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SUMMARY

Electroencephalography (EEG) data possess a complex structure that includes regional, functional, and
longitudinal dimensions. Our motivating example is a word segmentation paradigm in which typically
developing (TD) children, and children with autism spectrum disorder (ASD) were exposed to a contin-
uous speech stream. For each subject, continuous EEG signals recorded at each electrode were divided
into one-second segments and projected into the frequency domain via fast Fourier transform. Following
a spectral principal components analysis, the resulting data consist of region-referenced principal power
indexed regionally by scalp location, functionally across frequencies, and longitudinally by one-second
segments. Standard EEG power analyses often collapse information across the longitudinal and func-
tional dimensions by averaging power across segments and concentrating on specific frequency bands.
We propose a hybrid principal components analysis for region-referenced longitudinal functional EEG
data, which utilizes both vector and functional principal components analyses and does not collapse infor-
mation along any of the three dimensions of the data. The proposed decomposition only assumes weak
separability of the higher-dimensional covariance process and utilizes a product of one dimensional eigen-
vectors and eigenfunctions, obtained from the regional, functional, and longitudinal marginal covariances,
to represent the observed data, providing a computationally feasible non-parametric approach. A mixed
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effects framework is proposed to estimate the model components coupled with a bootstrap test for
group level inference, both geared towards sparse data applications. Analysis of the data from the word
segmentation paradigm leads to valuable insights about group-region differences among the TD and verbal
and minimally verbal children with ASD. Finite sample properties of the proposed estimation framework
and bootstrap inference procedure are further studied via extensive simulations.

Keywords: Electroencephalography; Functional data analysis; Marginal covariances; Product functional principal
components decomposition; Spectral principal components decomposition.

1. INTRODUCTION

Approximately 30% of children with autism spectrum disorder (ASD) never gain spoken language (referred
to as “minimally verbal”) and the reasons are largely unknown (Tager-Flusberg and Kasari, 2013).A major
barrier in conducting research with minimally verbal children is the limited availability of appropriate
assessment techniques. The recording of electroencephalography (EEG) signals during our motivating
study, involving a word segmentation paradigm, gave researchers a unique opportunity to compare and
contrast neurocognitive processes involved in language and communication development among verbal
ASD (vASD), minimally verbal ASD (mvASD), and typically developing (TD) children, without relying
on the children’s ability to understand directions or provide an overt behavioral response. EEG is a popular
non-invasive method for measuring voltage fluctuations across scalp regions in order to characterize
neurocognitive processes and disorders. Children listened to a continuous speech stream, which contained
four “made-up” words, each composed of three different phonemes or units of sound (Figure 1(a) and (b)).
The four words were repeated 45 times in random order such that no word was used twice in a row, and
there was no time gap between words. The full experiment took 144 s. Children were expected to segment
the speech stream, i.e. identify boundaries between words, by recognizing the differential patterns in the
phonemes (Scott-Van Zeeland and others, 2010).

EEG studies, including both event-related and resting state paradigms, create high-dimensional data
with regional, functional, and longitudinal dimensions. Data from resting state paradigms are typically
analyzed in the frequency domain, while event-related paradigms, where stimuli are applied repeatedly
throughout the experiment, are analyzed either in the time or frequency domain. In our word segmentation
paradigm, an event-related study, quantities considered of interest are in the frequency domain. Hence EEG
signals, collected from an 128 electrode sensor net, were divided into one-second segments and projected
into the frequency domain via fast Fourier transform (FFT). Given the fact that EEG signals have low
spatial resolution and that neighboring electrodes have similar power spectra, spectral principal compo-
nents analysis (PCA) has been proposed to combine information from EEG signals recorded at electrodes
within a scalp region (Ombao and Moon-Ho, 2006). This pre-processing step produces region-referenced
principal power, following a region-referenced longitudinal functional stochastic process. Specifically,
the scalp locations represent the regional dimension, principal power obtained across frequencies repre-
sents the functional dimension, and the one-second EEG segments represent the longitudinal dimension.
Similarly, if the quantities of interest in an event-related paradigm are in the time domain, event-related
potentials (ERP) time-locked to each stimulus (potentially combined over electrodes within a scalp region)
would represent the functional dimension, and repetitions of the stimuli throughout the experiment would
represent the longitudinal dimension. Note that all three dimensions of the observed data carry distinct
interpretations and that longitudinal time (captured through segments across the experiment) may play an
important role, especially in learning paradigms in which the focus is on changes over experimental time
as learning evolves.

Standard analysis of high-dimensional EEG data involves collapsing information along multiple dimen-
sions. The longitudinal dimension is collapsed when power spectra are averaged over segments or ERP



Hybrid principal components analysis for EEG data 141

Fig. 1. (a) Four “made-up” words formed by concatenating three phonemes from a set of 12 phonemes without
repetition in the word segmentation paradigm. (b) The artificial speech stream generated during the word segmentation
paradigm. Breaks between phonemes are denoted by a dash and breaks between words are denoted by a dot. (c) The
estimated mean log principal power μ(ω) for subjects pooled across the TD, vASD, and mvASD groups.

curves are averaged over stimuli. Similarly, analysis of spectral power from specific frequency bands or
specific ERP curve features corresponds to collapsing of the functional dimension, while averages over
scalp regions collapse the regional dimension of the data We propose a hybrid principal components
analysis (HPCA) for region-referenced longitudinal functional EEG data that does not collapse any of the
three dimensions. We call the proposed decomposition hybrid, since it combines vector principal compo-
nents analysis along the regional dimension (lacking a time order) and functional principal components
analysis along the longitudinal and functional dimensions, providing an efficient non-parametric means of
modeling high-dimensional EEG data. The HPCA decomposition involves a product of one-dimensional
eigenvectors and eigenfunctions obtained from marginal covariances along the three dimensions of the
data. A central assumption in this low dimensional, and hence computationally feasible, framework is the
weak separability of the overall covariance process of the observed data. The concept of weak separability,
recently proposed by Chen and Lynch (2017), refers to the idea that the covariance can be approximated
by a weighted sum of separable covariance components and implies that the direction of variation (i.e.
eigenvectors/eigenfunctions) along one of the three dimensions of the EEG data is the same across fixed
slices of the other two dimensions. Note that this assumption is weaker than the commonly assumed
strong separability of covariance surfaces in higher dimensions, which requires that the entire covariance
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structure, not only the directions of variation, is the same up to a constant across fixed slices of the other
dimensions.

