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INCORPORATION OF AN ELLIPTICAL BOUNDARY CONDITION 
INTO THE PROGRAM POISSON* 

Introduction 

S. Caspi, M. Helm and L.J. Laslett 

Lawrence Berkeley Laboratory 
University of California 

Berkeley, California 94720 

This report is the third in a series 1,2) which takes into account the 

boundary condition in electromagnetic problems such as used by the program 

POISSON. Here we extend the analysis to permit the use of an elliptical 

boundary both for two dimensional and axisymmetric cylindrical problems. The 

use of an elliptical boundary instead of a circular one can reduce the mesh 

size when using the program POISSON and thereby save computing time. Saving 

cpu time can be significant for problems such as the 2-in-l dipole proposed 

for the SSC or other magnets such as solenoids. We therefore expect the use 

of an elliptical boundary to be more general and the previous spherical bound-

ary solution to be a special case . 

y 
Two Dimensional Problems with Ellip-

tical Cylindrical Coordinates 

The analysis is identical to 

the one reported in Ref. 1,2 except 

that here we replace the two circu-

1ar arcs with two confocal ellipses 

(Fig. 1) and employ elliptic cylin-

drical coordinates (u, v, iI). This 

Fi g. 1 
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can be conveniently done by the use of the conformal transformation x + iy 

= c Cosh (u + iv) for which x = c Cosh u cos v and y = c Sinh u sin v and re-

sults in the curves of constant v forming a set of confocal ellipses, concen-

tric with the origin, whose major semi-axes are a = c Cosh u (coincident with 

the x-axis) and b = c Sinh u (coincident with the y-axis). The variable v is 

a distorted analogue of the polar coordinate angle e and numerically covers 

the same angle as e in the successive Quadrants. 

For the case (~) 2 < 1 we write : 

(1 a) 

(1 b) 

v = tan-1[(y/x)/(b/a)] (1 c) 

If the outer elliptical curve has a value of u2 and semi-axes a2, b2 
and similarly the inner curve has a value of ul with al and bl , we have: 

2 al 
_ b2 

1 = 2 a2 - b2 
2 (2a) 

u2 = Tanh- l b2 
a2 

(2b) 

~ 
a 2 b 2 112 

ul = Tanh-l = Tanh-
l 

[1 - (a~) + (a~) ] al 
(2c) 

Note that out of the four semi-axes only three are independent and the fourth 

one is determined according to (2a) (this is expressed in relation 2c). 
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In the free space region the vector potential can be expressed as a sum 

of harmonic terms, each employing powers of e-u. 

(3 ) 

The vector potential A of mesh point i on the elliptic arc u is expressed in 

terms of a series of circular functions F.Q. (vi)' their coefficients O.Q. and 

the problem type symmetry ~ .Q.' 

In the spirit of the analysis given in Ref. 2 we express the vector po-

tential on the outer elliptical arc as a linear combination of the vector po-

tential of each mesh point on the inner elliptical arc (Fig. 2). 

Fi g. 2 

N 
Aouter _ LEA inner 
k - n=l kn n 

(4) 
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where 

E = 
kn 

m 

L L 
i=l j=l 

N = total number of points on inner arc 

m = total number of harmonics 

and M is as defined on p. 3 of Ref. 2, wherein Mij 

Relation 5 can be further reduced: 

u - u = 
1 2 

and using relation 2a 

(a+b)l(a 

we can then write 

~ 6U ~ . lln [(a 
j J2 (a 

e = e 

If we now substitute 

R = 

H = 

we have 
[

(a 

(a 

- b) 2 

+ b) 1 J2 
+ b)2 

(a + b)2 
2 

= [

(a 

(a 

+ b)l(a - b)2 

- b)l(a + b)2 

~. 

+ b)lJ J 

+ b)2 

(a2- all + (b 2- bl ) 
2 

4 

(5) 

, 

(6) 

( 7) 



(a) ,,= to 

(b) ,,= 1.097 

Fig . 3 Flux lines around current filaments in a two-dimensional problem, 

which has no symmetry (CON 126 = 10), with circular boundary (a) and 

elliptical boundary (b) . The problem converged in 350 cycles in case 

(a) and 160 cycles in case (b) . 

