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Abstract
Extracellular vesicles (EVs), including exosomes, microvesicles, and oncosomes, are nano-sized particles enclosed by a lipid 
bilayer. EVs are released by virtually all eukaryotic cells and have been shown to contribute to intercellular communication by 
transporting proteins, lipids, and nucleic acids. In the context of neurodegenerative diseases, EVs may carry toxic, misfolded 
forms of amyloidogenic proteins and facilitate their spread to recipient cells in the central nervous system (CNS). CNS-
originating EVs can cross the blood–brain barrier into the bloodstream and may be found in other body fluids, including 
saliva, tears, and urine. EVs originating in the CNS represent an attractive source of biomarkers for neurodegenerative 
diseases, because they contain cell- and cell state-specific biological materials. In recent years, multiple papers have reported 
the use of this strategy for identification and quantitation of biomarkers for neurodegenerative diseases, including Parkinson’s 
disease and atypical parkinsonian disorders. However, certain technical issues have yet to be standardized, such as the 
best surface markers for isolation of cell type-specific EVs and validating the cellular origin of the EVs. Here, we review 
recent research using CNS-originating EVs for biomarker studies, primarily in parkinsonian disorders, highlight technical 
challenges, and propose strategies for overcoming them.

Keywords Parkinson’s disease · Multiple system atrophy · Lewy bodies · L1CAM · Neurodegenerative diseases · Neurons · 
Astrocytes · Microglia · Oligodendrocytes · Extracellular vesicles · Exosomes

Introduction

Neurodegenerative diseases affect one in six people and 
unlike other major deadly diseases, such as many types of 
cancer, COVID-19, or AIDS, for which multiple treatment 
options exist, there are almost no disease-modifying thera-
pies for neurodegenerative diseases [22]. Neurodegenera-
tive diseases also suffer from high rates of misdiagnosis [17, 
70, 105, 154, 158]. Parkinson’s disease (PD) and atypical 
parkinsonian syndromes, including the synucleinopathies 
dementia with Lewy bodies (DLB) and multiple system 
atrophy (MSA), and the tauopathies progressive supranu-
clear palsy (PSP) and corticobasal syndrome (CBS), are 
neurodegenerative diseases characterized by a movement 
disorder, often autonomic dysfunction, and in some cases, 
dementia. These diseases differ pathologically, yet due to 
symptom overlap, they often are misdiagnosed, particularly 
in the early stages when patients are likely to consult gen-
eral clinicians or neurologists rather than movement disor-
der specialists [2, 17]. Misdiagnosis causes high levels of 

 * Gal Bitan 
 gbitan@mednet.ucla.edu

1 International Institute of Innovation and Technology, New 
Town, Kolkata, India

2 Division of Peptide Biochemistry, TUM School of Life 
Sciences, Technical University of Munich, Freising, 
Germany

3 Department of Integrative Biology and Physiology, 
University of California Los Angeles, Los Angeles, CA, USA

4 Department of Neurology, David Geffen School of Medicine 
at UCLA, University of California Los Angeles, 635 Charles 
E. Young Drive South/Gordon 451, Los Angeles, CA 90095, 
USA

5 Brain Research Institute, University of California Los 
Angeles, Los Angeles, CA, USA

6 Molecular Biology Institute, University of California Los 
Angeles, Los Angeles, CA, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s00401-023-02557-1&domain=pdf
http://orcid.org/0000-0001-7046-3754


516 Acta Neuropathologica (2023) 145:515–540

1 3

anxiety to patients, families, and caregivers and is a major 
impediment to conducting successful clinical trials.

Several conditions, such as isolated REM-sleep behavior 
disorder (iRBD) and pure autonomic failure (PAF) are 
known to be strong risk factors for the development of 
PD, DLB, or MSA and could be utilized for stratifying 
patients into clinical trials, yet it is difficult to predict 
based on clinical measures whether a particular patient 
will phenoconvert into one of these central nervous system 
(CNS) synucleinopathies and into which specific disease, 
hindering the stratification efforts. Objective biomarkers 
could alleviate these issues, allow inclusion of prodromal 
or early-stage patients who are most likely to benefit from 
the therapy, and increase the likelihood of trial success. 
Thus, there is an urgent need to discover, develop, and 
validate sensitive and specific biomarkers for parkinsonian 
disorders. Reliable biomarkers not only will allow making 
an accurate diagnosis at an early stage, but also are crucial 
for monitoring treatment outcomes. However, due to the 
inaccessibility of the CNS, discovery and measurement of 
such biomarkers is challenging.

Common approaches to CNS disease biomarkers include 
various modalities of brain imaging [26, 34, 71, 117, 180] 
and analysis of biomarkers in the cerebrospinal fluid (CSF) 
[49, 53, 118, 196]. Both approaches are useful, yet suffer 
from important shortcomings. CNS imaging often does 
not have the required accuracy and sensitivity and tends to 
be expensive. Some of the imaging techniques considered 
most useful, such as positron emission tomography (PET) 
or single photon emission computed tomography (SPECT), 
are not available outside of major hospitals. GE Healthcare’s 
DaTscan, which measures the degeneration of striatal 
dopaminergic neurons, has been the biomarker of choice 
for parkinsonian syndromes, including in recent clinical 
trials. However, DaTscan has a limited ability to distinguish 
among parkinsonian syndromes, in current clinical settings it 
is used as a qualitative but not a quantitative biomarker and, 
importantly, the results are affected by medications used for 
PD treatment, complicating data interpretation.

CSF analysis measures CNS analytes with high accuracy, 
yet the necessary invasive lumbar puncture is refused by 
many patients. It is particularly challenging to use CSF 
biomarkers in clinical trials that require monitoring the 
outcome at multiple time points. An important development 
for the diagnosis of parkinsonian disorders is the ability 
to perform seed-amplification reactions using techniques 
called protein misfolding cyclic amplification (PMCA) 
[163] or real-time quaking-induced conversion assay 
(RT-QuIC) [188]. These assays were developed first in the 
prion field and later expanded to other neurodegenerative 
proteinopathies, including synucleinopathies [75]. Using 

seed amplification, Shahnawaz et  al. demonstrated that 
CSF samples from patients with PD could be distinguished 
from those of patients with MSA with high accuracy [151], 
offering hope that the same technique could be used in the 
future in samples obtained using less invasive means, such 
as serum or plasma.

Recently,  ultrasensit ive techniques,  such as 
electrochemiluminescence ELISA (ECLIA) [165, 195] and 
single-molecule array (Simoa) [161], have allowed analysis 
of promising biomarkers directly in plasma or serum, e.g., 
neurofilament light chain (NfL), a highly useful biomarker 
of neurodegeneration, or the protein tau phosphorylated at 
Thr 217 (pT217-tau) as a specific marker for Alzheimer’s 
disease (AD) [16, 135, 141]. Although serum/plasma NfL is 
a useful biomarker also for parkinsonian disorders, disease-
specific, blood-based biomarkers for these diseases have 
yet to be identified. The very low blood concentration of 
molecules originating in the CNS and the vulnerability of 
most such potential biomarkers to degradation in the blood 
make discovering and developing blood-based biomarkers 
for parkinsonian disorders challenging.

An alternative approach is the analysis of biomarkers 
in extracellular vesicles (EVs) originating in the CNS 
and isolated from the blood [78, 127]. One way the CNS 
communicates with the rest of the body is by ferrying 
EVs through the blood–brain barrier (BBB) to distant 
cells [66]. The capture of these EVs from a blood sample 
and analysis of their content provide a window into 
biochemical changes in the brain. The advantages of this 
approach compared to direct measurement of biomarkers 
in plasma or serum include facilitated transfer of the 
target biomarkers inside EVs through the BBB and their 
protection from enzymatic degradation, which translates 
into a larger variety of biomarkers in the EVs compared 
to those measured directly in blood. In addition, this route 
increases the overall sensitivity of the downstream assay, 
because other blood contaminants present in large quantities 
do not mask the minute, yet crucial signals coming from 
the CNS. Importantly, the biomarkers of interest can be 
measured separately in EVs originating in different CNS 
cell types. We have shown recently that this can be crucial 
for obtaining high sensitivity and specificity of candidate 
diagnostic biomarkers, where the biomarker levels in each 
cell type alone did not provide sufficient diagnostic power 
[47, 169].

A crucial step in this methodology is the isolation and 
separation of the correct population of EVs—those originat-
ing in the CNS—from all other EVs in the blood, which rep-
resent virtually every cell in the body. This is done by immu-
noprecipitation (IP) of the EVs using selective markers of 
brain cells expected to be displayed on the EV surface, such 
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as neuronal cell adhesion molecule (NCAM) or L1 cell adhe-
sion molecule (L1CAM, CD171) for putative neuronal EVs 
(nEVs) [54, 153], glutamate-aspartate transporter (GLAST) 
for astroglial EVs (aEVs) [63], CD11b or transmembrane 
protein 119 (TMEM119) for microglial EVs (mEVs) [40, 
101], and myelin oligodendrocyte glycoprotein (MOG) for 
oligodendroglial EVs (oEVs) [47] (Fig. 1). A current chal-
lenge in the field is validation that EVs immunoprecipitated 
using such markers indeed originated in these CNS cells.

