interest were re-identified on curated scaffolds using the methods described above 
(Supplementary File 2.1). On average, 1.5 assembly errors were corrected for each scaffold 
region containing a 16S rRNA gene.  
 
Ribosomal protein inventory and metabolic potential of CPR genomes 
Metabolic potential of CPR genomes was assessed using ggKbase. In ggKbase, lists related to 
different proteins or metabolic pathways were generated by searching for specific keywords in 
gene annotations. Here, lists were created to assess ribosomal protein composition and metabolic 
potential across the CPR (Figure 2.11). Genomes were compared with one another by creating 
ggKbase genome summaries based on a selection of these lists. This allowed for the 
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simultaneous assessment and comparison of the 8 complete and 789 draft-quality genomes 
assembled here. 
 
In order to compare genomes based on both their phylogenetic associations and metabolic 
capacity, and to get the clearest picture of the metabolic potential of the CPR, an additional 
analysis was conducted with only complete and near-complete genomes (≥75% of single copy 
genes and ≤1.125 copies, including an assembled 16S rRNA gene). Since similar genotypes were 
assembled independently from different samples, this set of complete and near-complete 
genomes was de-replicated by choosing a representative genome for all flat branches on the 16S 
rRNA gene tree (Supplementary File 2.2). The genome summary was then ordered based on the 
16S rRNA gene phylogeny, a step that was critical for identifying lineages missing specific 
ribosomal proteins (Figure 2.11). In order to find ribosomal proteins that may have evaded 
detection due to sequence divergence, six-frame translations (bacterial translation table 11) of all 
complete and draft CPR genomes were searched against Pfam ribosomal protein HMM profiles 
using hmmscan; however, this confirmed the initial finding of missing ribosomal proteins in 
organisms from CPR lineages (Supplementary Table 2.10).  
 
Although complete genomes are invaluable for metabolic analyses, this extensive inventory of 
draft-quality genomes from organisms representing diverse lineages, and assembled from 
different samples, enabled confident assessment of gene absence. For example, there are no 
reported complete WS6 genomes, but the 16 reconstructed draft-quality genomes from this study 
(median estimated completeness of 91%) showed that this lineage is missing rpL9. The 
probability of the gene being present, but missing in all 16 genome reconstructions, is (1 - 0.91)16, 
i.e., ~ 2 x 10-17. Even if we lower the completion requirement to a very conservative value of 
35% complete, 16 such genomes would yield a confidence value of 0.001 for the gene being 
absent. For lineages where we have hundreds of genomes the probability of missing the gene due 
to chance is effectively zero. 
 

Code Availability 
ABAWACA is maintained under github.com/CK7/abawaca (version 1.00 used in this analysis: 
github.com/CK7/abawaca/releases/tag/v1.00) and the script used for curating scaffolds, 
re_assemble_errors.py, is maintained under github.com/christophertbrown/fix_assembly_errors 
(version 1.00 used in this analysis: 
github.com/christophertbrown/fix_assembly_errors/releases/tag/1.00). 
 
Data Availability 
DNA and RNA sequences are available through NCBI SRA accession SRP050083, and genomes 
through NCBI BioProject PRJNA273161 (first versions described here). Genomes are also 
available through ggKbase: ggkbase.berkeley.edu/CPR-complete-draft/organisms. ggKbase is a 
“live data” site, thus annotations and genomes may be improved after publication. 
 
Author Contributions 
Samples and geochemical measurements were taken by MJW, KCW, and KHW. BCT assembled 
the metagenome data. IS implemented the ABAWACA algorithm. CTB and JFB binned the data 



 

 44  
 

and carried out the ESOM binning validation. JFB closed and curated the complete genomes. 
CTB, LAH, and BCT conducted the rRNA gene insertion analysis. CTB and LAH performed 
phylogenetic analyses. MJW and KCW conducted the RNA sequencing. CTB carried out the 
16S rRNA gene copy number, primer binding, and transcript analyses. CTB and JFB carried out 
the ribosomal protein analyses. CTB, LAH, CJC, and JFB conducted the metabolic analysis. AS 
and BCT provided bioinformatics support. CTB and JFB drafted the manuscript. All authors 
reviewed the results and approved the manuscript. The authors declare that they have no 
competing interests. 
 
Acknowledgements 
We thank J. Cate and S. Moore for input into the ribosomal protein analysis, J. Doudna and E. 
Nawrocki for suggestions on the rRNA insertion analysis, and M. Markillie and R. Taylor for 
assistance with RNA sequencing. Research was supported by the US Department of Energy 
(DOE), Office of Science, Office of Biological and Environmental Research under award 
number DE-AC02-05CH11231 (Sustainable Systems Scientific Focus Area and DOE-JGI) and 
award number DE-SC0004918 (Systems Biology Knowledge Base Focus Area). LAH was 
partially supported by an NSERC postdoctoral fellowship. DNA sequencing was conducted at 
the DOE Joint Genome Institute, a DOE Office of Science User Facility, via the Community 
Science Program. RNA sequencing was performed at the DOE-supported Environmental 
Molecular Sciences Laboratory at PNNL. 
 
Supplementary Table 
Supplementary Table 2.1 | Geochemical measurements from acetate amendment field 
experiment conducted in aquifer well CD-01 at the Rifle IFRC site. 
 
Supplementary Table 2.2 | Metagenomics and metatranscriptomics sequencing and 
assembly statistics. 
 
Supplementary Table 2.3 | Candidate phyla and Candidate Phyla Radiation (CPR) 
genomes reconstructed from groundwater metagenomics. The columns for 16S rRNA gene, 
rp16, and rpS3 phylogeny designate whether or not the specified phylogenetic marker was used 
to confirm the taxonomy for the organism. Complete genomes are circular and have been 
manually curated. Draft and partial genome status was determined based on the percent of single 
copy genes (SCGs) that could be identified. The inventory of these SCGs makes up the right-
most columns of the table (rp is an abbreviation for ribosomal protein). Draft-quality genomes 
have ≥50% of these single copy genes with ≤1.125 copies overall, and must encode at least one 
of the specified phylogenetic marker genes. 
 
Supplementary Table 2.4 | CPR genomes from previous studies. Previously described CPR 
genomes (Albertsen et al., 2013; Kantor et al., 2013; Marcy et al., 2007; McLean et al., 2013; 
Podar et al., 2007; Rinke et al., 2013; Wrighton et al., 2014) were assessed in order to make 
comparisons with genomes reconstructed in the current study. Genome status was determined in 
the same way as was done for the genomes presented in Supplementary Table 2.3. The 16S 
rRNA gene column specifies whether or not a 16S rRNA gene was sequenced for the genome, 
and if so how it was determined. The rp16 column designates whether or not the genes that make 
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up rp16 were assembled. The inventory of these SCGs makes up the right-most columns of the 
table (rp is an abbreviation for ribosomal protein). 
 
Supplementary Table 2.5 | 16S and 23S rRNA gene insertions in sequences reconstructed 
from groundwater-associated bacteria. The 97% ID centroid column refers to whether or not a 
given rRNA gene sequence was the representative sequence for a group of rRNA gene sequences 
clustered based on a 97% sequence identity threshold (USEARCH –cluster_smallmem –
query_cov 0.50 –target_cov 0.50 –id 0.75). When identified, sequences of insertion-encoded 
open reading frames (ORFs) and catalytic RNA introns (group I or group II introns) are provided. 
 
Supplementary Table 2.6 | 16S rRNA gene insertions in the Silva database. When identified, 
sequences of insertion-encoded open reading frames (ORFs) and catalytic RNA introns (group I 
or group II introns) are provided. 
 
Supplementary Table 2.7 | 16S rRNA gene copy number. 16S rRNA gene copy number was 
estimated for all draft CPR genomes and genome bins for organisms found outside of the CPR. 
Relative 16S rRNA gene copy number was calculated as: (16S rRNA gene coverage)/(genome 
coverage). Estimated 16S rRNA gene copy number was determined for each genome based on 
whichever value was greatest, the number of assembled genes or relative copy number. Shown in 
red are the few CPR genomes with discrepant copy number estimates, as discussed elsewhere 
(see section on 16S rRNA gene copy number in Methods and Figure 2.9). 
 
Supplementary Table 2.8 | 16S and 23S rRNA gene and insertion transcript analysis. 
Coverage of rRNA gene and insertion regions by metatranscriptomic sequences were separately 
determined and compared. Coverage was calculated as (number of mapped bases)/(length of the 
region). Length coverage refers to the percent of bases in a given region with coverage >0. 
 
Supplementary Table 2.9 | Comparison of 16S and 23S rRNA gene-encoded insertions and 
ORFs. All insertions identified in 16S rRNA genes were compared with insertions in 23S rRNA 
genes (reciprocal BLASTn). Likewise, ORFs encoded within these rRNA genes were compared 
with one another (reciprocal BLASTp). Reported here are the top 10 hits for each search. 
 
Supplementary Table 2.10 | HMM identification of ribosomal proteins in CPR genomes. 
Six-frame translations of all CPR genomes were searched against Pfam ribosomal protein HMM 
profiles. Identifiers for the profiles searched for each ribosomal protein are shown above the 
name of the protein. Shown here is the number of genes assigned to each ribosomal protein for 
all complete and draft-quality genomes. Ribosomal proteins discussed in the text are highlighted 
in red. 
 
Supplementary Files 
Supplementary File 2.1 | Curated 16S rRNA gene (a), 23S rRNA gene (b), and rp16 
encoding contig (c) sequences in FASTA format. 
 
Supplementary File 2.2 | Phylogenetic analyses. Sequences from this study are labeled GW[A-
F][1-2] depending on which sample they originated from (e.g GWA1 is the sample taken at time 
point A from the 0.1 µm filter). Unless otherwise specified, maximum-likelihood phylogenies 
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were inferred using RAxML with 100 bootstrap re-samplings. Also see Supplementary File 2.3. 
(a) Phylogeny inferred from 16S rRNA gene sequences aligned using SSU-Align after having 
removed insertions ≥10 bp long (sequences with ≥800 aligned bp). Reference sequences from 
previously assembled genomes from the CPR were included, along with sequences associated 
with the CPR in the Silva database (clustered at 90% sequence identity), sequences from Silva 
that were the best-hits of sequences assembled here, and a set of reference sequences 
representative of major clades within domain bacteria. The 75% sequence identity threshold 
cluster that each sequence was assigned to is indicated with a unique identifier. Based on the 16S 
rRNA gene phylogeny, the SR1 are not part of the CPR, although they have previously been 
associated with this group. A subset of this phylogeny was used in Figure 2.1 and Figure 2.11. 
(b) Approximate maximum-likelihood phylogeny inferred using FastTree2 for a concatenation of 
aligned ribosomal protein sequences (rp16) assembled here and from reference genomes 
(sequences with ≥1,000 aligned aa residues are included). (c) Maximum-likelihood phylogeny 
inferred for subset of sequences represented in (b). (d) Phylogeny for rpS3 sequences identified 
here and from reference genomes. (e) Phylogeny for rpL9 sequences associated with CPR 
genomes. 
 
Supplementary File 2.3 | (a) 16S rRNA gene RAxML phylogeny, (b) rp16 concatenated 
protein FastTree phylogeny, (c) rp16 concatenated protein RAxML phylogeny, (d) rpS3 
protein RAxML phylogeny, and (e) rpL9 protein RAxML phylogeny in Nexus format. 
 
Supplementary File 2.4 | 23S rRNA HMM in Infernal format. 
 
Supplementary File 2.5 | ggKbase summary of draft genomes in SVG format. 
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Figure 2.1 | Phylogeny and genomic sampling of the Candidate Phyla Radiation (CPR). 
Subsets of a maximum-likelihood 16S rRNA gene phylogeny (Supplementary File 2.2) (a) 
showing the CPR, a monophyletic radiation of CP, and (b) genomic sampling of CP. Proposed 
names for phyla within the superphyla Parcubacteria and Microgenomates are explained in 
Table 2.2. Many CPR 16S rRNA genes encode insertions (length shown by blue bars, combined 
length for multiple insertions). 
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Figure 2.2 | Sampling and geochemical measurements from acetate amendment field 
experiment conducted in aquifer well CD-01 at the Rifle IFRC site. Samples were collected 
for metagenomics and metatranscriptomics at six time points (A-F) spanning several redox 
transitions during acetate stimulation of groundwater microbial communities. (a) Groundwater 
was pumped from the alluvial aquifer and filtered through serial 1.2, 0.2, and 0.1 µm filters 
(aerial image provided by S.M Stoller for the US DOE under contract DE-AM01-07LM00060). 
DNA was extracted and sequenced from both the 0.2 and 0.1 µm filters, and RNA extracted and 
sequenced from the 0.2 µm filters. (b) Geochemical measurements were taken throughout the 
time series, showing a transition from dominant iron reduction to sulfate reduction through to 
methane production in the sampling environment. 
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Figure 2.3 | Validation of 20 draft-quality genomes by ESOM clustering of genome 
fragments based on tetranucleotide sequence composition. For validation, 20 draft genomes 
from a sample with a high proportion of CPR genomes (GWA2) were chosen at random. Each 
data point represents a 5-10 Kbp genome fragment. The ESOM was trained for 100 epochs with 
normalized tetranucleotide frequencies. Dark lines between data points indicate strong separation 
between regions. Data points are colored based on the genome the fragment originated from. The 
ESOM shows well-delineated clusters for most of the 20 draft genomes, with few sequence 
fragments falling outside of these clusters. Two genomes from the same Microgenomates (OP11) 
phylum were not well delineated in the tetranucleotide-based ESOM (genomes 18 and 19). This 
shows how the method we used for binning, which takes into account abundance patterns in 
addition to sequence signatures, provides more accurate genome reconstructions. The white box 
distinguishes a single period on the repeating map. Genomes split into multiple clusters are 
labeled in red. 
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Figure 2.4 | Relative abundance of bacterial community members during acetate 
amendment. Relative abundance was calculated based on stringent mapping of paired-read 
sequences from each sample to 16S rRNA gene sequences assembled from all samples. (a) 
Relative abundance of cells from 0.2 µm filters and (b) from 0.1 µm filters. Enrichment of CPR 
organisms in the 0.2 µm filtrate indicates that these organisms have ultra-small cell sizes. 
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Figure 2.5 | Features of insertions encoded within CPR 16S rRNA genes. Insertions 
identified in assembled, unique bacterial 16S rRNA genes occur in conserved and variable (red 
bars) regions (Supplementary Table 2.5). Histograms show the frequency of insertions. 
Insertions are of several types distinguishable by catalytic RNA introns and/or ORFs. (IVP = 
intervening sequence protein). 
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Figure 2.6 | Features of insertion sequences encoded within 16S rRNA genes from the Silva 
database. The non-redundant Silva 16S rRNA gene database (v. 115) was analyzed in order to 
assess the prevalence of insertions. Only 761 of the 418,498 16S rRNA gene sequences from 
bacteria encode insertions. While many small insertions were identified, unlike the 16S rRNA 
gene sequences from CPR bacteria, these sequences i) rarely encode large insertions, ii) do not 
contain both ORFs and introns, iii) do not encode ORFs that could be assigned to Pfam families, 
and iv) may be found in one of multiple copies of the 16S rRNA gene. 
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Figure 2.7 | 16S rRNA gene copy number estimations for genomes reconstructed from 
groundwater metagenomics. 16S rRNA gene copy number was estimated for all draft CPR 
genomes and genome bins for organisms outside the CPR. This was achieved by comparing the 
coverage of 16S rRNA gene regions to the coverage of the rest of the genome. Importantly, 
coverage was determined with stringently mapped reads (no mismatches were allowed) in order 
to improve the accuracy of coverage calculations. (a) Histogram of the number of 16S rRNA 
gene sequence copies estimated for each genome by calculating (16S rRNA gene 
coverage)/(genome coverage). Several WWE3 genomes were estimated to have high 16S rRNA 
gene copy number (Supplementary Table 2.7), but it was later determined that these estimates 
were skewed by the presence of a highly abundant closely related strain. The complete WWE3 
genome assembled previously (Kantor et al., 2013) has an identical 16S rRNA gene and 
confirms that it is found in only one copy for this genotype. Thus, we removed these estimates 
from subsequent copy number analysis. (b) Density plot comparing estimated copy number of 
genomes for organisms found within and outside the CPR, where the longer tail for non-CPR 
genomes depicts the propensity for multiple 16S rRNA copies, a trait absent from the CPR. 
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Figure 2.8 | Intron-encoding 16S rRNA gene from complete Microgenomates genome. (a) 
Stringent mapping of paired-read metagenome sequences confirms the assembly. (b) 16S rRNA 
encoding regions, but not insertions, are covered by perfectly-matched metatranscriptome 
sequences. Absence of RNA sequences for insertions indicates they are introns. Shown are 
regions corresponding to E. coli K12 gene positions, RNA catalytic introns, ORFs, and insertions. 
(c) Structural models of encoded proteins (1, 2, and 4: colored by rainbow – N to C terminus) 
and predicted structure for a catalytic RNA intron (3: colored by base-pairing probability – red is 
high, green is moderate, and blue is low). Protein Data Bank (PDB) structures were used as 
templates for structural modeling (1: 1R7M, 2: 1B24, 4: 1B24). 
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Figure 2.9 | Features of insertion sequences encoded within 23S rRNA genes recovered 
from groundwater-associated bacteria. Bacteria associated with the CPR encode insertions 
within their 23S rRNA genes (Supplementary Table 2.5). These insertions share many features 
with those identified in 16S rRNA gene sequences from CPR bacteria. Taxonomy was 
determined by inclusion in a genome with an established phylogeny. 
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Figure 2.10 | Analysis of the ability of PCR primers 515F and 806R to bind to recovered 
groundwater-associated 16S rRNA gene sequences. PrimerProspector was used to assess the 
ability of primers 515F and 806R to bind a non-redundant set of assembled near-complete 16S 
rRNA gene sequences (clustered at 97% sequence identity). The percent of sequences that would 
be amplified by these primers is shown on the left axis and the total number of sequences 
analyzed is on the top of each bar The number of sequences these primers would not bind to is 
indicated by the shading. Many assembled groundwater-associated 16S rRNA gene sequences 
would evade amplification by PCR primers 515F and 806R. Results of the analysis are shown  at 
(a) the domain and (b) superphylum or phylum levels. 
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Figure 2.11 | Metabolic potential and ribosomal protein analysis of genomes from CPR and 
TM6 organisms. Assembled genomes were analyzed using ggKbase (Supplementary File 2.5). 
Shown here is a non-redundant set of complete and near-complete genomes (≥75% of single 
copy genes, ≤1.125 copies) organized based on a subset of a maximum-likelihood 16S rRNA 
gene phylogeny (Supplementary File 2.2). CPR organisms have partial tricarboxylic acid 
(TCA) cycles and lack electron transport chain (ETC) complexes. In addition, they have 
incomplete biosynthetic pathways for nucleotides and amino acids (AA Syn. is short for amino 
acid synthesis). The Peregrinibacteria are a notable exception to some of these limitations. 
Several Parcubacteria exhibit a complete ubiquinol (cytochrome bo) oxidase operon, as 
previously seen in Saccharibacteria (Kantor et al., 2013). However, lack of NADH 
dehydrogenase and other ETC components suggests this enzyme is involved in oxygen 
scavenging/detoxification rather than energy production. (PP is short for the pentose phosphate 
pathway). 
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Table 2.1 | Genomes from candidate phyla (CP) bacteria. The percentage of 43 single copy 
genes (SCGs) identified in each genome was used to estimate completeness. CPR1 through 3 are 
novel CPR lineages. 
 

