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Abstract

Security of Genus 3 Curves in Cryptography

by

Kim Henry Martin Laine

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Kenneth A. Ribet, Chair

The Discrete Logarithm Problem (DLP) in the abelian group E(Fp) of Fp-valued points on
an elliptic curve E/Fp has been successfully used as a building block for a wide variety of
both public key encryption schemes and digital signature schemes. Since the size of E(Fp)
is roughly p, to have a security level of at least 80 bits against generic collision attacks, such
as Pollard rho, one must take p to be at least 160 bits.

Neil Koblitz suggested using instead the group of Fp-valued points on the Jacobian JacC
of a genus g hyperelliptic curve C/Fp. The upshot is that the size of JacC(Fp) is roughly pg,
so to obtain a security level of 80 bits against Pollard rho one needs to take p to be at least
160/g bits.

When g = 2 everything works out well. As in the case of elliptic curves, the most
efficient known attack against the DLP is Pollard rho, which runs in time Õ(p). There are
very efficient ways of doing arithmetic on the Jacobian of a genus 2 curve (or rather on the
Kummer surface), and with the increase in efficiency coming from using smaller fields (p at
least 80 bits), such genus 2 cryptosystems are fast enough to be competitive with elliptic
curve cryptosystems.

When g > 3 there is an efficient index calculus algorithm for breaking the DLP, which is
why such curves are not considered to be useful for cryptographic purposes. Moreover, there
is no efficient enough way of doing arithmetic on such high-dimensional Jacobians.

When g = 3 the situation is much more complicated. There is an index calculus algorithm
which breaks the DLP on the Jacobian of a hyperelliptic genus 3 curve in time Õ(p4/3). Note

for comparison that Pollard rho runs in time Õ(p3/2). For practical field sizes (p at least 60
bits) the difference between these complexities is quite significant. Nevertheless, this index
calculus algorithm might not be fast enough to be a significant threat and the practicality
of the attack is highly debatable. But genus 3 hyperelliptic curves suffer also from another
much worse security problem. Namely, it might be possible to compute an isogeny from
the hyperelliptic Jacobian to another isogenous abelian variety, which has a good chance of
being the Jacobian of a non-hyperelliptic genus 3 curve over the same base field. If such an
isogeny can be computed explicitly enough, the DLP can be mapped to the Jacobian of the
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non-hyperelliptic curve and solved using an even faster index calculus algorithm by Claus
Diem, with complexity Õ(p). This sounds bad, but again the practicality of Diem’s attack

is debatable. The main problem turns out to be that both the hyperelliptic Õ(p4/3) and the

non-hyperelliptic Õ(p) algorithms require vast amounts of memory. Therefore the security of
genus 3 hyperelliptic curves depends strongly on the practical performance of Diem’s index
calculus and the feasibility of computing isogenies explicity.

We develop and study, both in theory and in practice, a new index calculus algorithm for
attacking non-hyperelliptic genus 3 curves. Our attack is related to Diem’s index calculus, but
improves it in several aspects. We obtain detailed space and time complexity estimates for
our algorithm, making all hidden factors in the Õ-notation explicit. We discuss time-memory
trade-offs and practical ways of dealing with the massive memory requirements. Finally we
discuss ways of generating hyperelliptic genus 3 curves in such a way that performing isogeny
attacks becomes particularly difficult. This is done by generating input data for the genus 3
CM method of Weng in a very careful way, allowing us to precisely control which isogenies
the attacker can use to reach non-hyperelliptic Jacobians.
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Chapter 1

Introduction

1.1 Discrete Logarithms

Given a finite cyclic group G with generator g, the Discrete Logarithm Problem (DLP)
DLogG,g(h) is the computational problem of writing an element h ∈ G in terms of g, i.e.
finding an integer x such that gx = h. This is obviously easy by simple enumeration if G
is small, but for example if #G > 2100 it is not clear how x could be found if G has no
obviously useful extra structure. The idea then is to construct cryptographic primitives in
such a way that their security is in some sense related to the hardness of solving a DLP in G.
Typically this means that if an attacker can solve a particular DLP quickly, then they can
also break the related cryptosystem quickly. So-called generic (or collision, or square-root)
attacks solve any DLP in O(#G1/2) groups operations. Perhaps the most important such
attack is Pollard rho and its distributed variations.

One standard choice is to take G to be a large prime order subgroup of F×p for some
large enough prime p. This was used by Diffie and Hellman in their seminal paper [DH],
which is usually considered to have started the development of public key cryptography.
The problem with F×p is that certain algebraic structure of the integers can be exploited
to mount a powerful attack with subexponential complexity called index calculus [Adl]. To
ensure security, the prime p must be taken to be significantly larger than one might naively
have expected. In more recent terminology index calculus is used to mean any algorithm
with a structure similar to that of [Adl] to break the DLP in some group G with strong
enough algebraic properties. Such generalized index calculus algorithms do not necessarily
have subexponential complexity and may or may not be faster than Pollard rho.