The literature on functional data analysis has proliferated over the past two decades, with methodolog-
ical developments motivated by the complex dependency structures of repeatedly measured curves. Most
of the recent developments on functional principal components analysis (FPCA) consider either longi-
tudinally or spatially repeated functional data but not both. For longitudinally repeated functional data,
Di and others (2009) proposed multilevel ANOVA decompositions. Greven and others (2010) extended
their work to linear longitudinal decompositions, and Chen and Müller (2012), Park and Staicu (2015),
Chen and others (2016) and Hasenstab and others (2017) considered more flexible non-linear forms. For
spatially repeated functional data, Staicu and others (2010), Zhou and others (2010) and Liu and others
(2017) considered parametric forms, while Huang and others (2017) proposed a non-parametric decom-
position. Of the proposed methods, only Hasenstab and others (2017) decomposed both longitudinal and
regional sources of functional variation in three dimensions via a multi-dimensional FPCA procedure
(MD-FPCA). MD-FPCA, motivated by the analysis of the high-dimensional event-related ERP data in
the time domain (through ERPs), treated scalp regions as exchangeable. The proposed HPCA method
relaxes this assumption and involves a much simpler and computationally efficient decomposition via
the weak separability of the covariance process. Product FPCA of Chen and others (2016) also relies on
weak separability and involves a product of one-dimensional eigenfunctions in the proposed decompo-
sition; but their developments are obtained for two-dimensional functional data. HPCA extends product
FPCA approach of Chen and others (2016) to higher dimensions targeting region-referenced longitudinal
functional EEG data and combining vector and functional principal components analysis. In addition,
while developments for product FPCA have only focused on densely measured longitudinally observed
functional data, the estimation and inference procedures proposed for HPCA focus on sparse EEG data
applications.

The outline of the article is as follows. Section 2 introduces spectral PCA as a pre-processing step
with minimal loss of information that produces region-referenced longitudinal functional data. Section 3
introduces the HPCA decomposition, develops an innovative mixed effects framework for estimation of the
model components, specifically geared towards sparse data applications, and outlines a bootstrap procedure
for group-level inference. We highlight that the developments for sparse data applications are novel.
Prediction of subject-specific scores based on sparse data have not yet been considered for decompositions
based on weak separability of the covariance process, such as the product FPCA. The proposed mixed
effects framework is also utilized to assess the weak separability assumption via the random effects
correlation structure. Section 4 provides insights from the word segmentation paradigm including inference
on group-region differences in spectral dynamics among TD, vASD, and mvASD children. We assess the
proposed decomposition and the associated bootstrap test with an extensive simulation study summarized
in Section 5 and conclude with a discussion in Section 6.

2. SPECTRAL PCA AND THE RESULTING REGION-REFERENCED LONGITUDINAL FUNCTIONAL EEG DATA

Given that EEG signals measured on neighboring electrodes are highly multi-collinear due to their spatial
proximity, the analysis of EEG data collected from high density electrode arrays is often preceded by
reduction of the electrode dimension to discard redundant information and facilitate interpretation. When
analysis takes place in the frequency domain, dimensional reduction is often unsatisfactorily carried out by
selecting spectra from a single electrode or averaging spectra within a scalp region.Alternatively, given that
electrodes within a scalp region possess similar spectra, spectral PCA has been proposed to pool spectral
information within a scalp region with minimal loss of information. Spectral PCA applications in the
analysis of time series data date back to Brillinger (1981), but we follow a more recent application to EEG
data by Ombao and Moon-Ho (2006). They utilize spectral PCA as an exploratory tool to consolidate power



Hybrid principal components analysis for EEG data 143

spectra in a scalp region by utilizing overlapping segments of the continuous multi-channel time-series
recorded at multiple electrodes in a seizure study. In contrast, we perform spectral PCA on non-overlapping
EEG segments as a pre-processing step to be followed by scalp-wide analysis.

We highlight the outline of spectral PCA procedure here and defer details to Appendix A of the
supplementary material available at Biostatistics online. Fourier coefficients at a fixed frequency are
obtained via FFT for EEG signals measured from electrodes within the same scalp region and collected
in a region-specific periodogram matrix. Following smoothing of each term of the periodogram matrices
over frequencies, principal power is defined as the normalized leading eigenvalue of the smoothed peri-
odogram matrix, representing the common variation in the fixed frequency across the electrodes (relative
to variation in other frequencies) in a given scalp region along the direction of the leading eigenvector. The
interpretation of principal power is closely tied to the goal of spectral PCA in combining signals across
electrodes within a given scalp region. The assumption that electrodes within a scalp region have similar
spectral densities implies that the region-specific periodogram matrix at a particular frequency would be
of low rank. Hence, extracting the largest eigenvalue would serve as a reasonable summary of the spectral
dynamics within a brain region. While our analysis focuses on the largest eigenvalue as principal power,
note that second and third eigenvalues can also be modeled similarly via HPCA, allowing further analysis
of the spectral dynamics among brain regions. Spectral PCA being applied at each segment and region
for each subject, yields region-referenced longitudinal functional data, i.e. principal power as a function
of region r, frequency ω, and segment s denoted by Ydi(r,ω, s). If a given subject does not have valid data
at a fixed segment then the principal power for that segment is considered missing. We model Ydi(r,ω, s)
as a summary measure of the power dynamics across the scalp.