7 



Fig. 4 Overlap of flux lines for the circular and elliptical boundary prob-

lem. Below, the triangular mesh, showing the two confocal ellipses 

used to generate the ·universe". 
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TABLE 1 

Comparison of the vector potential values 
along y = 0 as resulted from direct computation (theoretical) 

and from POISSON (iterative) 

circular B. C. B. C. 
y = Q Theoretical Calculated Error 

elliptical 
Calculated Error 

x cm A A A% A A% 

1.6 154 . 45 154 . 71 0. 17 155 . 40 0 . 61 
1.4 1 B7. 77 1 B7 . 99 0.12 188.80 0.54 
1.2 228.34 228.50 0 .07 229 . 31 0. 42 
1.0 247.14 247 .30 0.06 248.03 0.36 
0 . 8 148.04 148 . 18 0.09 148.68 0.43 
0.6 -70.41 -70.330 -0 . 11 - 70 . 09 -0.45 
0.4 -288 .05 -288 .06 0.003 -288 . 13 0 . 03 
0.2 -376.96 -376 . 97 0.002 - 377.28 0.08 
0.0 -338 . 0 -337 . 970 -0.009 -388.42 0.12 

-0.2 - 273 . 84 -273.88 0 .01 -274.44 0.20 
-0.4 -204. ';2 -204.42 0. 0 -205.02 0.29 
-0.6 -130.25 - 130 .27 0.015 -130 . 84 0.45 
-0.8 -65.25 -65.26 0.015 -65 . 81 0 . 85 
-1.0 - 31.65 -31 .71 0 . 19 -32 . 27 1.9 
-1. 2 -27.68 -27 . 75 0.25 -28.33 2.3 
-1.4 -30.19 - 30.27 0. 26 - 30.86 2.2 
-1. 6 - 32 . 06 - 32 . 14 0 . 25 -32 . 77 2.2 
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TABLE 2 

Comparison of the vector potential values 
along x = 0 as resulted from direct computation (theoretical) 

and from POISSON (iterative) 

c i rcular B. C. ellipt ical B. C. 
x = 0 Theoretical Calculated Error Calculated Error 
y em A A 11% A 11% 

1.6 -45.43 - 45.51 0.17 
1.4 - 56.66 -56 . 72 0.10 
1.2 -72.31 -72 . 35 0 .05 
1. 0 -94.70 -94 . 73 0 .03 
O. B -127 . 37 -127.39 0. 015 
0. 6 -174.51 -174.54 0.017 -175 . 40 -0.50 
0. 4 -234.34 -234.37 0.013 -234 .97 0.27 
0 . 2 -2B7 .14 -287.14 0.0 -287 . 62 0 . 17 
0 .0 -338.0 -337.97 - 0. 009 -338.42 0 . 12 

-0 . 2 - 393 . 51 -393.53 0.005 -394.01 0.13 
-0 . 4 - 317 .01 -317.06 -0 .01 -377.75 0.19 
-0.6 - 286 . 90 -286.91 0.003 -287 . 96 0.37 
-0.8 -203 . 97 -203.98 0. 005 

-1.0 -146.12 -146.14 0. 013 

-1.2 -107.46 -107 . 50 0.04 
-1.4 -81.34 -81.40 0 .07 

-1.6 -63.24 - 63 . 33 0. 14 
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Correction 

In our previous report (Ref. 2) we have stated that the symmetry condi-

tion in problems which have midplane symmetry or no-symmetry is "k = k 

with k = 1,2 , . .. ,and CON 126 = 11 . Choosing " 9, = a (for k = 1) implies 

- 1 , 

the 

introduction of a constant term into the solution. From the convention that 

the vector ' potenti ali s equa 1 to zero at r .. 00 the value of th i s constant 

should be zero . If this constant ;s not specified the vector potential will 

change from one iteration to the other so as to accumulate a small but finite 

average value. 

So that the problem will be better defined it is advisable to change our 

series to "k = k and start from k = 1 or CON 126 = 10. By doing so we have 

forced the vector potential around the boundary to be averaged out to zero. 