Koblitz [Kob] and Miller [Mil] independently suggested using a large prime order subgroup
of the group of Fq-valued points on an elliptic curve E/Fq. Note that #E(Fq) = q+O(q1/2)
according to Hasse’s theorem. These suggestions turned out to be remarkably successful
for several reasons. Generating such groups is easy, arithmetic is very efficient and perhaps
most importantly when q is prime there is no efficient index calculus type algorithm known.
The index calculus algorithm of Semaev [Sem] might in some cases perform better than
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generic methods, but it is generally not considered to be efficient enough to be a threat. The
improvement [Sem2] works when q is a power of 2, but it is not yet clear if this is a significant
threat.

Koblitz [Kob2] suggested using a prime order subgroup of the group of Fq-valued points on
the Jacobian variety JacC of a genus g > 1 hyperelliptic curve C/Fq. The potential advantage
over using elliptic curves is that the size of JacC(Fq) is # JacC(Fq) = qg + O(q(2g−1)/2)
according to the Hasse-Weil theorem. Since the security level is in principle determined by
the size of the group, if we take g to be larger, it suffices to use a smaller q to obtain a
particular security level. Arithmetic on the Jacobian of a hyperelliptic curve can always
be done reasonably fast using Mumford coordinates [Was]. When g ≥ 3 most curves are
non-hyperelliptic. These curves are less useful in cryptography due to the lack of efficient
coordinate systems.

Background in cryptography, the theory of abelian varieties over finite fields, and the CM
method is discussed in Chapter 2.

1.2 Index Calculus in Genus 3

The security and practicality of hyperelliptic cryptosystems turns out to depend hugely on
the genus g. In genus 2 there are no known attacks faster than Pollard rho. The smaller
field size and alternate models for the group make the arithmetic very efficient, even efficient
enough to be competitive with elliptic curve cryptography (see [BCHL, BCLS]).

For curves of very large genus subexponential index calculus attacks were discovered by
Adleman, DeMarrais, and Huang [ADH], and improved by Gaudry, Enge, and others [Gau,
Eng, EG, VJS]. For small genus but still with g > 3, the expected security was drastically
reduced by attacks, which, although exponential, were so much better than Pollard rho so as
to render the complexity/security trade-off unacceptable (see e.g. [Gau, The, GTTD, Nag]).

The case of genus 3 has remained unclear and debated for a long time. The hyperelliptic
locus of genus 3 curves is of codimension 1, which means that almost all genus 3 curves
are non-hyperelliptic (Theorems 2.6.6, 2.6.7, 2.6.1). The non-hyperelliptic curves admit a
smooth quartic plane embedding, coming from the canonical divisor [Har]. The rest of the
genus 3 curves are hyperelliptic and non-planar of higher degree. In the hyperelliptic case
a double large prime index calculus algorithm [GTTD] reduces the complexity of the DLP

from Õ(q3/2) (with Pollard rho) to Õ(q4/3), where the notation Õ hides both constants and
logarithmic factors. However, for practical field sizes this attack does not seem to be efficient
enough to rule out the use of genus 3 hyperelliptic curves. On the other hand, the low degree
geometry of non-hyperelliptic genus 3 curves was very cleverly exploited by Diem to yield a
much more powerful double large prime index calculus attack against non-hyperelliptic genus
3 curves, with complexity Õ(q). In fact, Diem has been developing index calculus algorithms
on Jacobians of low-degree plane curves [Die, Die2], of which non-hyperelliptic genus 3 curves
are a special case [DT]. Both the hyperelliptic and the non-hyperelliptic double large prime
index calculus attacks consist roughly speaking of three steps:
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1) Graph building, where an extremely large graph with vertex set a subset of C(Fq) is built.
The edges in the graph are labeled by certain linear relations among divisors on the curve
modulo principal divisors.

2) Relation collection, where more linear relations are constructed and the graph of the
previous step is used to reduce the relations to involve only elements in a much smaller
subset of divisors.

3) Linear algebra, where a large sparse matrix is formed from the collected linear relations,
for which a non-trivial kernel vector must found. The solution to the DLP can be read
from this vector.

Even though the computational complexity of Diem’s Õ(q) attack does seem impressive, one

should keep in mind that the Õ-notation can hide factors that are significant for practical
field sizes and that it is crucial to understand how large these hidden factors are. But by
far the biggest problem with both double large prime index calculus attacks is that they
require immense amounts of memory to store the graph. As a result, the security of even
the seemingly simpler non-hyperelliptic case has remained unclear.

In this thesis we develop, implement, and study both in theory and in practice a new
kind of variant of Diem’s Õ(q) index calculus against genus 3 non-hyperelliptic curves. This
new attack improves the three steps listed above in several ways:

1) Graph building is extremely slow in the beginning. Our new approach targets precisely
this problem and makes the graph grow almost instantaneously to a significant size,
completely avoiding a long period of extremely slow growth. Moreover, this improvement
removes the need to perform certain initialization work that was not explicitly mentioned
earlier.

