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1. Introduction

The mechanical behavior of solids undergoing finite deformation is often characterized by
a spatial rate constitutive equation relating an objective rate of the Kirchoff (or Cauchy) stress
tensor, Z , 10 the rate of deformation tensor d; e.g., ¥ = a:d. Typically, these rate constitu-
tive equations arise in the formulation of continuum models characterizing inelastic response,
such as finite deformation plasticity. Within this context, an additive decomposition of the rate
of deformation tensor d is introduced, and the rate constitutive equation with d replaced by its
"elastic" part is then postulated in order to characterize the elastic response. (This approach is
characteristic of most of the finite element plasticity codes i use). Lack of experimental evi-
dence supporting a particular form of a often leads to the choice of the constant isotropic elasti-
city tensor of the linearized theory. The question is then often reduced to a search for the
"proper” objective rate compatible with this ad—hoc choice’. The purpose of this paper is to
show that rate constitutive models of this type widely employed in computational mechanics are
in fact, not only incompatible with the notion of hyperelasticity, in the sense that a stored
energy function does not exist, but even fail to define an elastic material in the nonlinear range.
Our results are summarized as follows.

First, in the context of elasticity we show that a nonlinear elastic material cannot have
(spatial) elasticities that are a comstant isotropic tensor for all possible configurations, unless

A +pu =0, where A\, u are the Lame constants of the linearized theory. Such a condition is

TAl!hough many different definitions of objective rate have been proposed (see Truesdell & Toupin [1961],
Sects. 148-151 for a fairly complete catalog) formally any two choices lead to equivalent formulations by suit-
ably adjusting the tensor a (Truesdell & Noll, [1965], p.402). In fact, all the objective rates are particular
cases of the Lie derivative (Marsden & Hughes [1983], Sect. 1.6).
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ABSTRACT

It is explicitly shown that if the (spatial) elasticity tensor of an elastic
material is taken as isotropic for all possible configurations then its coefficients
cannot be constants, they must depend non—trivially on the jacobian deter-
minant of the deformation gradient. Moreover, the assumption typically made
for computational purposes that its coefficients remain constant for all possible
configurations is incompatible with elasticity. It is further shown that an
assumption widely used in the computational literature in the context of finite

- deformation plasticity, namely, relating an objective stress rate to the rate of
deformation tensor through a fourth rank constant isotropic tensor, is also
incompatible with elasticity, thus furnishing an example of hypoelastic material
which is not elastic,
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clearly unacceptable. Since this assumption is widely used in computation, it is of interest to
characterize hyperelastic materials with isotropic (although non-constant) elasticities. We show
that if the (spatial) elasticities of the material are isotropic in all possible configurations; i.e.,
Copt = 8,8 + B18,8, +5,8,], then the coefficients « and 8 must depend non-trivially on
the jacobian J for a stored energy function to exist. In fact the explicit form of the stored
energy function corresponds to a neo-Hookean material extended to the compressible range by
adding a function of J; i.e., W = U(J) + Yhull —3). Since for infinitesimal deformation one
must have a(J)L,I =\, and B(J)L=1 = 2u, it follows that for deformations which are
approximately isochoric, an assumption typically found in finite deformation metal plasticity, it
is a reasonable approximation to regard the elasticities of the material as constant. Such an
assumption, however, might not always be realistic since, as pointed out by Lee [1969], large

elastic volumetric strains are indeed the most likely to occur in finite deformation plasticity.

Next, we consider hypoelastic behavior, i.e., the tensor a in the rate equation does not
explicitly depend on the deformation gradient; it is only dependent on the current stress 7. By
making use of conditions due essentially to Bernstein [1960], we show that rate equations
involving several objective rates with a assumed to be constant and isotropic, are incompatible

with elasticity.

Finally, we consider the generalized notion of hypoelasticity due to Green & Mclnnis
[1967] which, as opposed to Truesdell’s [1955] original proposal, does include anisotropic elasti-
city as a particular subset. Such an extension is achieved by establishing rate equations in terms
of the rotated stress tensor and the rotated rate of deformation tensor. These material tensors
are obtained by rotating back to the reference configuration the spatial stress and rate of defor-
mation tensors with the rotation part of the deformation gradient. In Section 5. we derive
appropriate conditions under which one recovers elasticity from this generalized notion of
hypoelasticity. Our motivation for this is the recent use in finite deformation codes (e.g.,
Hallquist [1983]) of an objective rate which appears to have been first proposed by Green &
Naghdi [1965], and which has recently received considerable attention particularly in connection
with finite deformation plasticity (Dienes [1979], Johnson & Bammann [1983], Dafalias
[1983]). This rate is obtained by rotating back to the current configuration the material time
derivative of the rotated stress tensor. Our results show that if the so-called Green-Naghdi rate is
connected to the rate of deformation tensor through an isotropic tensor, the resulting model is incom-

patible with elasticity.