The difficulty in validating the cellular origin of EVs has 
caused concerns regarding their actual specificity. Recently, 
doubts have been raised particularly regarding the use of 
L1CAM, a heterogeneous protein that exists in both soluble 
and membrane-bound forms, for the isolation of nEVs 
[132]. These concerns prompted the International Society 
for Extracellular Vesicles (ISEV) together with the Michael 
J. Fox Foundation for Parkinson’s Research to hold a joint 
session, entitled “The L1CAM Controversy: Pulling Down 
Consensus” in the spring of 2021, in which this and several 
other conceptual and methodological topics related to the 
measurement of biomarkers in CNS-originating EVs were 
discussed. These topics are the focus of our review in which we 
summarize the current state of the field and propose directions 
for reconciling differences and moving forward.

Extracellular vesicles as a source of objective 
biological markers for CNS disorders

EVs are a heterogeneous population of biological 
vesicles enclosed by a lipid bilayer, including exosomes, 
microvesicles, oncosomes, and apoptotic bodies [42, 145]. 
A more recently discovered subpopulation of EVs termed 
'exomeres' comprises non-membranous nanovesicles 
with a diameter ≤ 50 nm [8]. Virtually all eukaryotic cell 
types, including those of the CNS, produce and release 
EVs. Exosome biogenesis involves the invagination of 
the endosomal membrane to form multivesicular bodies 
(MVBs) containing intraluminal vesicles. The MVBs 
subsequently fuse with the cell membrane to release the 
intraluminal vesicles into the extracellular space, at which 
point these vesicles are termed exosomes [27]. In contrast, 
microvesicles, also called ectosomes, evaginate directly 
from the plasma membrane [27]. The diameter of exosomes 
ranges from 30 to 200 nm [199] whereas microvesicles are 
typically larger, ranging from 200 to 1000 nm in diameter. 
Both vesicle types coexist in bodily fluids and conditioned 
cell culture medium [121, 181]. The nomenclature of EVs 
has been a matter of debate as the number of publications 
in this field has increased exponentially in the last two 
decades [194]. According to ISEV guidelines [114, 172], 
“extracellular vesicle” is favored as a generic term for 
biological particles released from cells that are enclosed by 

Fig. 1  Schematic structures of commonly used marker proteins for IP 
of CNS-originating EVs. L1CAM contains six IgG-like domains and 
five fibronectin type III repeats, followed by a transmembrane part 
and a conserved cytoplasmic tail [207]. The model of MOG mem-
brane topology is based on the one described by Kroepfl et al. [100]. 

The structure of CD11b is shown in the context of a heterodimeric 
integrin. The other subunit is CD18 [124]. The depicted membrane 
topology of GLAST is a model consisting of eight transmembrane 
domains and two hairpin loops [203]
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a lipid bilayer and unable to replicate and therefore we use 
this term here.

EVs carry various cargoes including messenger RNA 
(mRNA), non-coding RNAs (ncRNAs), lipids, and 
proteins. Although they were originally believed to be a 
disposal mechanism of unwanted biological material [90, 
136], it became evident later that they play major roles in 
intercellular communication and signaling pathways [27, 
178, 200]. In the CNS, EVs contribute to the maintenance of 
myelination, trophic support of neurons, synaptic plasticity, 
and antigen presentation [98, 109, 173]. CNS-originating 
EVs have been isolated successfully from human plasma 
[54, 153], serum [47], and saliva [144] suggesting that they 
could serve as rich sources of biomarkers using minimally 
invasive means.

In the context of parkinsonian disorders and other neuro-
degenerative proteinopathies, EVs may be a double-edged 
sword. They facilitate the expulsion of pathologic proteo-
forms when the cellular clearance mechanisms, including 
the ubiquitin–proteasome system (UPS) and autophagy–lys-
osomal pathway (ALP), become insufficient [6, 60, 83, 
123]. Simultaneously, because the EVs may be taken up by 

recipient cells (Fig. 2a), they are also important mediators of 
the pathology spread, transporting key pathological protein 
oligomers and aggregates among CNS cells (Fig. 2b) [41, 
57, 173]. Thus, the presence of various amyloidogenic pro-
teins, such as amyloid β-protein (Aβ), α-synuclein (α-syn), 
tau, different phosphorylated forms of Tau (p-Tau), and TAR 
DNA-binding protein 43 kDa (TDP-43) has been demon-
strated in EVs [52, 69, 107, 143]. Importantly, CNS-origi-
nating EVs cross the BBB and can be isolated from blood 
products [47, 54, 133, 153, 192], providing a “window” into 
biochemical changes in the CNS.

Biomarkers are objectively measured indicators of 
normal biological processes, pathogenic transformations 
of biological processes, and responses to intervention 
[21]. Biomarkers always should be qualified for a specific 
context in which they are used [125], such as: (1) predictive 
biomarkers for evaluating disease probability at pre-
clinical phases; (2) diagnostic biomarkers for differential 
disease identification; (3) prognostic biomarkers to assess 
the probability of healing; (4) progression biomarkers for 
monitoring disease severity and progression over time; 
and (5) treatment-effect biomarkers for measuring the 

Fig. 2  Involvement of EVs in the CNS microenvironment. a EVs 
originating in, and released by, neurons are taken up by neighbor-
ing cells, including other neurons, spreading information across the 
CNS and modulating synaptic activities both anterogradely and ret-
rogradely. EVs also may act as novel neurotransmitters [69]. Under 
pathological conditions, EVs from stressed or damaged neurons may 
propagate disease pathology. b EVs contain cell- and cell state-spe-
cific cargo representing the parent cells’ biochemical environment. 

EVs produced by healthy neurons may contain subsets of biomol-
ecules required for normal cellular function including mediators of 
regular intercellular communications. In contrast, EVs originating 
from ailing neurons of proteinopathy brains may harbor elevated con-
centration levels of pathogenic proteins, such as α-syn, p-tau, and/or 
Aβ, triggering inflammatory responses by microglia and astrocytes
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efficiency of therapeutic intervention [111, 119, 125]. Most 
studies using CNS-originating blood EVs have focused on 
the differential diagnosis of patient groups of one or more 
neurodegenerative disease(s) compared to healthy control 
subjects and each other [47, 54, 133, 153, 166, 212]. In 
some cases, changes in the biomarkers have been shown 
to correlate with disease progression cross-sectionally, or 
more rarely longitudinally. Due to the lack of FDA-approved 
disease-modifying therapy for most neurodegenerative 
diseases, treatment-effect biomarkers are still relatively 
rarely studied [12, 115]. In a recent study, Palma et al. 
investigated the safety and efficacy of sirolimus in patients 
with MSA and analyzed several biomarker modalities, 
including α-syn in CNS-originating EVs, in the trial 
participants [134].

Isolation and analysis of CNS‑originating cell 
type‑specific EVs as a source of biomarkers 
for neurodegenerative disorders

It is not yet known if specific processes, e.g., glymphatic 
efflux, are involved in the transportation of EVs out of 
the brain, or whether different mechanisms exist for the 
excursion of CNS-originating EVs into biofluids, such 
as blood or urine. EVs can be isolated from bodily fluids 
using different methodologies, including ultrafiltration/
ultracentrifugation, microfluidic arrays, size exclusion-based 
methods, immunoaffinity capture, or by using commercially 
available polymer-based EV precipitation kits [43, 45, 47, 
199, 209]. When the goal is to study neurodegenerative 
diseases, ideally, the EVs studied would be those originating 
in the CNS. To achieve this goal, researchers have used two 
different strategies: capturing the CNS-originating EVs 
directly from the fluid by IP, or a two-step process in which 
first all the EVs are isolated from the biofluid, followed 
by enrichment of CNS-originating EVs by IP. In both 
strategies, the CNS-originating EVs are immunoprecipitated 
using bead-conjugated antibodies against cell-specific 
markers (Fig. 1). To improve the enrichment and reduce 
contamination by highly abundant blood-resident EVs, a 
negative selection step, for example using anti-CD45/CD61 
antibody-coated beads, as shown by Ko et al. [94], could 
remove the majority of non-CNS-EVs before IP using CNS 
cell-specific markers.

Neuron‑originating EVs (nEVs)

nEVs have many roles in the CNS, including mediating 
neuron–gl ia  communicat ion ,  neuroprotec t ion , 
neuroregeneration, synaptic plasticity, and under disease 
conditions, dissemination of pathological biomaterials 
[36, 81, 103, 113]. Because neurons are the cell type most 

affected in neurodegenerative proteinopathies, nEVs have 
been the focus of most biomarker studies using this strategy. 
Two research groups pioneered this field, the Zhang group at 
the University of Washington, Seattle, and the Goetzl group 
at the University of California, San Francisco. Both groups 
used anti-L1CAM and/or anti-NCAM antibodies to IP nEVs 
from blood samples [54, 153] (Table 1).