2) We combine relation collection and graph building into one step, performing them simul-
taneously. This improves the total running time of the algorithm.

3) The linear relations obtained using the new attack are simpler, thus yielding sparser linear
system. This speeds up the linear algebra step mentioned above.

As a result, we obtain a surprisingly significant improvement to the running time of Diem’s
algorithm at the cost of a slight increase in total memory consumption. The performance
of the new algorithm is well understood in theory (see Table 3.1 and Table 3.3), making all
hidden constant and logarithmic factors explicit. Practical experiments yield running times
closely matching the theoretical results (see Table 3.2). Detailed comparisons to Diem’s
algorithm and Pollard rho are presented in Figures 3.1 and 3.3.

Perhaps the biggest limitation of all hyperelliptic and non-hyperelliptic genus 3 double
large prime index calculus algorithms is that they require massive amounts of memory to
store the graph. We tackle this issue of memory consumption by studying a variant of our
algorithm where memory consumption is restricted to a fraction of the original, and explain
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how this only slightly worsens the computational complexity (see Figure 3.2). We also study a
parallelization scheme aiming to split the memory cost among several large memory storage
units. The memory requirements of all these improvements are analyzed in great detail,
making all hidden logarithmic factors explicit (for examples, see Tables 3.4, 3.5, 3.6). As a
result the security of genus 3 non-hyperelliptic curves is now well understood, assuming our
new index calculus attack is the best one available. Next we explain how this affects the
security of hyperelliptic genus 3 curves.

Index calculus for Jacobians of non-hyperelliptic genus 3 curves is discussed in Chapter 3.
All material in Chapter 3 is based on the paper [LL], which is joint work with Kristin Lauter.

1.3 Avoiding Isogeny Attacks in Genus 3

Although the above only applies to non-hyperelliptic genus 3 curves, it turns out to have a
direct impact on the security of hyperelliptic genus 3 curves due to so-called isogeny attacks,
as was first demonstrated by Smith [Smi]. Given a DLP on the Jacobian JacC of a non-
hyperelliptic genus 3 curve C/Fq, an attacker might be able to compute an isogeny to the
Jacobian JacC′ of another genus 3 curve C ′/Fq. Suppose this can be done explicitly enough
to map the DLP to JacC′(Fq). Since the locus of hyperelliptic curves in the moduli space of
all genus 3 curves has codimension 1 (Theorems 2.6.6, 2.6.7, 2.6.1), C ′ will almost certainly
be non-hyperelliptic unless the isogeny is chosen in some very special manner. The attacker
can again employ the Õ(q) index calculus to break the cryptosystem, making hyperelliptic
curves no more secure than non-hyperelliptic curves. Of course, this is the case only when
such an isogeny can be explicitly computed. Luckily Smith’s method does not work for all
hyperelliptic genus 3 curves. A computation in [Smi] shows that approximately 18.57% of
hyperelliptic curves can be expected to be vulnerable. Moreover, given a hyperelliptic curve
it is easy to determine whether or not Smith’s attack will work, so all that needs to be done
to avoid it is to choose a curve such that necessary conditions are not met.

Unfortunately the situation is much more complicated than the above suggests. Recently
there has been significant theoretical and practical progress in computing much more general
isogenies than those used by Smith. In [LR, CR, Rob] the authors explain how to compute
certain (`, `, `)-isogenies (see Definition 4.1.3) and demonstrate in great detail how this can
be done in the case of genus 2. At the time of writing this the (`, `, `)-isogeny algorithm
has only been implemented for genus 2 curves, but it is expected to work with appropriate
modifications also for genus 3 curves.

The most general types of isogenies one might hope to compute are cyclic isogenies, i.e.
isogenies with a cyclic kernel. This is expected to be significantly more difficult than comput-
ing (`, `, `)-isogenies, mainly because cyclic isogenies do not respect principal polarizations
and it is not clear how to recover an appropriate principal polarization on the target abelian
variety. One possible approach to computing cyclic isogenies between Jacobians is explained
in [Rob2] and further developed in the case of genus 2 by Dudeanu [Dud]. However, the
method of Dudeanu places extremely strong restrictions on the rings of real multiplication
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of the source and the target Jacobians, and it is not clear if a similar type of approach could
at all be used in the case of genus 3. Nevertheless, it is not unreasonable to assume that in
the near future also cyclic isogenies between Jacobians of genus 3 curves can be explicitly
computed.