Acknowledgments. We thank Tom Hughes, Jerry Marsden and Robert Taylor for helpful com-
ments and many discussions.
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2. Some Basic Notation,

Most of our discussion is concerned with both hyperelastic and hypoelastic rate constitu-
tive equations formulated in the spatial description. For elasticity, the analog in the spatial
description of the material formula relating the second Piola-Kirchhoff stress to Lagrangian
strain, invoives the Cauchy stress tensor and the metric g of the ambient space. Thus, even
within the usual context of an Euclidean structure, it is essential for our discussion to employ

general coordinates in order to keep track of the metric tensor.

Let B be the reference configuration of a body and S the ambient space. For simplicity
we simply assume that S = R’ and BC R’ is open bounded. We write x = ¢(X,1) = ¢, (X)
for a motion of the body, and denote by F(X) the deformation gradient at a material point
X €B. The metric tensors in the reference and current configurations B and ¢ (B), are denoted
by G and g, respectively. The jacobian J of F relative to g and G is then given by
J = det(F) vdet(g)/~/det(G). The right Cauchy—Green tensor C is defined as C=F' F. o

designates the Cauchy stress tensor and 7 = J o the Kirchhoff stress tensor. The first and

second Piola-Kirchhoff stress tensors are given by P=7-F 7 and S=F'.7.F 7 respec-
tively. Next, we summarize the alternative descriptions employed in this paper. Further details
are given in Simo & Marsden [1984].

Material Description. For isothermal hyperelasticity the stored energy function W depends
on the motion through the point values of C(X); since C = FT F, with the standard abuse in
notation we write W = W(X,C(X)) = W(X,F(X)). We then have the classical constitutive
equations

AW (X.F)
8F

AW (X ,0)

3C , 2.1

S=2p, P=p,

where p, is the density in the reference configuration B and, by conservation of mass,
p = p,/J is the density in the current configuration ¢, (B). Associated with (2.1) one defines
the elasticity tensors

2 W W

8CaC ° T PoSFaF (2.2)

C=4po

with components C¥XL and 4,7, L, relative to material and spatial bases {£,} and {&,}, respec-

tively. We then have the basic relation

A=F-C.F+S®g', or: A™ = p, C" pp + siL git (2.3)

For simplicity we shall often employ the standard puil—back /push— forward notation of

analysis in manifolds. (See e.g., Abraham, Marsden & Ratiu [1983], Sec. 4.2). As an example,
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for the right Cauchy-Green tensor we have the expression

CAB = F(l4 F[g gahoqb, N l.e., C= d),'(g) . (24)

Similarly, since S8 = (F1)4, (F )5 r%0¢,, we simply write: S = ¢, (v); or, equivalently:
T=¢,-(8).

Spatial Description. Due to relation (2.4) we may regard the stored energy as a function of
the spatial metric g and F and write W (x,F(X),g(x)) to express this dependence. For simpli-
city, we shall often omit explicit indication of the arguments in W. We then have the follow-

ing spatial constitutive equation for the Cauchy stress o and associated spatial elasticity tensor ¢

o=2p—, c=4dp (2.5)

dgog

Formula (2.5); is due to Doyle & Ericksen [1956] and, as emphasized by Marsden & Hughes
[1983] and Simo & Marsden [1984], plays a crucial role in a covariant formulation of elasticity.
We note that the spatial elasticity tensor ¢ is related to the material (second) elasticity tensor C

through the Piola transformation:

=240, e, HM=2C™ P PP, 2.6)

Rotated (Material) Description. This description is obtained by rotating spatial objects back
to the reference configuration with the rotation tensor as follows. By the polar decomposition
theorem we have F(X) = R(X)-U(X), where the (two—point) rotation tensor R(X) and the

material stretch tensor U(X) satisfy the relations

Gus = RYR%gpod,, Cyu=UtU5Gy (2.7a)