NCAM is a neuronal cell adhesion protein involved in 
cell–matrix and cell–cell interactions, whereas L1CAM 
is an axonal glycoprotein that plays a critical role in CNS 
development and its rare mutations cause CRASH syndrome 
[198]. Both NCAM and L1CAM have been hypothesized to 
be present on the surface of nEVs and indeed were found 
at considerable levels on the surface of EVs isolated from 
cultured rat cortical neurons [51]. Neither NCAM nor 
L1CAM are exclusively specific to CNS neurons. Thus, 
researchers using these markers have acknowledged that 
they enrich nEVs, but do not provide absolute specificity for 
CNS-originating EVs. Because NCAM is expressed in more 
non-CNS tissues than L1CAM, after the original papers, 
most groups have opted to use L1CAM rather than NCAM 
for the IP of nEVs.

Although L1CAM exists in both soluble and membrane-
bound forms and is expressed in several organs and tissues 
outside the CNS [77, 132], thanks to its abundant expression 
in CNS neurons, many groups have relied on this marker 
for the IP of nEVs. A recent review by Gomes and Witwer 
has summarized the research practices and trends in the 
separation and enrichment of nEVs using L1CAM as a target 
marker [65]. To date, dozens of studies have demonstrated 
the utility of capturing and analyzing nEVs isolated using 
anti-L1CAM antibodies. Nonetheless, the heterogeneous 
nature of L1CAM, due to alternative splicing, glycosylation, 
truncation, and other post-translational modifications [11, 
72, 148], prompted Norman et al. to raise concerns regarding 
the ability of antibodies against this protein to capture bona 
fide nEVs [132]. To address this concern, they used size-
exclusion chromatography (SEC) and density gradient 
centrifugation fractionation of CSF or plasma using a system 
designed to separate EVs from soluble proteins and tested if 
L1CAM co-eluted with common EV markers, such as CD9, 
CD63, and CD81. They found that the fractions containing 
EVs were rich in tetraspanins, yet most of the L1CAM 
co-eluted in non-EV fractions, Therefore, they concluded 
that L1CAM was not associated with EVs in human plasma 
or CSF. As a result, they recommended against using 
L1CAM as a marker for the isolation of nEVs. To test for 
non-specific binding of α-syn to anti-L1CAM-coated beads, 
Norman et al. performed immunocapture using recombinant 
α-syn. In our view, their choice of the recombinant protein 
was not ideal for this purpose, because competitive blockers 
present in serum/plasma samples, such as albumin and other 
highly abundant proteins, were absent.
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Following the report by Norman et al., several groups, 
including our own, addressed those concerns. We repro-
duced the fractionation experiments they reported using 
commercial, pooled human serum or plasma using the same 
size-exclusion columns designed to separate small EVs from 
soluble proteins (35 nm, qEVoriginal, Izon sciences). We 
then assessed the fractions for the presence of L1CAM using 
a commercial ELISA kit (Human L1CAM ELISA kit, Mil-
lipore-Sigma), which is less sensitive than the Simoa assay 
Norman et al. used. We also measured the concentration of 
CD81, a proposed canonical exosomal marker, using ExoE-
LISA-ULTRA, CD81 detection (System Biosciences). Our 
analysis showed that although most of the L1CAM signal 
was indeed found in the fractions containing free proteins, 

as reported by Norman et al. [132], all the fractions contain-
ing EVs from the serum or plasma were L1CAM positive 
(Fig. 3). We did not detect any signal in PBS or RIPA buffer, 
excluding matrix effects [47].

Despite the reassurance by us and other groups  that 
L1CAM could be used for isolation of nEVs, more specific 
markers have been actively sought after. Recently, Tian 
et al. identified the synaptic glutamate ionotropic receptor, 
N-methyl-D-aspartate (NMDA) subunit 2A (NMDAR2A) 
as a novel marker for isolating CNS-originating EVs from 
blood [174]. They used a flow cytometry-based method for 
measuring a combination of markers including L1CAM, 
NMDAR2A, Aβ40, Aβ42, pS396-tau, and pT231-tau, 
which helped differentiate among patients with AD, PD, and 

Table 1  Methods used for nEV enrichment from blood in selected recent studies

Group Antibody Support system EV isolation method References

Goetzl Anti-NCAM (ERIC1); anti-
L1CAM (clone 5G3)

Streptavidin-Plus UltraLink resin EV precipitation using ExoQuick, then 
resuspension and incubation with the 
biotinylated antibody for 1 h at 4 °C. Capture 
of antibody–EV complexes by addition of 
streptavidin-agarose resin, centrifugation, and 
resuspension of the pellet

[54, 61–63, 127]

Pulliam Anti-L1CAM (clone 5G3) Streptavidin-Plus UltraLink resin Plasma coagulation proteins were removed using 
thrombin, followed by centrifugation at 3,000×g 
for 20 min. EV precipitation using ExoQuick, 
resuspension, and incubation with the 
biotinylated antibody for 1 h at 4 °C, followed 
by the capture of labeled EVs with streptavidin-
conjugated agarose beads. nEV–resin complexes 
were washed and nEVs were released from the 
beads using 50 mM glycine–HCl, pH 3

[142, 167]

Zhang Anti-L1CAM (clone UJ127) M-270 Epoxy  Dynabeads® Centrifugation of plasma samples at 2,000×g for 
15 min, followed by 12,000×g for 30 min, and 
dilution 1:3 of the supernates with PBS, pH 7.4

EV capture by incubation of diluted plasma with 
antibody-coated  Dynabeads® for 24 h at 4 °C 
with gentle rotation. Washing of bead–EV 
complexes and elution using fixing buffer or 
lysis of captured EVs

[153, 174, 208]

Tofaris Anti-L1CAM (clone UJ127) Poly(carboxybetaine 
methacrylate) (pCBMA)-
coated beads

Serum samples were cleared by multi-step 
sequential centrifugation and incubated 
overnight at 4 °C with pCBMA-coated beads 
pre-conjugated with anti-L1CAM antibody

Magnetic separation and washing of bead–EV 
conjugates before lysis

[86, 87]

Rissman Anti-L1CAM (clone 5G3) Streptavidin-Plus UltraLink resin EV precipitation using ExoQuick, then 
resuspension and incubation with the 
biotinylated antibody for 1 h at 20 °C. The 
capture of antibody–EV complexes by 
the addition of streptavidin-agarose resin, 
centrifugation, and resuspension of the pellet

[190–192]

Bitan Anti-L1CAM (clone 5G3) M-270 Epoxy  Dynabeads® Centrifugation of plasma or serum samples at 
2000×g. EV precipitation using ExoQuick, 
then resuspension in PBS, pH 7.4 + BSA, and 
incubation with antibody-coated  Dynabeads® 
overnight at 4 °C. Washing of bead–EV 
complexes and elution or lysis of captured EVs

[47, 134, 169]
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healthy controls. Moreover, the glutamate receptor subunits 
2 and 3 (GluR2/3) were found to be associated with neuronal 
EVs [51] and targeting these receptor subunits allowed for 
the immunoaffinity-based enrichment of nEVs from cell 
culture supernates and human serum [206]. In a different 
study, Eitan and colleagues developed a multiplex Luminex-
based immunoassay to differentiate among EVs originating 
in erythrocytes, macrophages, and neurons using antibodies 
targeting the canonical EV marker CD9, the macrophage 
marker CD68, the microglial marker purinergic receptor 
P2RY12, and the neuronal marker growth associated protein 
43 (GAP43) [182]. The methodologies for the isolation of 
nEVs used in selected, recent studies and the biomarkers 
measured in them are summarized in Table 1.

Astrocyte‑originating EVs (aEVs)

Astrocytes are the largest and most prevalent type of glial 
cells in the CNS. A growing body of evidence suggests 
that astrocytes are key regulatory CNS cells expressing a 
wide range of receptors, messenger systems, and channels 
[1]. Astrocytes play crucial roles in maintaining the BBB, 
supporting neuronal function by providing structural and 
metabolic support, and by controlling ion balance. During 
pathological conditions, astrocytes are triggered by a large 
variety of stimuli leading to reactive astrogliosis. Emerging 
evidence suggests that disruption of astrocyte function 
is associated with dopaminergic neuron loss in PD [24] 
and the expression of DJ-1 (PARK7), a redox-sensitive 
chaperone that protects neurons against oxidative stress and 
cell death, has been shown to be upregulated in reactive 

astrocytes in patients with PD [14]. Importantly, α-syn 
released from neurons is transferred to, and accumulates 
in, astrocytes where it modulates immune functions [106, 
162], emphasizing the importance of astrocytes in PD and 
potentially other synucleinopathies.