This means that the security of genus 3 hyperelliptic curves, in particular for small field
sizes (around 70 bits), depends crucially on whether or not an isogeny attack can be per-
formed. In the last part of this thesis we explore possibilities for generating cryptographically
interesting hyperelliptic genus 3 curves1 with properties that make isogeny attacks particu-
larly hard to perform. Our isogeny attack prevention methods are all based on the simple
observation, used also in the genus 3 CM method of Weng, that if a simple 3-dimensional Ja-
cobian over Fq contains an automorphism of order 4 then it must be the Jacobian of a genus
3 hyperelliptic curve (see [Wen] or Theorem 4.4.2). By very carefully choosing a sextic CM
field K/Q, a prime p and a p-Weil number π ∈ OK , and constructing the hyperelliptic curve
using the genus 3 CM method, we can control the degrees of possible isogenies that change
the endomorphism ring by removing the automorphism of order 4 from it. This is precisely
what the attacker would have to do to reach the Jacobian of a non-hyperelliptic curve (see
Theorem 4.4.2). Our construction prevents almost all maximal isotropic isogenies from be-
ing efficiently computable, and under some justifiable hypotheses about the computability
of cyclic isogenies it prevents also those from working. The only reasonable approach left
for the attacker is to compute a long enough chain of (`, `, `)-isogenies with kernels stable
under the action of the Frobenius. It is not clear how hard finding and computing such a
chain is in a generic case, but it might be possible to further choose the hyperelliptic curve
in a way that makes such chains impossible. This requires still more work and is left for a
future project.

Avoiding isogeny attacks is discussed in Chapter 4.

1More precisely, we generate appropriate and realistic input data for the genus 3 CM method of
Weng [Wen], which generates the curve.
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Chapter 2

Background

2.1 Public Key Cryptography

We start by recalling the formal definition of a public key encryption scheme. We refer the
reader to [KL] for more details, including formal definitions of realistic security models.

A public key encryption scheme consists of the following probabilistic polynomial time
(often abbreviated PPT) algorithms:

The algorithm KeyGen takes as input a security parameter n and outputs a public key
pk, a secret key sk, a message space M and a ciphertext space C.

The randomized algorithm Enc takes as input the public key pk and a message m ∈M,
and outputs a ciphertext Encpk(m) ∈ C.

The deterministic algorithm Dec takes as input the secret key sk and a ciphertext
c ∈ C, and outputs a plaintext Decsk(c) ∈M or FAIL.

Remark 2.1.1. In private key encryption schemes the security parameter is typically the key
length. In public key schemes it is usually related to the key length in some more complicated
way, depending on the scheme.

Definition 2.1.2 (Public key encryption scheme). A public key encryption scheme consists
of a triple (KeyGen, Enc, Dec) of algorithms as detailed above, such that

Pr [Decsk(Encpk(m)) = m] ≥ 1− negl(n) ,

where the probability is taken over the output of KeyGen, the message space and the ran-
domness used by Enc. Here negl(n) denotes a function such that 1/ negl(n) grows faster than
any polynomial in n.

Such encryption schemes form the basis of secure communication over the internet, as they
allow multiple clients to securely communicate with one host without having to deal with
the problem of distributing and storing a private key for each client separately.
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2.2 Discrete Logarithms

Typically public key encryption schemes are based on certain well-known and supposedly
hard computational problems in algebra, geometry or number theory. Most often this means
that if the computational problem can be solved fast, then also the cryptosystem can be
broken fast. Unfortunately, the other direction is in many cases not known, i.e. even if we
have a fast way of breaking the cryptosystem we might not know how to use it to solve
the computational problem, but perhaps only some slightly easier less studied variant of it.
Nevertheless, apparent hardness of the well-known computational problem is often thought
to strongly suggest that the cryptosystem is in practice equally hard to break.

Although the need for indeterminacy in encryption (see Definition 2.1.2) complicates
things somewhat, a vast number of different types of public key cryptosystems are known.
In this work we focus on ones based on the following class of problems.

Definition 2.2.1 (Discrete Logarithm Problem (DLP)). Let G be a finite cyclic (abelian)
group and g ∈ G a generator. Given an element h ∈ G, the base-g discrete logarithm of h
is an integer x (modulo the group order) such that gx = h (multiplicative notation). The
discrete logarithm problem DLogG,g(h) is the problem of computing x given (G, g, h).

Of course the hardness of DLogG,g(h) depends very strongly on G. For example, unless
the group has large enough order one might be able to simply try all numbers between 0 and
#G − 1 until the correct one is found. Also in certain groups the DLP is inherently easy
unless the group order is impossibly huge.

Example 2.2.2. If G := Z/pZ (additive group), computing a discrete logarithm requires only
the computation of an inverse of the generator and a multiplication modulo p. This means
that the DLP can be solved by doing O(log2 p) multiplications in integers modulo p, which
is very easy unless p is extremely large.

Example 2.2.3. Perhaps the most classical choice for G is the multiplicative group F×q of a
finite field. Unfortunately such groups suffer from an attack (see Section 2.4) that forces q
to be much larger than one might hope.

Example 2.2.4. An extremely successful choice for G, independently suggested by Koblitz [Kob]
and Miller [Mil], is the group of Fq-valued points on an elliptic curve over Fq. The advantage
over the group F×q is that the attack mentioned in Example 2.2.3 does not work, allowing q
and hence the representatives of the group elements to be much smaller. In addition, elliptic
curves provide algebraic geometric extra structure that has been used in clever ways to yield
cryptosystems with a number of interesting properties.