3. HYBRID PRINCIPAL COMPONENTS ANALYSIS (HPCA)

3.1. The HPCA decomposition

Let Ydi(r,ω, s) denote the log principal power, which comprises region-referenced longitudinal functional
data observed for subject i, i = 1, . . . , nd , from group d, d = 1, . . . , D, in region r, r = 1, . . . , R, at
frequencyω,ω ∈ �, and segment s, s ∈ S. Here� andS represent the functional and longitudinal domains,
respectively, and Ydi(r,ω, s) is assumed to be square-integrable. Even though subjects may not be observed
at all segments s ∈ S, we use a common index set in the formulations below for notational ease. Note that the
smoothing-based estimation procedure proposed in the next section, will readily extend to subject-specific
sparse longitudinal domains. Further let Zdi(r,ω, s) = Ydi(r,ω, s)−μ(ω, s)−ηd(r,ω, s)−εdi(r,ω, s)denote
a de-meaned and de-noised region-referenced stochastic process, where μ(ω, s) and ηd(r,ω, s) denote the
functional fixed effects that represent the overall mean function and group-region shifts, respectively, and
εdi(r,ω, s) denotes the measurement error with mean zero and variance σ 2

d .
The proposed HPCA decomposition provides a lower dimensional approximation of a stochastic pro-

cess defined over regional, functional, and longitudinal dimensions in terms of an empirical orthonormal
basis based on eigenvectors and eigenfunctions obtained from the marginal covariances in each dimen-
sion. A central assumption of HPCA is the weak separability of the overall three-dimensional covariance
process, which implies that the direction of variation (i.e. eigenvectors/eigenfunctions) along any one of
the three dimensions of the EEG data is the same across fixed slices of the other two dimensions. This
assumption is less stringent than the strong separability commonly assumed in the analysis of spatio-
temporal stochastic processes, which requires that the entire covariance process along one dimension,
not only the direction of variation, is the same up to a constant across fixed slices of the other dimen-
sions. Note that the eigenfunctions or eigenvectors being the same does not necessarily imply the same
covariance surface at fixed slices of the other dimensions due to weighting through the eigenvalues. We
refer readers to Chen and Lynch (2017) for a detailed comparison of weak versus strong separability

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy034#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy034#supplementary-data
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and note that we propose two separate checks for the weak separability assumption in Section 3.2 and
Appendix D of the supplementary material available at Biostatistics online, through a test for the correla-
tion structure of the random effects in the mixed effects modeling and through visualization of the data,
respectively.

Under weak separability, the common eigenfunctions and eigenvectors along each of the three dimen-
sions can be estimated using the marginal covariances. Let the functional and longitudinal marginal
covariance surfaces be defined as

�d,�(ω,ω′) =
∑

r

∫
S

cov{Zdi(r,ω, s), Zdi(r,ω′, s)}ds =
∞∑
�=1

τd�,�φd�(ω)φd�(ω
′),

�d,S(s, s′) =
∑

r

∫
�

cov{Zdi(r,ω, s), Zdi(r,ω, s′)}dω =
∞∑

m=1

τdm,Sψdm(s)ψdm(s
′),

and let �d,R denote the regional marginal covariance matrix with (r, r′)-th element equal to

(�d,R)r,r′ =
∫

S

∫
�

cov{Zdi(r,ω, s), Zdi(r
′,ω, s)}dωds =

R∑
k=1

τdk ,Rvdk(r)vdk(r
′),

where φd�(ω) and ψdm(s) are the common eigenfunctions of the functional and longitudinal marginal
covariance surfaces, respectively; vdk(r) are the common eigenvectors for the regional marginal covari-
ance matrix; and τd�,�, τdm,S and τdk ,R are the respective eigenvalues. While we estimate the regional
marginal covariance matrix nonparametrically, we note that parametric approaches have been quite popu-
lar for modeling spatial covariances. An important difference of the current EEG application from typical
environmental applications is that in the latter spatial data may typically be observed only once over the
location grid at a fixed time point, while we observe the region-specific longitudinal functional EEG data
repeatedly over subjects. Parametric assumptions to interpolate information across regions are thus not
necessarily needed in modeling the spatial dependence in our application and we use a non-parametric
region marginal covariance matrix, mimicking the non-parametric marginal functional and longitudinal
covariance surfaces.

Utilizing the eigenfunctions and eigenvectors of the marginal covariances, the HPCA decomposition
of Ydi(r,ω, s) is given as

Ydi(r,ω, s) = μ(ω, s)+ ηd(r,ω, s)+ Zdi(r,ω, s)+ εdi(r,ω, s)

= μ(ω, s)+ ηd(r,ω, s)+
R∑

k=1

∞∑
�=1

∞∑
m=1

ξdi,k�mvdk(r)φd�(ω)ψdm(s)+ εdi(r,ω, s). (3.1)

In (3.1), the subject-specific scores ξdi,k�m are defined through the projection, 〈Zdi(r,ω, s),
vdk(r)φd�(ω)ψdm(s)〉 = ∑R

r=1

∫ ∫
Zdi(r,ω, s)vdk(r)φd�(ω)ψdm(s)dωds, of the de-meaned and de-noised

stochastic process, Zdi(r,ω, s), onto the orthonormal bases vdk(r)φd�(ω)ψdm(s) defined as the product of
the one-dimensional eigenfunctions and eigenvectors of the marginal covariances. Note that the set of
subject-specific scores (ξdi,k�m) are uncorrelated over regions, frequencies and segments under weak sep-
arability. Hence, the proposed HPCA expansion also leads to a decomposition of the total covariance,

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy034#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy034#supplementary-data
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�d,T {(r,ω, s), (r′,ω′, s′)}, of Ydi(r,ω, s), as follows,

�d,T {(r,ω, s), (r′,ω′, s′)} = cov{Zdi(r,ω, s), Zdi(r
′,ω′, s′)} + σ 2

d δ{(r,ω, s), (r′,ω′, s′)}

=
R∑

k=1

∞∑
�=1

∞∑
m=1

τd,k�mvdk(r)φd�(ω)ψdm(s)vdk(r
′)φd�(ω

′)ψdm(s
′)+ σ 2

d δ{(r,ω, s), (r′,ω′, s′)},

where τd,k�m = var(ξdi,k�m) and δ{(r,ω, s), (r′,ω′, s′)} denotes the indicator for {(r,ω, s) = (r′,ω′, s′)}. Note
that the total covariance is written as a weighted sum of separable regional, functional and longitudinal
covariances. One way of assessing the weak separability assumption will be to examine the correlation
structure of the subject-specific decomposition scores ξdi,k�m via the mixed effects modeling framework
proposed in Section 3.2.