Recent studies indicate that astrocytes release a great 
number of EVs that are involved both in important normal 
biological processes and in the spread of neuropathology. 
Protective roles of aEVs in adverse conditions also have 
been identified [176]. For example, Apolipoprotein D 
(ApoD)-containing aEVs have been reported to promote 
the functional integrity and survival of strained neurons, 
e.g., during increased oxidative stress, by transferring 
ApoD from healthy astrocytes to neighboring neurons 
[138]. Other major beneficial roles aEVs include 
protection from neuroinflammation [82] and neural 
injury [192]. aEVs also have been reported to stimulate 
neuronal survival and maturation and increase neuronal 
excitability [204], which may be advantageous, but also 
could be detrimental when hyperexcitability is part of the 
disease process. We are not aware of studies of aEVs in 
the context of PD or other parkinsonian diseases, but they 
have been studied in the AD field. Thus, potential adverse 
effects mediated by aEVs include harboring Aβ42 and 
ApoE ɛ4 leading to cytotoxicity in neighboring recipient 
neurons [160]. In addition, aEVs enriched in dysregulated 
protein cargo, such as β-secretase 1 (BACE-1) and the 
soluble fragment of amyloid β-protein precursor generated 
by β-secretase, sAPPβ, have been shown to trigger 
neuroinflammatory cascades and neurodegeneration [63, 
191].

Fig. 3  Measurement of L1CAM in SEC fractions containing EVs. 
L1CAM, total protein, and CD81 were measured in pooled human 
serum or plasma fractions fractionated using a qEVoriginal size-
exclusion chromatography column (Izon Sciences). Fractions were 
collected, and protein concentrations were measured using a BCA 

assay and analyzed for the presence of L1CAM and CD81 using 
ELISA. EVs were eluted in fractions 7–10. Fractions 16 and 17 
contained most of the rest of the serum/plasma materials and were 
diluted 5 ×  104 times for L1CAM assay. The graphs represent two 
independent experiments
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Though aEVs are a promising source of biomarkers 
and a target for treatment development [44, 157, 204], 
compared to studies of nEVs, aEVs have been scarcely 
explored. For immunocapture of aEVs from blood, 
researchers have used antibodies against GLAST 
(glutamine aspartate transporter, also called excitatory 
amino acid transporter 1) (Fig. 1), which has been used 
to IP and/or validate aEVs is several studies [62, 131, 
179, 192], glial fibrillary acidic protein (GFAP) [183, 
189], or aquaporin 4 [183]. To our knowledge, no study 
has compared the specificity or yield of these markers 
for capturing aEVs. Of these potential markers, GLAST 
has been used most frequently. Analysis of potential 
biomarkers in aEVs immunoprecipitated using anti-
GLAST antibodies have allowed measurement of disease-
associated proteins, including BACE-1, Aβ42, pT181-tau, 
and pS396-tau (Table 2), which helped differentiate among 
neurodegenerative conditions [63, 205, 211].

Microglia‑originating EVs (mEVs)

Microglia are brain-residing immune cells derived from bone 
marrow elements infiltrating the brain during early neonatal 
development [76]. They have been characterized extensively 
during inflammatory and degenerative conditions, whereas 
their roles in normal brain physiology are less well 
understood. Genetic and pharmacologic studies suggest 
their involvement in CNS homeostasis and maintenance, 
modulating synaptic plasticity, and regulating neurogenesis 
[4]. Interaction between neurons and glial cells, including 
microglia, regulates neuronal communication and function 
and governs selective neuronal vulnerability to disease-
specific stresses, ultimately determining neuronal morbidity 
[56, 168].

Early studies showed that microglial communication 
with other CNS cells is mediated by both ligand–receptor 
interactions and soluble factors [10, 20]. More recently, 
microglia were shown to release large numbers of EVs 
in both the resting and the activated conditions, which 
participate in intercellular CNS communication [32]. The 
cytokine-laden mEVs secreted during stress conditions 
have been reported to coordinate inflammatory responses 
across various regions in the CNS [164]. mEVs also have 
been shown to modulate presynaptic neurotransmission 
[113]. Nonetheless, despite the importance of microglia in 
the CNS, the roles mEVs in modulating neuronal and glial 
functions are largely unknown.

Isolating mEVs from cultured cells, similar to the 
isolation of EVs from other types of conditioned cell culture 
media, is relatively straightforward. In contrast, separating 
mEVs from total blood EVs is challenging due to the lack of 
specific markers that distinguish them with certainty from 

those of peripheral immune cells [122]. Myeloid cell-specific 
CD11b (Fig. 1) [39] and TMEM119 [101] have been used 
for this purpose yet these markers also may be expressed by 
other cells. CD11b, the α-chain of integrin receptor CD11b/
CD18 (αMβ2), is expressed abundantly on leukocytes and is 
also found in lung, colon, kidney, bone marrow, lymphoid 
tissues, monocytes/macrophages, granulocytes, and natural 
killer cells [50, 146]. TMEM119 has been reported to be 
more specific to microglia as antibodies against this protein 
did not stain infiltrating peripheral immune cells [7, 19]. The 
protein is expressed in microglia two weeks after birth and 
has been suggested to be a specific microglial marker [7]. 
However, according to the human protein atlas (proteinatlas.
org), TMEM119 is expressed also in the respiratory system, 
liver, gastrointestinal tract, and lymphoid tissues [171].

Aminopeptidase N (CD13) and monocarboxylate 
transporter 1 have been suggested as potential markers on 
mEVs [137, 140], though both may cross-react with other 
immune cells. Similarly, Iba1, another marker used for 
isolation and validation of mEVs, is expressed in cell types 
other than microglia, including Kupffer cells, Hofbauer 
cells, Langerhans cells, macrophages, and monocytes. The 
purinergic receptor P2Y12 is another potential microglia-
selective marker [214], yet this protein is also expressed 
at lower levels in the nasopharynx and subsets of cells 
in the bone marrow and lymphoid tissues. Thus, to our 
knowledge, a protein expressed exclusively on the mEV 
surface is yet to be identified and validated. In view of 
this difficulty, one possibility is to use level-dependent 
marker expression, e.g., low CD45 and high CD163, to 
distinguish microglia from monocytes and perivascular 
macrophages [28], yet this strategy has not been used for 
specific isolation of blood mEVs and likely will be difficult 
to use for this purpose.

Oligodendrocyte‑originating EVs (oEVs)

Oligodendrocytes are specialized, large glial cells in the 
CNS that assemble myelin, a multilayered sheath insulating 
the electrical signal along axons. Oligodendrocytes 
wrap themselves around axons and offer trophic support 
[128]. Oligodendrocyte-mediated myelination of axons 
requires intense communication between the two cell 
types [5]. oEVs are important for axon-oligodendrocyte 
communication, shuttling active biomolecules from the 
oligodendrocytes to the neurons, promoting fast axonal 
transport, and maintaining axonal transport in starving 
neurons [58]. In a co-culture of primary mouse neurons 
and oligodendrocytes, oEVs have been shown to promote 
neuronal survival under ischemic conditions, possibly by 
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transfer of superoxide dismutase (SOD) and catalase via 
oEVs from the oligodendrocytes to the neurons [55].

In the rare synucleinopathy MSA, unlike in PD or 
DLB, α-syn deposits as glial cytoplasmic inclusions 
(GCIs) primarily in oligodendrocytes. This phenomenon 
led us and others to hypothesize that oEVs’ content might 
provide useful information and potential biomarkers for 
MSA. Following this logic, Yu et al., tested if the number 
of oEVs and their α-syn content were altered in patients 
with MSA compared to those in patients with PD. They 
used an antibody against the oligodendrocyte marker 
2,3-cyclic nucleotide-3-phosphodiesterase (CNPase) for 
oEV IP [208]. We used a similar strategy for comparing 
α-syn concentration in nEVs and oEVs as a potential 
diagnostic biomarker for MSA and PD [47], but utilized a 
different marker for IP of oEVs, myelin oligodendrocyte 
glycoprotein (MOG).

Validation of the cellular origin of CNS‑EVs isolated 
from peripheral biofluids

Though important progress has been made recently in 
isolating and enriching EVs originating in all four brain 
cell types from biofluids including serum and plasma, in 
most cases the cellular origin of these EVs was not tested 
rigorously. Among the reasons are the dearth of highly 
specific marker proteins on the EV surface that could be 
targeted for validation and the availability of the respective 
antibodies. Other typical issues are the minute amounts of 
the targeted analytes present in these EVs and the difficulty 

obtaining sufficient sample volumes in large studies using 
patient samples. A possible solution is the amplification of 
nucleic acids, e.g., mRNA or microRNA (miRNA), specific 
for the cell of origin as validation markers.