Lineage Complete 
genomes 

Draft 
genomes 

Median 
SCGs 

Average 
genome size 
in bp (stdev) 

Average %GC 
(min/max) 

Missing 
ribosomal 
protein(s) 

Parcubacteria 2 427 91% 707,464 
(295,862) 

43 (31/60) L30, OD1-L1 
missing L1 

Microgenomates 3 252 91% 788,693 
(261,196) 

41 (31/50) L30, L9* 

WWE3 0 41 93% 719,830 
(344,415) 

43 (41/46) L30, L9 

WS6 0 16 91% 584,741 
(167,526) 

34 (33/39) L30, L9 

Peregrinibacteria 0 15 91% 1,183,124 
(344,415) 

42 (33/54) L30 

TM6 0 15 98% 1,060,264 
(167,526) 

36 (28/43) L30, L25 

Berkelbacteria 1 6 88% 581,936 
(243,398) 

39 (34/46) L30 

Kazan 1 5 95% 657,191 
(214,462) 

49 (45/52) L30 

CPR2 0 6 100% 1,032,375 
(183,809) 

39 (38/39) L30 

Saccharibacteria 1 2 99% 971,756 
(157,794) 

47 (46/48) L30, L9 

CPR1 0 2 72% 578,470 
(266,611) 

46 (42/49) L30 

CPR3 0 2 86% 945,288 
(153,931) 

35 (34/35) L30 

all 8 789 91% 749,453 
(263,507) 

42 (28/60)  

     *One genotype has rpL9.  
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Table 2.2 | Proposed names for CPR phyla based on microbiology lifetime achievement 
award recipients. 
 

Award Year 
Awarded Recipient Proposed Name Superphylum 

ASM Lifetime Achievement Award 2014 Roy Curtiss Curtissbacteria Microgenomates (OP11) 

ASM Lifetime Achievement Award 2013 Julian Davies Daviesbacteria Microgenomates (OP11) 

ASM Lifetime Achievement Award 2012 Stuart B. Levy Levybacteria Microgenomates (OP11) 

ASM Lifetime Achievement Award 2011 Susan Gottesman Gottesmanbacteria Microgenomates (OP11) 

ASM Lifetime Achievement Award 2010 Lucy Shapiro Shapirobacteria Microgenomates (OP11) 

ASM Lifetime Achievement Award 2009 Carl Woese Woesebacteria Microgenomates (OP11) 

ASM Lifetime Achievement Award 2008 Bernard Roizman Roizmanbacteria Microgenomates (OP11) 

ASM Lifetime Achievement Award 2007 Norman R. Pace Pacebacteria Microgenomates (OP11) 

ASM Lifetime Achievement Award 2006 R. John Collier Collierbacteria Microgenomates (OP11) 

ASM Lifetime Achievement Award 2005 Jonathan Beckwith Beckwithbacteria Microgenomates (OP11) 

ASM Lifetime Achievement Award 2004 Alan Campbell Campbellbacteria Parcubacteria (OD1) 

ASM Lifetime Achievement Award 2003 Stanley Falkow Falkowbacteria Parcubacteria (OD1) 

ASM Lifetime Achievement Award 2002 Masayasu Nomura Nomurabacteria Parcubacteria (OD1) 

ASM Lifetime Achievement Award 2001 Bruce N. Ames Amesbacteria Parcubacteria (OD1) 

ASM Lifetime Achievement Award 2000 Boris Magasanik Magasanikbacteria Parcubacteria (OD1) 

ASM Lifetime Achievement Award 1999 Jonathan W. Uhr Uhrbacteria Parcubacteria (OD1) 

ASM Lifetime Achievement Award 1998 Charles Yanofsky Yanofskybacteria Parcubacteria (OD1) 

ASM Lifetime Achievement Award 1997 A. Dale Kaiser Kaiserbacteria Parcubacteria (OD1) 

ASM Lifetime Achievement Award 1996 Ralph S. Wolfe Wolfebacteria Parcubacteria (OD1) 

ASM Lifetime Achievement Award 1995 Julius Adler Adlerbacteria Parcubacteria (OD1) 

ISME Jim Tiedje Award 2014 Nancy Moran Moranbacteria Parcubacteria (OD1) 

ISME Jim Tiedje Award 2012 Stephen Giovannoni Giovannonibacteria Parcubacteria (OD1) 

ISME Jim Tiedje Award 2010 Bo Barker Jorgensen Jorgensenbacteria Parcubacteria (OD1) 

ISME Jim Tiedje Award 2008 Norman R. Pace Pacebacteria Microgenomates (OP11) 

ISME Jim Tiedje Award 2006 Gijs Kuenen Kuenenbacteria Parcubacteria (OD1) 

ISME Jim Tiedje Award 2004 Farooq Azam Azambacteria Parcubacteria (OD1) 
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Published in Nature Biotechnology, November 2016. 

Abstract 
Culture-independent microbiome studies have increased our understanding of the complexity and 
metabolic potential of microbial communities. However, to understand the contribution of 
individual microbiome members to community functions, it is important to determine which 
bacteria are actively replicating. We developed an algorithm, iRep, that uses draft-quality 
genome sequences and single time-point metagenome sequencing to infer microbial population 
replication rates. The algorithm calculates an index of replication (iRep) based on the sequencing 
coverage trend that results from bi-directional genome replication from a single origin of 
replication. We apply this method to show that microbial replication rates increase after 
antibiotic administration in human infants. We also show that uncultivated groundwater-
associated Candidate Phyla Radiation bacteria only rarely replicate quickly in subsurface 
communities undergoing substantial changes in geochemistry. Our method can be applied in all 
genome-resolved microbiome studies to track organism responses to varying conditions, identify 
actively growing populations and measure replication rates for use in modeling studies. 
 

Introduction 
Dividing cells in a natural population contain, on average, more than one copy of their genome 
(Figure 3.1). In an unsynchronized population of growing bacteria, cells contain genomes that 
are replicated to different extents, resulting in a gradual reduction in the average genome copy 
number from the origin to the terminus of replication (Bremer and Churchward, 1977). This 
decrease can be detected by measuring changes in DNA sequencing coverage across complete 
genomes (Skovgaard et al., 2011). Bacterial genome replication proceeds bi-directionally from a 
single origin of replication (Prescott and Kuempel, 1972; Wake, 1972), therefore the origin and 
terminus of replication can be deduced based on this coverage pattern (Skovgaard et al., 2011). 
GC skew (Anantharaman et al., 2016a; Gao et al., 2013; Sernova and Gelfand, 2008) and 
genome coverage (Korem et al., 2015) analyses of a wide variety of bacteria have shown that this 
replication mechanism is broadly applicable. Further, early studies of bacterial cultures revealed 
that cells can achieve faster division by simultaneously initiating multiple rounds of genome 
replication (Cooper and Helmstetter, 1968), which  results in an average of more than two 
genome copies in rapidly growing cells. 
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Korem et al. used the ratio of sequencing coverage at the origin compared to the terminus of 
replication to measure replication rates for bacteria (Korem et al., 2015). Because the origin and 
terminus correspond to coverage peaks and troughs, respectively, the authors named their 
method PTR (peak-to-trough ratio). They applied PTR to calculate replication rates for specific 
bacteria in the human microbiome, but the requirement for mapping sequencing reads to a 
complete, closed, circular reference genome for a bacterium of interest is a major limitation. The 
vast majority of bacteria remain uncultivated and lack reference genomes.  
 
Metagenomics methods routinely generate draft genomes for bacteria and archaea that lack 
reference genomes (Baker et al., 2010; Brown et al., 2015; Castelle et al., 2015; Iverson et al., 
2012; Nielsen et al., 2014; Seitz et al., 2016; Sharon et al., 2012; Tyson et al., 2004) (Figure 3.1 
and Figure 3.2). Often these organisms are from little known microbial phyla, and are vastly 
different from organisms for which there are complete genomes in databases (Brown et al., 2015; 
Castelle et al., 2013; 2015; Di Rienzi et al., 2013; Eloe-Fadrosh et al., 2016; Seitz et al., 2016; 
Wrighton et al., 2012). It is sometimes possible to recover hundreds or thousands of draft or 
near-complete genomes from a single ecosystem. We introduce a method that can extend 
coverage-based replication rate analyses to enable measurements based on sequencing coverage 
trends for these draft genomes. The method works, despite the fact the order of the fragments is 
unknown. Unlike PTR, our approach can be applied in virtually any natural or engineered 
ecosystem, including complex systems such as soil, for which complete genomes for the vast 
majority of bacteria are unavailable. 
 

Results 
The Index of Replication (iRep) metric 
The method that we developed determines replication rates based on measuring the rate of the 
decrease in average sequence coverage from the origin to the terminus of replication. This rate of 
coverage change can be used to accurately estimate the ratio between the coverage at the origin 
and terminus of replication, which is proportional to replication rate. The values are comparable 
to PTR, but are derived differently so we named this method and metric iRep (Index of 
Replication). With PTR, the origin and terminus of replication must be identified and the 
calculation requires position-specific coverage values. In contrast, the iRep algorithm is distinct 
in that it makes use of the total change in coverage across all genome fragments. 
 
iRep values are calculated by mapping metagenome sequencing reads to the collection of 
assembled sequences that represent a draft genome (Figure 3.1 and Figure 3.2; Methods and 
Code Availability). The read coverage is evaluated at every nucleotide position across every 
scaffold. The series of coverage values for the scaffolds are then concatenated, and the average 
coverage values within 5 Kbp sliding windows are calculated (window slide length 100 bp; see 
Figure 3.3, Supplementary Table 3.1, and Methods for evaluation of sliding window methods). 
Then, a sequencing GC bias correction is applied (Figure 3.3; Methods). The average coverage 
values for each window are then ordered from lowest to highest to assess the coverage trend 
across the genome. Because coverage values for each window are re-arranged, the order of the 
fragments in the complete genome need not be known. Extreme high and low coverage windows 
are excluded (>8-fold difference compared to the median), as they are well known to correlate 
with highly conserved regions, strain variation, or integrated phage. Finally, the overall slope of 
coverage across the genome is used to calculate iRep, a measure of the average genome copy 
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number across a population of cells. In a population in which most cells are replicating (making 
a single copy of their chromosome), iRep would be two. Since iRep is an average across the 
population, some organisms may not be replicating, but for that to be the case others would have 
to be in the process of conducting two, or more, simultaneous rounds of genome replication. An 
iRep value of 1.25 would indicate that, on average, only one quarter of the cells are replicating. 
 
iRep is accurate for complete or draft genomes 
In order to evaluate the ability of iRep to measure replication rates, we compared iRep to PTR 
using 17 samples sequenced to sufficient depth from the growth rate experiments reported by 
Korem et al. as part of their validation of the PTR method. As there is no open-source version of 
the PTR software, we re-implemented the PTR method, with some improvements that include an 
option to determine the origin and terminus positions based on GC skew (Lobry, 1996) 
(Methods). PTRs generated using the Korem et al. software (kPTRs) use a genome database of 
unknown composition that can be neither viewed nor modified, and no metrics for evaluating 
measurement reliability are provided. These limitations are addressed in our PTR 
implementation (named bPTR). kPTR and bPTR values for this dataset were highly correlated, 
and each was correlated with iRep (Figure 3.4a and Supplementary Table 3.2). We used 
growth rates calculated using counts of colony forming units (CFU), as reported by Korem et al., 
to verify that iRep values correlate as well as PTRs (Figure 3.4b). It should be noted that growth 
rates derived from CFU data are based on total population size, which includes effects of cell 
death and can be negative. iRep and PTR methods only measure replication, and thus represent 
the physiological state of the cells independent of death rates.  
 
We tested the minimum sequencing coverage requirements for iRep, kPTR and bPTR using 
sequencing data of cultured Lactobacillus gasseri from the Korem et al. study. We first 
subsampled reads to achieve 25x coverage of the genome and then calculated replication rates to 
use as reference values. Then, the dataset was subsampled to lower coverage values and the 
replication rates re-calculated. Comparing these rates to the reference values enabled evaluation 
of the amount of noise introduced by increasingly lower coverage. Results show that all three 
methods are affected by coverage, and that although kPTR has the least amount of variation at 1x 
coverage, all methods are reliable when the coverage is ≥5x (Figure 3.4c and Supplementary 
Table 3.3). 
 
Because iRep does not require knowledge of the order of genome fragments, it can be used to 
obtain replication rates when only draft quality genomes are available. Therefore, we evaluated 
the minimum percentage of a genome that is required to obtain accurate results by conducting a 
random genome subsampling experiment (Figure 3.4d, Figure 3.3, and Supplementary Table 
3.1). iRep values were determined for L. gasseri cells sampled when growing at different rates 
(Korem et al., 2015), and then compared with values determined from genomes at various 
decreasing levels of completeness. Our analysis revealed that ≥75% of the genome sequence is 
required for iRep to be accurate (difference from known value <0.15). Although extensive 
genome fragmentation will introduce noise into iRep calculations, values are accurate for 
genomes with less than 175 scaffolds per Mbp of sequence (Figure 3.3 and Supplementary 
Table 3.1). Genome completeness and contamination can be estimated based on the presence 
and copy number of expected single copy genes (SCGs). Based on these findings, we selected 
genomes for iRep analysis if they were estimated to be ≥75% complete based on inventory of 51 
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expected single copy genes (SCGs), if they also had fewer than two duplicate SCGs and less than 
175 scaffolds per Mbp of sequence. Lack of additional SCG copies indicates that a genome is 
free of substantial contamination. As shown below, these standards can be met for a substantial 
number of genomes recovered from metagenomic data sets. 
 
The human microbiome includes some bacteria with genomes that are sufficiently similar to 
reference genomes to enable ordering and orienting of draft genome fragments, making it 
possible to calculate both iRep and bPTR for comparison. We carried out an analysis using five 
genomes reconstructed in a metagenomics study of premature infants (GC range: 28-56%) 
(Raveh-Sadka et al., 2015). Importantly, unlike when using kPTR, the reads were mapped to the 
genome that was reconstructed from the infant gut metagenomes in order to achieve more robust 
results than would be achieved using a public database-derived reference genome, due to the fact 
that differences in gene content and gene order will perturb coverage trends. The correct ordering 
of the scaffolds in the reconstructed genome was confirmed based on both coverage patterns and 
cumulative GC skew (Figure 3.5). For all 24 comparisons involving populations with iRep 
values of 1.8-1.9, there was a strong correlation between iRep and bPTR values (Pearson’s r = 
0.83, p-value = 5.9 x 10-7; Figure 3.4e). 
 
Although a few complete reference genomes were similar enough to reconstructed draft genomes 
to facilitate scaffold ordering, these reference genomes were from organisms relatively distantly 
related to those present in samples of interest. Specifically, for the five genomes with available 
similar reference genomes (average nucleotide identity 91-99%), as much as 19.5% of reference 
genomes was not represented by metagenome reads (min. = 1.6%, average = 13.5%), compared 
with essentially perfect mapping to reconstructed genomes (Figure 3.6 and Supplementary 
Table 3.4). This level of genome deviation compared to reference genomes would preclude 
accurate replication rate calculations due to perturbation of coverage trends, as noted above, and 
emphasizes the need to reconstruct genomes for organisms of interest. We also compared iRep 
and bPTR replication rate metrics for a large, manually curated genome scaffold ~2.5 Mbp in 
length that was reconstructed from a complex groundwater metagenome. Because the scaffold 
contains both the origin and terminus of replication, as identified both by coverage and 
cumulative GC skew (Figure 3.7), it was possible to calculate both bPTR and iRep. For this 
single time point measurement, the bPTR value of 1.20 agrees with the iRep value of 1.25. 
Importantly, it would not have been possible to obtain this information based on mapping to 
complete reference genomes because this is the first sequence for an organism affiliated with a 
novel genus within the Deltaproteobacteria (Sharon et al., 2015). This finding demonstrates the 
iRep method in the context of a very complex natural environment. 
 