Introducing the notions of pull—back /push— forward under either the rotation part R of F, or

the stretching part U of F, relations (2.7a) may be written in the following compact form
G=R'(), C=U(G. (2.7b)
The rotated stress tensor I is obtained by rotating o back to the reference configuration, so
that it is given by
L=R(0), e, oY=R,R,ZHo¢,! (2.8)
Remarkably, the material version of formula (2.5), involves £ and the metric tensor G as fol-

lows. By (2.7a), we may regard the stored energy function, depending on C(X), as a function
of the metric G(X) and U(X) and, accordingly, write W (X,G(X),U(X)). The chain rule then
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leads to the following constitutive equation for T and the associated elasticity tensor =

(2.9)

Formula (2.9), is the material version of the Doyle-Ericksen formula (2.5),, Simo & Marsden
[1984]. The rotated elasticity tensor &, with components EABCD, is related to C and ¢ accord-

ing to

Ll

5= %U»(C), =R . (2.10)

3. Restrictions on the Elasticities of an Elastic Material.

It is known (see, e.g., Truesdell & Noll [1965, pp.309]) that if a material is elastic then
the major symmetries of any of its elasticity tensors furnish the necessary and sufficient condi-
tions for a stored energy function to exist; i.e., for the elastic material to be Ayperelastic. This
result is simply the statement of Vainberg’s theorem for potential operators applied to elasticity
(see e.g., Marsden & Hughes [1983, p.250] or Oden & Reddy [1976, p.42]). It is essential to
note that the material must be elastic for the result stated above to hold. Considering, for
example, the material (convected) description, the condition that the material is elastic implies

that a one-to-one map relating C to S must exist; i.e.,

S=S8w,0 , X€B (3.1)

To illustrate the role played by condition (3.1) consider the converse problem. Suppose one is

given a material tensor

Cx,0) = C"™ (x,0) i,0F,®E,RF, , (3.2)

which is fully symmetric and depends only on C. For (3.2) to define the (material) second
elasticity tensor of a hyperelastic material one must first verify whether a function of the form
(3.1) exists such that
S0
3C Cx,0). (3.3)
Equivalently, given C(X,C) which is assumed fully symmetric one must ensure that the system

(3.3) is integrable. By Vainberg’s theorem, the necessary and sufficient conditions are the fol-

lowing symmetry conditions :
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aCKL _ QCHM 64
dChn 8Ck, '

The example discussed below shows that one can construct fully symmetric tensors (indeed
infinitely many) depending only on C which violate condition (3.4) and thus do not define an
elastic material. We note that this example corresponds to one of the most widely used
assumptions in computational mechanics (see, e.g., Key & Krieg, [1982]).

Remarks. (i) The argument sketched above can be carried out in the spatial description:

Given a spatial tensor

c(x,8,F) = ¢ (x,g,F) 808,288, (3.9)
which is fully symmetric, the necessary and sufficient conditions for the integrability of the sys-
tem

96 (x,g.F)

= ¢(x,g,F) (3.6)
ag

which gives o = & (x,g,F), are the symmetry conditions:

acijkl _ acijmn
= 3.7
agmn 6gkl ( )

(ii) Similar conditions can also be expressed in the rotated and the Lagrangian descrip-
tions. In the former one is given a fourth order material tensor:
LKL

EX,GU =E

two—point tensor A(X,F), depending on the deformation gradient F. In these descriptions

E,QF,®k,®E, , whereas in the latter one is given a fourth order

necessary and sufficient conditions analogous to (3.4) or (3.7) take the form

9 _9 and aA'/ _ aAilk K
OGN Gk OFk ' aF/

soey [JK L ey LIMN
= =

(3.8)

Example: It is often assumed, particularly for computational purposes, that in any possi-
ble configuration of the body of interest, the spatial elasticity tensor ¢ is the constant isotropic

tensor of the linearized theory; i.e
M = o gli gkl 4 Blgk gl + gil g], (3.92)

where a and B are taken equal to the Lame constants A and u of the linearized thedry.