To demonstrate that their nEVs originated in CNS 
neurons, Kluge et al. used large plasma volumes in western 
blots and showed that the nEV preparations were enriched 
in synaptophysin and neuron-specific enolase [91]. In a 
different study, Blommer et al. used fluorescence microscopy 
to visualize EVs double-immunolabelled for L1CAM and 
the neuronal marker vesicle-associated membrane protein 2 
(VAMP2) [23]. These data support the notion that the two-
step nEV-enrichment process, including the initial isolation 
of total EVs, followed by the removal of the supernate, 
which contains most of the free L1CAM, allows the capture 
of L1CAM-positive EVs by IP in the next step.

Another difficulty is the non-specific binding of EVs to 
the solid support used. If the non-specific binding is high, it 
dilutes the signal of the EVs from a specific cell of origin. 
A recent study by Fu et al. [59] has suggested using the 
highly hydrated zwitterionic polymer, poly(carboxybetaine 
methacrylamide) (pCBMA) to alleviate this problem, a strat-
egy that was adopted by Jiang et al., as discussed below 
[86, 87]. Fu et al. coated magnetic beads with pCBMA via 
a reversible addition-fragmentation chain transfer (RAFT) 
process before conjugating the beads to an antibody. They 
characterized the resulting bead–antibody complex for its 
antifouling properties by comparing the non-specific adsorp-
tion of bovine serum albumin (BSA) to that of  Fe3O4 beads 
and observed a 90% reduction in non-specific binding. This 

Fig. 4  Two-step isolation of CNS cell-specific EVs. EVs originating in the brain are isolated from the serum. In step 1, background blood EVs 
are separated, followed by the enrichment of different brain cell-originating EVs by immunoprecipitation
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could be a significant and useful improvement over using 
magnetic  Dynabeads® or other types of beads commonly 
used for capturing cell-specific EVs. A negative selection 
step using anti-CD45/CD61-coated beads, as proposed by 
Ko et al. [94], could offer additional benefits before immuno-
precipitating CNS-originating EVs using cell-specific mark-
ers to limit background EVs from leukocytes and platelets 
binding non-specifically to the beads, prior to enrichment 
(Fig. 4).

Advances in EV isolation methods

Besides optimization of the magnetic beads, antibodies, 
and procedures for the isolation of EVs from biofluids, 
advances in alternative EV isolation and analysis methods, 
such as microfluidic diagnostic devices, hold promise for 
future progress in this field. Numerous such devices and 
technologies have emerged in recent years allowing the 
detection of biomolecules on micro- or nanoscales [84]. 
Here we discuss only studies relevant to CNS-originating 
EVs and refer to the review by Iyer et al. [84] for a more 
general overview of diagnostic microfluidic devices for EV 
and biomarker analysis.

Ko et al. have developed a nanofluidics device termed 
track-etched magnetic nanopore (TENPO) for sorting of 
CNS-originating EVs [92, 93]. Plasma EVs were labeled 
using a biotinylated anti-GluR2 antibody and then reacted 
with anti-biotin magnetic nanoparticles to label nEVs 
[51, 94]. The TENPO device consists of a polycarbonate 
membrane coated by a soft magnetic film. The EV-containing 
fluid passes through the membrane capturing labeled nEVs 
at the edges of the nanopores, whereas unlabeled EVs flow 
through. Analysis of captured EVs showed the enrichment of 
particles with a diameter of ~ 142 nm as assessed by dynamic 
light scattering (DLS), typical EV size and morphology in 
scanning electron micrographs, the presence of the exosomal 
markers TSG101, Alix, and CD9, and the capture marker 
GluR2 by western blot analysis [93]. nEV isolation using 
TENPO coupled with off-chip RNA or protein biomarker 
analysis has been implemented for murine and human 
plasma and serum for diagnosis of traumatic brain injury 
(TBI) and can be applied for biomarker analysis in patients 
with neurodegenerative diseases, such as synucleinopathies. 
The track etching process used for manufacturing is widely 
available making TENPO suitable for translation to clinical 
settings [93]. As with other techniques, cell-specific EV 
capture depends on the targeted surface markers and the 
antibodies used for capture.

More recent studies by Ko et  al. proposed a novel 
antibody-based immunosequencing of single EVs, which 

could allow multiplexed measurements of different proteins 
in individual EVs [95, 96]. The studies used microfluidics 
devices for trapping single EVs into a droplet. In the first 
step, isolated EVs were labeled with a specific antibody-
DNA marker, followed by encapsulation into droplets, and 
finally, in situ PCR was used to amplify DNA barcodes 
for an imaging-based readout [95, 96]. Combining this 
multiplexed, single-EV protein-profiling technology with 
the existing methods for CNS-EV enrichment may allow the 
identification of the cellular origin of individual EVs. After 
enrichment of CNS EVs following standard protocols [78], 
individual EVs could be released from the beads and labeled 
with marker antibody–DNA conjugates, including isotype 
controls for baseline correction. These complexes then could 
be encapsulated into droplets with different barcoded beads, 
specific for different markers. However, the composition and 
levels of different proteins vary greatly in individual EVs. 
Therefore, precise capture of such EVs and highly sensitive 
methods for content analysis are essential.

Along these lines, Yang et al. reported the development 
of a novel high-throughput approach to quantify rare EV 
subpopulations in biological samples [201]. Their droplet-
based extracellular vesicle analysis (DEVA) used fluores-
cent paramagnetic microbeads (d = 5.4 µm) functionalized 
with an anti-human CD81 antibody for EV capture fol-
lowed by labeling of the EVs with a biotinylated anti-CD81 
detection antibody and formation of an enzyme-linked 
immunocomplex upon addition of a streptavidin–HRP 
enzyme. Next, the beads were mixed with the enzyme sub-
strate and suspended as aqueous droplets (d = 20 µm) in oil 
resulting in one or zero beads per droplet and one or zero 
EVs per bead. Each of the generated droplets was inspected 
for fluorescence in two channels: one for the fluorescence 
of the bead and one for the fluorescence of the droplet 
indicating successful capture of a single EV positive for the 
target protein CD81. The DEVA assay was used to quan-
tify EVs isolated from human iPSC-derived neurons spiked 
into fetal bovine serum containing 2 ×  107 bovine EVs as 
background. The assay had a limit of detection of 11 EVs/
µL and quantified endogenous EVs in human plasma [201], 
suggesting that it could be useful for detection of rare EV 
subpoplations, such as CNS-originating EVs in human 
plasma/serum for biomedical applications. For this pur-
pose, adjustement of the assay would be required to allow 
detection of CNS cell-specific markers instead of the gen-
eral EV marker CD81. Multiplexing of the system using 
different fluorescence-labeled microbeads for each capture 
antibody could enable simultaneous detection and possibly 
isolation of multiple CNS cell-orignating EV subpopula-
tions [201].
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Analysis of biomarkers in CNS‑originating 
EVs isolated from blood products 
for parkinsonian disorders

In the first study analyzing α-syn in CNS-originating EVs, 
Shi et al. isolated plasma nEVs and reported a significantly 
higher concentration, ~ twofold, of α-syn in those of 267 
patients with PD compared to 215 age- and sex-matched 
healthy controls (HC), yet a substantial overlap was 
observed between the groups [153]. The diagnosis of PD 
was determined clinically and the data were not validated 
in a separate cohort. This has been a common issue also 
in follow-up studies, which could be addressed in several 
ways in the future: (1) by analyzing samples obtained pre-
mortem, which later are validated pathologically after the 
patients pass away if/when such samples become available in 
sufficient numbers; samples with post-mortem pathological 
validation are available for AD and other dementias, but 
are scarce for parkinsonian disorders [47]; (2) by using 
samples obtained post-mortem alongside with pathological 
validation, such as those available at the Banner Sun Health 
Research Institute, Arizona [18]; or (3) validation of the 
findings in an independent cohort.

Two important technical concerns regarding the study 
by Shi et  al. [153] were that the putative nEVs were 
immunoprecipitated directly from patients’ plasma and that 
the anti-L1CAM antibody used for IP was clone UJ127 [38]. 
The first concern is related to the fact that the concentration 
of soluble L1CAM in the plasma is orders of magnitude 
higher than the membrane-associated forms present on 
the surface of nEVs. When the IP is performed directly 
from the plasma, the beads likely become saturated with 
soluble L1CAM, compromising EV capture. For this reason, 
most subsequent studies have used the two-step process 
mentioned above, in which all EVs are isolated first from 
the plasma or serum using polymer-assisted precipitation, 
and this preparation, from which the majority of the soluble 
L1CAM has been removed, then is used in the subsequent 
IP step [54, 78]. The second concern is specific to studies 
analyzing α-syn in nEVs. Recently, anti-L1CAM antibody 
UJ127 has been shown to have significant cross-reactivity 
with α-syn [132], suggesting that the differences observed 
between the PD and HC groups might have reflected 
enrichment of EVs that had α-syn attached to their surface. 
Though this does not detract from the conclusions of the 
paper, the data supporting these conclusions might have 
been misinterpreted.