Replication rates in environmental and human microbiomes 
We obtained 241 iRep measurements using 152 genomes reconstructed as part of a study of 
premature human infant gut microbiomes (Raveh-Sadka et al., 2015), and 51 draft genomes that 
we reconstructed from an adult human microbiome dataset (Di Rienzi et al., 2013) (Figure 3.8a, 
Supplementary Table 3.5, Supplementary Table 3.6, Supplementary Table 3.7 and see Data 
Availability). In infant microbiomes, members of the Firmicutes had the highest replication rates 
and Proteobacteria had the highest median replication rates (Figure 3.8b). In the premature 
infant dataset, 63 iRep measurements were obtained for 8 species that could be matched to 
results from the kPTR program; however, there was no strong correlation between the values 
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(Pearson’s r = 0.52, Figure 3.9, Supplementary Table 3.5 and Supplementary Table 3.8). 
Because of the strong correlation between these methods when the organisms were represented 
by reference genomes (Figure 3.4a-b), we attribute this to measurement errors due to differences 
between the database reference genomes used by kPTR and the genomes of the organisms 
sampled (Figure 3.6). 
 
Using iRep, we obtained replication rates for 51 of the 54 organisms for which we had draft 
genomes (≥75% complete) from an adult human microbiome sample (see Methods; Figure 3.8, 
Supplementary Table 3.6, and Supplementary Table 3.7). Due to a lack of overlap with 
reference genomes, the kPTR method returned only three values, none of which were credible 
because all were <1 (Supplementary Table 3.9). Similarly, we attempted to select complete 
reference genomes for bPTR, but were only able to do so in five cases (Figure 3.10). Even for 
these five cases, on average only 94% (min. = 88%, max. = 98%) of each complete reference 
genome was covered by metagenome sequences. 
 
The Candidate Phyla Radiation (CPR) is a major subdivision within domain Bacteria known 
almost exclusively from genome sequencing (Brown et al., 2015). Almost nothing is known 
about the growth rates of these enigmatic organisms. We measured 378 replication rates from 
CPR organisms using a time series of samples collected from an acetate amended aquifer near 
the Colorado River, and 99 different draft genome sequences reconstructed from those datasets 
(Brown et al., 2015) (Supplementary Table 3.10). Only 33 of 378 iRep values were calculated 
using complete genome sequences. One member of the CPR superphylum Microgenomates 
(OP11) had iRep values amongst the highest observed across CPR and human gut associated 
microorganisms (Figure 3.8b). However, only 16.1% of iRep values from CPR organisms were 
>1.5, compared with 35.8% of premature infant and 19.6% of adult human microbiome 
measurements. Median iRep values from CPR bacteria were significantly lower compared with 
those from premature infant microbiomes (Figure 3.8a; CPR = 1.34, premature infant = 1.42, 
and adult = 1.37). Overall, the results show that CPR bacteria only rarely replicate quickly, and 
that iRep can be applied in communities with different levels of complexity. 
 
Microbiome responses to antibiotic administration  
Twelve samples were collected during periods following antibiotic therapy for five of the ten 
infants (Raveh-Sadka et al., 2015) (Figure 3.11). To measure microbial responses to antibiotics, 
we compared iRep values from samples collected within five days after antibiotic administration 
to values from other time points. This showed that the median replication rate for organisms 
present after administration of antibiotics is higher compared to those present during periods 
without antibiotic treatment  (Figure 3.12a). Fast replicating organisms were from the genera 
Klebsiella, Lactobacillus, Escherichia, Enterobacter, Staphylococcus, and Enterococcus (iRep 
>1.5; Supplementary Table 3.5). 
 
iRep values for bacteria associated with premature infants 
The premature infant dataset consisted of 55 metagenomes collected from ten co-hospitalized 
premature infants, half of whom developed necrotizing enterocolitis (NEC). There was no 
statistically significant difference between iRep values from NEC and control infant 
microbiomes (Figure 3.12b), nor was there a statistically significant difference between values 
determined for the same species found in both infant groups (Figure 3.12c). However, organisms 
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from the genus Clostridium were replicating significantly faster in microbial communities 
associated with NEC versus control infants (Mann-Whitney p-value = 5.1 x 10-3; Figure 3.12d). 
Although Klebsiella pneumoniae was found to replicate rapidly in control infant microbiomes, it 
was only infrequently detected in infants that developed NEC, and no iRep values could be 
determined. Intriguingly, high iRep values for Clostridium species were detected in two infants 
prior to development of NEC (Figure 3.12e and Figure 3.11). 
 
iRep documentation of community dynamics 
Raveh-Sadka et al. measured absolute cell counts per gram of feces collected using droplet 
digital PCR (ddPCR) as part of a premature infant microbiome study (Raveh-Sadka et al., 2015). 
Using these measurements and metagenome-derived relative abundance calculations we were 
able to track absolute changes in the population sizes of 51 genotypes (Supplementary Table 
3.5 and Figure 3.11). For nine of the ten infants in the study, iRep and both relative and absolute 
abundance values could be determined for the bacterial populations. Interestingly, despite fast 
replication rates of Clostridium species in two infants before NEC diagnosis, total observed cell 
counts were either very low or decreasing, emphasizing that populations of active organisms may 
not necessarily undergo large changes in population size (Figure 3.11). 
 
Doubling times are usually calculated for organisms growing in pure culture without resource 
limitation or host suppression. We used the absolute abundance of Klebsiella oxytoca following 
antibiotic administration to calculate an in situ doubling time of 19.7 hours across a four-day 
period starting three days after the infant was treated with antibiotics (Figure 3.13a). iRep values 
for K. oxytoca during this period were consistently high (1.74–1.80), as required for the 
population growth that was well described by an exponential equation (r2 = 0.97). Notably, K. 
oxytoca was essentially the only organism present during this time. 
 
In one infant, iRep values for Clostridium difficile and Enterobacter cloacae prior to the first 
NEC diagnosis were unusually high compared to values for organisms found in other infants. 
However, these organisms remained at low absolute abundance (Figure 3.13b). Total cell counts 
were low following antibiotic treatment; however, this period was associated with high E. 
cloacae replication rates and a subsequent 2.7-fold increase in population size, as determined by 
ddPCR, prior to the second NEC diagnosis. Interestingly, low-abundance Clostridium 
paraputrificum and C. difficile were also replicating quickly before the second diagnosis. 
 
A clear finding from analysis of replication rates for bacteria in multi-species consortia in the 
premature infant gut is the general lack of correlation between high iRep values and increased 
population size in the subsequently collected sample (Figure 3.11). Notably, iRep measures the 
instantaneous population-average replication rate, which provides insights into population 
dynamics at a physiological level and time scale that cannot be determined by abundance 
measurements, especially when more than a day separates sampling time points. Using cell 
counts alone as a metric for replication would miss key features of the ecosystem because the 
approach measures the cumulative effect of both cell replication and death rates over a specific 
time period. 
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Discussion  
We developed a method named iRep that uses metagenome sequences and draft-quality genomes, 
which are routinely assembled in metagenomics analyses, to determine bacterial replication rates 
in situ. As long as accurate genome bins are obtained from the metagenomes of interest (see 
below), bacterial replication rates derived using iRep are more accurate than those obtained 
using PTR with complete reference genomes. Even when complete genomes are available, 
superior results can be obtained using iRep rather than PTR, owing to the potential for error 
when identifying the origin and terminus of replication (Methods). The combination of 
obtaining draft genomes from metagenomes and iRep measurements from read data from 
multiple samples from the same environment can provide a comprehensive view of microbiome 
membership, metabolic potential, and in situ activity. 
 
Despite the premature infant gut microbiome having relatively consistent community 
composition over time, iRep analyses indicate that brief periods of rapid replication are common 
during colonization, possibly due to varying conditions in the infant gut. Even transitory levels of 
increased replication, especially for potential pathogens, could have phenotypic outcomes that 
affect clinical presentation since bacteria are known to produce different metabolites concordant 
with different growth rates (Paczia et al., 2012). An important finding relates to the faster 
bacterial replication rates after antibiotic treatment, an observation that we attribute to high 
resource availability following elimination of antibiotic sensitive strains. Interestingly, rapid 
replication rates of several different but potentially pathogenic organisms from the genus 
Clostridium, including C. difficile, precede some NEC diagnoses, consistent with NEC being a 
multi-faceted disease. Further studies that include more samples and infants may establish a link 
between rapid cell division and NEC. 
 
iRep measurements provide information about activity around the time of sampling. The 
approach could be used to probe the responses of specific bacteria to environmental stimuli. 
However, periods of fast bacterial replication may not lead to increased population size because 
other processes exert controls on absolute abundances (e.g., predation and immune responses). In 
a few cases where community complexity was low, fast replication rates did predict an increase 
in absolute cell numbers in subsequent samples (Figure 3.13 and Figure 3.11). The fact that 
high replication rates do not necessarily predict increases in population size of bacteria growing 
in community context is unsurprising since iRep directly measures replication, which represents 
the physiological state of the organisms, but does not account for cell death rates. Replication 
rates and population size are distinct measurements, and both are important for studying 
microbial community dynamics. 
 
An interesting question relates to how quickly organisms proliferate in the premature infant gut 
compared to the adult gut environment. Measurements in such environments are very 
challenging using alternative approaches such as isotope tracing (Kopf et al., 2015). These 
studies typically target specific organisms, and such measurements have only recently been 
implemented in the human lung microbiome (Kopf et al., 2015). Large-scale comparisons using 
PTR are not possible due to a lack of complete reference genomes. Using iRep, we found that 
bacteria from premature infant gut microbiomes had higher replication rates compared with those 
from a more complex adult gut consortium. If future studies confirm this finding, it might reflect 
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greater levels of competition for resources or other factors related to gut development in adults 
compared to premature infants. 
 
Candidate Phyla Radiation (CPR) organisms have been detected in a wide range of environments 
(Luef et al., 2015). Together, they make up considerably more than 15% of bacterial diversity 
(Brown et al., 2015; Hug et al., 2016), yet they are known almost exclusively from genomic 
sampling (Albertsen et al., 2013; Anantharaman et al., 2016a; Brown et al., 2015; Kantor et al., 
2013; Nelson and Stegen, 2015; Podar et al., 2007; Rinke et al., 2013; Wrighton et al., 2012). 
Based on having small cells and genomes with only a few tens of ribosomes, it was inferred that 
these organisms grow slowly (Burstein et al., 2016; Luef et al., 2015). Our analysis of CPR 
organisms sampled across a range of geochemical gradients (Brown et al., 2015) directly 
demonstrated their slow replication rates. However, the analysis also showed that some CPR 
bacteria grow rapidly under certain conditions (Figure 3.8). Symbiosis has been inferred as a 
general life strategy for these organisms (Albertsen et al., 2013; Anantharaman et al., 2016a; 
Brown et al., 2015; Kantor et al., 2013; Nelson and Stegen, 2015; Podar et al., 2007; Rinke et al., 
2013; Wrighton et al., 2012), and has been demonstrated in a few cases (Gong et al., 2014; He et 
al., 2015; Luo et al., 2016; Soro et al., 2014). Rapid growth of CPR bacteria may require rapid 
growth of host cells. If CPR cells typically depend on a specific bacterial host, as is the case for 
some Saccharibacteria (TM7) (He et al., 2015), replication rate measurements may provide 
insights into possible host-symbiont relationships, paving the way for co-cultivation studies. 
 
It is important to consider factors that could lead to erroneous results. For example, the presence 
of multiple strains similar enough that their conserved genes co-assemble, could introduce error. 
This usually results in draft genomes that are so fragmented that they do not meet the genome 
quality requirements for iRep. However, error can also be introduced if a user maps reads from a 
sample containing multiple closely related strains to a high-quality genome reconstructed from a 
different sample. If the latter approach is used, we recommend checking for evidence of strain 
variation by analysis of polymorphism frequencies in mapped reads. 
 
Conclusion 
An important objective for microbial community studies is the establishment of models that can 
accurately predict microbial community dynamics and functions under changing environmental 
conditions. Prior to the current study, these models could include growth rate information 
derived from laboratory experiments involving isolates, inferred from fixed genomic features 
such as 16S rRNA gene copy number or codon usage bias (Vieira-Silva and Rocha, 2010), or 
from in situ measurements such as PTR (Korem et al., 2015). Further complicating matters, 
relative abundance measurements commonly determined from DNA sequencing can obscure 
understanding of population dynamics, and overall measurements of community composition 
can be confounded by the presence of DNA derived from dead cells (Carini et al., 2016). We 
used iRep to quantify replication rates for most bacteria in infant gut microbial communities and 
found that the rates can be highly variable (Figure 3.11, Figure 3.12, and Figure 3.13). Such 
measurements could be used in models that seek to understand microbial ecosystem functioning, 
allowing incorporation of organism-specific behavior throughout the study period. Importantly, 
iRep can be applied to identify actively growing bacterial populations in any ecosystem, 
regardless of how distantly related they are to cultivated bacteria, and to track bacterial 
replication in response to changing conditions. The ability to make these measurements has the 
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potential to improve our understanding of relationships between bacterial functions and 
biogeochemical processes or health and disease. 
 
Methods 
Calculating bPTR for complete genomes 
Our implementation of the PTR method (see Code Availability) differs from the method 
described by Korem et al. in several key respects (Korem et al., 2015). To distinguish between 
these two methods, we refer to our method as bPTR and the Korem et al. method as kPTR. Both 
methods involve mapping DNA sequencing reads to complete (or near-complete, in the case of 
bPTR) genome sequences in order to measure differences in sequencing coverage at the origin 
(Oricov) and terminus (Tercov) of replication.  
 

!"# =
%&'()*
"+&()*

 

 
kPTR makes use of a database of reference genome sequences, whereas bPTR is designed to be 
more flexible and can use mapping of reads to any genome sequence. For our bPTR analyses, we 
used Bowtie2 (Langmead and Salzberg, 2012) with default parameters for read mapping. 
 
Both bPTR and kPTR can determine the location of the origin and terminus of replication of 
growing cells by identifying coverage “peaks” and “troughs” associated with these positions. 
Identification of the origin and terminus of replication requires measuring changes in coverage 
along the genome sequence. This is accomplished by calculating the average coverage over 10 
Kbp windows at positions along the genome separated by 100 bp. To increase the accuracy of 
results, a mapping quality threshold can be used in which both reads in a set of paired reads are 
required to map to the genome sequence with no more than a specified number of mismatches 
(this option is unique to bPTR). Since highly conserved regions, strain variation, or integrated 
phage can result in highly variable coverage, high and low coverage windows are filtered out of 
the analysis. Coverage windows are excluded if the values differ from the median by a factor 
greater than eight (threshold also used by kPTR), or if the values differ from the average of 1,000 
neighboring coverage windows by a factor greater than 1.5 (threshold unique to bPTR). If more 
than 40% of the windows are excluded, no bPTR value will be calculated (threshold also used by 
kPTR). The origin and terminus are identified by fitting a piecewise linear function to the filtered, 
log2-transformed coverage values. Coverage values are log2-transformed to improve fitting, but 
the transformation is reversed prior to calculating bPTR. Fitting is conducted as described by 
Korem et al. by non-linear least squares minimization using the Levenberg-Marquardt algorithm 
implemented by lmfit (Newville et al., 2014). 
 
Piecewise linear function modified from Korem et al.: 
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Oriloc and Terloc refer to the locations of the origin and terminus of replication, respectively, and 
Oricov and Tercov refer to log2-transformed coverage at those positions. All x values refer to 
positions on the genome, and y values to log2-transformed coverage values. The fitting is 
constrained such that Oriloc and Terloc are separated by 45-55% of the genome length (Korem et 
al., 2015). In order to reduce the amount of noise introduced by fluctuations in sequencing 
coverage, a median filter is applied to the coverage data before calculating bPTR. This 
smoothing operation replaces the coverage value at each position with the median of values 
sampled from the 1,000 neighboring windows. The log2-transformed, median-filtered values 
corresponding with Oriloc and Terloc (Oricov-med and Tercov-med, respectively) are used to calculate 
bPTR. 
 
Since the values have been log2-transformed, the final value is calculated as: 
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Oriloc and Terloc are determined based on sequencing from each available sample. In order to 
calculate bPTR using the same positions for all samples, consensus Oriloc and Terloc positions are 
determined by finding the circular median of the positions determined from each individual 
sample (all Oriloc and Terloc positions with bPTRs ≥1.1 are considered), as is done for kPTR 
(Korem et al., 2015). Once these values are determined, all bPTR values are re-calculated using 
the coverage at the consensus positions. It is important to note that Oriloc and Terloc may vary 
depending on what samples are analyzed, and that with bPTR this can be avoided by using GC 
skew to identify Oriloc and Terloc (see below). 
 