11 



Axisymmetrical Problems with Prolate Spheroidal Coordinates 

A cross-section of prolate spheroidal coordinate (u, v, ~) is shown be-

low. We wish a vector-potential expression such that 

.. .. 
and V x V x A = 0, with A~ a func­

tion of I; and T] or of u and v, 

to represent in a source free 

region the vector-potential of 

z 
A><i5 of rotatiortal symmetry 

an internal source system that 

has cylindrical symmetry of ro-
V'1T/ Z 

---4--4---~~---r~--~--Y 

tation (~ independence). We 

shall first develop and solve 

the differential equation for 

the vector-potential A~ . 
. V=1T 

The explicit form is written 
Fig. 5 

(9) 

with hi the metric coefficients. In terms of u and v [e.g. see Arfken, 

p. 103] the transformation equations are 

x = c Sinh u sin v COS0 

y = c Sinh u sin v sin0 

Z = c Cosh u cos v 

o < u ~ 00 ; 0 ~ v ~ ~; 0 ~ ~ ~ 2n 

12 



The scale factors for this system are: 

hl = hu = c(Sinh 2u + sin2v) 112 

= c(Cosh 2u _ COS2V) 112 

h2 = hv = c(Sinh 2u + sin2v)1/2 

h3 = hil = c Sinh u sin v 

If we use a coordinate system (; , ~, ill such that 

; = cos v 

~ = Cosh u 

then the transformation equations are : 

y = p sinil 

z = c ;~ 

The scale factors are 

h2=h =c(~:_s2)1/2 
~ ~ - 1 

(e.g. W.R. Smyth in Sect i on 5.28) 

The con stant c is defined as follows: 

13 



The curves (or surfaces of rotation) of constant u are given by 

so that we have the semi-major axis 

a = c Cosh u = c" 

and the semi-minor axis is 

b = c Sinh u = c(,,2_ 1) 1/2 

and u 

The explicit evaluations of (9) for coordinates F,; ,,,,111 and for coordinates 

u,v,lII are shown below. 

In terms of F,; ,,,,1II 

so that we require (setting the curly bracket equal to zero, and multiplying 

by [(H; 2)(n2_1)]1/2): 

14 



In terms of u, v, ~ 

A 

a [ 1 
+ av sin v 

so that we may require 

a [ 1 a . 
au Sinh u au (Slnh 

With (as suggested earlier) n = Cosh u and s = cos v 

a [ 1 
au Sinh u 

and similarly 

a 
au(Sinh 

so that the differential equation in terms of u, v, becomes 

as wa s obtained directly above. 
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With the partial differential equation for A~, as written in terms of 

~, ~, we may separate variables by writing A~ = F(~)G(;)--to obtain 

where we have written the separation constant as n(n+l) . 

It then becomes permissible to introduce terms in a development of A~ 

that involve 

or 

p~ (~) O~ (~) 

01 (Cosh u) 
n 

pl (cos v), 
n 

since such forms provide solutions to the ordinary differential equations (for 

F and G) that result from the procedure of separation of variables. 

Express i ng the vector-potent i a 1 a s a seri es of the assoc i ated Legend re 

functions 

has one disadvantage when the elliptical boundary becomes increasingly circu­

lar . In such a case the values of the O~, as expressed in our earlier 

formulation, approach zero and therefore would preclude the use of ellipses 

which approach circularity. 

16 



So that we can avoid such numerical problems we make use of the relation 

and choose a series constructed from terms 

(where a prime denotes differentiation with respect to the argument). 

NOTE: The functions 
I 

or Q 
n 

satisfy the same second-order 

(10) 

recur-

sion relation vs. n, since they differ only by the n-independent factor 

_(n 2 - 1)1/2 . (Appendix A) . 

For a nested prolate ellipsoid we have 

n = Cosh u a = -
c 

= !! 
c 

I 

We shall need functions Qn(n) for values of n commencing with n = 1 and could 

include availability of values of such functions for n = O. 

We now define the function 

(11 ) 

for the argument n. 