In practice, the HPCA decomposition is truncated to include only K , L, and M eigencomponents for the
regional, functional, and longitudinal marginal covariances in the expansion, respectively, with truncation
based on the fraction of variance explained (FVE). A general guideline is to initially include marginal
eigencomponents in the HPCA expansion that explain approximately 90% of variation in their respective
marginal covariances. Some of these components may be eliminated after subject-specific scores and
their associated variance components are estimated via the proposed mixed effects modeling framework
of Section 3.2, which provide an overall estimate of FVE, not only for the separate marginal covariances,
but for the covariance based on the entire data. Details on the selection of the number of eigencomponents
are deferred to Section 3.2.

Note that the three-dimensional (3D) HPCA introduced in (3.1) reduces to a two-dimensional (2D)
HPCA with the regional and functional dimensions when the longitudinal dimension may not be of interest
or may not exhibit change. Given that the remaining indices and arguments are unchanged, let Ydi(r,ω)
denote the region-referenced functional data with a weakly separable covariance process. Utilizing the
eigenfunctions and eigenvectors of the marginal covariances, the 2D HPCA decomposition of Ydi(r,ω)
can be given as,

Ydi(r,ω) = μ(ω)+ ηd(r,ω)+ Zdi(r,ω)+ εdi(r,ω)

= μ(ω)+ ηd(r,ω)+
R∑

k=1

∞∑
�=1

ξdi,k�vdk(r)φd�(ω)+ εdi(r,ω),

where model components and the decomposition of the total variance are defined as in the 3D HPCA by
omitting the longitudinal argument s. The functional dimension can similarly be collapsed leading to the
2D HPCA with only the regional and longitudinal dimensions. The discussion will continue to center on
the 3D HPCA with the understanding that extensions to 2D HPCA are available by omitting one of the
continuous arguments.

Motivated by the high-dimensional EEG data, both 3D and 2D HPCA extend the product FPCA of Chen
and others (2016) for longitudinally observed functional data by the addition of a regional dimension.
Moreover, HPCA involves a hybrid decomposition for the region-referenced longitudinal functional EEG
data, combining vector and functional principal components analysis under the assumption of weak
separability.Another important divergence from the product FPCA formulation is in estimation. Motivated
by the longitudinally sparse EEG data, we next propose a novel mixed effects procedure framework for
estimation of the model components, specifically geared towards sparse data applications (with low number
of repetitions and irregular spacing in observations over the longitudinal dimension). The estimation and
testing procedures proposed for the product FPCA largely depend on projection techniques, which are
applicable only to densely measured longitudinal functional data (Chen and others, 2016; Chen and Lynch,
2017).



146 A. SCHEFFLER AND OTHERS

3.2. Estimation of model components

The section below outlines the estimation of all the model components, including functional fixed effects,
marginal covariances, and eigencomponents, a novel mixed effects framework for estimation of subject-
specific decomposition scores and associated variance components, and a recommendation to select
the number of eigencomponents included in the proposed HPCA. We begin by introducing the HPCA
estimation algorithm.

Algorithm: HPCA estimation procedure

(1) Estimation of fixed effects
i. Calculate μ̂(ω, s) = ∑D

d=1 μ̂d(ω, s) by applying a bivariate penalized spline smoother to all
observed data {ω, s, Ydi(r,ω, s) : i = 1, . . . , nd ; r = 1, . . . , R; ω ∈ �; s ∈ S}.

ii. Calculate η̂d(r,ω, s) by applying a bivariate penalized spline smoother to all observed data
{ω, s, Ŷdi(r,ω, s)− μ̂(ω, s) : i = 1, . . . , nd ; ω ∈ �; s ∈ S}.

(2) Estimation of marginal covariances and measurement error variance
i. Calculate �̃d,�(ω,ω′) and �̃d,S(s, s′) by applying bivariate penalized spline smoothers to

the pooled covariances, �̂d,�(ω,ω′) and �̂d,S(s, s′), respectively.
ii. Calculate σ̂ 2

d by averaging the measurement error variance estimates σ̂ 2
d,� and σ̂ 2

d,S .
iii. Calculate �̃d,R by removing the estimated measurement error variance σ̂ 2

d from the
diagonal entires of the pooled covariance �̂d,R.

(3) Estimation of marginal eigencomponents
i. Employ FPCA on �̃d,�(ω,ω′) and �̃d,S(s, s′) to estimate the eigenvalue, eigenfunction

pairs, {τd�,�,φd�(ω) : � = 1, . . . , L} and {τdm,S ,ψdm(s) : m = 1, . . . , M }, respectively.
ii. Employ PCA on �̃d,R to estimate the eigenvalue, eigenvector pairs {τdk ,R, vdk(r) :

k = 1, . . .K}.
(4) Estimation of variance components and subject-specific scores via linear mixed effects models

i. Calculate κ̂dg and σ̂ 2
d by fitting the proposed linear mixed effects model.

ii. Calculate ζ̂dig as the BLUP ζ̂dig = E(ζdig|Y di).
iii. Select G′ such that FVEdG′ > 0.8 for d = 1, . . . , D and form predictions Ŷdi(r,ω, s).

We defer details on steps 1–3 to Appendix B of the supplementary material available at Biostatistics
online in which we refer readers to previous works on well-established mean, covariance, and eigencom-
ponent estimation. However, we briefly highlight two novel estimation procedures found in step 2 for the
measurement error variance, σ 2

d , and regional marginal covariance, �d,R. While previous authors obtain
estimates of the measurement error variance using smoothing techniques on the raw covariance from a
single dimension (Yao and others, 2005; Park and Staicu, 2015), we adapt this method to high dimensional
settings by pooling information across both the functional and longitudinal marginal covariances. We then
use this pooled estimate to remove the measurement error variance from the diagonals of the raw regional
marginal covariance, which as a matrix is not amenable to smoothing techniques. Thus, we are able to
leverage information from both the functional and longitudinal dimensions to obtain a decontaminated
estimate of the regional marginal covariance.

In step 4, we utilize the estimated functional fixed effects and marginal eigencomponents to propose a
linear mixed effects framework for modeling sparsely observed region-referenced longitudinal functional
EEG data. In addition to allowing estimation of subject-specific scores under the assumption of their
joint normality with the measurement error, the proposed mixed effects framework also provides final
estimates for the corresponding variance components and the measurement error variance. The variance

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy034#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy034#supplementary-data
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components estimates associated with the subject-specific scores are utilized in selection of the number
of eigencomponents included in the HPCA decomposition via estimation of the proportion of variance
explained, as well as in the construction of a hypothesis testing procedure for group-level inference via
the bootstrap. Finally, the proposed mixed effects framework provides an opportunity to check the weak
separability assumption via examining the correlation structure of the random effects.