A few subsequent studies also had used anti-L1CAM 
antibody UJ127 for IP of nEVs from serum or plasma and 
then measured α-syn in them [130, 155] before concerns 
have been raised regarding the cross-reactivity of this 
antibody with α-syn. The studies reported significant 

differences in nEV α-syn between HC and PD groups [155] 
and a progressive, cross-sectional increase in nEV α-syn 
from HC to patients with iRBD to early- and advanced-
stage PD [130]. In the study by Niu et al. [130] the nEV 
α-syn concentrations in patients with PD correlated with 
motor deficits assessed using the Unified Parkinson’s 
Disease Rating Scale (UPDRS) III (r = 0.29, p = 0.04), with 
the combined UPDRS I + II + III (r = 0.36, p = 0.01), and 
with non-motor deficits using the Non-Motor Symptoms 
Questionnaire (r = 0.3, p = 0.039) and Sniffin’ Sticks 
16-item test (r =  − 0.29, p = 0.04). Follow-up analysis 
of 18 early-stage patients with PD after ~ 2 years showed 
that longitudinal changes, rather than baseline α-syn, were 
associated with the progression of motor symptoms, though 
not with non-motor symptom progression [130].

As mentioned above, Yu et al. recently measured α-syn 
concentrations in nEVs and oEVs isolated from plasma 
samples of patients with PD and MSA. The anti-L1CAM 
antibody clone they used for isolation of nEVs also was 
UJ127 [208]. They reported that α-syn concentrations 
were slightly higher in patients with PD than in those with 
MSA, yet the overlap between the groups was high and the 
separation was low. In all of these studies, the antibody’s 
cross-reactivity, relatively small numbers of samples 
analyzed, and lack of validation reduce the significance of 
the findings.

In other studies, although anti-L1CAM antibody UJ127 
was used for IP of nEVs, the subsequent analysis included 
analytes other than α-syn. Although interpretation may 
be complicated by the cross-reactivity of the antibody, 
the findings could be important and guide future studies. 
Jiang et  al. used a combination of α-syn and clusterin 
concentrations measured in nEVs immunoprecipitated 
using anti-L1CAM UJ127, yet a unique modification in 
their technique was the use of in-house-made pCBMA-
coated magnetic beads, expected to have reduce non-
specific binding of EVs compared to most commercial 
polymeric supports used for IP [87]. The study included 
three independent cohorts: (1) the Oxford cohort containing 
65 RBD samples, 48 PD, 26 PD with dementia (PDD), 10 
DLB (post-mortem cases), 14 MSA, and 31 HC; (2) the Kiel 
cohort comprising 155 PD samples, 15 PDD, and 113 HC; 
and (3) the Brescia cohort including 27 PD, 4 PDD, 11 DLB, 
65 frontotemporal dementia, 35 PSP, and 45 CBS samples. 
The combination of α-syn and clusterin separated efficiently 
patients with PD from those with atypical parkinsonian 
syndromes [87].

The group followed up on their first study by adding the 
PROSPECT cohort, containing 36 MSA, 81 PSP, 43 CBS, 
and 47 HC samples, and expanded the Kiel cohort from 155 
to 215 PD samples. They reported that the combination of 
α-syn and clusterin analyzed in nEVs separated PD from 
MSA with 91% sensitivity and 64% specificity, and PD 
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from PSP and CBS combined with 100% sensitivity and 
95% specificity [86]. These data are highly encouraging 
and suggest that clusterin should be considered in future 
biomarker studies of parkinsonian disorders. Nonetheless, 
in addition to the use of anti-L1CAM antibody clone UJ127, 
which complicates data analysis, the pCBMA-coated beads 
Jiang et al. used currently are not commercially available 
making validation by other groups difficult. Increased 
plasma nEV α-syn in patients with PD compared to HCs 
also was reported by Zhao et al. [212], but provided lower 
separation power (AUC = 0.654, respectively). Overall, the 
data summarized suggest that nEV α-syn could serve as a 
biomarker for early diagnosis of PD and other parkinsonian 
disorders, whereas correlation of the biomarker with motor 
symptoms was only found by Niu et al. [130] and not in 
other studies [47, 153].

An improved diagnostic potential for biomarker panels 
over single-candidate protein markers has been suggested 
by Agliardi and coworkers, who precipitated total EVs and 
enriched nEVs by IP using the anti-L1CAM antibody 5G3 
from serum samples of 32 patients with PD and 40 HC. 
The 5G3 clone was raised against human neuroblastoma 
cell line SK-N-AS and recognizes the extracellular domain 
of L1CAM though the exact epitope has not been mapped 
[126]. Quantification of ‘oligomeric’ α-syn using a sandwich 
ELISA kit (MyBioSource cat n°: MBS730762) yielded a 
significantly increased signal in patients with PD, whereas 
the presynaptic soluble N-ethylmaleimide-sensitive-factor 
attachment receptor (SNARE) complex proteins STX-1A and 
VAMP2 were reduced in patients with PD compared to HC. 
Furthermore, negative correlations between ‘oligomeric’ 
α-syn levels and both STX-1A and VAMP2 SNARE proteins 
were reported, leading to an increased discrimination power 
for the combined biomarkers ‘oligomeric’ α-syn/STX-1A 
(Sensitivity = 85.7%, specificity = 82.5%) and ‘oligomeric’ 
α-syn/VAMP2 (Sensitivity = 75.0%, specificity = 92.5%) 
compared to each marker alone [3]. A positive cross-
sectional correlation between α-syn concentrations and 
disease duration was observed in the patients with PD. 
Though these data are encouraging, general concerns 
associated with the specificity of antibodies claimed to be 
specific for oligomers, the relatively low sensitivity of the 
kit, 0.1 ng/mL, and an absence of detailed information about 
the kit itself, including standard composition and preparation 
[79] suggest that the actual identity of the analytes measured 
should be scrutinized carefully. The relatively small sample 
numbers and lack of validation in an independent cohort 
or using post-mortem samples are additional limitations of 
this study.

In another recent study, Meloni et al. used commercial 
ELISA kits for measurement of ‘oligomeric α-syn’ and 
‘aggregated tau’ in nEVs immunoprecipitated using antibody 
5G3 from the serum of patients diagnosed clinically with PD 

(n = 70), PSP (n = 21), or CBS (n = 19) [120]. As might be 
expected, oligomeric α-syn was higher in PD compared to 
PSP and CBS, whereas aggregated tau was higher in the 
nEVs of patients with the two tauopathies. Combination of 
both biomarkers separated PD from CBS with AUC = 0.902 
and PD from PSP with AUC = 0.880. As discussed above, 
the ‘oligomeric α-syn’ ELISA presumably is based on 
binding to an antibody selective for oligomeric α-syn, though 
no details are provided about the identity of the antibody 
and cross-reactivity with other forms, including monomer 
and/or fibrillar aggregates might occur. The ‘aggregated tau’ 
assay is different and more reliable in nature. It uses the 
anti-human tau antibody 8F10, which binds the C-terminal 
epitope  tau428-437, for both capture and detection of the 
analyte. This configuration ensures that monomers are 
not detected by the assay, though oligomers as small as a 
dimer and assemblies as large as fibrillar aggregates, which 
may contain hundreds of molecules, are detected by this 
assay. The signal amplitude is higher for larger aggregates 
because they contain larger numbers of epitope copies, 
which complicates data interpretation. Nonetheless, this is 
an important demonstration that measurement of disease-
relevant proteoforms can be measured in nEVs.

In our group’s studies [47, 169], we used magnetic 
 Dynabeads® coated with the anti-L1CAM antibody 5G3 
or anti-MOG antibody (D-2) for IP of nEVs and oEVs, 
respectively. To test for potential cross-reactivity with α-syn, 
we tested the level of α-syn binding to beads conjugated 
to each of the antibodies, or a control mouse IgG. In all 
cases, using ECLIA we found similar amounts of non-
specifically bound α-syn to the antibody-conjugated beads 
[47], which were 42–60 times lower than those reported 
previously for anti-L1CAM antibody clone UJ127 [132]. 
D-2 is specific for an epitope within the C-terminal 
extracellular domain of human MOG. We chose MOG 
because it is CNS myelin-specific and located on the 
surface of mature oligodendrocytes [89]. Interestingly, our 
analysis yielded distinct results from those of Yu et al., who 
also compared α-syn levels in nEVs and oEVs [208]—we 
found that α-syn concentrations were significantly higher 
in both nEVs and oEVs from patients with MSA compared 
to those with PD. These differences were observed in a 
discovery cohort (50 HC, 51 PD, 30 MSA) and showed a 
high level of reproducibility in an independent validation 
cohort (51 HC, 53 PD, 50 MSA). The results allowed 
constructing a composite biomarker model comprising 
the α-syn concentration in the nEVs, the ratio between 
the α-syn concentrations in the oEVs and nEVs, and the 
total concentration of the EVs in the sample. The model 
was trained on the discovery cohort and then applied to the 
validation cohort, in which it separated PD from MSA with 
AUC = 0.902 [47]. More recently, we found that adding oEV 
pS129-α-syn, a particularly pathologic form of the protein, 
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to the model improved the separation further to AUC = 0.936 
[169].