For bPTR, we added the option to find Oriloc and Terloc based on GC skew. GC skew is 
calculated over 1 Kbp windows at positions along the genome separated by 10 bp. Since Oriloc 
and Terloc coincide with a transition in the sign (+/-) of GC skew, these positions can be 
identified as the transition point in a plot of the cumulative GC skew (Grigoriev, 1998) (for 
examples see Figure 3.7, Figure 3.5, and Figure 3.10). These transition points are identified by 
finding extreme values in the cumulative GC skew data separated by 45-55% of the genome 
length. Once Oriloc and Terloc are identified, bPTR is calculated from median-filtered log2-
transformed coverage values calculated over sliding windows as described above. bPTR provides 
visual representation of both coverage and GC skew patterns across genome sequences that 
enable verification of genome assemblies and predicted Oriloc and Terloc positions (this 
visualization is not provided by kPTR).  
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Calculating the Index of Replication (iRep) for complete and draft-quality genomes 
iRep analyses are conducted by first mapping DNA sequencing reads to genome sequences with 
Bowtie2 (default parameters). For genomes in multiple pieces, the coverage values determined at 
each position along the fragments are combined, and then average coverage is calculated over 5 
Kbp windows at positions along the concatenated genome that are separated by 100 bp (Figure 
3.2; see Figure 3.3 and below for accuracy metrics related to sliding window calculations). As 
with bPTR, a mapping quality threshold can be used to increase the accuracy of results by 
ensuring that both reads in a set of paired reads mapped to the genome sequence with no more 
than a specified number of mismatches. Coverage values from the first and last 100 bp of each 
scaffold are excluded due to possible edge effects. Coverage windows are filtered out of the 
analysis if the values differ from the median by a factor greater than eight, and then GC 
sequencing bias is measured and corrected (see below). Coverage values are log2-transformed 
and then sorted from lowest to highest coverage. Because the coverage windows are re-ordered 
in this step, it does not matter if the correct order of genome fragments is unknown. The lowest 
and highest 5% of sequences are excluded, and then the slope of the remaining coverage values 
is determined by linear regression. As with bPTR, log2-transformations are conducted to improve 
regression analysis, but are removed before comparing coverage values. iRep, which is a 
measure of the ratio between Oricov and Tercov, can be determined based on the slope (m) and y-
intercept (which is synonymous with Tercov, see Figure 3.2) of the regression line, and the total 
length of the genome sequence (l): 
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However, since the values have been log2-transformed, the final value is calculated as: 
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Since partial genome sequences will include a random assortment of genome fragments, the 
coverage trend determined from the available sequence will be representative of the coverage 
trend across the complete genome. Several quality thresholds are used to ensure the accuracy of 
iRep measurements: i) coverage depth must be ≥5x, ii) ≥98% of the genome sequence must be 
included after filtering coverage windows, and iii) r2 values calculated between the coverage 
trend and the linear regression must be ≥0.90. These criteria are important because they ensure 
that enough sequencing data is present to achieve accurate measurements, and that the genome 
sequence is appropriate for the analysis. The 98% genome sequence coverage threshold differs 
from the genome completeness requirement in that this is not a measure of the quality of the 
genome assembly, but rather a measure of the overlap between a genome sequence and the 
sequencing data. Low values would indicate that the genome used for mapping is not 
appropriately matched with an organism present in the system. Likewise, having a strong fit of 
the linear regression to the coverage data indicates that sequencing coverage calculations are not 
influenced by strain variation, choice of an inappropriate genome sequence, or other factors that 
may skew replication rate measurements. 
 
Both PTR methods involve calculations based on only two data points (Oricov and Tercov). In 
contrast, iRep uses coverage trends determined across an entire genome sequence, and thus is 
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less susceptible to noise in sequencing coverage or errors in the prediction of Oriloc and Terloc. 
Further, since both PTR methods involve predicting Oriloc and Terloc based on data from multiple 
samples, the same positions may not be chosen for different analyses. This makes it difficult to 
reproduce and compare results (an issue that can be avoided by predicting Oriloc and Terloc using 
cumulative GC skew and bPTR). iRep calculations do not depend on analysis of multiple 
samples, and thus results will not change based on what samples are included in an analysis. 
Since the order of genome fragments need not be known when calculating iRep, the method is 
not affected by genome assembly errors, which are present even in some genome sequences 
reported to be complete (Figure 3.10). 
 
Determining the minimum sequencing coverage required for iRep analysis 
Lactobacillus gasseri data from the Korem et al. study was used to determine the minimum 
coverage required for iRep, bPTR, and kPTR. Reads from each sample were first mapped to the 
complete genome sequence, and then subsampled to 25x before calculating iRep, bPTR, and 
kPTR. Then, each mapping was further subsampled to lower coverage levels (20x, 15x, 10x, 5x, 
and 1x) and replication rates were re-calculated using each method. Comparison of these values 
to those determined at 25x coverage enable quantification of the amount of noise introduced by 
increasingly lower coverage (Fig. 2c and Supplementary Table 3). 
 
Determining genome quality requirements for iRep analysis 
The L. gasseri data from Korem et al. subsampled to 25x coverage was also used to test the 
minimum fraction of a genome required for obtaining accurate iRep measurements. Four 
samples representing iRep values between 1.50 and 2.01 were selected in order to test the effect 
of missing genomic information across a range of replication rates. Genome subsampling 
experiments were conducted on each sample in order to evaluate the amount of noise introduced 
by missing genomic information. For each tested genome fraction (90%, 75%, 50%, and 25%), 
iRep was calculated for 100 random genome subsamples. For each subsample, the genome was 
fragmented into pieces with lengths determined by selecting from a gamma distribution modeled 
after the size of genome fragments expected for draft-quality genome sequences (alpha = 0.1, 
beta = 21,000, minimum length = 5 Kbp, maximum length = 200 Kbp; Figure 3.3). Once 
fragmented, the pieces were randomly sampled until the desired genome fraction was achieved. 
Partial fragments were included in order to prevent the desired genome fraction size from being 
exceeded. In order to ensure that the results were accurate even when sequencing coverage is low, 
iRep calculations were conducted after subsampling reads to 5x coverage. iRep values calculated 
after subsampling were compared to values determined at 25x coverage with the complete 
genome sequence in order to measure the combined affect of lower coverage and missing 
genome sequence information (Figure 3.4d and Supplementary Table 3.1). In order to 
determine the effect of increased genome fragmentation on iRep calculations, additional genome 
fragmentation experiments were conducted in which the minimum and maximum allowed 
fragment lengths were varied in order to determine the effects of higher than normal levels of 
genome fragmentation (Figure 3.3b and Supplementary Table 3.1). 
 
Evaluation of iRep sliding window calculation methods 
The accuracy of iRep when implemented using different sliding window coverage calculation 
methods was determined based on additional random genome fragmentation experiments using 
the L. gasseri data from Korem et al. Figure 3.3c-e and Supplementary Table 3.1). Three 
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sliding window methods were tested: i) the method implemented in iRep (described above and 
referred to as the “iRep” method), ii) as implemented in iRep, except for that the iRep value is 
taken as the median of ten iRep values each obtained after concatenating available genome 
fragments in different arrangements (referred to as the “median iRep” method), and iii) obtained 
after calculating coverage sliding windows for each fragment individually, and then combining 
the sliding window data (referred to as the “scaffold windows” method). The amount of noise in 
the iRep calculation using each method was determined based on comparing iRep values 
achieved with 5x sequencing coverage and varying levels of genome completeness (see above) 
to values determined based on the standard iRep method and the complete genome sequence 
with 25x sequencing coverage (Figure 3.3c). This was repeated using different sliding window 
sizes in order to determine the optimal method. Furthermore, the range of iRep values obtained 
for tests using the “median iRep” method was used to determine the amount of noise introduced 
when scaffold coverage data is concatenated in a random order prior to conducting sliding 
window calculations (Figure 3.3d). Because the standard iRep method with 5 Kbp windows was 
determined to be the best, a final test of this method was conducted in order to compare different 
window slide lengths (Figure 3.3e). 
 
Correcting for GC sequencing bias 
DNA sequencing platforms are biased towards sequences based on their GC content (Ross et al., 
2013). Because this bias can result in a difference in the sequencing coverage across a genome 
sequence, it could influence iRep results. To account for this, GC sequencing bias is measured 
and corrected independently for each genome and metagenome. This is accomplished by first 
determining the GC content of sliding windows across the genome sequence that correspond 
with the coverage measurements used for calculating iRep. Then, linear regression is conducted 
between the coverage and GC values determined for each sliding window. In order to get an 
accurate measurement, linear regression is conducted in two steps: first with the complete data 
set and then after removing the 1% of data points with the largest deviation from the initial 
regression analysis. Then, the results of the filtered regression analysis are used to correct the 
coverage values for each sliding window. This method was used in the analyses of all 
metagenome data in this study, and is part of the iRep code (Code Availability). The GC 
sequencing bias correction resulted in better agreement between iRep and bPTR values 
determined using ordered and oriented genomes reconstructed from the premature infant dataset 
(Figure 3.3f; see below). 
 
Comparative analyses of replication rate methods 
iRep, bPTR, and kPTR were calculated for all samples from the Korem et al. L. gasseri 
experiments (these were the only samples sequenced to a high enough depth to enable 
comparison with iRep; Supplementary Table 3.3). For a subset of these data, replication rates 
could also be calculated based on counts of colony forming units (CFU/ml) (Korem et al., 2015) 
(Figure 3.4b and Supplementary Table 3.2). Pearson’s correlations were calculated between 
replication rates based on CFU/ml data and iRep, bPTR, and kPTR, after first accounting for the 
time delay between start of genome replication and observable change in population size (as 
previously noted(Korem et al., 2015)). The time delay was determined independently for each 
method as the delay that resulted in the highest correlation. 
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iRep and bPTR values were compared for a novel Deltaproteobacterium after manually curating 
a recently reported draft genome sequence (Sharon et al., 2015) (see below). Reads from the 
GWC2 sample from Brown et al. were used to conduct the analysis (Figure 3.7). For this 
comparison, and all subsequent iRep and bPTR calculations, coverage was calculated based on 
reads that mapped to the genome fragment with no more than two mismatches (see above for 
details). Although enough of the genome sequence was assembled in order to calculate bPTR, 
the results could not be compared with kPTR because a complete reference genome sequence 
was not available. 
 
In order to further compare iRep and bPTR in the context of microbial community sequencing 
data, bPTR values were calculated using genomes reconstructed from the premature infant 
dataset (Raveh-Sadka et al., 2015) that were ordered and oriented based on complete reference 
genome sequences (see below; Figure 3.4e and Supplementary Table 3.4). Although these 
genomes were similar enough to reference genomes to facilitate ordering and orienting the 
sequences, the reference genomes themselves were too divergent to facilitate replication rate 
calculations (see Results; Figure 3.6), which prevented inclusion of kPTR in this analysis. 
 
Manual curation of a Deltaproteobacterium genome 
The genome sequence of a previously reported Deltaproteobacterium was manually curated. 
Unplaced or misplaced paired-read sequences were used to fill scaffolding gaps, correct local 
assembly errors, and extend scaffolds. Overlapping scaffolds were combined when the join was 
supported by paired read placements. The final assembled sequence was visualized to confirm 
that all errors had been corrected. 
 
Ordering and orienting draft genomes based on complete reference genomes 
Reference genomes similar to draft genomes were obtained from NCBI GenBank. Genomes with 
aberrant GC skew patterns were not used for ordering draft genomes as they likely contain 
assembly errors. The average nucleotide identities (ANI) between each draft genome and 
associated reference genomes were calculated using the ANIm method(Richter and Rossello-
Mora, 2009), and the reference genome with the highest ANI was chosen. Draft genome 
fragments were aligned to the reference genome using BLAST (Altschul et al., 1990), and any 
fragment with less than 20% alignment coverage was discarded. The remaining sequence was 
then aligned to the reference genome using progressive Mauve (Rissman et al., 2009), resulting 
in an ordered and oriented genome to be used for calculating bPTR. These genomes were 
manually inspected and curated based on cumulative GC skew and genome coverage patterns 
based on graphs generated by the bPTR script (Figure 3.5). 
 
iRep measurements for premature infant metagenomes 
Previously reconstructed genomes from the premature infant gut microbiome study (Raveh-
Sadka et al., 2015) were included in the iRep analysis if they were estimated to be ≥75% 
complete based on analysis of universal single copy genes (SCGs), had no more than two 
duplicate SCGs, and had less than 175 fragments/Mbp of sequence. In order to maximize the 
number of iRep values that could be determined, custom read mapping databases were used for 
each metagenome. Each database was constructed by first including genomes reconstructed from 
the metagenome that passed the above thresholds, and then by adding additional draft-quality 
genomes reconstructed from other metagenomes from the same infant. This prioritizes genomes 
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reconstructed from the metagenome used for mapping, but also attempts to include genomes 
from organisms that may have been present, but for which a genome sequence was not 
assembled. 
 
Overlap in community membership across time-series studies results in the same genome 
sequence being reconstructed in multiple samples. Including highly similar or identical genome 
sequences in databases used for read mapping would lead to aberrant coverage calculations. This 
becomes a concern when including genomes reconstructed from additional samples in read 
mapping databases for iRep calculations. To prevent adding highly similar genomes to the 
databases, only the representatives of 98% ANI genome clusters (see below) were added to 
mapping databases, and only if a representative of the cluster was not already included. 
Consistent with clustering genomes based on sharing 98% ANI, iRep calculations were 
conducted based on coverage calculations determined from reads mapping to genomes with no 
more than two mismatches (see above for details; Supplementary Table 3.5). 
 
Clustering genomes based on average nucleotide identity (ANI) 
Average nucleotide identity was determined between all pairs of genome sequences using the 
Mash algorithm (Ondov et al., 2016) (kmer set to 21). Clusters were defined by selecting groups 
of genomes connected by ≥98% ANI. Representatives of each cluster were chosen by selecting 
the longest genome with less than 175 fragments/Mbp that had the most SCGs and the fewest 
SCG duplicates. 
 
Comparison of iRep and kPTR measurements for premature infant gut metagenomes 
The kPTR software from Korem et al. was run on the premature infant metagenomes (Raveh-
Sadka et al., 2015) (Supplementary Table 3.8). Comparisons between iRep and kPTR were 
made when it was possible to link the name of the genome provided by kPTR with the taxonomy 
given to reconstructed genome sequences (Supplementary Table 3.5). 
 
Genome binning and iRep measurements for adult human metagenomes 
Genomes were binned from the adult human metagenome (Di Rienzi et al., 2013) based on 
coverage, GC content, and taxonomic affiliation using ggKbase tools (ggkbase.berkeley.edu), as 
previously described (Brown et al., 2015; Raveh-Sadka et al., 2015). Genome completeness was 
evaluated based on the fraction of universal single copy genes (Raes et al., 2007; Raveh-Sadka et 
al., 2015) that could be identified (Supplementary Table 3.6). Genomes estimated to be ≥75% 
complete, with no more than two additional single copy genes, and no more than 175 fragments 
per Mbp of sequence, were used in the analysis. iRep was conducted using reads mapped to 
genomes with no more than two mismatches (Supplementary Table 3.7). 
 
bPTR and kPTR measurements from the adult human metagenome 
The kPTR software from Korem et al. was run on the adult human metagenome (Di Rienzi et al., 
2013) (Supplementary Table 3.9). bPTR calculations were conducted based on mapping 
metagenome reads to selected complete reference genomes (≤2 mismatches; Figure 3.10). 
Reference genomes for bPTR analysis were selected by searching scaffolds from reconstructed 
genome sequences against complete genomes from NCBI GenBank. The complete genome with 
the best BLAST hit to each reconstructed genome was selected for bPTR analysis. 
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iRep measurements for Candidate Phyla Radiation (CPR) organisms 
CPR genomes identified by Brown et al. to be ≥75% complete, with no more than two additional 
single copy genes, and no more than 175 fragments per Mbp of sequence, were selected for iRep 
analysis. These genomes were reconstructed previously from multiple metagenomes spanning an 
acetate amendment time-series field experiment. Reads from each of 12 metagenomes sequenced 
from groundwater filtrates, collected from serial 0.2 and 0.1 µm filters at six time points, were 
mapped to the genome sequences for iRep calculations (≤2 mismatches; Supplementary Table 
3.10). 
 
Absolute abundance and doubling time determinations 
Raveh-Sadka et al. determined the concentration of cells in each collected fecal sample using 
droplet-digital PCR (Raveh-Sadka et al., 2015). In this study, the population size of each species 
was determined by multiplying total cell counts by the fractional (relative) abundance calculated 
based on genome sequencing (Figure 3.11 and Supplementary Table 3.5). These values were 
used to calculate the doubling time for Klebsiella oxytoca (Figure 3.13). 
 

Code Availability 
iRep and bPTR software are maintained under github.com/christophertbrown/iRep (v1.10 used 
in this analysis: github.com/christophertbrown/iRep/releases/tag/v1.10). 
 