For ease of notation, we replace the triple index k�m in HPCA truncated at K , L, and M with a single
index g = (k − 1)+ K(�− 1)+ KL(m − 1)+ 1,

Ydi(r,ω, s) = μ(ω, s)+ ηd(r,ω, s)+
G∑

g=1

ζdigϕdg(r,ω, s)+ εdi(r,ω, s),

whereϕdg(r,ω, s) = vdk(r)φd�(ω)ψdm(s), ζdig = 〈Zdi(r,ω, s),ϕdg(r,ω, s)〉, κdg = cov(ζdig) and G = KLM .
Denote by Y di the vectorized form of Ydi(r,ω, s) over the subject-specific region, frequency and segment
grid for subject i, i = 1, . . . , nd . In our EEG application, while the region and frequency grids are the
same for all subjects, the segment grid is subject-specific due to data quality issues. Similar subject-
specific vectorized forms for the functional fixed effects, μ(ω, s) and ηd(r,ω, s), the region-referenced
stochastic process Zdi(r,ω, s), the measurement error εdi(r,ω, s), and the multidimensional orthonormal
basis ϕdg(r,ω, s) are denoted by μi, ηdi, Zdi, εdi and ϕdig , respectively. Note that the mean vectors μi,
ηdi are indexed by subject since they are defined over the subject-specific region, frequency, and segment
grids. Under the assumption that ζdig and εdi are jointly Gaussian, the proposed linear mixed effects model
is given as

Y di = μi + ηdi + Zdi + εdi = μi + ηdi +
G∑

g=1

ζdigϕdig + εdi, for i = 1, . . . , nd . (3.2)

The model can be fit separately in each group, d = 1, . . . , D, with both μi and ηdi previously obtained
by smoothing. The functional, longitudinal, and regional dependencies in Y di are induced through the
subject-specific random effects ζdig in (3.2). Given estimates for μi, ηdi, and ϕdig , estimates of the variance
components, κdg and σ 2

d are obtained using maximum likelihood.
Following Yao and others (2005) in using conditional expectations to estimate subject-specific

scores for sparse functional data, the ζdig are estimated using best linear unbiased prediction (BLUP),

ζ̂dig = E(ζdig|Y di) = κ̂dgϕ̂dig�̂
−1
Y di
(Y di − μ̂i − η̂di), where �̂Y di = ∑

g κ̂dgϕ̂digϕ̂
′
dig + σ̂ 2

d I i with I i denoting
the identity matrix of the same dimension as the length of the vectorized response Y di. Compared with the
projection-based estimator of the subject-specific random effects in Chen and others (2016) and Chen and
Lynch (2017), which is only applicable for densely measured longitudinal functional two-dimensional pro-
cess observed without measurement error, the proposed approach via mixed effects modeling is specifically
geared towards sparse region-referenced longitudinal functional EEG data observed with measurement
error. It also allows for assessing the weak separability assumption via a likelihood ratio test for the inde-
pendence of the random effects (for details see Appendix D of the supplementary material available at
Biostatistics online).

The subject-specific scores and variance components estimated via the proposed mixed effects model
are used to obtain predicted subject-specific trajectories and to choose the number of eigencompo-
nents included in the HPCA decomposition. Using subject-specific scores estimated from the mixed
effects model, subject-specific trajectories can be predicted via Ŷdi(r,ω, s) = μ̂(r,ω, s) + η̂d(r,ω, s) +∑G′

g=1 ζ̂digϕ̂dig(r,ω, s), where G′ denotes a set of eigencomponents such that the total fraction of vari-
ance explained (FVEdG′ ) is greater than 0.8 in all groups d = 1, . . . , D. We recommend starting with a

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy034#supplementary-data
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larger number G = KLM of eigencomponents in the mixed effects modeling used for the estimation of
(κdg : g = 1, . . . , G). In order to estimate the group-specific fraction of total variance explained via the
G eigencomponents, we consider the quantity, FVEdG = {nd

∑G
g=1 κ̂dg}/[∑nd

i=1{||Ydi(r,ω, s)− μ̂(ω, s)−
η̂d(r,ω, s)|| − R|�||S|σ̂ 2

d }], where ||f (r,ω, s)||2 = ∑R
r=1

∫ ∫
f (r,ω, s)2dωds. Note that the above formu-

lation utilizes variance components estimates κ̂dg and σ̂ 2
d obtained from the proposed mixed effects model

and considers the ratio of the variance in the G eigencomponents to the total variation in the observed
data Ydi(r,ω, s) without measurement error. The denominator of FVEdG does not use variation in a large
number of eigencomponents to estimate the total variation in the observed data due to computational costs
in fitting the proposed mixed effects model, but instead uses the three-dimensional norm of the de-meaned
data, similar to the approach by Chen and others (2016). As a result, a limitation of FVEdG is that when
measurement error variance is overestimated and scaled by a factor of R|�||S|, FVEdG may exceed 1.

3.3. Group-level inference via bootstrap

To test the null hypothesis that all groups have equal means in the scalp region r, i.e. H0 : ηd(r,ω, s) =
η(r,ω, s) for d = 1, . . .D, we propose a parametric bootstrap procedure based on the HPCA decomposi-
tion. The proposed parametric bootstrap generates outcomes based on the estimated model components
under the null hypothesis as Y b

di(r,ω, s) = μ̂(ω, s) + η̂(r,ω, s) + Zb
di(r,ω, s) + εb

di(r,ω, s) = μ̂(ω, s) +
η̂(r,ω, s) + ∑G′

g=1 ζ
b
digϕ̂dig(r,ω, s) + εb

di(r,ω, s) in region r and as Y b
di(r,ω, s) = μ̂(ω, s) + η̂d(r,ω, s) +

Zb
di(r,ω, s) + εb

di(r,ω, s) = μ̂(ω, s) + η̂d(r,ω, s) + ∑G′
g=1 ζ

b
digϕ̂dig(r,ω, s) + εb

di(r,ω, s) in the other
regions, where subject-specific scores and measurement error are sampled from ζ b

dig ∼ N (0, κ̂dg) and

εb
di(r,ω, s) ∼ N (0, σ̂ 2

d ). The proposed test statistic Tr = [∑D
d=1

∫ ∫ {η̂d(r, ω, s) − η̂(r,ω, s)}2dωds]1/2 is
based on the norm of the sum of the departures of the estimated group-region shifts η̂d(r,ω, s) from the
estimate of the common shift across groups, η(r,ω, s). The common region shift estimate η̂(r,ω, s), under
the null, is set to the point-wise average of the group-region shift estimates, η̂d(r,ω, s), d = 1, . . . , D.
We utilize the proposed parametric bootstrap to estimate the distribution of the test statistic Tr . The pro-
posed procedure can be extended to test for equal means from specific frequency bands (i.e. subsets of
�). We defer steps of the bootstrap algorithm to Appendix C of the supplementary material available at
Biostatistics online.