Equivalently, by (2.6) the material second elasticity tensor takes the form

CIJKL - %[)\ (C—l)u (C—I)KL + pL[(C"l)[K (C-I)JL + (C—I)IL (C—I)JK]], (3.9b)
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and from (2.10), the rotated elasticity tensor is thus given by

e JK L
et
el

=\ GY G 4+ u[G'* Gt + GIF GIFT. (3.9¢)

Notice that C is a fully symmetric tensor which depends only on C. To check whether such an
assumption defines an elastic material we may use any of the conditions (3.4), (3.7) or (3.8),.
A straightforward computation then shows that condition (3.4) reduces to the following expres-

sion:

% I + 2] {[CYK (CDIE 4 (C)IE (1)K (C-1)MN
— [(C™YM (CYIN 4 (C)IN (C-)M] (c-DKLE = g (3.10)

Contraction of (3.10) with Cix C;; Cyn shows that (3.10) holds provided A + u = 0. The con-
dition A + u = 0, although compatible with the (strong ellipticity) condition A+2u > 0, violates
the (pointwise stability) condition of positive bulk modulus, (3X + 2x)/3 > 0 (see Marsden &
Hughes [1983, p.241]). Furthermore, the only possible response function compatible with the

condition A + u = 0 is a constant hydrostatic pressure; i.e.,

A+u=0 <=> o=\g (3.11)

We thus conclude that: the assumption that the spatial elasticity tensor ¢ = J~'9(J )/dg of a non-
linear material is isotropic and remains constant for every possible configuration, is incompatible with
elasticity.

In the next section we shall see that if the (spatial) elasticities of a material are isotropic
of the form (3.9a), its coefficients must be non-trivial functions of J which, of course, must
also reduce to the Lame constants for / = 1. Explicit expressions for the stored energy and

elasticities will also be given.

4. Hyperelasticity with Isotropic Elasticities.

In this Section we focus attention directly on hyperelasticity. In view of the example dis-
cussed above we first consider the form of the stored energy function characterizing an hypere-

lastic material with isotropic although non—constant spatial elasticity tensor.

Assume that the material is Ayperelastic and isotropic so that the stored energy function is
given by W = W([,II,J), where I, II and III = J? are the principal invariants of C (and of
b= FF7, by isotropy). Differentiation with respect to C together with the chain rule and
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(2.1), leads to the following classical material and spatial representations’ (subindices 1,11.and J

denote derivatives with respect to the invariants):

s=2["u7,+1 W,,]G“‘——2W,,C+JW,C" (4.12)
2 ] 2
- + 1 W,,]g“’+7W,b—-2J W, b (4.1b)

Isotropic hyperelastic materials possessing a spatial isotropic elasticity tensor may now be easily
characterized as follows. By further differentiating (4.1a) with respect to C and enforcing that
the resulting elasticity tensor, which is given by (2.2),, is of the form (2.9), we obtain the con-

ditions:
CHRL _ ____[J WJ] (C-1Y! (C-)KL — ,2!_ W, L(C)K (CYIL 4 (C-1)K (1)L ]
W, ; =0, and W, =0, => WUJN=UU)+%ul, (4.2)

where u = constant. Since the reference configuration B is chosen to be stress free, setting
UW)=AUW) —plogd, where U(J) 2 0 and U(J) = dU(J)/dJ = 0 iff J = 1, we are led

to a constitutive model which, in the spatial description, is given by

W=AUU)+%ul —pnlog

;o dUWU) o g
b = YMT i U gl
o A gy + i (b g’) (4.3)
cikl — [ AU | i ghi 4 ; T UMD Gk gt 4 gl gy

It is evident from (4.3); that it is not possible for ¢“*' (or for J c¢’*') to be an isotropic tensor
and at the same time have coefficients independent of J unless A + w = 0, in agreement with

our result of Section 3.

Remarks. (i) The form of stored energy function (4.3), corresponds to a Neo-Hookean
material which is extended to the compressible range by adding an extra function depending on
J. Extensions of incompressible constitutive models, such as the Mooney-Rivlin or Neo-
Hookean models, to the compressible regime are often considered in the context of the so-
called penalty method (see e.g., Simo & Taylor [1982], Oden [1978]). The function U (J) is
chosen so that the conditions }i_l"r(l)ﬁ(J) = Jli_n;ﬁ(l) = o hold, and such that the (undeformed)

TEq. (4.1b) can be derived directly from the spatial Doyle-Ericksen formula (2.5);. See Simo & Marsden
{1984]).
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reference configuration ¢ = Identity is stress free. The choice of U(J) is, evidently, not

unique. One possibility is

U(J)=—3~(logj)2—~ulogl => a(J)-—-—}, B(J)=-§(u-)\log/) (4.4)

where a(J) and B(J) are the coefficients appearing in (3.9a).