Data Availability 
DNA sequencing reads are available from the NCBI Sequence Read Archive for the groundwater 
(Brown et al., 2015) (SRP050083), premature human infant (Raveh-Sadka et al., 2015) 
(SRP052967), and adult human (Di Rienzi et al., 2013) (SRR3496379) microbiome projects. 
Genomes analyzed as part of this study are available from ggKbase for the groundwater (Brown 
et al., 2015) (ggkbase.berkeley.edu/CPR-complete-draft/organisms), premature human infant 
(ggkbase.berkeley.edu/project_groups/necevent_samples), and adult human 
(ggkbase.berkeley.edu/LEY3/organisms) datasets, as well as for the curated novel 
Deltaproteobacterium (ggkbase.berkeley.edu/novel_delta_irep/organisms). CPR genomes 
(BioProject PRJNA273161) and adult human microbiome genomes (BioProject PRJNA321218) 
are available from NCBI GenBank, and the Deltaproteobacterium genome from 
DDBJ/ENA/GenBank under the accession LVEI00000000 (version LVEI02000000 described 
here; see Supplementary Tables for additional accession numbers). 
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Supplementary Tables 
Supplementary Table 3.1 | Analysis of the impact of genome completeness on iRep 
replication rate measurements. iRep was first calculated using sequencing data from 
Lactobacillus gasseri (NC_008530) experiments (Korem et al., 2015) with the complete genome 
at 25x coverage, and then compared with values calculated at 5x coverage after subsampling the 
genome 100 times for each targeted percent of the genome sequence (“delta”). This was 
conducted using different coverage sliding window methods (see Methods for descriptions), 
sliding window sizes, and window slide lengths. In order to test different levels of genome 
fragmentation, the minimum and maximum allowed fragment size was also varied. iRep range is 
the difference between the minimum and maximum iRep values determined when using the 
“median iRep” sliding window calculation method. 
  
Supplementary Table 3.2 | Comparison of iRep, bPTR, and kPTR measurements. The 
Korem et al. Lactobacillus gasseri (NC_008530) data was used to measure replication rates 
using iRep, bPTR, and kPTR. iRep % windows refers to the percent of coverage windows that 
passed the iRep filters, and iRep r^2 is the r2 value calculated between the sequencing coverage 
trend and regression used for calculating iRep. Coverage is the average sequencing depth 
calculated across the genome sequence. Colony forming units per ml of culture (CFU/ml) was 
obtained from the Korem et al. study. 
 
Supplementary Table 3.3 | iRep, bPTR, and kPTR measurements for minimum genome 
sequencing coverage analyses. Genome coverage tests were conducted using Lactobacillus 
gasseri (NC_008530) data from previously published experiments (Korem et al., 2015). Target 
coverage is the level of coverage achieved after sub-sampling sequencing reads. 
 
Supplementary Table 3.4 | Comparison of iRep and bPTR measurements for draft-quality 
genomes ordered and oriented based on complete genome sequences. Genomes reconstructed 
for organisms sampled as part of the Raveh-Sadka et al. premature infant dataset were ordered 
based on complete reference genome sequences. iRep and bPTR values were calculated for all 
pairs of genomes and samples by mapping reads from the samples to the genome sequences. GC 
r^2 is the r2 value from the linear regression between sequencing coverage and GC content that is 
used for correcting GC sequencing bias. GC bias is the GC r2 value multiplied by the slope of the 
regression line, and is a measure of the magnitude and direction of GC sequencing bias. Un-
filtered iRep values include iRep values that may not have passed the quality thresholds. Raw 
iRep values are iRep values determined without the GC sequencing bias correction. 
Fragments/Mbp is the number of genome fragments per Mbp of genome sequence. Coverage 
breadth is the percent of the genome covered by sequencing reads. 
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Supplementary Table 3.5 | iRep measurements for organisms associated with premature 
infant microbiomes. iRep measurements were determined using genomes and metagenomes 
from the Raveh-Sadka et al. premature infant dataset. DOL = day of life and NEC = necrotizing 
enterocolitis. The DOL – sample column indicates whether additional samples were collected on 
a particular day, the DOL – NEC diagnosis column includes day of life relative to NEC 
diagnosis, and condition indicates whether or not the infant was diagnosed with NEC. The 
antibiotics column indicates whether or not antibiotics were administered at, or within five days 
prior to, the time of sample collection. Relative abundance was calculated for each organism 
based on the number of sequencing reads mapped to the genome sequence as a percent of 
sequences mapped to all draft-quality genomes. Absolute abundance (cells/g) was determined for 
each organism based on relative abundance and previously published ddPCR measurements of 
total cells/g of feces (Raveh-Sadka et al., 2015). kPTR values are provided for cases where there 
was a clear match with results from the kPTR software (Supplementary Table 3.8). 
  
Supplementary Table 3.6 | Single copy gene inventory for genomes reconstructed from an 
adult human gut metagenome. Genomes were binned as part of this study from a previously 
published metagenome dataset from Di Rienzi et al. (SAMN04978193). The number of single 
copy marker genes, which can be used as a proxy for genome completeness, was determined for 
each genome. 
 
Supplementary Table 3.7 | iRep measurements for organisms associated with an adult 
human microbiome. iRep measurements were determined using the metagenome from Di 
Rienzi et al. (SAMN04978193) and the genomes reconstructed as part of this study. 
 
Supplementary Table 3.8 | kPTR values determined from the premature infant 
metagenomes. The kPTR software was used to measure replication rates for organisms 
represented in the Raveh-Sadka et al. premature infant metagenomes. 
  
Supplementary Table 3.9 | kPTR values determined from the adult human metagenome. 
The kPTR software was used to measure replication rates for organisms represented in the 
metagenome from Di Rienzi et al. (SAMN04978193). 
 
Supplementary Table 3.10 | iRep measurements for Candidate Phyla Radiation (CPR) 
organisms. iRep measurements were determined using genomes and metagenomes from the 
Brown et al. CPR dataset. 
 
 
  



 

 78  
 

Figure 3.1 | iRep determines replication rates for bacteria using genome-resolved 
metagenomics. (a) Populations of bacteria undergoing rapid cell division differ from slowly 
growing populations in that the individual cells of a growing population are more actively in the 
process of replicating their genomes (purple circles). (b) Differences in genome copy number 
across a population of replicating cells can be determined based on sequencing read coverage 
over complete genome sequences. The ratio between the coverage at the origin (“peak”) and 
terminus (“trough”) of replication (PTR) relates to the replication rate of the population. The 
origin and terminus can be determined based on cumulative GC skew. (c-d) If no complete 
genome sequence is available, it is possible to calculate the replication rate based on the 
distribution of coverage values across a draft-quality genome using the iRep method. Coverage is 
first calculated across overlapping segments of genome fragments. Growing populations will 
have a wider distribution of coverage values compared with stable populations (histograms). 
These values are ordered from lowest to highest, and linear regression is used to evaluate the 
coverage distribution across the genome in order to determine the coverage values associated 
with the origin and terminus of replication. iRep is calculated as the ratio of these values. (e) 
Genome-resolved metagenomics involves DNA extraction from a microbiome sample followed 
by DNA sequencing, assembly, and genome binning. Binning is the grouping together of 
assembled genome fragments that originated from the same genome. This can be done based on 
shared characteristics of each fragment, such as sequence composition, taxonomic affiliation, or 
abundance. 
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Figure 3.2 | Schematic showing steps involved in a genome-resolved metagenomics study 
that includes iRep analysis. Microbiome sample collection and DNA extraction methods should 
be determined on a per-project basis, and metagenome sequencing can be conducted on the 
Illumina, PacBio, or another sequencing platform. Sequencing reads are trimmed based on 
quality scores (e.g. using Sickle (Joshi)) and filtered for contamination (e.g. removal of human 
genome sequences). High-quality reads are then assembled (e.g. using IDBA_UD (Peng et al., 
2012)), and the resulting scaffolds are binned either manually (e.g. based on GC content, 
taxonomic affiliation, coverage), and/or using a clustering algorithm such as ESOM (Dick et al., 
2009; Raveh-Sadka et al., 2015; Sharon et al., 2012)) or using an automated binning program 
(e.g. MaxBin (Wu et al., 2015), CONCOCT (Alneberg et al., 2014), or ABAWACA (Brown et 
al., 2015)). Genome bins can then be assessed for completion and contamination based on 
inventory of expected single copy genes (SCGs), either based on identification of these genes 
from genome annotations (see (Brown et al., 2015; Raes et al., 2007; Raveh-Sadka et al., 2015)), 
or using software such as CheckM (Parks et al., 2015). High-quality genomes are then compared 
with one another and grouped into clusters based on average nucleotide identity (ANI; e.g., 
based on sharing 98% ANI determined using Mash (Ondov et al., 2016)). A representative of 
each cluster should be included in a genome database that will be used for iRep analysis, along 
with genomes from other projects that may be appropriate for the analysis. Reads from each 
metagenome are then mapped to the genome database (e.g. using Bowtie2 (Langmead and 
Salzberg, 2012)), and iRep is calculated from the read mapping data (see Methods). 
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Figure 3.3 | Evaluation of iRep method parameters. (a) Gamma distribution used to simulate 
genome fragmentation for genome completeness analyses. The frequency of genome fragment 
sizes from all genomes analyzed in this study are compared with genome fragment sizes 
simulated using a gamma distribution with parameters: alpha = 0.1, beta = 21,000, min. = 5,000, 
max. = 200,000. These parameters were first estimated by fitting to the genome data, and then 
manually adjusted. Similarity between the two distributions shows that this gamma distribution 
can be used to approximate the level of genome fragmentation expected for draft-quality genome 
sequences. (b) iRep was calculated from random genome fragmentation simulations in order to 
survey a range of fragmentation levels (Supplementary Table 3.1). The analysis was conducted 
for an L. gasseri sample from the Korem et al. study in which iRep was determined to be 2.01 
using the complete genome with 25x sequencing coverage. This known iRep value was then 
compared with iRep values determined from each genome fragmentation simulation after 
subsampling to 75% of the genome and using only 5x sequencing coverage. This enabled 
analysis of the influence of fragmentation on iRep calculations at the completeness and coverage 
limits of the method. Results show that 91.8% of iRep values are within the expected range of 
0.15 when genomes have fewer than 175 fragments/Mbp of genome sequence. (c) Four L. 
gasseri samples from the Korem et al. study that represent iRep values between 1.50 and 2.01 
were selected in order to test different coverage sliding window calculation methods (see 
Methods for description of each method) and window sizes. For each sample, 100 random 
genome fragmentations and subsets were conducted in order to assess each method based on 
various levels of genome completion. The results show that the “iRep” and “median iRep” 
methods using 5 Kbp windows exhibited the least amount of variation. (d) Because the iRep 
method involves randomly combining coverage data from different genome fragments prior to 
calculating coverage sliding windows, some sliding windows will include coverage values from 
different locations on the complete genome sequence. In order to evaluate the variation 
introduced by the (random) order in which scaffolds are combined, iRep calculations were 
conducted for ten random orderings of 100 random genome fragmentations conducted using the 
sample set described in (c). Results show a very minimal amount of variation in iRep values as 
described by the difference between the lowest and highest values determined from each of the 
ten orderings (“iRep range”). Because of this, we chose not to implement the “median iRep” 
strategy. (e) Using the sample set described in (c), the iRep method was implemented using 5 
Kbp windows using different window slide values in order to test whether or not the slide value 
would change the results. Because both 10 and 100 bp window slides produced similar results, 
we implemented the iRep method using a 100 bp window slide. (f) iRep is not as strongly 
correlated with bPTR without the GC sequencing bias correction for five genome sequences 
assembled from premature infant metagenomes (Supplementary Table 3.4; compare with GC 
corrected data in Figure 3.4e). 
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Figure 3.4 | iRep is an accurate measure of in situ replication rates. (a) iRep, bPTR, and 
kPTR measurements made for cultured Lactobacillus gasseri (Korem et al., 2015) were 
compared (r = Pearson’s r value), showing strong agreement between all methods. (b) Colony 
forming unit (CFU) counts were available for a subset of these samples (Korem et al., 2015), and 
used to calculate growth rates (n = 2). All methods were highly correlated with CFU-derived 
rates after first accounting for the delay between start of genome replication and observable 
change in population size (as noted previously (Korem et al., 2015)). Replication rates from CFU 
data were adjusted by variable amounts before calculating correlations with sequencing-based 
rates (best correlation shown; d = time adjustment). CFU data are plotted with a -90 minute 
offset. (c) Using the L. gasseri data, minimum coverage requirements were determined for each 
method by first measuring the replication rate at 25x coverage, and then comparing to values 
calculated after simulating lower coverage. This shows that ≥5x coverage is required. (d) The 
minimum required genome fraction for iRep was determined by conducting 100 random 
fragmentations and subsets of the L. gasseri genome. Sequencing was subset to 5x coverage 
before calculating iRep to show the combined affect of low coverage and missing genomic 
information. With ≥75% of a genome sequence, most iRep measurements are accurate ±0.15. (e) 
iRep and bPTR measurements were calculated using five genome sequences assembled from 
premature infant metagenomes, showing that these methods are in agreement in the context of 
microbiome sequencing data. 
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Figure 3.5 | Coverage, GC skew patterns, and bPTR measurements for reconstructed 
genomes oriented and ordered based on complete reference genome sequences. (a-e) Read 
mapping was conducted using sequences from the sample used for genome recovery. bPTR was 
calculated after determining the origin and terminus of replication based on cumulative GC skew. 
Coverage was calculated for 10 Kbp windows calculated every 100 bp (extremely low and high 
coverage windows were filtered out; see Methods). bPTR was calculated as the ratio between the 
coverage at the origin and terminus after applying a median filter. Cumulative GC skew and 
coverage patterns confirm the ordering of genome fragments. 
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Figure 3.6 | Reference genomes are not representative of organisms surveyed in the 
premature infant microbiome study. Reads were mapped to both reconstructed genomes and 
closely related reference genomes (Supplementary Table 3.4), and the percent of each genome 
covered by sequencing reads is reported. Average nucleotide identity (ANI) is reported between 
each reconstructed genome and the paired reference genome. The large fractions of reference 
genomes not represented by metagenome sequencing show that extensive genomic variation is 
present between surveyed and reference genomes, despite high ANI values in some cases. 
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Figure 3.7 | iRep and bPTR calculations agree for a novel Deltaproteobacterium sampled 
from groundwater. (a) bPTR was calculated after determining the origin and terminus of 
replication based on regression to coverage calculated across the genome. Coverage was 
calculated for 10 Kbp windows sampled every 100 bp (see Methods). The ratio between the 
coverage at the origin and terminus was determined after applying a median filter. The 
cumulative GC skew pattern confirms the genome assembly and locations of the origin and 
terminus of replication. (b) iRep was determined by first calculating coverage over 5 Kbp 
windows sampled every 100 bp, and then sorting the resulting values. High and low coverage 
windows were removed, and then the slope of the remaining (trimmed) values was determined 
and used to evaluate the coverage at the origin and terminus of replication: iRep was calculated 
as the ratio of these values. (r2 was calculated between trimmed data and the linear regression). 
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Figure 3.8 | Replication rates were determined for Candidate Phyla Radiation (CPR) and 
human microbiome-associated organisms. iRep values were measured and compared across 
studies (a; MW = Mann-Whitney, n = number of measured replication rates), and compared 
based on taxonomic affiliation (b). 
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Figure 3.9 | Replication rates determined by iRep and kPTR are not in strong agreement 
for the premature infant study. iRep values were determined based on reconstructed genomes 
and kPTR values based on complete reference genomes (r = Pearson’s r value). 
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Figure 3.10 | Coverage, cumulative GC skew, and bPTR measurements for complete 
reference genomes with similarity to genomes from the adult human microbiome sample. 
(a-e) Reads from the adult human microbiome were mapped to complete reference genome 
sequences. Coverage was calculated for 10 Kbp windows every 100 bp (extremely low and high 
coverage windows were filtered out; see Methods). The origin and terminus of replication were 
determined based on coverage. bPTR was calculated as the ratio between the coverage at the 
origin and terminus after applying a median filter. Cumulative GC skew and coverage patterns 
suggest the presence of genomic variation or assembly errors for some genomes (b-c, e). 
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Figure 3.11 | Absolute abundance (bars, left axis) and iRep (scatter plot, right axis) for 
bacteria associated with premature infants. The five days following antibiotic administration 
are indicated using a color gradient (DOL = day of life). 
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Figure 3.12 | Elevated replication rates are associated with antibiotic administration and 
were detected prior to onset of necrotizing enterocolitis (NEC) in premature infants. iRep 
distributions were compared (a) between samples collected during or within five days after 
antibiotic administration and samples from other time points, and (b) between samples collected 
from NEC and control infants. (c-d) Comparison of iRep values measured for different species 
(c) and genera (d) sampled from NEC and control infants (shown are taxa with ≥5 observations 
from either group). (e) iRep for the fastest growing organism observed for each control infant, 
and for the fastest growing organism from each day of life (DOL) sampled for each NEC infant, 
reported relative to NEC diagnosis. High replication rates for members of the genus Clostridium 
were detected in infants surveyed prior to NEC diagnosis. 
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Figure 3.13 | Absolute abundance (bars, left axis) and iRep (scatter plot, right axis) values 
for bacterial species associated with two premature infants. The 5 d following antibiotic 
administration are indicated using a color gradient. (a) Exponential growth was determined by 
regression to K. oxytoca absolute abundance values (black dotted line). (b) Infant 2 was 
diagnosed with two cases of necrotizing enterocolitis (NEC; dotted red lines) during the study 
period. 
 

 
  



 

 92  
 

Chapter 4 

Linking microbial community dynamics to metabolic shifts during colonization of the 
premature infant gut 

C. T. Brown, W. Xiong, M. R. Olm, B. C. Thomas, M. J. Morowitz, R. L. Hettich, J. F. Banfield 

Unpublished. 