4. APPLICATION TO THE WORD SEGMENTATION DATA

4.1. Data structure and methods

In our motivating word segmentation study, EEG data were recorded for 144 s using an 128 electrode
HydroCel Geodesic Sensor Net for 9 TD, 13 vASD, and 19 mvASD children ranging between 4 and
12 years of age. The EEG data is divided into non-overlapping segments of 1.024 seconds, producing
a maximum of 140 observable segments for each subject at each electrode. Descriptions on the pre-
processing steps and the final study sample are deferred to Appendix D of the supplementary material
available at Biostatistics online. We consider 11 regions made up of 4–7 electrodes; left and right for
the temporal region (LT and RT) and left, right, and middle for the frontal, central, and posterior regions
(LF, RF, MF, LC, RC, MC, LP, RP, and MP, respectively). We employ the spectral PCA described in
Section 2 and Appendix A supplementary material available at Biostatistics online as a pre-processing
procedure to reduce the spectra within each brain region to its corresponding log transformed principal
power. The functional domain ranges from 0 to 50 Hz, to include the clinically defined frequency bands of
delta (0–4 Hz), theta (4–8 Hz), alpha (8–15 Hz), beta (15–32 Hz), and gamma (32–50 Hz). Even though
HPCA captures power dynamics across the total frequency domain, we note that the gamma band was of

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy034#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy034#supplementary-data
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Table 1. FVE of the marginal covariances for the selected eigencomponents in each diagnostic group in
the 2D HPCA decomposition

TD vASD mvASD

R � R � R �

0.652 0.698 0.706 0.653 0.583 0.656
0.113 0.159 0.112 0.249 0.133 0.231
0.084 0.091 0.083 — 0.113 0.048
0.058 — — — 0.062 —
— — — — 0.042 —

The number of eigencomponents are chosen to explain at least 90% FVE.

particular interest in the word segmentation study since a higher gamma power is associated with better
performance in cognitive processes.

We employ a 3D HPCA to model log principal power as a function of region, frequency, and segment.
Based on the 3D HPCA decomposition, we observe minimal variability in the segment dimension in both
the functional fixed effects (Figures S1(b) and S5 of the supplementary material available at Biostatistics
online) and leading marginal eigenfunctions (Figure S2(c) of the supplementary material available at
Biostatistics online), accounting for more than 85% of the marginal segment variation in each group (Table
S1 of the supplementary material available at Biostatistics online). Collectively, these two observations
suggest that log principal power dynamics do not substantially change in the segment dimension both
within subjects and among groups. Therefore, we collapse the segment dimension by averaging log
principal power across segments within regions and employ a 2D HPCA decomposition to model the
resulting average log principal power Ydi(r,ω) as a function of region and frequency. Thus, we utilize the
3D HPCA decomposition to justify the collapse of the segment dimension allowing for a more interpretable
analysis based on the 2D HPCA decomposition. Finally, we illustrate the benefit of modeling the unreduced
frequency dimension by integrating the average log principal power Ydi(r,ω) over clinically defined
frequency bands and comparing separate linear mixed models (LMMs) of the resulting region-referenced
log principal power bands with the 2D and 3D HPCA. In the LMMs, group-region dynamics are captured
through group-region interactions while within-subject region variation is modeled using a subject-specific
random intercept. LMMs were fit using nlme (Pinheiro and others, 2017). For the 2D and 3D HPCA
decompositions, the smoothing parameters for the functional fixed effects and marginal covariances were
selected by generalized cross-validation/restricted maximum likelihood.

4.2. Data analysis results

We present full results from the 2D HPCA decomposition but defer details from the 3D HPCA decom-
position, including detailed checks of the weak separability assumption on the 2D and 3D covariance
processes, to Appendix D of the supplementary material available at Biostatistics online. Our main focus
is inference on group-region differences but we will briefly discuss the estimated model components from
the 2D HPCA decomposition. Table 1 displays the eigencomponents for the regional and functional mar-
ginal covariances that explain at least 90% marginal FVE in all three diagnostic groups. The leading four,
three, and five regional marginal eigenvector and three, two, and three functional marginal eigenfunctions
are collectively found to explain 0.998, 1.000, and 0.999 of the total FVE (FVEdG) in the TD, vASD, and
mvASD groups, respectively.

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy034#supplementary-data
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Fig. 2. (a, b) Estimated first and second leading functional and longitudinal marginal eigenfunctions φd1(ω) and
φd2(s). (c, d) Estimated first and second leading regional marginal eigenvectors vd1(r) and vd2(r).

In the functional dimension, the first leading marginal eigenfunction φd1(ω) (Figure 2(a)) displays
increasing variation with increasing frequency for all diagnostic groups, with the peak observed in the
beta and gamma bands (15–50 Hz). The second leading marginal eigenfunction φd2(ω) (Figure 2(b))
displays peak variation mostly in the beta band (15–32 Hz). The first two eigenfunctions together explain
at least 85% of the variation in the functional marginal covariance in all three diagnostic groups. In the
regional dimension, the weights of the first leading marginal eigenvector vd1(r) (Figure 2(c)) are uniform
across scalp locations in all the diagnostic groups, implying equal variation, while the weights of the
second leading marginal eigenvector vd2(r) (Figure 2(d)) are highest for the LT and RP regions, and MF
and RF regions for the TD and vASD groups, respectively. In the mvASD group, the leading components
signal a contrast between LF and MP regions. The first two regional marginal eigenvectors together explain
at least 70% of the variation in the regional marginal covariance in all three diagnostic groups.