(ii) Clearly, the linearization of (4.3) and (4.4) at the reference configuration ¢ = Iden-

tity yields the classical infinitesimal model.

(iii) Consider the following rate constitutive equations

S=CW,0):C, &=cixg:d, (4.5)

where 3 is the Truesdell rate of Cauchy stress, and ¢ is related to C through (2.6), so that
(4.5), and (4.5), are equivalent, the latter being the spatial version of the former. The results
of the previous section then show that jf ¢ is the constant isotropic tensor given by (3.9a), so that
C is given by (3.9b), equation (4.5) defines a material which is not elastic. For ¢ constant and iso-
tropic, equation (4.5), is a particular instance of a hypoelastic material (of grade 0) often
employed in finite deformation computational plasticity (e.g., Pinsky [1981]). The result stated
above then implies that (4.5) are not integrable, whence: (4.5), with ¢ constant and isotropic fur-
nishes a non-trivial example of a hypoelastic material which is not elastic. Further examples of

hypoelastic models which are not elastic will be discussed in the next section.

(iv) It is noted that, as a result of (4.3)-(4.4), if the class of deformations under con-
sideration is approximately isochoric, then the coefficients in the isotropic elasticity tensor
(4.3); are approximately constant. Thus, the assumption often made, particularly in the con-
text of finite deformation metal plasticity, that ¢ remains constant in the rate constitutive equa-
tion (4.5), is valid provided large volumetric strains do not occur. As pointed out by Lee
[1969] large volumetric elastic strains are most likely to occur in finite deformation plasticity,
since the "deviatoric" strains are limited by the yield condition which, at least for metals, is

often regarded as pressure insensitive. O

5. Integrability Conditions for Generalized Hypoelasticity.

In this Section we address conditions under which rate constitutive equations for both
classical and generalized hypoelasticity do indeed define an elastic material. Again our objective
is to show that widely used rate constitutive equations in the computational mechanics litera-
ture, particularly within the context of finite deformation plasticity, fail to meet these conditions

and thus define materials which in the finite deformation range are not elastic. A complete
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treatment of classical hypoelasticity, which employs the spatial description, and its interrelation -
with elasticity is due to Bernstein [1960]. We summarize the relevant conditions below. Subse-
quently, we develop analogous conditions for generalized hypoelasticity, which is formulated
using the rotated description, in terms of the rotated stress tensor, and the rotated rate of

eformation tensor.

5.1. Spatial Description: Classical Hypoelasticity

Let g denote any (spatial) objective rate of the Kirchhoff stress tensor (Truesdell & Tou-
pin {1960] Sect. 147-152). Constitutive equations for classical hypoelasticity (Truesdell & Noll
Sect. 99) may be formulated as

r = a(g,7):d, ie., Vi = guM dy , (5.1)
where d = Y4, (C) = BF T CF ! is the rate of deformation tensor. Equation (5.1) may be

rewritten in terms of the material time derivative T = D~/Dt of the Kirchhoff stress tensor as
T =b(g,r): Vv, + a(g,7):d = h(g,7) : Vyv,, (5.2)

where Vv, designates the spatial velocity gradient and b(g,r) = 6% (g,7) &, ®&,®8, ®8, is a
v

spatial tensor depending on the assumed stress rate ¢ . Necessary and sufficient conditions for

(5.1) to define an elastic material, i.e., for a function 7 = #(g,r) to exist, are due to Bernstein
(see Truesdell & Noll [1965] pp.409, for a summary account) and may be written as

- y
aa},:.lis promn _ ——.—-—-a;::n prokl 4 piiml ghn _ pikn gml = () (5.3)
If equation (5.1) is expressed in terms of the Cauchy stress tensor, the appropriate condi-

tions are again (5.3) with 7 replaced by .

The following two examples, the first one already treated in Section 3., give instances in

which conditions (5.3) are violated.

Examples. (i) Let the spatial tensor a(g,7) be the constant isotropic elasticity tensor of
the linear theory, and let the left hand side of (5.1) be the Truesdell rate of Cauchy stresses.
Equation (5.2) then takes the form:

o/ = hH*y = [aW + gk gl + gl gy, , (5.4)

with a% = \g¥ g + ulg™ g/ + g" g’*]. Substitution of (5.4) into (5.3) yields after lengthy

but otherwise straightforward manipulation, the condition

[)\ + /.L] gln (gik gjm + gim gjk) - gkm (gin gj/ + gil gjn) = 0, (55)
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which, upon contraction with g, 84 g;,, again reduces to the condition A + u = 0, already
derived in Section 3. Conditions (5.3) are also violated if the left hand side of (5.1) is replaced

by the Lie derivative of the Kirchhoff stresses (often referred to as convected derivative).