Abstract 
The first weeks of life are an important developmental period for premature infants. During this 
time infants are colonized by microbes, which are thought to contribute to immune system 
maturation and other processes. In premature infants, aberrant microbial communities have been 
implicated in onset of necrotizing enterocolitis (NEC), a life-threatening intestinal disease. 
Currently, little is known about microbial community dynamics during this time from the 
perspective of composition, activity, and metabolism. Of particular interest is how genetically 
similar microbes may modulate their activity and metabolic characteristics in different 
community contexts. In order to study this process, gut microbiome samples collected during the 
first three months of life from 11 premature infants, four that developed NEC, were selected for 
detailed metagenome and metaproteome analyses. Samples were selected in part based on the 
presence of members of the same microbial species. In total, 711 draft-quality genomes 
representing 98 different species groups were reconstructed from 144 metagenomes. These 
genomes were used to measure in situ replication rates, and for proteomic analysis of microbial 
metabolic profiles. Members of the species Enterococcus faecalis, Klebsiella pneumoniae, and 
Staphylococcus epidermidis colonized essentially all infants, but many other organisms were 
present. Communities were classified into six types based on community composition. Infant 
health status and development did not determine microbial community type. Interestingly, 
community type switched within individual infants, sometimes multiple times, and communities 
sampled from the same infant at subsequent time points were sometimes more similar to those 
from other infants than to earlier communities. In some cases, switches preceded onset of NEC, 
but no community type was associated with NEC. However, members of several species were 
found to be replicating at different rates in healthy infants compared with those that went on to 
develop NEC. Differences in the abundance of proteins involved in specific transporter and sugar 
degradation systems, as well as proteins involved in other processes, distinguished community 
types from one another. Community-specific protein abundances were in part driven by shifts in 
protein expression of members of the same species living in different community contexts. These 
analyses characterized the early infant microbiome as a highly variable system and uncovered 
microbial dynamics not apparent from community composition alone.  
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Introduction 
The infant microbiome has been characterized as having high levels of between-individual 
variation compared with adult human microbiomes (Costello et al., 2009; Palmer et al., 2007). 
During the first one to two years of life the gut microbiomes of infants begins to converge upon 
an adult-like state (Bokulich et al., 2016; Palmer et al., 2007). However, aberrations in this 
process may contribute to diseases such as type 1 and 2 diabetes, irritable bowl syndrome, and in 
necrotizing enterocolitis (NEC) in premature infants (Brown et al., 2011; Mai et al., 2011; 
Morrow et al., 2013; Mshvildadze et al., 2010; Qin et al., 2012; Xavier and Podolsky, 2007). 
Because establishment of the microbiome is a key driver of immune system development, 
changes in the process of colonization may have life-long implications even if they do not result 
in a drastically different microbiome composition later in life (Lathrop et al., 2011; Maslowski et 
al., 2009). 
 
Infants born prematurely have low-diversity microbial communities compared with full term 
infants (Brown et al., 2013; Raveh-Sadka et al., 2016; Sharon et al., 2012), and are susceptible to 
life-threatening diseases such as NEC (Neu and Walker, 2011). While it has long been thought 
that NEC is caused by bacterial infections, strain-resolved microbial community analysis has 
shown that no single pathogen is responsible for the disease (Raveh-Sadka et al., 2015). 
However, it is still likely that microbial communities play an important role, whereby the 
metabolism of organisms may be critical to infant health and disease. In order to better 
understand how microbes modulate their replication rates and metabolism during the 
colonization process, we conducted a combined metagenomics and metaproteomics study of the 
microbiome of both healthy premature infants and infants that went on to develop NEC. 
Microbiome samples were collected during the first three months of life with the goal of 
measuring the physiological changes of dominant and ubiquitous bacterial species. 
 
Results and discussion 
Metagenome sequencing and genome binning 
In order to study the developing gut microbiome, stool samples were collected during the first 
three months of life for 11 infants born prematurely. One of the infants in the study cohort 
(N1_019) developed a case of sepsis and four infants (N1_021, N2_039, N2_069, and N2_071) 
developed necrotizing enterocolitis (NEC) (Table 4.1). To study the gut microbiome, we 
sequenced 474.5 Gbp of DNA across 144 metagenomes with an average of 3.4 Gbp of 
sequencing per sample (Figure 4.1 and Supplementary Table 4.1). Metagenomes were 
assembled into 3.15 Gbp of scaffolds ≥1,000 bp that represented 92.6% of all sequenced DNA. 
 
Genomes were binned based on Emergent Self Organizing Map (ESOM) clustering of scaffold 
time-series abundance profiles (Figure 4.2), and manually based on GC content, single time 
point coverage, and taxonomic profiles. This resulted in 1,697 bins, 711 of which were draft-
quality (≥75% complete). These genomes were clustered into 98 groups approximating different 
bacterial species based on sharing ≥98% average nucleotide identity (ANI), each of which was 
represented by a draft-quality genome (see below and Supplementary Table 4.2). These 
genomes account for 89% of the total sequences. 
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Premature infants are colonized by members of the same species 
Most prior studies of the infant gut microbiome have depended on marker gene sequences in 
order to track the presence and abundance of microbial community members. Consequently, 
these studies have not been able to address the question of whether or not members of the same 
species reside in the microbiomes of different premature infants. This lack of resolution has also 
obscured time-series studies. We approximated species as groups of organisms with genome 
sequences that shared ≥98% ANI, and found that at least eight of the eleven infants were 
colonized by members of the species Enterococcus faecalis, Staphylococcus epidermidis, and 
Klebsiella pneumoniae (Figure 4.3). Clustering of infants based on species membership showed 
that infants that developed NEC have similar species inventories compared with those that did 
not (Figure 4.4). Infants were largely distinguished based on the presence of either 
Staphylococcus epidermidis and/or Negativicoccus succinicivorans (Pearson’s correlation p-
value ≤0.05). 
 
Bacterial species replicate at different rates during colonization 
iRep is a newly-developed method for determining microbial replication rates based on 
measurements of DNA sequencing coverage trends that result from genome replication (Brown 
et al., 2016). We applied the iRep method using draft-quality genomes recovered from 
metagenomes sequenced for each infant in the study. Results show that populations of several 
species of bacteria were replicating more quickly in either infants that developed NEC or healthy 
controls (Figure 4.5). However, overall iRep values collected from infants that did and did not 
go on to develop NEC were not statistically different. Across all infants, Staphylococcus aureus, 
members of the genus Veillonella, and Klebsiella pneumoniae exhibited some of the highest 
replication rates. 
 
Proteome sequencing and identification of predicted proteins 
Metaproteomics was conducted on the same samples that were used for metagenomics analysis, 
or, in cases where enough sample was not available, on samples that were collected at a similar 
time. Conducting metagenomics and metaproteomics sequencing of samples from the same 
infant is critical for obtaining an appropriate database for matching peptides to proteins. 
Metaproteomics resulted in measurement of 37,590,440 spectra counts across 61 collected 
samples (most have two technical replicates), with an average of 63,549 spectra per sample that 
could uniquely be assigned to microbial proteins (Figure 4.1 and Supplementary Table 4.3). 
The 3,083,935 open reading frames (ORFs) predicted from the metagenome sequencing data 
were represented by 552,375 non-redundant sequences determined based on their inclusion in a 
representative genome sequence. 
 
ORFs were grouped into 85,437 putative protein families (2.8% of total and 15.5% of non-
redundant protein sets). Of the 51,629 protein families represented by draft-quality genomes, 
only 4,621 were detected by proteomics. Of the undetected protein families, 95% were each 
found in 12 species or less, and are thus somewhat rarely encoded in the infant gut microbiome. 
However, some undetected protein families were fairly commonly encoded in recovered genome 
sequences. While some of these may not have been detected due to difficulties associated with 
protein extraction, such as the membrane-bound cell division protein FtsW and several 
transporters, others are likely not frequently expressed in the gut microbiome, such as the 
mutagenic DNA polymerase IV (Supplementary Table 4.4). Of the 44 families identified in 75 
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or more genomes, only six were hypothetical proteins. Amongst the most abundant detected 
proteins were those involved in glycolysis, translation, transport, and protein maturation. 
 
Different species express varying amount of their proteome in the infant gut 
Microbes present in the gut environment are not expected to express their complete complement 
of proteins at all times. In order to investigate this we compared the average proteome 
sequencing depth for each organism to the percent of the predicted proteome that could be 
detected (Figure 4.6). The median proteome detection across all samples was 10.2%, but this 
was largely due to a lack of proteome sequencing depth. Higher protein sequencing depth 
corresponded with more proteins being detected. The median percent of the proteome detected 
for organisms with the best detection in each sample was 30%. For several frequently detected 
colonists, including Klebsiella pneumoniae, Klebsiella oxytoca, and members of the genus 
Enterobacter, maximum proteome expression was determined to be around 50%. Members of 
the species Bifidobacterium bifidum, Propionibacterium sp, and Anaerococcus vaginalis, 
expressed a greater proportion of their encoded genes, suggesting that these organisms may be 
more specialized to the infant gut. 
 
Activity of bacterial community members based on iRep and proteomics 
Comparison of DNA and proteome abundance levels for specific organisms enables 
determination of whether or not an organism contributes as much to the proteome as would be 
expected based on abundance determined based on DNA sequencing (Figure 4.7). The 
difference between these values is related to the relative proteome expression level for a 
particular organism. Veillonella sp., Enterococcus faecium, Clostridium perfringens, 
Peptostreptococcus sp., Bifidobacterium bifidum, and Clostridium sp. were all found to 
frequently have higher than estimated protein expression levels (Figure 4.8). Many of these were 
also found to have high iRep replication rates at certain times, although the two values are not 
correlated. The fact that activity measures based on iRep and proteomics are not correlated is not 
surprising since they represent distinct measurements of microbial physiology. 
 
Studied microbial communities cluster into six types 
Microbial communities were clustered based on species membership and abundance in order to 
identify microbial consortia common during the colonization process. Six distinct community 
types were identified (Figure 4.9), each of which is characterized based on dominance of 
different community members (Figure 4.10 and Figure 4.11). Members of the bacterial species 
Citrobacter freundii, Escherichia coli, Enterobacter sp. and Klebsiella pneumoniae, 
Enterococcus faecalis, Haemophilus parainfluenzae, and Enterobacter sp. and Klebsiella 
oxytoca dominated individual microbial community types. Microbiomes from different infants 
clustered into the same community type, and the microbiome of individual infants was found to 
switch types, sometimes multiple times, during the colonization process (Figure 4.11). 
Microbiomes samples from the same infant at different time points may be more similar to those 
from other infants than to microbiomes collected at other time points. Furthermore, there was no 
strong correlation between microbial community type and infant health status, developmental 
age, or antibiotic usage (Figure 4.9). Microbiomes associated with infants that did and did not go 
on to develop NEC were often classified in the same community type, indicating that organism 
physiology, rather than simple microbial community membership and abundance, may be 
important to infant health.  



 

 96  
 

Abundant microbial proteins correlate with microbial community type 
The finding that microbial communities associated with premature infants group into distinct 
types raises the question of their functional similarity. Analysis of the most abundant protein 
families identified in samples from each infant showed that they clustered primarily based on 
microbial community type (Figure 4.12), indicating that they are functionally distinct. However, 
some samples from the same community type were not clustered together, indicating that 
differences in protein expression exist even when community composition is similar. Similar to 
what was found for clustering based on community composition alone, clusters based on 
abundant proteins did not correlate with infant, infant health or development, or antibiotic usage.  
 
Protein expression profiles associated with microbial community types 
In order to identify which proteins best distinguish microbial community types, protein 
expression profiles were compared between sets of samples from different microbial community 
types. Groups of co-varying proteins with statistically different abundance levels between 
community types were identified (Figure 4.13). Notably, the community type dominanted by 
Citrobacter freundii was distinguished from other community types based on having an 
abundance of proteins involved in bacterial chemotaxis, microcompartment formation, 
propanediol utilization, and respiration. Several other communities were distinguished based on 
specific types of sugar transporters and associated processing machinery. 
 
Species-specific metabolic profiles shift in association with microbial community context and 
replication rate 
Interestingly, Klebsiella pneumoniae, Enterococcus faecalis, and Citrobacter freundii were 
found to be present in different microbial community types. This raises the question of whether 
these organisms are maintaining the same metabolic strategies, or shifting expression in 
accordance with microbial community context, and whether or not these shifts are contributing to 
overall proteome variation between microbial community types. Expression levels of the proteins 
found to best distinguish between microbial community types (see above and Figure 4.13) were 
evaluated for each of the organisms. In order to compare organism-specific changes in proteome 
profile, protein abundance measurements were normalized for each taxon, instead of across all 
the sample data. This allowed for comparison of relative expression levels of identified proteins. 
Each of these organisms exhibited proteome expression profiles that correlated with microbial 
community type, indicating that the organisms are using different metabolic strategies in each 
context (Figure 4.14).  
 
When abundant, K. pneumoniae expressed a diverse set of metabolic proteins that were not 
expressed when the organism was less abundant. Lower abundance coincided with a shift to the 
production of several TCA cycle proteins and a multidrug transporter. Likewise, when E. 
faecalis was less abundant it was producing fewer proteins that make up phosphotransferase 
systems, and suspended production of a glycerol dehydrogenase that was one of the most 
expressed proteins when the organism was more abundant. C. freundii was found to be 
expressing several ABC transporters and a microcompartment protein that were not identified 
when the organisms was found in a different microbial community context where it was less 
abundant. However, when less abundant, a C. freundii dimethyl sulfoxide reductase was 
identified, suggesting a switch in the electron acceptor being used for respiration. Notably, 
proteomes from E. faecalis and C. freundii clustered primarily based on community context, and 
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subsequently based on iRep replication rate. Thus, proteome expression in each community is 
not driven by replication rate alone, but rather by modulation of the expression of environment-
specific proteins. These findings illustrate how organisms can behave differently depending on 
their environment, and can drive microbiome function through expression of different proteins in 
a context-dependent manner. 
 

Conclusion 
Microbial colonization is a dynamic process only partially described by changes in microbial 
community membership and abundance. We used genome-resolved time-series metagenomics in 
conjunction with iRep replication rate and metaproteomics measurements to further probe the 
colonization process, and found that even within microbial communities that appear similar 
based on community composition, differences in microbial metabolism exist. Furthermore, 
because genetically similar organisms were found in multiple community contexts, we were able 
to identify changes in their proteome that were related to community context and replication rate.  
 
Methods 
Sample collection and metagenome sequencing 
Samples were collected and processed for metagenome sequencing as previously described 
(Raveh-Sadka et al., 2016). Briefly, stool samples were collect from infants and stored at −80°C. 
DNA was extracted from frozen fecal samples using the QIAamp DNA Stool mini-Kit (Qiagen) 
with modifications (Zoetendal et al., 2006). DNA libraries were sequenced on an Illumina HiSeq 
for 100 or 150 cycles (Illumina, San Diego, CA). The protocol for sample collection and 
processing was approved by the University of Pittsburgh Institutional Review Board (IRB 
PRO10090089). All samples were collected with parental consent.  
 
Genome binning and clustering into species groups 
Samples from infants N1_003, N1_019, N1_021, N1_023 were analyzed previously (Raveh-
Sadka et al., 2016). However, the sequencing data were re-assembled and analyzed for the 
current study. All raw sequencing reads were trimmed using Sickle 
(https://github.com/najoshi/sickle). Each metagenome was assembled separately using 
IDBA_UD (Peng et al., 2012). Open reading frames were predicted using Prodigal (Hyatt et al., 
2010) with the option to run in metagenome mode. Predicted protein sequences were annotated 
based on USEARCH (–ublast) (Edgar, 2010) searches against UniProt (The UniProt Consortium, 
2015), UniRef100 (Suzek et al., 2007), and KEGG (Kanehisa et al., 2012; Minoru Kanehisa, 
2000). Scaffold coverage was calculated by mapping reads to the assembly using Bowtie2 
(Langmead and Salzberg, 2012) with default parameters for paired reads. 
 
Scaffolds from infants N1_003, N1_019, N1_021, N1_023 were binned into genome sequences 
using Emergent Self-Organizing Maps (ESOMs), as previously described (Dick et al., 2009) but 
with several modifications. Reads from every sample were mapped independently to every 
assembly using SNAP (Zaharia et al., 2011), and the resulting coverage data were combined. 
Coverage was calculated over non-overlapping 3 Kbp windows. Coverage values were 
normalized first by sample, and then the values for each scaffold fragment were normalized from 
0-1. Combining coverage data from scaffolds assembled from different samples prior to 
normalization made it possible to generate a single ESOM map to bin genomes assembled 
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independently from each sample. ESOMs were trained for 10 epochs using the Somoclu 
algorithm (Wittek et al., 2013) with the option to initialize the codebook using Principal 
Component Analysis (PCA). Genomes were binned by manually selecting data points on the 
ESOM map using Databionics ESOM Tools (Ultsch, 2005). Binning was aided by coloring 
scaffold fragments on the map based on BLAST (Altschul et al., 1990) hits  to the genomes 
assembled in the prior study (Raveh-Sadka et al., 2016). 
 