Note that : 

2 
=~-2 -

n - 1 

17 



We are thus in a position to visualize that 

* POISSON uses A0 = pA0 ' 

So that we can comply with the same problem in polar coordinates (circular 

boundary) we normalize with respect to n and substitute Bn for cncn+2n 

2 2 
and make use of the relations Go= T = (~) ; (1 -1; 2) 112= sin v 

~ -1 

to arrive 1t : 

* We wish to reduce A~ further into a form such that in the limiting case 

when a = b (~ .. "' ) it will be identical to the one for a circular boundary 

condition (Ref. 2). In order to do so we introduce the function G; which 

is defined as 

'" Gn = 1 i m Gn (~) . 
~ .. '" 

18 



We are now in a position to define: 

( 12) 

* 00 Introducing Hn(n) into the A0 and substituting Dnfor Bn' Gn ' we write the 

vector potential as follows: 

* A = L: Dnn 
-n 

0 
n=l 

If we define : 

sinv 

F,Q, (v) = 

( 
R-H )Ct

j 
(a . )Ct

j 
_ _ lnner 

R - aouter 

[ ] [S in v Hn(n) 

pl (cosv) 
Ct ,Q, 

Ct ,Q, 

H Ct l (nouter) 

HCtj(ninner) 

P ~ (cos V)] 
n 

n = !!. 
c 

( 13) 

( 14) 

and if M i s defined in terms of the F,Q, (v) in the manner employed previously (see 

p. 3, Ref. 2), we finally arrive at our canonical form for the solution of 

the vector potential 

* N . A =" E Alnner 
k .{-:l kn n 

E = kn 

m 
L 
i =1 

a 
n = c 

a 

19 



Concerning the Weight Factor W 
n 

The inverted matrix is evaluated numerically by an LINPACK 

inversion routine . The "goodness" of the inversion is judged by a condition 

number which reflects the invertibility of the matrix. A "good" matrix for 

inversion has a condition of 1. Conditions of - 0.9 are typical in two-di-

mensional problems with circular and elliptical boundaries . 

Initially the condition number in axisymmetrical problems with polar co-

ordinates or prolate speriodal coordinates was found to be of the order of 

0.01. We then assumed that this could be improved by readjusting the 

weights . We further assumed that expressions which conform to those used to 

calculate the norm in integral form are favorable for numerical inversion. 

In accordance therewith we should use terms such as 

sin v Pj(COS v) P~(COS v) 

The element in our M matrix differs from the above by a ·factor sin v. We ac-

cordingly have proceeded to adopt a weight function proportional to llsin v in 

combination with the relative angular spacing 6V between nodal points. The 

weight function can be expressed as 

6Vn _1_ 
W = n 6V l sinvn 

Such a weight function was tested to give an improvement in the inversion con­

dition (-0 . 5) . A choice of weights proportional to l/sin2v or l/s in l12 v 

was also tested and shown to give a poorer inversion . 

Note that the possible singularities in W when v = 0 or 1f is re-
n n 

moved by excluding from the analysis the two points on the axis of rotation . 

These two points do not contribute anyway. s ince their vector potential i s al-

ways equal to zero . 

20 



Concerning the Function Hn(n) 

The recursion relation for Hn(n) as derived in Appendix B is as 

follows. 

we note that 

(n+1)(n+3) 
= Hn+l(n) - (2n + 1)(2n + 5) 

[With the equality signs holding for 

(15) 

relations (14) reduce to the identical form derived for circular boundaries.] 

In practice, to derive Hn(n), we may commence the recursion relation 

by adopting some Nmax (rather greater than the largest value of n for which 

good results are required, e.g. Nmax = 2n) and assigning HNmax and 

HNmax-l values that are in about the correct ratio into the recursion rela­

tion (15). We then proceed to calculate Hn(n) for decreasing n down to 

n = 1 (this will result in terms which are correctly related through the re-

cursion relation) . With the value for Hn at n = 0 known, namely 

Ho(n) = 1, we can write 

and define a scale factor 

1 0.2 -2 
n 

SF = l.l[Hl(n) - 0.2 

21 



by which all Hn(l1) whould now be normalized (multiplied) in order to arrive 

at their correct absolute values. 

The initial values for H(I1) are somewhat arbitrary for large 11 ; however 

to avoid difficulties (especially when 11 = 1) we have adopted the following 

(Appendix C) . 

and 

Nmax + 1 
H ()=2 2 Nmax 11 

(b/al l / 2 

Nmax + 1/2 
(1 + b/a) 

H (11) = (1 + b/al H (11) 
Nmax-l 2 Nmax 

This has tried out and verified to give good results even for 

11=1, (11)1) . 