(ii) Consider next the co—rotational stress rate, often associated with the names

Zaremba, Jaumann and Noll. Raie consiitutive equations (5.1} then take the form

r=w-r+7-w +algr):d, (5.6)

where w = 4 [d—d”] is the spin tensor. The tensor b associated with this stress rate then has

the explicit expression

b/jkl = 1/2[gik TU + gkj 7.i/ — glj Tik — gll Tjk] . (57)

A lengthy calculation again reveals that conditions (5.3) are violated if the tensor alg,r) is
assumed to be the constant isotropic tensor of the linearized theory. We omit the details. Thus,
assuming a(g,7) constant isotropic in(5.6) for all possible configurations is incompatible with elasti-
city.

Remarks. (i) If the material is elastic, thus conditions (5.3) are satisfied, one can
immediately write down the spatial elasticities ¢ = J~'97/8g. Noting that the spatial rate form

of the hyperelastic constitutive equation (2.5); may be written as

Lyr=7—-Vv.r -1y, =Je(gF) :d, (5.8)

where L, 7 is the Lie derivative of Kirchhoff stresses (see, e.g., Simo & Marsden [1984]), and

¢(g,F) is the spatial elasticity tensor given by (2.5),; by comparing (5.2) and (5.8) we obtain

Cijkl = J—l [aijkl + bijkl] — gik le — gjk Til , (59)

where b(g,7) depends on the assumed objective rate.

(i) If conditions (5.3) are satisfied, the symmetry conditions ¢’ = ¢/ are necessary and
sufficient conditions for the elastic material to be hyperelastic. It is essential to observe, how-
ever, that these symmetry conditions must hold in addition to conditions (5.3). Indeed, the two
examples discussed above have tensors ¢ defined by (5.9) which are symmetric and yet they do
not even define an elastic material. The symmetry conditions ¢’ = ¢*¥ alone guarantee the

existence of the so-called incremental potentials (Hill [1958]). DO
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5.2. Rotated Description: Generalized Hypoelasticity.

We consider the following rate constitutive equations which generalize those of hypoelas-

ticity (Green & Mclnnis [1967])

T=TGT) A, (5.10)

where A = R'(d) is the rotated rate of deformation tensor. Our objective is to establish
integrability conditions analogous to (5.3) under which rate equations (5.10) reduce to elasti-
city. The duality existing between the spatial and rotated descriptions enables one to construct
the following argument analogous to that of Bernstein.

Integrability Conditions. If the material is elastic, one must have the following represen-

tation for the rotated stress tensor:

T =7(G,U) (5.11)
In the rotated description, the kinematic tensor analogous to the spatial velocity gradient is
defined as

L=U0U"', e, L,=0,W"H4 (5.12)

We note that the rotated rate of deformation tensor A is the symmetric part of the tensor L,

A=[0-U1S, ie, Ay=WwIG, LY+ G, L. (5.13)
Taking the material time derivative of (5.11) and making use of (5.12) we have

- TG or.
T = ————-—-——-—6U UL (5.14)

Comparing (5.10) and (5.14) we arrive at a system of partial differential equations which in

component form reads

i

s

:Z;K =T w4, (5.15)
A

Since the integrability conditions for (5.15) are the symmetry conditions:
u 7

AT /0UXdULy =97 /oUL39UX,, we are led to the following conditions, analogous to

(5.3):

T L _rsun 9™V _ rski 1ML KN
—-a—?g—r ——a';m——r +T GKN - T GML = (5.16)
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Next, we exhibit an example of practical interest, which has been considered in recent litera-

ture, and which fails to satisfy conditions (5.16).