The estimated overall mean log principal power μ(ω) curve, given in Figure 1(c), follows the well
known trend of decreasing power with increasing frequency. In order to test for differences in the group-
region means among the three diagnostic groups, we utilize the bootstrap test proposed in Section 3.3
originally for the 3D HPCA decomposition, which can be extended to the 2D HPCA decomposition via the
test statistic Tr = [∑D

d=1

∫ {η̂d(r, ω)− η̂(r,ω)}2dω]1/2. For each scalp region r, we test the null hypothesis
that the three diagnostic groups share a common mean, which takes the form H0 : ηd(r,ω, s) = η(r,ω, s)
and H0 : ηd(r,ω) = η(r,ω), d = 1, 2, 3, for 3D and 2D bootstrap procedures, respectively. The 2D and
3D bootstrap tests find significant differences among the group-region means for the three frontal regions:
LR, RF, and MF (Figures 3(a, c, e) and S5(a–f) of the supplementary material available at Biostatistics
online, P<0.05) across the full frequency domain. The 3D bootstrap procedure also identifies a significant

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy034#supplementary-data
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Fig. 3. (a, c, e) The estimated group-region shifts ηd(r,ω) in the left, right, and middle frontal regions in the TD,
vASD, and mvASD groups. (b, d, f) The differences of the estimated group-region shifts ηd(r,ω) from group-region
averages in the left, right, and middle frontal regions in the TD, vASD, and mvASD groups. Note, the quantity
ηd(r,ω)− η(r,ω) forms the basis of the proposed bootstrap test statistic.

difference among the group-region means for the total frequency domain in the LT, MC, and RP, although
for the LT and RP regions this may be ascribed to edge effects in the segment dimension inflating the
observed test statistic and for the MC region the 2D bootstrap test is nearly significant (P=0.05). While
the 2D and 3D bootstrap tests provide insight into group-level dynamics for the full frequency domain,
we also employ their band-specific extensions to enhance interpretation and enable comparisons with
band-specific LMMs.



152 A. SCHEFFLER AND OTHERS

Table 2 displays the results of hypothesis tests for all scalp regions and frequency bands from the three
separate models, the 2D and 3D HPCA decompositions and a set of band-specific LMMs. The greatest
variation in group-region means from the 2D HPCA decomposition are observed in LF and RF regions
for the gamma band (Figure 3(a, c), P<0.05), with the highest gamma principal power observed in the TD
group, followed by the mvASD and vASD groups regions as evidenced by their relative difference from
the group-region averages (Figure 3(b, d)). The mvASD group appears to have higher gamma principal
power than the vASD group in the LF and LR regions, contradicting the expectation that the ordering
of verbal impairment would be mirrored in group-region shifts in gamma activity, which is thought to
signal cognitive processes. One reason could be that the three diagnostic groups were not age-matched.
The age distribution of vASD group had minimal overlap with those of the TD and mvASD groups and
was over 20 months younger on average than the other diagnostic groups, which may explain its lower
gamma principal power. Further evidence of this age imbalance may be observed in LF and RF regions
for the theta band in which the vASD group displays higher activity than the TD and mvASD groups
across brain regions, consistent with the expected trend that theta activity is higher in younger children
(Figure 3(a, c)). Finally, for each brain region the TD group followed by the vASD group have the highest
alpha activity, which is thought to be associated with relaxation, suggesting that mvASD children are not
as relaxed as their verbally able peers.

The 2D HPCA decomposition enhances the analysis of principal power by not only capturing the
whole frequency domain but also by detecting significant differences among group-region means that are
missed when the frequency domain is collapsed into specific bands and modeled via band-specific LMMs.
In the MF region for the gamma band, the TD and mvASD groups display higher principal power than
the vASD group (Figure 3(e, f)) and the null hypothesis of a common group-region mean is rejected by
the 2D bootstrap test but not by the band-specific LMM. In addition, the 2D bootstrap procedure finds
significant differences in theta band dynamics among groups in all regions but the RC region while the
LMM finds no significant differences among group-region means. By collapsing the frequency dimension
prior to modeling, analysis methods such as the LMM cannot capture dynamics within frequency bands
among groups (e.g. two signals crossing in a given interval) that may be modeled by maintaining the full
frequency dimension.

5. SIMULATION STUDY

We studied the finite sample properties of the proposed HPCA and the bootstrap test for group-level
inference via extensive simulations. While the results of the simulations are summarized here briefly, we
defer details including data generation, discussion of the total and marginal FVEs, and further details
on the bootstrap test to Appendix E of the supplementary material available at Biostatistics online. We
conducted simulations for two sample sizes (nd = 15 and 50), two signal-to-noise ratios (SNRs= 2.5
and 10), and two data sparsity levels (complete, partial in the longitudinal domain), for a total of
eight settings. The lower sample size and sparsity levels were chosen to mimic the word segmenta-
tion data. To assess the performance of the proposed estimation algorithm in targeting the components
of HPCA, we utilize normalized mean squared errors (MSE) and relative squared errors (RSE), based
on the norms of the deviations of the estimate from the targeted quantities. In addition, we report the
total and marginal FVE along the regional, functional, and longitudinal dimensions, FVEdK ,R, FVEdL,�,
and FVEdM ,S , based on the K , L, and M marginal eigencomponents included in the decomposition,
respectively.