Example 

To illustrate the use of an elliptical boundary condition in axisymmetri-

cal problems, we picked eight current loops with strengths such that no sym-

metry exists across the equatorial plane. 

Location 1 2 3 4 5 6 7 B 

z(cm) -2.5 -2 . 0 -1 . 5 - 1 . 0 1.0 1 . 5 2 . 0 2 . 5 

r(cm) 0 . 4 0.4 0.4 0 . 4 -0.4 -0 . 4 -0 . 4 - 0.4 

I(Al 1100.0 1200.0 1300 . 0 1400 . 0 1500 . 0 1600 . 0 1700 . 0 1800 . 0 

22 



Using POISSON, the vector potential was calculated for circular and ellipti­

cal boundaries and compared with theoretical prediction, see Tables 3,4 . 

The flux lines are plotted respectively in Fig. 6 a,b,c for a circular 

boundary 11 = 00 , and elliptical 11 =1.333, 11 = 1.075. The reduction in cpu 

time is reflected by the reduction of the number of iteration cycles from 

650 in case (al to 320 and 160 in cases (bl and (cl respectively . 

23 



r( cm) 

0.2 

0.4 

0.6 

0 . 8 

l.0 

l.2 

l.4 

l.8 

2. 3 

TABLE 3 

Comparison Between the Theoretical Vector Potential r A and 
Three Boundary Cases 

(Axial symmetry) 

z = 0 . 0 Case 1 Case 2 Case 3 
II ... co II = 1.333 II = l.075 

Theoretical Ci rcular Ell i pti ca 1 Elliptical 
Boundary Error Boundary Error Boundary Error 

(r A) r A ~% r A ~% r A ~% 

7.03 7.04 0.14 7.04 0.14 7. 04 0. 14 

25.513 25.54 0. 10 25.54 0 . 10 25.54 0. 10 

49.427 49 . 46 0.06 49 . 45 0.04 49.468 0.08 

72 . 966 73 . 01 0 .06 73.00 0.04 73 .018 0.07 

92 . 78 92 . 82 0. 04 92.79 0 .01 92 . 827 0.05 

107 . 89 107.928 0.03 107 . 89 0 .0 107 .933 0.04 

118 . 622 118 . 65 0.02 118 . 61 -0.01 

130 .034 130 . 065 0 . 02 130 . 00 -0.02 

132.59 132 . 62 0.01 132.52 -0.05 
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z( em) 

-3.4 

-3.0 

-2.50 

- 2.0 

-1. 5 

-1.0 

-O.~ 

-0.0 

0 . 5 

1.0 

1.5 

2.0 

2.5 

3.0 . 

3.4 

TABLE 4 

Comparison Between the Theoretical Vector Potential rA and 
Values Calculated From Three Boundary Cases 

(Axialsymmetry) 

r = 0.6 Case 1 Case 2 Case 3 
Tl ... 00 Tl = 1 . 333 Tl = 1.075 

Theoretical Circular Elliptical Elliptical 
Boundary Error Boundary Error Boundary Error 

(r A) r A 6% r A 6% r A 6% 

24.B3 24.80 -0 .12 24.60 -0.9 

57.90 57 . 81 -0.15 57.97 0 .12 57 . 99 0.15 

174 .408 175 . 18 0.44 175.11 0.4 174.297 -0 .06 

221 .08 219.7 -0.6 221 .04 -0.02 220 . 12 -0.4 

236.41 236.2 -0.08 236.39 0.0 236.74 0.14 

211 .26 211 . 0 -0.12 210 .48 -0.37 211 .056 -0.09 

78.70 78.74 0 .0 78.73 0.04 78 . 75 0.06 

49.427 49.46 0.06 49.45 0.04 49 .47 0.08 

86.49 86.57 0.09 86.55 0 .07 86 . 57 0.09 

238.42 238.3 -0.05 238.18 -0 . 1 238.29 -0.05 

293.96 293.12 -0 . 28 293 . 84 -0.04 293.03 -0.3 

306.86 306.86 0.0 306.95 0 .03 306.19 -0.2 

266.75 266.00 -0.28 266.53 -0.08 266.46 -0.1 

87.53 87.78 0.28 87.61 0 .09 87.12 -0 .4 

36.58 36.58 0.0 36 .18 -1.1 

25 



I 

+ 

(a)n= oo I 
I 

ct 

(d) 