Scaffolds from other assembled metagenomes were binned based on their GC content, DNA 
sequence coverage, and taxonomic affiliation using ggKbase tools (ggkbase.berkeley.edu). 
Genome bins from all datasets were classified based on the lowest possible consensus of 
taxonomic assignments for predicted protein sequences. Genome completeness and 
contamination were estimated using CheckM (Parks et al., 2015). Genome bins were clustered 
into species groups based on sharing ≥98% average nucleotide identity (ANI) as estimated by 
MASH (Ondov et al., 2016). Representative genomes were selected for each cluster as the 
largest genome with the highest expected completeness and smallest amount of contamination. 
Representative genomes estimated to be ≥75%, but that had duplicate single copy genes were 
manually curated by removing contaminating sequences based on identifying scaffolds with 
extreme GC and/or coverage values. Genomes were classified as draft-quality based on the 
requirements for iRep analysis: ≥75% complete, ≤2.5% estimated contamination, and ≤175 
scaffolds per Mbp of sequence (Brown et al., 2016). 
 
iRep analysis 
Accurate iRep (https://github.com/christophertbrown/iRep) analyses require precise read 
mapping, which can be in part be achieved by compiling appropriate genome databases. 
Individual mapping databases comprised of representatives of each genome cluster were created 
for each metagenome. Genomes reconstructed from the same sample were given highest priority 
for inclusion in the database. Genomes were selected to represent genome clusters using the 
following priority scheme: 1) draft-quality genomes assembled from the same sample, 2) draft-
quality genomes assembled from another metagenome from the same infant, and 3) the highest 
quality genome sequence from the sample. In some case no representative was included for a 
genome cluster. Genomes that did not pass the draft-quality genome requirements were included 
in the database for mapping and abundance calculation purposes, but not for iRep. iRep was 
conducted using reads that mapped to genome sequences with ≤1 mismatch per read sequence. 
 
Metaproteomics sequencing 
Metaproteomics sequencing was conducted on 0.3 g of stool suspended in 10 mL cold phosphate 
buffered saline. Samples were filtered through a 20 µm size filter to enrich for microbial cells 
and proteins. Microbial cells were collected by centrifugation, boiled in 4% sodium dodecyl 
sulfate for 5 minutes, and sonicated to lyse cells. The resulting protein extract was precipitated 
with 20% trichloroacetic acid at -80°C overnight. The protein pellet was washed with ice-cold 
acetone, solubilized in 8 M urea, and cysteines were blocked with 20 mM iodoacetamide. Then 
sequencing grade trypsin was used to digest the proteins into peptides. Proteolyzed peptides were 
then salted and acidified by adjusting the sample to 200 mM NaCl, 0.1% formic acid, followed 
by filtering through a 10 kDa cutoff spin column filter to collect tryptic peptides. 
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Peptides were quantified by BCA assay and 50 µg peptides of each sample were analyzed via 
two-dimensional nanospray LC-MS/MS system on an LTQ-Orbitrap Elite mass spectrometer 
(Thermo Scientific). Each peptide mixture was loaded onto a biphasic back column containing 
both strong-cation exchange and reverse phase resins (C18). As previously described, loaded 
peptides were separated and analyzed using a 11-salt-pusle MudPIT protocol over a 22-h period 
(Xiong et al., 2015). Mass spectra were acquired in a data-dependent mode with following 
parameters: full scans were acquired at 30 k resolution (1 microscan) in the Orbitrap, followed 
by CID fragmentation of the 20 most abundant ions (1 microscan). Charge state screening and 
monoisotopic precursor selection were enabled. Unassigned charge and charge state +1 were 
rejected. Dynamic exclusion was enabled with a mass exclusion width of 10 ppm and exclusion 
duration of 30 seconds. Two technical replicates were conducted for each sample. 
 
Protein databases were generated for each infant from protein sequences predicted from 
assembled metagenomes (see above). The database also included human protein sequences 
(NCBI Refseq_2011), common contaminants, and reverse protein sequences, which are used to 
control the false discovery rate (FDR). Collected MS/MS spectra were matched to peptides using 
MyriMatch v2.1 (Tabb et al., 2007), filtered, and assembled into proteins using IDPicker v3.0 
(Ma et al., 2009). All searches included the following peptide modifications: a static cysteine 
modification (+57.02 Da), an N-terminal dynamic carbamylation modification (+43.00 Da), and 
a dynamic oxidation modification (+15.99). A maximum 2% peptide spectrum match level FDR 
and a minimum of two distinct peptides per protein were applied to achieve confident peptide 
identifications (FDR <1%). To alleviate the ambiguity associated with shared peptides, proteins 
were clustered into protein groups by 100% identity for microbial proteins and 90% amino acid 
sequence identity for human proteins using USEARCH (Edgar, 2010). Spectral counts were 
balanced between shared proteins. 
 
Identification of putative protein families 
Putative protein families were identified in order to track the presence and abundance of different 
protein types across samples. ORFs were first pre-clustered at 95% identity (usearch -
cluster_smallmem -target_cov 0.50 -query_cov 0.95 -id 0.95), and then all-versus-all protein 
searches were conducted (usearch –ublast -evalue 10e-10 -strand both). Protein families were 
delineated from within the all-versus-all network graph using the MCL clustering algorithm (-I 2 
-te 10) (Enright et al., 2002). The most common annotation observed across all protein sequences 
in the group was selected as the annotation for the putative protein family.  
 
Identification of proteins with statistically significant differences in abundance 
EdgeR (Robinson et al., 2009) was used to calculate statistically significant differences in 
balanced spectral counts between conditions using quasi-likelihood linear modeling 
(glmQLFTest). 
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Supplementary Tables 
Supplementary Table 4.1 | DNA sequencing statistics. 
 
Supplementary Table 4.2 | Genomes reconstructed from metagenomes. The representative of 
each genome is the best genome sequence within the same 98% ANI cluster. The draft-rep. 
column indicates whether or not the representative genome sequence is a draft-quality genome. 
The sample rep. genome is the best genome sequence within the same 98% ANI cluster that was 
assembled either from the same sample or, if no draft-quality genome was available, from a 
different metagenome from the same infant. The sample rep. genome was used for calculating 
relative abundance  (see sample rep. coverage) and iRep, if it was a draft-quality genome. DOL 
stands for day of life. 
 
Supplementary Table 4.3 | Proteomics sequencing statistics. 
 
Supplementary Table 4.4 | Abundance of protein families predicted from draft-quality 
genome sequences.  
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Figure 4.1 | Metagenome and metaproteome sequencing conducted on microbiome samples 
collected from premature infants. a, Metagenome sequencing, and b, the percentage of each 
metagenome represented by assembled draft-quality genome sequences. c, The number of 
proteomics spectra counts that could be uniquely assigned to bacteria for each analyzed 
microbiome sample.  
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Figure 4.2 | ESOM genome binning. Genome binning was conducted based on Emergent Self-
Organizing Map (ESOM) clustering of scaffolds assembled from individual metagenomes. Data 
points represent 3 Kbp fragments of assembled scaffolds. Coloring is based on the species-level 
assignment of reconstructed draft-quality genomes. The map is periodic, and red boxes indicate a 
single period. 
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Figure 4.3 | Clustering of genomes reconstructed from metagenomes. Reconstructed 
genomes were clustered based on sharing 98% average nucleotide identity (ANI). Genomes were 
classified based on the lowest possible consensus of taxonomic assignments for predicted protein 
sequences. a, The number of genomes assigned to each genome cluster and b, the number of 
infants in the study with a reconstructed genome assigned to each cluster. Shown are clusters 
comprised of five or more genomes. 
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Figure 4.4 | Infants that developed NEC and healthy controls are colonized by some of the 
same species of bacteria. a, Presence (dark boxes) and absence (white boxes) of species 
identified in microbial communities from different infants. Species were identified based on 
sharing ≥98% genome ANI. b, Principal component analysis (PCA) clustering of infants based 
on the presence and absence of microbial species.  
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Figure 4.5 | Bacteria from the same species exhibited different replication rates over time 
and between infants that developed NEC and healthy controls. a, Species with significantly 
different replication rates between infants that did and did not go on to develop NEC are 
indicated with an asterisk (Mann-Whitney U Test p-value ≤0.01). b, Comparison of iRep 
replication rates from control infant microbiomes compared with those associated with infants 
that developed NEC. c, Comparison of iRep values from samples collected within five days of 
NEC diagnosis (NEC samples) to all other samples from both NEC and healthy control infants 
(non-NEC samples). Overall community replication rates were not statistically different between 
NEC and control samples (b, c). 
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Figure 4.6 | Proteome detection for species colonizing premature infants. a, The proteome 
sequencing depth achieved for organisms in each sample is compared against the percent of 
predicted proteins that could be detected. Data point sizes and histograms are scaled based on 
organism abundance as determined by metagenome sequencing. b, Histogram showing the 
distribution of the maximum percent of the proteome detected for all organisms present in each 
sample. 
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Figure 4.7 | Comparison of DNA and protein abundances determined for organisms 
colonizing premature infants. a, The abundance of each organism was determined based on 
both DNA and proteomics sequencing, and compared. Shown is the r2 for the linear regression 
between the measurements. b, Histogram showing the difference between the measured and 
expected proteome abundances for each organism. The expected abundance was calculated from 
the linear regression conducted in b. Values below zero are from organisms where less of the 
proteome was detected than would be expected based on the abundance of the organism as 
calculated based on DNA sequencing, and values above zero are from organisms where more of 
the proteome was detected. 
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Figure 4.8 | Bacteria colonizing premature infants exhibit varying activity levels. Organism 
activity levels were measured based on proteomics (a) and iRep (b). Protein expression was 
measured as the difference between the measured proteome abundance and the expected 
proteome abundance determined based on DNA sequencing abundance (see Figure 4.7). iRep 
and proteomics measure different aspects of an organisms physiology and are not correlated. 
Shown are organisms with at least three measurements.  
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Figure 4.9 | Studied infant gut microbial communities associate into six distinct community 
types. a, Clustering was based on the presence and abundance of bacterial species (defined based 
on inclusion in 98% ANI genome cluster; hierarchical clustering was conducted based on a 
Euclidean distance matrix). Microbial community types are numbered and identified by colored 
boxes. Abundant species driving clustering of communities into types are shown in smaller 
boxes and the species names are colored. b-g, PCA clustering of microbial communities with 
associated metadata: infant the sample was collected from (b), infant health (c), number of days 
before NEC diagnosis (d), antibiotics usage (e), developmental age as measured by the number 
of days since conception (gestational age, GA + day of life, DOL; f), and clusters defined based 
on hierarchical clustering (g). 
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Figure 4.10 | Microbial community types are distinguished by their abundant members. a-f, 
Rank abundance curves showing the average and range of organism abundances associated with 
each community type.  
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Figure 4.11 | Infants are colonized by several microbial community types during the first 
three months of life. a-d, Microbial community profiles for infant microbiomes clustered into 
similar community types. Community type is indicated by colored bars that match designations 
from Figure 4.9. DOL stands for day of life. 
 

 
  



 

 112  
 

Figure 4.12 | Premature infant gut microbiome protein abundance patterns cluster by 
community type. Clustering of samples was conducted based on the relative abundance of 
abundant protein families (hierarchical clustering was conducted based on a Euclidean distance 
matrix). The 100 most abundant proteins for each infant were included. b-g, PCA clustering of 
proteomics data for all detected proteins with associated metadata: infant the sample was 
collected from (b), infant health (c), number of days before NEC diagnosis (d), antibiotics usage 
(e), developmental age as measured by the number of days since conception (gestational age, GA 
+ day of life, DOL; f), and microbial community type (g). 
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Figure 4.13 | Proteins associated with microbial community types. Abundance profiles are 
shown for protein families if they were among the most differentially expressed between 
community types. Proteome profiles were clustered based on their relative abundance within the 
sample (hierarchical clustering using Euclidean distance matrix). Colored boxes indicate 
microbial community type. Abundant proteins driving clustering are shown in smaller boxes, and 
the protein names are colored. Shown are protein families within the top 25 most differentially 
expressed between each pair of community types with a p-value ≤0.01. Cluster names listed on 
rows with proteins indicate which cluster had the highest protein expression.  
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Figure 4.14 | Species-specific proteomic profiles correlate with community type and iRep 
replication rate. a-c, The expression levels of proteins that distinguish community types (see 
Figure 4.13) were determined for species present in multiple community types. Protein 
abundances were normalized for each genome in order to show changes in organism-specific 
relative proteome expression. Shown are proteome profiles for organisms in samples with ≥5% 
proteome detection. Cluster names listed on rows with proteins indicate which cluster had the 
highest protein expression. 
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Table 4.1 | Infant medical information. 
 

infant sex delivery 
gestational 
age (weeks) 

birth 
weight  (g) feeding condition 

NEC diagnosis 
(DOL) 

N1_003 F c-section 26 822 breast control n/a 
N1_019 F c-section 24 731 breast + formula sepsis n/a 
N1_021 F c-section 24 697 breast NEC 30 
N1_023 F vaginal 27 875 breast control n/a 
N2_035 M vaginal 25 795 breast control n/a 
N2_038 F c-section 30 1381 breast + formula control n/a 
N2_039 F c-section 30 1470 breast + formula NEC 24 
N2_064 M vaginal 28 1100 breast + formula control n/a 
N2_069 M c-section 26 637 breast NEC 32 
N2_070 F c-section 26 633 breast + formula control n/a 
N2_071 M c-section 25 754 breast + formula NEC 31 
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Chapter 5 

Summary and future directions 

The Candidate Phyla Radiation 
The Candidate Phyla Radiation (CPR) encompasses a diverse collection of related phylum-level 
lineages almost completely devoid of cultured representatives. Culture-independent 16S rRNA 
gene sequencing had suggested the existence of this group during the last decades, and has 
shown that these organisms are essentially ubiquitous (Harris et al., 2004). However, only 
recently have we begun to recognize this as a coherent group. Our genomic sampling covered a 
substantial portion of previously defined lineages, and several that had never been recognized 
before (Figure 3.1). All CPR studied to date have limited metabolic potential, and organisms 
from most lineages have incomplete nucleotide, amino acid, and fatty acid biosynthesis pathways, 
indicating that they depend on other organisms for survival (Anantharaman et al., 2016a; 2016b; 
Brown et al., 2015; Kantor et al., 2013; Wrighton et al., 2012). The diversity and prevalence of 
CPR in natural environments highlights the prominence of currently little known organisms and 
inter-organism interactions in microbial communities. 
 
Genome-resolved metagenomics was critical to identifying this radiation as a distinct feature of 
the tree of life. Complete and high-quality draft genomes enabled multiple phylogenetic analyses 
of the same organisms, and identification of genomic features that distinguish CPR organisms 
from other bacteria (Chapter 2). The CPR is monophyletic based on both 16S rRNA gene and 
concatenated ribosomal protein phylogenies, but exhibited different placement within the tree in 
each analysis (Hug et al., 2016). In the concatenated ribosomal protein tree the CPR emerges as a 
deep-branching, early evolving clade  (Appendix 1.1), suggesting that their consistently small 
genomes and limited metabolism may not be the result of genome reduction, but rather reflects a 
metabolic platform from early life where sharing of resources may have been commonplace. 
While the high level of diversity throughout the CPR is consistent with the hypothesis that they 
evolved early on, we cannot rule out the possibility that the diversity seen within the CPR is due 
to accelerated evolutionary rates. Future studies of evolutionary rates across the tree of life may 
shed additional light on their evolutionary history. Regardless, the CPR represents a considerable 
amount of genetic diversity. 
 
Based on conservative 16S rRNA gene sequence identity cutoffs, the CPR is estimated to be 
comprised of hundreds of phyla (Brown et al., 2015; Yarza et al., 2014). Additional comparative 
phylogenetic analyses were conducted in order to better understand the phylogenetic structure of 
the CPR. We used 16S rRNA and concatenated ribosomal protein phylogenies to delineate 
previously unrecognized phyla within the CPR, and found that two of the largest groups, the 
Microgenomates (OP11) and Parcubacteria (OD1) are superphyla. In support of this observation, 
a comprehensive phylogenetic analysis suggested that approximately 50% of bacterial genetic 
diversity is represented by the CPR (Hug et al., 2016). An outstanding question from these 
analyses was the placement of the Absconditabacteria (SR1), which was not consistently placed 
within the CPR. In follow up analysis, we have shown that the Absconditabacteria do belong 
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with the CPR, sister to the Gracilibacteria (BD1-5) (Appendix 3). The grouping of the 
Absconditabacteria and Gracilibacteria is consistent with the finding that organisms from both of 
these groups have alternatively coded genomes in which UGA codes for glycine instead of 
functioning as a stop codon (Campbell et al., 2013; Kantor et al., 2013; Wrighton et al., 2012).  
 
An open question related to the CPR is whether or not protein evolution is driven largely by 
positive selection or genetic drift. The frequency of rRNA gene sequence introns suggests that 
genetic drift may play a large role in CPR evolution (Chapter 2), but this has not been 
demonstrated. Although CPR bacteria have small genomes, they encode an unusually high 
number of proteins with no known function. Identification of proteins experiencing different 
selective pressures across a variety of natural systems would identify rapidly evolving pathways 
and cellular components. This approach would enable measurement of protein evolution, even 
for proteins with no known function, and provide a foundation for future protein characterization 
studies. Preliminary results of CPR ortholog analyses indicate that, as would be expected for 
organisms from different phyla, few orthologs are widely distributed. Across draft-quality 
genomes from the OD1-L1 group (Parcubacteria missing ribosomal protein L1), only ~150 
proteins were encoded by most genomes. Approximately 100 of these proteins are also encoded 
by non-CPR genomes, indicating that the CPR has a small “core” genome, and a large set of 
novel auxiliary proteins. 
 