Example 2.2.5. Koblitz [Kob2] suggested using the group of Fq-valued points on the Jacobian
of a hyperelliptic genus g > 1 curve over Fq. The hardness of the DLP in such groups is a
complicated topic and depends very strongly on the genus g. Most of this thesis is dedicated
to understanding the case of g = 3.
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We conclude this section by discussing perhaps the simplest and most famous DLP-
based public key cryptosystem: The Elgamal encryption scheme, described by Taher Elgamal
in [ElG]. In the Elgamal scheme G can be taken to be any finite cyclic group, although to
achieve a reasonable level of security one should choose G carefully.

It should be pointed out that finding good groups to use is far from trivial. The groups
should have large order, divisible by a large prime (due to the Pohlig-Hellman decomposition,
which we discuss in Section 2.3) and as little extra mathematical structure as possible,
while still admitting simple, compact representations for the group elements and very fast
arithmetic. Preferably one would hope to have an easy-to-construct family of such groups
and not just one group.

Remark 2.2.6. On the other hand, extra structure in the group might be used to construct
cryptosystems with more interesting properties, a good example of which are the applications
of supersymmetric elliptic curves to identity-based encryption.

Example 2.2.7 (Elgamal encryption scheme). Let q := #G. The secret key consists of a
generator g of G and an integer x chosen uniformly at random from Z/qZ. The public key
consists of the generator g and an element h := gx. The message space is M := G and
the ciphertext space is C := (Z/qZ) × G. To encrypt, choose an r from Z/qZ uniformly at
random. If m is the message, let

Encpk(m) := (gr,m · h−r) .

To decrypt a ciphertext (y, c) ∈ C, compute

Decsk(y, c) := c · yx .

If an adversary is able to compute discrete logarithms easily in the group G, then they
can find r from y and compute m = c · hr. Much can be said about the security of generic
Elgamal, i.e. without specifying what the group G is, for which we refer the reader to [KL]
since our goals lie elsewhere.

2.3 Generic Attacks

Next we take a look at some well-known attacks for solving DLogG,g(h). These attacks are
generic in the sense that they work for any group G. We will later see that in practice all
groups that are used as G have a strong algebraic or geometric structure, which can in many
cases be exploited to yield much more powerful attacks.

Pohlig-Hellman Decomposition

It turns out to be surprisingly difficult to choose a secure group G as we briefly discussed
before Remark 2.2.6. Theorem 2.3.1 explains why G should be such that #G is divisible by
a large enough prime.
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Theorem 2.3.1 (Pohlig-Hellman). If the group order q is a product of powers of small
primes pi,

q = pe11 . . . pekk ,

then solving DLogG,g(h) is easy if solving discrete logarithms in all subgroups of G of prime
order is easy.

Proof. The proof of Theorem 2.3.1 is a classical application of the Chinese Remainder The-
orem. Denote

gi := gq/p
ei
i , hi := hq/p

ei
i , xi :≡ x (mod peii ) .

Then hi = gxii . Let Gi denote the subgroup of order peii . If we can solve all DLogGi,gi (hi) we
can piece together the xi using the Chinese Remainder Theorem to find x (mod q).

It remains to show how to solve DLogGi,gi (hi) when pi is small. Since xi is defined modulo
peii , we can write

xi = αi,0 + αi,1pi + . . .+ αi,ei−1p
ei−1
i ,

so

hi = g
αi,0
i (gpii )αi,1 . . .

(
g
p
ei−1
i
i

)αi,ei−1

.

Raising this to the pei−1
i -th power yields the equation

h
p
ei−1
i
i =

(
g
p
ei−1
i
i

)αi,0
.

This is a DLP in the subgroup of G of order pi which we assume we can solve, i.e. we assume
that the αi,0 can be found. Next compute(

hig
−αi,0
i

)pei−2
i

=

(
g
p
ei−1
i
i

)αi,1
and again suppose we can solve this DLP to recover the αi,1. We can continue in this way
to recover all αi,j and eventually all xi.

Theorem 2.3.1 implies that we really need G to contain at least one subgroup where the
DLP is hard to solve. In other words, solving a DLP in G is as hard as solving a DLP in the
largest prime order subgroup of G. In practice this means that #G should be divisible by
a large prime, since the security usually always depends most critically on the order of the
group.

Pollard Rho

Let q := #G. It is clear that DLogG,g(h) can always be solved in time O (q) by exhaustive
search, but even in generic groups the DLP can actually be solved much faster using a
collision algorithm.
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We now describe the Pollard rho algorithm [Pol], which is a generic collision/square-root
algorithm to solve DLogG,g(h), meaning it works for any group G and has complexity O

(
q1/2
)

instead of O (q). Imagine choosing random elements x1, x2, . . . from Z/qZ and constructing
a random walk gx1 , gx2 , . . . until we hit h. This can be expected to terminate successfully
in time O(q). Now suppose instead that we store all of the elements that we have already
walked through and at some point observe a collision in the walk. If we set up the random
walk in a particular way, this collision is enough to solve the DLP and one can show that
finding such a collision is significantly easier than hitting the exact element h.