Figures 4 and S7 of the supplementary material available at Biostatistics online display the estimated
model components based on 200 Monte Carlo runs from the sparse simulation set-up with nd = 15
and high SNR. The estimated overall mean function and group-region shift with the median RSE values
(Figures S7(b),(d) of the supplementary material available at Biostatistics online) track the corresponding
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Fig. 4. The true and estimated functional (first row) and longitudinal (second row) marginal eigenfunctions corre-
sponding to the 10th, 50th, and 90th percentile RSE values across groups based on 200 Monte Carlo runs from the
sparse simulation design at nd = 15 and high SNR.

true surfaces (Figure S7(a) and (c) of the supplementary material available at Biostatistics online). The
estimated functional and longitudinal marginal eigenfunctions (Figure 4) are displayed from runs with
RSE values at the 10th, 50th, and 90th percentiles, overlaid by their true quantities. Even with a small
sample size, HPCA captures the periodicity and magnitude of the true components; patterns of estimated
components from the dense case are similar and are deferred to Figures S8 and S9 of the supplementary
material available at Biostatistics online. Tables 3 and S2 of the supplementary material available at
Biostatistics online display median, 10th, and 90th percentile RSE, normalized MSE values, and both total
and marginal FVEs based on 200 Monte Carlo runs corresponding to the estimated HPCA components
from all eight simulation settings. In general, the RSEs for all model components decrease with higher
sample size and lower level of sparsity in the data. The fitted surfaces Ydi(r,ω, s) are the most susceptible to
changes in SNR. The RSEs associated with the marginal eigencomponents are not sensitive to changes in
SNR, suggesting that the estimation procedure successfully corrects for measurement error when obtaining
the marginal covariances. For simulation set-ups with nd = 15, the 90th percentile RSE for the marginal
eigenvectors and eigenfunctions can exceed 1 but we note that 15 subjects is small for PCA and FPCA
decompositions and that for nd = 50 the comparable RSE values improve dramatically. The estimated
level is on target and the power increases faster as one moves away from the null for the larger sample
size, as expected (Figure S10 of the supplementary material available at Biostatistics online).

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy034#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy034#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy034#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy034#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy034#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy034#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy034#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy034#supplementary-data
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Table 3. Percentiles 50% (10%, 90%) of the relative squared errors , normalized mean squared errors,
and both total and marginal fraction of variance explained across groups for model components based
on 200 Monte Carlo runs from the sparse simulation design at nd = 15, 50 for low and high SNR

Low SNR High SNR

nd = 15 nd = 50 nd = 15 nd = 50

μ(ω, s) 0.000 (0.000, 0.000) 0.000 (0.000, 0.000) 0.000 (0.000, 0.000) 0.000 (0.000, 0.000)
ηd(r,ω, s) 0.004 (0.003, 0.006) 0.001 (0.001, 0.002) 0.004 (0.003, 0.006) 0.001 (0.001, 0.002)
Ydi(r,ω, s) 0.149 (0.072, 0.155) 0.077 (0.072, 0.155) 0.016 (0.015, 0.035) 0.016 (0.015, 0.035)

vd1(r) 0.085 (0.019, 0.422) 0.025 (0.005, 0.095) 0.075 (0.012, 0.348) 0.023 (0.003, 0.082)
vd2(r) 0.259 (0.063, 1.166) 0.076 (0.017, 0.350) 0.236 (0.039, 1.118) 0.057 (0.011, 0.250)
vd3(r) 0.198 (0.042, 1.025) 0.059 (0.012, 0.332) 0.159 (0.024, 0.954) 0.039 (0.005, 0.189)

φd1(ω) 0.080 (0.015, 0.376) 0.022 (0.003, 0.078) 0.074 (0.009, 0.351) 0.021 (0.004, 0.083)
φd2(ω) 0.267 (0.033, 1.109) 0.057 (0.007, 0.232) 0.231 (0.029, 0.966) 0.058 (0.008, 0.243)
φd3(ω) 0.143 (0.023, 1.073) 0.038 (0.006, 0.196) 0.137 (0.018, 0.857) 0.037 (0.004, 0.211)

ψd1(s) 0.092 (0.011, 0.414) 0.026 (0.004, 0.088) 0.078 (0.012, 0.330) 0.027 (0.004, 0.087)
ψd2(s) 0.223 (0.025, 1.130) 0.068 (0.011, 0.325) 0.212 (0.023, 1.044) 0.060 (0.009, 0.247)
ψd3(s) 0.143 (0.022, 0.871) 0.059 (0.012, 0.297) 0.141 (0.021, 0.899) 0.051 (0.008, 0.221)

FVEdK ,R 0.985 (0.974, 0.993) 0.989 (0.983, 0.994) 0.995 (0.992, 0.998) 0.997 (0.995, 0.998)
FVEdL,� 0.974 (0.962, 0.986) 0.980 (0.972, 0.988) 0.990 (0.984, 0.994) 0.993 (0.990, 0.996)
FVEdM ,S 0.938 (0.916, 0.957) 0.963 (0.948, 0.974) 0.986 (0.979, 0.992) 0.992 (0.988, 0.995)

FVEdG′ 1.009 (0.981, 1.038) 1.011 (0.994, 1.030) 1.007 (0.995, 1.019) 1.010 (1.003, 1.016)
τd,klm 0.106 (0.004, 0.769) 0.031 (0.001, 0.232) 0.101 (0.003, 0.686) 0.032 (0.001, 0.226)
σ 2

d 0.025 (0.001, 0.131) 0.005 (0.000, 0.034) 0.001 (0.000, 0.005) 0.000 (0.000, 0.002)

Due to their small magnitude, MSE values are scaled by a factor of 103 for presentation.

6. DISCUSSION

We proposed a hybrid principal components analysis technique (HPCA) which combines tools from
vector and functional principal components analysis to decompose three-dimensional region-referenced
longitudinal functional EEG data in a computationally efficient manner through the product of the one-
dimensional eigenvectors and eigenfunctions of marginal covariances. Hence, the proposed estimation
procedure scales up well to large data sets since estimation of the covariances and eigencomponents
are performed within the marginal dimensions. To ease the computational burden in fitting the proposed
mixed effects model for large data applications, the size of the grid chosen along each marginal dimension
affecting the length of the design matrices can be controlled. Note also that the number of subjects in most
EEG studies are similar to those in our data application, hence HPCA would be applicable in most EEG
paradigms.

The proposed estimation procedure centered around weak separability was developed to specifically
handle realistic scenarios observed in EEG studies with potentially sparse data in the longitudinal dimen-
sion measured with noise. Note that similar ideas can be used to handle sparsity in the functional and
regional dimensions as well. The HPCA decomposition paves the way for future work on regression
analysis involving the high-dimensional EEG signals. A particular question of interest in autism research
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centers around relating behavioral outcomes to information within the EEG signals collected during an
experiment. HPCA is a promising dimension reduction tool to enable regression modeling involving
high-dimensional EEG signals.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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