A potential explanation for the contradictory results in 
the studies of Dutta et al. [47] and Yu et al. [208] is that 
although both CNPase and MOG are membrane-bound 
proteins expressed specifically by oligodendrocytes, CNPase 
is present on the cytosolic side of non-compact myelin 
[46, 175] and the intermembrane space of mitochondria 
[108], which may limit its presentation on the surface of 
EVs. These data highlight the importance of the marker 
selection for IP of CNS-originating EVs. Moreover, the 
difference between the two studies underscores a crucial 
point discussed in more detail in ‘Omics approaches for 
identifying novel biomarkers in CNS-originating EVs’: the 
basis for using a certain marker for IP is the hypothesis that 
the marker is expressed in sufficient quantities on the surface 
of EVs originating in the cell of interest and not on the 
surface of EVs secreted by other cells. Due to the technical 
difficulty of working with the limited amount of material 
available in typical EV preparations from patients’ blood 
samples, to date, few studies have tested this hypothesis.

Recently, Kluge et al. immunoprecipitated nEVs using 
the anti-L1CAM antibody C-2 (Santa Cruz Biotechnology) 
from the plasma of 30 patients with PD and 50 HC 
and measured several biomarkers in these nEVs [91]. 
Interestingly, in contrast to the studies discussed above 
[3, 47, 54, 86, 87, 130, 153, 155, 212], they did not find 
significant differences in α-syn concentrations in the nEVs 
between the PD and HC groups by using the monoclonal 
antibody Syn-1, which recognizes an epitope in α-syn91-99 
[139], possibly because the patients were in relatively early 
stages of disease (Höhn and Yahr score = 2). However, when 
they used the rabbit monoclonal antibody MJFR-14-6-4-2 
(Abcam, also referred to as MJFR-14 in some publications) 
in dot blots, they observed significantly higher reactivity 
in the PD group. This antibody is sold as an “anti-alpha-
synuclein aggregate antibody” by the company and has 
been reported previously to bind selectively to filamentous 
aggregates of α-syn [149]. Further analysis had shown that 
it bound α-syn fibrils preferentially, had lower binding to 
α-syn oligomers, and bound α-syn monomers with even 
lower affinity [102]. Importantly, Kluge et al. also used a 
seed-amplification assay in their samples and found signal 
amplification only in nEVs from patients with PD, providing 
a highly sensitive means for separating the patients from the 
HC group [91]. This is the first demonstration of applying 
a seed-amplification assay in CNS-originating EVs and it 
suggests that such assays also could be used for the diagnosis 
of other parkinsonian disorders. The success of Kluge et al. 
in separating the groups using both the dot-blot and the seed-
amplification assays was in a large part thanks to collecting a 
relatively large volume of blood (15 mL) from each subject. 
Recapitulating these results in lower sample volumes 

typically available for specific studies in biorepositories, 
such as the Parkinson’s Progression Markers Initiative 
(PPMI), may be difficult, yet the successful demonstration 
of separation between the groups likely will encourage 
other researchers to attempt replicating and expanding these 
findings.

The data presented above strongly indicate that the 
analysis of multiple biomarkers in CNS-originating EVs, 
preferably from more than one cell type, can provide highly 
useful diagnostic and possibly progression biomarkers in 
blood samples of patients with parkinsonian syndromes. The 
inclusion of at least two independent cohorts, sufficiently 
large sample numbers, standardized EV isolation methods, 
and ideally the pathological validation of patient diagnosis 
are highly important factors for obtaining significant 
and reliable findings, ultimately allowing future clinical 
application of these methods. A summary of human 
biomarker studies using CNS cell type-specific EVs in 
parkinsonian disorders is provided in Table 2, which also 
includes similar studies in AD, mild cognitive impairment, 
and traumatic brain injury for comparison.

Omics approaches for identifying novel 
biomarkers in CNS‑originating EVs

The studies discussed above focused on candidate 
biomarkers for parkinsonian disorders identified mainly 
based on known pathological changes in these diseases. 
An exception was clusterin, which was identified by Jiang 
et al. using a proteomics approach [86]. It is likely that other 
biomarkers can be discovered in screening studies using 
similar or other ‘omics’ approaches, such as transcriptomics, 
metabolomics, and lipidomics. These approaches analyze 
the composition of EVs in an unbiased manner, potentially 
leading to the discovery of novel candidate biomarkers 
[37]. Here, we discuss recent advances in such studies that 
can be applied to the characterization of EV subtypes and 
identifying biomarkers for parkinsonian disorders. Detailed 
reviews of EV isolation methods and sample preparation for 
such analyses have been published previously [99, 116, 159].

Markers of EV type

Due to the co-existence of different membranous vesicles in 
common EV preparations, it may be important to identify 
markers that distinguish EV subtypes, e.g., exosomes and 
microvesicles, for the preparation of pure populations 
before detailed downstream biochemical analysis. In a 
comparative study of EV isolation methods, Tauro and 
coworkers identified new biomarkers of exosome biogenesis, 
trafficking, and release using immunoaffinity capture for 
proteomic analysis [170]. This application led to the first 
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discovery of the ESCRT-III component VPS32C/CHMP4C 
and the SNARE protein synaptobrevin 2 in exosomes. 
Of note, in all the preparations, the isolated EVs were 
40–100 nm in diameter and were positive for the exosome 
markers Alix, Tsg101, and HSP70, suggesting successful 
enrichment of exosomes [170]. A later extensive study by 
Kowal et al. [97] showed that proteins previously thought 
to be exclusive exosome markers—flotillin-1, HSP70, and 
major histocompatibility complex (MHC) class I and II 
proteins were present similarly in larger EVs and were not 
specific to exosomes. Instead, the authors proposed GP96 
as a marker for large EVs; actinin-4 and -1, mitofilin, major 
vault protein, and eukaryotic elongation factor 2 as markers 
for medium-sized and large EVs; EH-domain-containing 
4, a disintegrin and metalloproteinase domain-containing 
protein 10, and Annexin XI as markers for small EVs of non-
endosomal origin; and syntenin-1, tumor susceptibility gene 
101, and CD81 as markers of tetraspanin-enriched small 
EVs, typically considered to be bona fide exosomes [97].

Recently, Guan and coworkers presented a method for 
analyzing simultaneously proteins and metabolites in 
plasma-derived EVs [67]. Similar to the study by Kowal 
et al. [97], they confirmed the presence of actinin-4 mainly in 
the large EV fraction isolated by centrifugation at 20,000 g, 
whereas the small EV fraction isolated at 100,000 g was 
strongly enriched in syntenin-1. Proteomic analysis using 
liquid chromatography–mass spectrometry (LC–MS) 
highlighted 20 proteins upregulated in the small EV fraction, 
e.g., complement factor properdin and α1-microglobulin, 
and 92 proteins upregulated in the large EV fraction, 
including tetraspanin 32 and magnesium transporter 1. 
Moreover, 16 metabolites were enriched in small EVs, 
such as cellobiose and sucrose, and 23 metabolites were 
enriched in large EVs, e.g., inosinic acid and raffinose. 
Importantly, the proteins and metabolites identified in the 
small and large EV fractions were associated with different 
biological processes and pathways, underscoring the distinct 
biological functions of these EV subtypes [67]. Altogether, 
these studies suggest that ‘omics’ analyses are useful for the 
identification of biological markers that discriminate EVs 
based on their size and biogenesis pathway. However, strict 
isolation and validation procedures have to be applied to 
assure the purity of the analyzed vesicles.

Markers of CNS cellular origin

In recent years, the identification of biological markers 
reflecting the cellular origin of EVs, especially those 
coming from the CNS into the peripheral circulation, has 
gained increasing interest. Several omics studies focused 
on the characterization of CNS-originating EV composition 
aiming to discover novel disease biomarkers or markers of 
the EVs’ specific cellular origin. To our knowledge, only 

one such study was performed in the context of parkinsonian 
disorders. Therefore, we summarize below also studies in 
related disease and other systems.