Example. Consider the rate of Kirchhoff (or Cauchy) stress tensor obtained by rotating
back to the current configuration the material time derivative of the rotated Kirchhoff (or rotated

a
Cauchy) stress tensor. Denoting this rate by 7, we have

7 =R. —g—t-R»('r)]=%-—ﬂv’r-T-ﬂVT, (5.17)
where {1, = R-RT7 is skew-symmetric, and R is the rotation tensor obtained from the defor-
mation gradient through the polar decomposition F = R -U. This is the objective rate first pro-
posed by Green & Naghdi [1965], in a different context and for another purpose, and recently
considered by Dienes [1979], Johnson & Bammann [1983], Dafalias {1983], among others. By
R-rotating the (material) rate constitutive equations (5.10) to the current configuration we

obtain

T =R.[F:A]=R.(F):d, (5.18)

that is, rate constitutive equations of the form (5.1) with a = R.(I') and the rate of stress
taken to be the rotated rate of rotated stress (5.17). If it is assumed (see e.g. Dienes [1979})
that for this type of rate constitutive equation a is a (constant) isotropic tensor; i.e.,

alMl = \ gV gkl 4+ u (g g/' + g g/%), then, since I' = R’ (a), by (5.18) we have

UKL _ )\ Gl GKL & u (GK G+ GILGIK) (5.19)

To check whether the choice for I' expressed by (5.19) defines an elastic material, we substi-

tute (5.19) into (5.16), obtaining the conditions:

p GV [G™M G + G GV - GM[GR G + GGl =0 (5.20)

Contracting (5.20) with Ggy Gy Gy we obtain the condition: w = 0. Thus, The rate constitu-
tive equation (5.1) formulated in terms of the Green-Naghdi rate (5.17), with a(g,r) being the con-
stant isotropic tensor of the linear theory, does not define an elastic material, unless p = 0. Clearly,
such a condition is inadmissible and one must conclude that this model does not represent an
elastic material.

Remarks. (i) The fact that rate constitutive equations (5.10) do not define an hyperelas-
tic material if I' is given by (5.19) can be checked by a direct computation starting from the

stored energy function. In the Appendix, the general expression for the tensor I' associated
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with an isotropic elastic material is derived. By direct inspection it is clear that I' can never be

an isotropic tensor (except, of course, at the configuration ¢ = Identity).

(ii) If the material is elastic, the tensor I" should not be confused with the rotated elasti-
city tensor = which is defined by (2.9), and connected to the spatial and material elasticities
through formulae (2.10). B is associated with the rate equation R7-&-R = 5 :A, where
RTu? - R is the rotated Truesdell rate. This is simply a particular Lie derivative (see Simo &

Marsden [1984]).

6. Concluding Remarks.

It has been shown that many of the rate constitutive equations currently in use in the field
of computational mechanics, especially with reference to inelasticity, define hypoelastic materi-
als which in the finite deformation range are not elastic. Therefore, not only does a stored
energy function fail to exist but, more dramatically, an explicit str€ss ve€Spohse€ function
cannot be obtained. An unacceptable physical implication of this result is that, according to a
theorem of Bernstein [1960], the net work produced in a closed cycle must be positive. It
should be noted, however, that as our results of Section 4. demonstrate, assumptions such as
that of constant spatial elasticities might be reasonable in certain situations, provided that an
additional hypothesis such as infinitesimal elastic volume change holds.

From a computational standpoint it will be shown in a forthcoming paper that, for finite
deformation rate-independent plasticity, the fact that an explicit expression for the potential
associated with the elastic part is available plays a crucial role in the formulation of efficient
numerical algorithms. We note that this is at variance with most of the algorithms currently

employed which operate directly with the tangent elasticities.
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APPENDIX

The following results will be needed. Let [, I/, and /I/ be the principal invariants of C,

and A the rotated rate of deformation tensor. Then, one has

[ =24(C-A), H=20lIT=1IC")-A), Il =211t(A) (A1)

For simplicity, we introduce the following notation: Let A be any symmetric second rank ten-

sor. We denote by I, the fourth rank symmetric tensor with components:

TVKL (40K 4IL 4 4IL 49K ) (A2)

The following results can be shown to hold:
C=2Iy:A, and [C]- =-21:A, (A.3)
where U is the stretching tensor. Since T = R -7 R, from (4.1b) one has the representation:

T=2aG+ W,C— Il W,;C! (A.4)

where : o = I W, + 11l W]

Taking the material time derivative of (A.4) and using (A.1)-(A.3) together with the chain

rule, leads to the following expression for the tensor I' in constitutive equation T =T A,
' = 8a, [GRCI® — 811 ay [GRC™'IS — 8111 W, [CRC']S
+4Ulay + Hlay) GG + 4 W, CRC — 41I1* W, ;, C'@C™!

+aw Iy+4mwy 1, (A.5)

where [ - ]¥ indicates symmetric part.