We follow [Gal2] where many more details and improvements can be found. The idea is
to find integers ai, bi, aj, bj ∈ Z/qZ, bi 6= bj, such that

gaihbi = gajhbj ,

from which we can solve
h = g(ai−aj)(bj−bi)−1 (mod q)

and so find the discrete logarithm.
The way to do this is to randomly generate a sequence of elements of the form si := gaihbi

until a match is found, which happens faster than “expected”, which is explained by the
birthday paradox. Of course it is crucial to know the exponents ai, bi for every si in this
sequence. The classical way of doing this is to define a function f : G → G which is
pseudorandom enough and explicit in how it changes the exponents ai, bi. The sequence (si)
is then generated iteratively by choosing s1 = g and setting si+1 = f(si). Because G is finite,
a collision will eventually happen, i.e. sk = sk+l for some k and l > 0. This is depicted in
Figure 2.1. Note also that after the collision the values of the sequence will keep repeating
in a cycle of length l. It is easy to find a function f that is pseudorandom enough and has
the required properties. We refer the reader to [Gal] for details.

The main difficulty is to recognize that a collision has occurred. Naively one might
imagine that all si need to be stored and compared to every new value in the sequence to
detect a collision, which would require a vast amount of time and memory. The method used
by Pollard in [Pol] was, instead of just computing the sequence (si), to compute both (si)
and (s2i) simultaneously. The latter can be computed iteratively by starting with s2 = f(s1)
and always applying f twice since s2(i+1) = f(f(s2i)). A collision has occurred if si = s2i. It
is easy to see that this happens precisely when i ≥ k and l | i. Moreover, si = s2i occurs for
some i between k and k+ l−1 because there is precisely one number between k and k+ l−1
that is divisible by l.

To say something about the complexity of this attack, one needs to know that the ex-
pected lengths of the tail and the cycle are

√
πq/8. In fact, the expected value of i for

which si = s2i is conjectured to be approximately 0.823
√
πq/2. Again, the reader is referred

to [Gal] for details, but this proves that we can expect to be able to solve the DLogG,g(h) in

time O
(
q1/2
)
.
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Figure 2.1: Collision in the pseudorandom sequence
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Example 2.3.2. At the time of writing this 280 operations is close to the boundary of being
possible to do, so a cryptosystem with 80 bits of security1 might be possible to break with
relatively modest algorithmic improvements, or improvements to CPU and memory technol-
ogy. If Pollard rho is the best known attack against DLogG,g(h), then such a security level is
obtained when #G is divisible by a prime of size roughly 160 bits due to the Pohlig-Hellman
decomposition (Theorem 2.3.1).

2.4 Index Calculus

In this section we discuss (classical) index calculus, which is an algorithm for solving the
DLP when G is the multiplicative group of a finite field. Here we consider the field to be
a prime field Fp so that G has p − 1 elements, represented by integers in [1, p − 1]. Index
calculus is significantly different from e.g. Pollard rho and other generic methods in that
it has a subexponential running time, but to achieve this it needs to use certain algebraic
properties of F×p that more general finite cyclic groups can not be expected to have. We
present only a very classical version of index calculus here.

Suppose we have a discrete logarithm problem h ≡ gx (mod p). Let FB be the set of
all primes ≤ B. We call this set the factor base. Suppose we know the base-g discrete

1A cryptosystem, or cryptographic primitive, is said to have b bits of security if it can be broken in 2b

operations with currently known methods.
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logarithms of all r ∈ FB, i.e. numbers logg r modulo p− 1 such that r ≡ glogg r (mod p). If
h is a product of powers of primes in FB so that

h =
∏
r∈FB

rer , (2.4.1)

then
x ≡

∑
r∈FB

er logg r (mod p− 1) .

Of course it is extremely unlikely that h would be of the form (2.4.1) unless B is huge. The
standard approach is to instead look for products hgk (mod p) that are of the form

hgk =
∏
r∈FB

rer . (2.4.2)

Once such an hgk (mod p) is found, x can be solved as

x ≡
∑
r∈FB

er logg r − k (mod p− 1) .

The difficulty of finding an integer k such that (2.4.2) holds clearly depends extremely
strongly on B.

It remains to explain how the logarithms logg r can be computed. The standard approach
is to choose random integers l ∈ Z/(p − 1)Z, compute gl (mod p) and factor the result. If
the prime decomposition involves only powers of primes in FB, then

gl =
∏
r∈FB

rer , l =
∑
r∈FB

er logg r .