I 

cf 

I 

(b) n = 1.333 (c) n =1 . 075 

Fig . 6 Flux lines around current loops 
in an axisYlTJlletrical cylindrical 
problem which has no symmetry 
across the equatorial plane 
(CON 126 = 10). The overlap of 
the flux lines in shown in (d). 
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APPENDIX A 

Concerning Associated Legendre Functions P~(x) and Q~(X) 

The functions P~(X) and Q~(X) satisfy the same recursion relation 

1 (2n+1)x p1 (x) - (n+ 1 ) P 1 1 (x) nPn+1(x) = n n-
and 

1 (2n+l)x Q1 (x) - (n+l)Q \-1 (x) nQn+1(x) = n 
or 

(n-l)p~(x) (2n-1)x 1 (x) - 1 (x) (1 A) = P n-1 nP
n
_
2 

(n-1)Q~(X) (2n-1)x 1 (x) - 1 (x) = Qn-1 nQn_2 

For the functions Q~(X) with x > 1 use of the recursion relation may be 

stable only for n decreasing - -- see Introduction of 'Handbook of Mathemati-

cal Functions", Abramowitz ~nd Stegun, Section 7, p. 13 (Dover, New York). 

We expect that the functions P~(X) satisfy the differential equation 

and similarly the functions Q1 satisfy the equation that we write conve­
n 

nient1y as 

If we make use of relation (10) and the recursion relation (lA) we get: 

, I 

I (2n+3) x [- Qn+1(x)] - (n+1)[-Qn+2(x)] 
-Qn(x) = n + 2 (2A) 

27 



APPENDIX 8 

Concerning the Recursion Relation for Hn(~) 

We shall need the functions Gn(~)' Go(~) and G~ to arrive at the 

function Hn(~) as defined in (12). 

From (11) 
n+2 I 

G(~) ~ ~ [-Q (~)l 

If we now substitute relation (2A). we get 

2n + 3 
n + 2 

Gn(~) satisfies a linear recursion relation vs. n for any possible ~ > 1 . 

From (10) we get: 

2 2 
G (~) ~ ~ ~ (!!.) o . 2 b 

~ - 1 

To arrive at the G~ we perform the following 

00 2n + 3 00 

Gn~ lim Gn(~) = G n + 2 n+l 

28 
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• 

We further write 

and from (2B) 

GOO= 
n 

oo n + 1 
G = 2n n + 

GOO = 1 
o 

n + 1 
2n + 1 

n 
1 2n -

Goo 
n-l 

n - 1 oo 

1 2n 3 • • ••• G - 0 

We thus can write G; as the series 

GOO= 2nn! (n + 1)! 
n (2n + 1)! 

We are now in the position to arrive at the recursion relation for Hn(~) 

= (n + 1)( n + 3) 1 
Hn+l(~) - (2n + 3)(2n + 5) 2 Hn+2(~) 

~ 

29 
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APPENDIX C 

Concerning the Asymptotic Value of Hn(n) for Large n 

We would like to start with a "good" guess for HNmax(n) in the recur­

sion relation (15) . We make use of the definition of Hn(n) and the asympto­

tic formula for Q~(n) as suggested by ... 

-(n + 1/2)n e 

(2 Sinh n)1/2 

Introducing the definition of Gn(n) we get: 

We note that: 

2 Sinh n 

We substitute into (lC) and get 

-(n + 112)n e 

(2 Sinh n)1/2 

n large 

1 

G (n) 
n 

= ("n) 112 __ -=--:c:---,-l -----:--:7 
2 (b/a)3/2(1 + b/a)n + 1/2 

30 

(lC) 

(2C) 

• 

• 



• 

• 

Introducing Gn(n), Go(n) and the definition G~ from (3B) into the 

expression of Hn(n), we get : 

= 

or 

G
n 

(b/a) 2 (2n + l)! 

2nn!(n + l)! 

(b/a) 112 

(1 + b/a)n+ll2 

Using Stirling's formula n! = nne-n(2~n)1/2 , we can approximate 

and so finally we have 

(b/a) 112 large n 

(1 + b/a)n+ll2 
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