Several features of CPR bacteria indicate that they typically replicate infrequently. For example, 
their limited metabolic potential, single copy of the rRNA gene operon, the prevalence of rRNA 
gene insertions (~46% of 16S and 23S rRNA genes have an insertion ≥5 bp), unusual ribosomes 
and ribosome biogenesis mechanisms, and an almost complete lack of CRISPR-Cas virus 
defense systems (Burstein et al., 2016). Furthermore, cryogenic transmission electron 
microscopy of ultra-small CPR bacteria showed that they have few ribosomes per cell (42 +/- 
9.5) (Luef et al., 2015). iRep, the method we developed for determining replication rates based 
on genome sequencing coverage trends, requires that the organism replicate their genome from a 
single origin of replication. Analysis of GC skew patterns across complete CPR genomes 
confirms that these organisms, like essentially all bacteria, also replicate their genomes bi-
directionally from a single origin (Anantharaman et al., 2016b; Gao et al., 2013; Sernova and 
Gelfand, 2008) (Appendix 4). We used iRep to directly measure replication for CPR bacteria 
sampled during an acetate amendment field experiment and found that most, but not all exhibited 
slow replication rates (Chapter 3). 
 
Strikingly, most CPR bacteria are not able to produce their own nucleotides, amino acids, or fatty 
acids (Brown et al., 2015; Burstein et al., 2016). These findings strongly suggest that CPR 
bacteria are symbionts (Albertsen et al., 2013; Anantharaman et al., 2016a; Brown et al., 2015; 
Kantor et al., 2013; Nelson and Stegen, 2015; Podar et al., 2007; Rinke et al., 2013; Wrighton et 
al., 2012), a notion that has been confirmed in a few cases (Gong et al., 2014; He et al., 2015; 
Luo et al., 2016; Soro et al., 2014). Notable among these studies is a detailed determination that a 
Saccharibacteria (TM7) phylotype associated with the human oral cavity is an obligate epibiont 
of an Actinomyces odontolyticus strain (He et al., 2015). Microscopy showed Saccharibacteria 
associated with the A. odontolyticus membrane, indicating a possible method for acquiring lipids. 
Their analyses showed that Saccharibacteria have a specific symbiotic association, whereby 
growth was only facilitated by a particular A. odontolyticus strain. This high level of specificity 
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suggests that analysis of co-abundance and/or co-replication (iRep) could identity symbiont pairs 
for a large number of CPR bacteria. Comparative analysis of CPR and symbiont genomes could 
uncover additional roles of CPR bacteria in their environment, which could have impacts on 
large-scale biogeochemical processes. Furthermore, this may provide necessary information for 
establishing co-culture systems, which would provide opportunities for genetic and biochemical 
analysis of these enigmatic organisms. This would enable investigation of the mechanisms 
behind rRNA gene intron splicing for the many cases where none could be predicted (Figure 
2.5), and evaluation of the functionality of ribosomes that are missing proteins thought to be 
required. 
 

Microbial colonization of the premature infant gut 
The developing infant microbiome is of great interest due to the potential for life-long impacts 
on health and development (Groer et al., 2014). Basic questions exit related to the colonization 
process, especially during early life where little is known about the dynamics and metabolism of 
the microbiome, or how life events such as changes in feeding or antibiotic use can alter this 
process. Premature infants are an interesting study group to address these questions because they 
are routinely given antibiotics at birth, are kept in the relatively controlled hospital environment 
during early life, and have low diversity microbial communities that are tractable for high-
resolution genome-resolved microbiome studies (Brown et al., 2013; Raveh-Sadka et al., 2015; 
2016; Sharon et al., 2012). Furthermore, they represent an at risk population in which 
microbiome interventions could have significant impacts on health, especially if they were to 
mitigate the incidence of necrotizing enterocolitis (NEC) (Neu and Walker, 2011). 
 
Our detailed metagenomic and metaproteomics analyses of the colonization process uncovered 
microbial community dynamics and metabolic shifts that would not be apparent in other types of 
analyses (Chapter 1, Chapter 3, and Chapter 4). These techniques enable measurement of 
microbial community membership, metabolic potential, replication rates, and metabolic activity, 
and showed that members of even the same species exhibit different replication rates and 
metabolism over time, which may be important to human health. Additional detailed studies of 
more infants will be required in order to determine whether or not the trends observed thus far 
are general features of the colonization process. Identification of core colonization patterns 
across large sets of infants may identify metabolisms associated with various colonization 
trajectories, some of which may lead to disease.  
 

In situ replication rates for bacteria in microbial communities 
Cells in a population undergoing division contain, on average, more than one copy of their 
genome (Figure 3.1). In an unsynchronized population, cells have replicated their genomes to 
different extents, resulting in a gradual decrease in average genome copy number from the origin 
to terminus of replication. We developed a novel method for calculating replication rates by 
measuring changes in genome copy number by mapping metagenome-sequencing reads to draft-
quality genome sequences (Chapter 3). This method provides a quantitative measurement of 
replication, which we call the Index of Replication, or iRep. Given that metagenome studies 
routinely generate hundreds of genomes of suitable quality to conduct an iRep analysis, this 
method should continue to provide novel insights into microbial community dynamics.  
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Little is known about in situ bacterial replication strategies, and much could be learned by i) 
measuring replication rates for bacteria across multiple environments (e.g. human microbiome, 
soil, sediments, and groundwater), ii) characterizing organisms based on replication rate patterns, 
and iii) linking replication strategies to genomic and metabolic features. Replication rates could 
be determined for organisms from different environments using genome-resolved metagenomics 
and the newly developed iRep method. Because genome sequences would be available for all 
studied organisms, it would be possible to correlate genomic features such as rRNA gene copy 
number and codon usage bias, and metabolic potential, such as carbon and energy sources, with 
replication patterns. rRNA gene copy number, codon usage bias, and specific energy generating 
strategies, such as respiration, have been suggested to influence replication rates, but the extent 
to which this applies to organisms in community context is not known. Overlap in community 
membership across environments will enable comparison of organism replication rates across 
environment types. Proteomic and transcriptomic data can then be used to further profile 
expression patterns for specific organisms under different conditions, and provide an 
understanding of organism responses to changing environmental conditions (for example see 
Chapter 4). 
 
It has been proposed that organisms can be classified as r or k strategists based on whether they 
replicate rapidly when conditions are favorable, versus slow, steady replication. These 
classifications are important because they can be incorporated into predictive models of 
microbial communities and ecosystems. However, until now it has not been possible to obtain in 
situ replication rates that could confirm this hypothesis. Even if not supported, replication rate 
measurements can be used to develop new models for how microbes persist and respond to 
changing conditions. Further, once the relevant groups are established, it will be possible to 
correlate phylogenetic and metabolic information with organisms exhibiting specific replication 
strategies across time and environment type. 
 
Software Development 
The work presented here depended on the development of a number of software tools (Appendix 
5), which have also been used in several co-authored studies (Appendix 1). Development of 
several of these tools is ongoing. Future work on the iRep algorithm (Chapter 3) will focus on 
adding additional statistical tests to provide confidence levels for replication rates determined 
from genomes with low sequencing coverage, and inclusion of a built in method for detecting 
levels of strain variation that may skew results. Several other tools were developed in order to 
improve genome sequence assemblies. The primary advance here being the development of an 
automated method for identifying and correcting scaffolding errors (ra2.py). These small, 
localized errors occur during the assembly process when contigs are joined based on paired read 
sequences. While these rarely result in chimeric assemblies, they can result in incomplete or 
fragmented gene predictions. Future work on this software will focus on memory handling, 
which would enable automatic curation of large metagenome assemblies, and improvements in 
the algorithm used for re-assembling errors. Other notable tools were developed for clustering 
genomes based on their average nucleotide identity, identification of orthologs between genomes 
in order to conduct comparative analyses, identification and characterization of rRNA genes and 
insertions, and for identifying a set of ribosomal proteins frequently used in phylogenetic 
analyses. For more information see Appendix 5. 
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Appendix 1.2 | Genomic expansion of domain Archaea highlights roles for organisms 
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Appendix 1.3 | Aquifer environment selects for microbial species cohorts in sediment 
and groundwater 

 



 

 141  
 

Appendix 1.4 | Critical biogeochemical functions in the subsurface are associated with 
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Appendix 1.5 | Major bacterial lineages are essentially devoid of CRISPR-Cas viral 
defence systems 
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Appendix 1.6 | Analysis of five complete genome sequences for members of the class 
Peribacteria in the recently recognized Peregrinibacteria bacterial phylum 
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Appendix 1.7 | RubisCO of a nucleoside pathway known from Archaea is found in 
diverse uncultivated phyla in bacteria 
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Appendix 2: Candidate Phyla Radiation (CPR) lineages associated with small-cell 
groundwater filtrates 

Ultra-small cell size has been demonstrated for some Candidate Phyla Radiation (CPR) bacteria 
(Luef et al., 2015); however, due to the diversity of the CPR, it is likely that some may have 
larger cells. In order to determine whether or not specific CPR lineages are more likely to have 
ultra-small cells, the abundance of each CPR organism on both 0.1 and 0.2 µm filters from the 
2011 Rifle, CO groundwater study was compared. Results indicate that the Microgenomates 
(OP11), Parcubacteria that are missing ribosomal protein L1 (OD1-L1), and Katanobacteria 
(WWE3) are more likely to be detected in small-cell filtrates, while the Peregrinibacteria (PER) 
and other Parcubacteria (OD1) are more often found on the 0.2 µm filter, and thus likely have 
larger cells (Appendix 2 Figure 1). 
 
Appendix 2 Figure 1 | Candidate Phyla Radiation (CPR) bacteria associated with different 
groundwater filters. Subset of a maximum-likelihood 16S rRNA gene phylogeny (Figure 2.1 
and Supplementary File 2.2) showing the CPR, and whether organisms from each lineage were 
more abundant on 0.2 (black) or 0.1 (red) µm filters. 
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Appendix 3: Absconditabacteria (SR1) phylogeny 

The 16S rRNA gene sequence phylogeny presented in Chapter 2 (Figure 2.1 and 
Supplementary File 2.2) placed the Absconditabacteria (SR1) outside of the Candidate Phyla 
Radiation (CPR), in contrast to placement within the concatenated ribosomal protein tree and in 
analyses from prior studies (Kantor et al., 2013; Rinke et al., 2013). We hypothesized that the 
difference in topology was due to an improved sequence alignment after removing insertion 
sequences. However, an updated analysis of the tree of life that took insertions into account also 
found the phylum to be within the CPR in multiple phylogenetic analyses (Appendix 1.1) (Hug 
et al., 2016). Due to the presence of only a few draft-quality Absconditabacteria genomes, 
placement remained an open question. Analysis of the sequence set from Chapter 2, which 
included 16S rRNA gene sequences from clone libraries and assembled from metagenomes, 
identified several chimeric sequences that were included from the Silva database. Removal of 
these sequences, in addition to improved sampling of several clades, confirmed the placement of 
the Absconditabacteria within the CPR (Appendix 3 Figure 1). 
 
Appendix 3 Figure 1 | Updated 16S rRNA gene sequence phylogeny shows that the 
Absconditabacteria (SR1) are part of the Candidate Phyla Radiation (CPR). Phylogeny 
showing all included organisms (a), overall tree topology (b), and sampling of the 
Absconditabacteria (c). 
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Appendix 4: GC skew for complete genomes from  
Candidate Phyla Radiation (CPR) bacteria 

iRep analysis is based on the expectation that genome replication is occurring bi-directionally 
from a single origin (theta replication). We addressed the question of whether or not CPR 
bacteria replicate their genomes in this manner by identifying whether or not GC skew patterns 
match the pattern expected for genomes that undergo theta replication. All complete bacterial 
genome sequences from the Brown et al. study were analyzed (Appendix 4 Figure 1) (Brown et 
al., 2015), showing the expected pattern for all but two genome sequences. Theta replication has 
also been demonstrated for members of the Peregrinibacteria (PER) (Anantharaman et al., 
2016a). 
 
Appendix 4 Figure 1 | GC skew patterns indicate that CPR bacteria replicate their genomes 
from a single origin of replication. a-h, GC skew is calculated over 1 Kbp windows every 10 
bp. The origin and terminus of replication can be identified for genomes that undergo theta 
replication as the transition points in a plot of cumulative GC skew.  
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Appendix 5: Software 

Measurement of bacterial replication rates 
The iRep algorithm and software (Chapter 3), and my implementation of the Korem et al. PTR 
algorithm, bPTR, are maintained under github.com/christophertbrown/iRep. My script for 
plotting GC skew for complete genome sequences is maintained under the same repository.  
Genome curation 
Several tools were developed in order to aid genome curation efforts. This endeavor began 
because we needed an automated way to accurately check and curate Candidate Phyla Radiation 
(CPR) rRNA genes with insertion sequences. The first version of this program, 
re_assemble_errors.py, achieved this goal by identifying scaffolding errors as regions of a 
genome assembly with no coverage by stringently mapped reads (Chapter 2 and Appendix 5 
Figure 1). After identification, errors are re-assembled by collecting reads that mapped to the 
region, and then re-assembling the reads using Velvet (Zerbino and Birney, 2008). Re-assembled 
fragments are checked for scaffolding errors, and errors are replaced with the re-assembled 
sequence. In cases where the error could not be corrected, the sequence is broken and each 
broken end is extended, if possible. Several advancements on this original program were made, 
including the option to only break scaffolds in cases where an error cannot be corrected if there 
are no paired read sequences spanning the error. In cases where an error is not fixed, the error 
containing sequence can be replaced with Ns. This new version is referred to as ra2.py, which is 
short for “re-assemble errors version 2,” and has been used in several co-authored studies 
(Appendix 1.4, Appendix 1.6, and Appendix 1.8). Because this process requires read tracking 
in memory, large assemblies cannot be curated. However, modification to use the compressed 
BAM format could improve performance and enable automatic curation of large metagenome 
assemblies. In the current implementation, the method is only suitable for single bacterial 
genomes. Another area for improvement has to do with the method used to re-assemble error 
containing regions. The current method runs Velvet using multiple kmer sizes. While this works 
in many cases, an overlap style assembler, rather than a de Bruijn graph assembler, has the 
potential to be much more effective. I have written a prototype assembler to accomplish this by 
using read overlaps to find a path between the high-quality sequences found on both sides of an 
error (seq_extend.py). 
 
Genome curation often involves using paired read sequences to extend assembled scaffolds until 
overlaps can be found, a process I have automated with a script called scaffolder.py. This 
method extends scaffolds using methods implemented in ra2.py, identifies overlaps between 
scaffolds using BLAST (Altschul et al., 1990), and then validates scaffold joins based on 
stringent paired read mapping (based on ra2.py).  
 
Another useful tool is mapped.py, which filters SAM read mapping files based on highly 
customizable criteria for how accurately paired reads map to an assembly. This can be used for 
manual genome curation, in which it is advantageous to visualize only high-quality read 
mappings, or can be used for abundance calculations, in which off target mappings need to be 
avoided (for example see Appendix 1.3).  
 
This software is maintained under github.com/christophertbrown/fix_assembly_errors.  
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Appendix 5 Figure 1 | Schematic for the ra2.py automated genome curation method.  

 
 

Clustering genome sequences based on average nucleotide identity 
Clustering genomes based on shared sequence identity is a common and useful task. However, 
this can be a very time consuming process when hundreds or thousands of genomes need to be 
compared with one another. To accomplish this I wrote a script that uses the MASH (Ondov et 
al., 2016) algorithm to quickly estimate average nucleotide identity (ANI), and then group 
together any genomes with at least a specified amount of sequence similarity (cluster_ani.py). 
The script also chooses a representative genome for each cluster based on genome size, 
completeness, and contamination. This script is maintained under 
github.com/christophertbrown/bioscripts. 
 

Ortholog detection for comparative genomics 
Detection of orthologs between genome sequences is useful for comparative genomics. I wrote a 
script that conducts reciprocal best USEARCH searches between all pairs of genomes of interest 
in order to identify orthologs (orthologer.py). The script outputs a table that maintains 
information about gene synteny, the format of which is based on a prior method (Yelton et al., 
2011). This method is distinct from prior approaches in that it allows for a comparison between 
any number of genomes, and can be run in either a reference or global mode. In reference mode 
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all genomes are compared to a single reference, while in global mode all genomes are compared 
against all other genomes. This script is maintained under 
github.com/christophertbrown/bioscripts. 
 

rRNA gene detection and characterization 
The presence of insertions in CPR 16S and 23S rRNA gene sequences required the development 
of methods for accurately identifying these genes and their insertions (Chapter 2). This is 
accomplished using the scripts 16SfromHMM.py and 23SfromHMM.py, respectively. These 
scripts can be used in conjunction with rRNA_insertions.py, which analyzes insertion features, 
and rRNA_copies.py, which evaluates relative gene copy number. These scripts are maintained 
under github.com/christophertbrown/bioscripts. 
 
Detection of a syntenic block of ribosomal proteins 
In order to accurately identify the 16 ribosomal proteins frequently used for phylogenetic 
analysis (Hug et al., 2013; 2016), I developed a method for detecting them that takes into 
account the fact that they are frequently co-localized on a genome sequence (rp16.py). This is 
advantageous because instead of setting arbitrary cutoffs based on sequence similarity, putative 
annotations are validated based on their relative genome positions. This script is maintained 
under github.com/christophertbrown/bioscripts. 
  