Collecting #FB + 1 such relations

l1 ≡
∑
r∈FB

er,1 logg r (mod p− 1)

l2 ≡
∑
r∈FB

er,2 logg r (mod p− 1)

...
...

l#FB+1 ≡
∑
r∈FB

er,#FB+1 logg r (mod p− 1)

yields an overdetermined sparse linear system in #FB variables {logg r}r∈FB . This almost
certainly has only one non-trivial solution, which can be found roughly in timeO (w · (#FB)2)
using sparse linear algebra techniques, where w is the average number of non-zero monomials
in the equations.
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Remark 2.4.1. Note that in the above example linear algebra must be done over Z/(p− 1)Z,
which complicates things a little bit. One might need to solve the equations modulo prime
power factors of p− 1 first and then combine these using the Chinese Remainder Theorem.

Finding one linear relation between the {logg r}r∈FB is harder when #FB is smaller, but
on the other hand the number of relations needed is also smaller. When #FB is bigger
the size of the linear system is bigger and the hardness of solving it increases quadratically.
The usual approach is to choose B to be such that the complexity of the relation search
step is of the same order as the complexity of the linear algebra step. One more aspect in
the complexity consideration is the difficulty of efficiently determining whether a particular
number modulo p actually decomposes as a product of powers of primes in FB. We will not
go into such details and instead only present the well-known heuristic complexity result.

Theorem 2.4.2. If B is chosen appropriately, the complexity of the index calculus algorithm
can be made subexponential. It is possible to prove under some heuristic assumptions that a
complexity of

O (Lp(1/3, c)) = O
(
e(c+o(1))(ln p)1/3(ln ln p)2/3

)
can be obtained, where c is some small constant.

Proof. See for example [SWD].

Example 2.4.3. Recall from Example 2.3.2 that if Pollard rho was the best attack, p would
have to be at least 160 bits to ensure 80 bits of security. Unfortunately, due to index calculus
the DLP in F×p with such a small p is very easy to break. Instead one must take p to be
around 1248 bits to ensure 80 bits of security. In practice p would often be taken to be 2048
bits.

The idea behind index calculus can be generalized to other groups with enough “good”
structure. Let G be a cyclic group of prime order generated by g and consider the DLP
h = gx. We need

1. a subset F ⊆ G called the factor base such that a large enough fraction of elements of G
can be written as products of factor base elements;

2. a way of easily determining whether an element of G is a product of factor base elements
and in the affirmative case finding the decomposition (in particular, we need a way of
easily determining whether an element of G is in F);

3. a way of easily constructing more than #F non-trivial sparse relations involving only
factor base elements.

If these conditions hold, the standard approach is to compute the complexity of finding
#F + 1 relations and balancing that with the complexity of solving a sparse linear system
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of #F + 1 equations with some average weight2 estimated as a function of #F . From this
one can then solve the required #F .

There exists a number of improvements and modifications of the basic index calculus
method. We will discuss later so-called double large prime index calculus algorithms, where
the decompositions of group elements as in (2.4.2) is allowed to involve also up to two non-
factor base group elements which are usually called large primes. In the classical F×p -version
of double large prime index calculus the product is allowed to contain powers of at most
two primes larger than the bound B, hence the terminology. These non-factor base elements
must then somehow be eliminated to produce the linear system in #F variables. The index
calculus algorithms discussed in Chapter 3 are all of this type.

2.5 Abelian Varieties over Finite Fields

In the rest of this thesis we will mainly be interested in DLPs where the group G (recall
Definition 2.2.1) is the group of Fp-valued points on the Jacobian of a genus g curve. In the
case of elliptic curves (g = 1) this is known to yield (apparently) extremely secure and high
performing cryptosystems, as was first suggested by Koblitz [Kob] and Miller [Mil]. Later
Koblitz [Kob2] suggested using the Jacobians of hyperelliptic genus g > 1 curves over Fp.
These are principally polarized abelian varieties where arithmetic is convenient to do using
Mumford coordinates and Cantor’s algorithm [Was, Can2].

In this Section we recall some basic properties of abelian varieties over finite fields and
their isogeny classes.

Homomorphisms and Isogenies

Let A,B be abelian varieties over a finite field of characteristic p. We denote the Z-module
of homomorphisms A → B by Hom(A,B) and the ring of endomorphisms A → A by EndA.
It is often more convenient to instead work with the vector spaces

Hom0(A,B) := Hom(A,B)⊗Z Q , End0A := EndA⊗Z Q .

Definition 2.5.1. A homomorphism f : A → B is called an isogeny if im f = B and ker f
is finite. If an isogeny A → B exists we say that A and B are isogenous.

The degree of an isogeny f : A → B is the degree of the function field extension

deg f := [K(A) : f ∗K(B)] .

In general, if the extension has separable degree [K(A) : f ∗K(B)]sep, then

#(ker f) = [K(A) : f ∗K(B)]sep .

2By the weight of a linear equation we mean the number of non-zero terms appearing in it.
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If the extension is separable we call f a separable isogeny, in which case

#(ker f) = deg f .

For more details see [Mum2].
Next we need to understand to what extent a finite subgroup K ⊂ A determines an

isogeny.