Anastasi et  al. reported a method combining 
centrifugation and immunocapture for isolating nEVs 
from the plasma of four patients with PD and four healthy 
controls for LC–MS/MS proteomic analysis. After three 
initial centrifugation steps, plasma sample supernates 
were incubated in 96-well plates coated with anti-L1CAM 
antibody UJ127 to enrich nEVs. Subsequent proteomic 
analysis identified 23 proteins related to PD, including 
10 proteins involved in the UPS known to be impaired in 
PD, and the previously proposed biomarker DJ-1/PARK7 
[9, 212]. Other circulating biomarkers of PD, such as 
gelsolin, serum amyloid P, clusterin, and CXCL12 also 
were identified in this analysis [9]. Two of these proteins, 
clusterin, and gelsolin, had been identified in serum EVs of 
patients with PD in a previous study [87] and gelsolin was 
reported to be present in Lewy bodies [187]. As discussed 
above, nEV clusterin recently has been studied together 
with α-syn and showed promise for differentiating PD from 
atypical parkinsonian disorders [86, 87].

A proteomics study compared the proteome of CNS-
originating EVs from the transgenic  SOD1G93A ALS mouse 
model and non-transgenic control mice. CNS-originating 
EVs isolated from the extracellular space of whole mouse 
brains were enriched in MOG and SNAP-25 in wild-type 
mice, whereas  SOD1G93A-mouse EVs were enriched in 
protein disulfide isomerase, an enzyme that has been 
linked to ALS pathology [13]. Though EVs from specific 
cellular populations were not isolated, the reduction of the 
oligodendrocyte marker MOG and the synaptic marker 
SNAP-25 in EVs from the ALS mice likely reflects the 
process of neurodegeneration and suggests that these 
proteins are promising markers for early signs of ALS and 
possibly other types of neurodegenerative diseases [156].

Lemaire and colleagues isolated EVs from a primary 
leech microglia culture by ultracentrifugation in 
combination with either a density gradient or size-exclusion 
chromatography and identified a signature of six miRNAs, 
which are potentially characteristic for mEVs using 
transcriptomics [110]. The isolated mEVs were not tested 
for surface markers of EV type but TEM micrographs and 
ultracentrifugation suggested the enrichment of mainly small 
EVs [110]. Translation of the findings from medicinal leech 
mEVs to human mEVs has yet to be demonstrated.

The studies discussed above suggest that omics 
approaches, especially proteomics, are feasible in EVs and 
may lead to the discovery of new biomarker candidates for 
neurodegenerative diseases. Nevertheless, omics analyses 
of EVs have considerable challenges. Typical issues are 
contamination of EVs by non-specific binding of common 
biofluid molecules, e.g., immunoglobulins, complement 
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proteins, and lipoproteins, limited sample availability, and 
the low abundance of disease-relevant proteins [35, 73]. 
Rigorous validation of EV populations by testing for the 
presence of established EV markers and the use of consistent 
and optimized isolation protocols are key to minimizing the 
contamination of EV fractions [116]. The relatively large 
sample volumes required for these studies can be overcome 
by pooling patient samples [88] though this practice may 
affect negatively the specificity of the findings. The current 
challenges may be overcome by future development of new 
methods compatible with smaller volumes [9], and/or by 
using conditioned media from cultured induced pluripo-
tent stem cell (iPSC)-derived CNS cells instead of patient 
biofluids.

A persistent challenge is that to date, no comparative 
studies of different brain cell-type EVs, e.g., obtained 
from primary cultures of neurons, oligodendrocytes, and 
astrocytes, have been performed that would allow the 
definition of unambiguous markers for their respective 
cell of origin. Alternatively, meta-analyses of existing 
data from large EV databases such as ExoCarta (http:// 
www. exoca rta. org), EVpedia (https:// exoso me- rna. com/ 
tag/ evped ia/), Vesiclepedia (http:// micro vesic les. org), and 
EV-TRACK (https:// evtra ck. org) could help identify markers 
for distinguishing EVs originating from different CNS cell 
types.

EV‑associated nucleic acid biomarkers 
in parkinsonian disorders

Both DNA and RNA are found in EVs and can serve 
as biomarkers [177, 184]. EV RNA molecules include 
mRNA, transfer RNA (tRNA), circular RNAs (circRNAs), 
and ncRNAs. EVs carrying long ncRNA (lncRNA) 
can be transferred from neurons to the blood and have 
shown promising results as clinical CNS biomarkers in 
people suffering from gliomas [33, 152]. Multiple studies 
identifying non-EV-associated RNA biomarkers of 
parkinsonian disorders in CSF, serum, plasma, saliva, or 
urine have been reviewed elsewhere [25, 147]. In contrast, 
to our knowledge, only one study has examined such 
biomarkers in CNS-originating EVs to date [213].

Although mRNA and lncRNA are found in EVs, EVs 
are highly enriched in miRNAs [80] and miRNAs have 
been the primary RNA biomarkers studied in EVs for 
parkinsonian disorders, Thus, we focused our analysis on 
those. We analyzed studies using CSF EVs, serum and 
plasma EVs that did not attempt to isolate CNS-originating 
EVs, and the one study that measured a specific lncRNA 
in nEVs. The methods and results of these studies are 
summarized in Table 3. Unfortunately, the main conclusion 
of our analysis is that the quantified miRNAs from CSF 

[68, 186], serum [15, 29, 74] or plasma [129, 185] poorly 
overlapped both within and across biofluids, suggesting that 
rigorous standardization of isolation and analysis methods 
is necessary before meaningful conclusions can be made.

In the one study that isolated nEVs, Zou et al. used the 
anti-L1CAM antibody UJ127 for IP of the nEVs from the 
plasma and quantified lncRNAs alongside other biomarkers. 
The study used two separate RNA amplification techniques 
(Table 3) to measure the lncRNA, Linc-POU3F3, and Simoa 
to measure α-syn in 93 PD and 85 HC samples [213]. The 
authors chose Linc-POU3F3 as it has important functions 
in the CNS, such as regulation of the Delta1 and Sox1 
genes, which are important for neurogenic differentiation 
of stem cells [30, 31] and have been shown to be stable 
in serum EVs [104]. Linc-POU3F3 was higher in nEVs in 
patients with PD whereas nEV-associated α-syn and plasma 
glucocerebrosidase activity were lower in patients with 
PD. The lower α-syn levels found contradicted the reports 
discussed in “Analysis of biomarkers in CNS-originating 
EVs isolated from blood products for parkinsonian 
disorders”. The separation between the groups based on 
the differences in Linc-POU3F3 was low. When all three 
biomarkers, nEVs Linc-POU3F3 and α-syn, and plasma 
glucocerebrosidase were combined, the groups separated 
with AUC = 0.824.

The poor reproducibility in the miRNA studies may 
be due to the difference in isolation, e.g., polymer-based 
precipitation vs. ultracentrifugation, and quantification, 
such as a TaqMan miRNA assay as opposed to small RNA 
sequencing of miRNAs, in addition to differences in disease 
stage and age of the participants recruited in different 
studies. As no study to date has examined miRNAs in CNS-
originating EV for differentiating among parkinsonian 
disorders, one way to strengthen the consensus would be 
to compare the separation among disease groups between 
miRNA and protein biomarkers in CNS-originating EVs.

Conclusions

Identifying and validating sensitive and specific 
biomarkers for parkinsonian syndromes is urgently 
needed. Inconsistent readouts of blood-based biomarkers 
for neurodegenerative disorders, including PD, often 
reflect the disconnect between the CNS biochemistry and 
the peripheral blood composition due to the presence of 
the BBB. CNS-originating EVs cross the BBB and can 
be isolated from bodily fluids, thus holding tremendous 
potential as a minimally invasive source of biomarkers. 
Multiple studies have demonstrated the practicality of 
using CNS-originating EVs for the identification and 

http://www.exocarta.org
http://www.exocarta.org
https://exosome-rna.com/tag/evpedia/
https://exosome-rna.com/tag/evpedia/
http://microvesicles.org
https://evtrack.org
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measurement of biomarkers for various neurodegenerative 
diseases, including diagnostic and progression biomarkers 
for PD and atypical parkinsonian disorders. Nonetheless, 
practical issues, such as the isolation of EVs originating 
in specific CNS cell types and validation of the cell type 
of origin remain to be rigorously addressed. Significant 
efforts have been made in recent years to address these 
issues, some of which have been the subject of scientific 
controversy. Though the interest in finding biological 
markers that reveal the cellular origin of EVs, particularly 
those entering the peripheral circulation from the CNS, 
has grown over the past few years, the scarcity of highly 
specific marker proteins on the EV surface that could be 
used for IP, the limited amount of material in most studies, 
and the availability of appropriate antibodies are among 
the current challenges.

Notwithstanding these challenges, substantial recent 
progress has been made in the use of CNS-originating 
EVs as biomarker sources for neurodegenerative diseases 
in general, and for parkinsonian disorders in particular, 
by approaches incorporating antibodies selective for 
pathological forms of the proteins involved in these 
diseases, the use of EVs from more than one cell type, and 
the addition of seed-amplification assays to the workflow. 
These developments hold promise for the development 
and validation of sensitive and specific biomarkers that 
will allow including the correct patient population in 
clinical trials at early stages when the treatments are likely 
to be most effective and to monitor the treatment effect 
objectively without relying on clinical assessment.
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