Theorem 2.5.2 ([Mum2]). Let X be an algebraic variety and G a finite group of automor-
phisms of X. Suppose that for any x ∈ X, the orbit Gx of x is contained in an affine open
subset of X. Then there is a pair (Y, g) where Y is a variety and g : X → Y a morphism
such that

i) as a topological space (Y, g) is the quotient of X for the G-action;

ii) if g∗(OX)G denotes the subsheaf of G-invariants of g∗(OX) for the action of G on g∗(OX)
deduced from i), then the natural homomorphism OY → g∗(OX)G is an isomorphism.

The pair (Y, g) is determined up to isomorphism by these conditions. Moreover, g is finite,
surjective and separable. The variety Y is called the quotient of X by G and is denoted by
X/G.

If X = A is an abelian variety and K ⊂ A a finite subgroup acting by translation, then
A/K admits a natural structure of an abelian variety.

Theorem 2.5.3 ([Mum2]). Let A be an abelian variety. Then there is a one-to-one corre-
spondence between the two sets of objects:

1) finite subgroups K ⊂ A;

2) separable isogenies f : A → B where B is determined up to isomorphism.

The correspondence is set up by K = ker f and B = A/K.

Unfortunately, Theorem 2.5.3 does not describe all isogenies but only the separable ones.
For a more complete description one needs to use the scheme theoretic approach and define
quotients of group schemes, which we will not discuss but instead refer the reader to [Mum2].

One important example of a separable endomorphism is given by the multiplication-by-n
map

[n] : A → A .
The kernel of [n], i.e. the group of n-torsion points of A, is denoted A[n].

Theorem 2.5.4 ([Mum2]). If dimA = g, then deg[n] = n2g. Let p be the characteristic of
the field of definition of A.

If p - n, then [n] is separable, #A[n] = n2g and A[n] ∼= (Z/nZ)2g.
If p | n, then [n] is inseparable. Moreover, there is an integer i with 0 ≤ i ≤ g such that

A[pm] ∼= (Z/pmZ)i for all m ≥ 1.
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Definition 2.5.5. An abelian variety A is called ordinary if i = g in Theorem 2.5.4.

Lemma 2.5.6. If there is an isogeny f : A → B, then there is also an isogeny f̂ : B → A
such that

f ◦ f̂ = f̂ ◦ f = [deg f ] .

Proof. The reason is that ker f ⊆ A[deg f ] so [deg f ] : A → A factors through A/ ker f .

Lemma 2.5.6 implies that it is reasonable to talk about two abelian varieties being isoge-
nous. In fact, being isogenous is an equivalence relation and we can talk about the isogeny
class of an abelian variety.

Remark 2.5.7. Note that f̂ is not what is usually called the dual isogeny.

Definition 2.5.8. Let A be defined over Fq and let π ∈ Gal(Fq/Fq) be the Frobenius
automorphism. Since π leaves A invariant, it induces an endomorphism π ∈ EndA called
the Frobenius endomorphism.

Clearly the Frobenius π : A → A acts as the identity precisely on the points A(Fq). The
degree of the Frobenius is

deg π = [K(A) : π∗K(A)] = qg .

The extension is purely inseparable and ker π = {0}, so π is an isogeny.

Honda-Tate Theory

Let A be a g-dimensional abelian variety over Fp. In this section we recall how EndA and
End0A reflect the structure of A. In particular we present the famous result of Honda
and Tate which classifies isogeny classes of abelian varieties over finite fields in terms of the
endomorphism structure.

We start with a simple observation that tells us that the best we can possibly get from
End0A is information about the isogeny class.

Lemma 2.5.9. End0A only depends on the isogeny class of A.

Proof. Let f : A → B be an isogeny, n := deg f , and f̂ : B → A an isogeny such that
f̂ ◦ f = [n] (see Lemma 2.5.6). Then for any ϕ ∈ End0A, f ◦ϕ ◦n−1f̂ ∈ End0 B. This yields
a ring isomorphism End0A ∼= End0 B.

Definition 2.5.10. An abelian variety is simple if it contains no non-trivial abelian subva-
rieties.

Theorem 2.5.11 (Poincaré-Weil [Mum2]). Let A be an abelian variety. Then A is isogenous
to

An1
1 ×An2

2 × . . .×Ankk ,

where the abelian varieties Ai are simple and non-isogenous. The integers ni are uniquely
determined and Ai are uniquely determined up to isogeny.
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Lemma 2.5.12. If A is simple, every endomorphism is an isogeny.

Proof. If f ∈ EndA, then im f is an abelian subvariety of A so unless f = 0, im f = A
which also implies that ker f is finite, so f is an isogeny.

Theorem 2.5.13 ([Mum2]). End0A is a finite-dimensional semisimple algebra over Q. The
Artin-Wedderburn theorem implies that such an algebra is a finite product of matrix algebras
over division rings. If A is simple, End0A is a division ring.

The next theorem explains the structure of the endomorphism ring End0A for simple
abelian varieties and the significance of the Frobenius endomorphism.

Theorem 2.5.14 ([MW]). Let A be a simple g-dimensional abelian variety over Fq. Denote
the characteristic polynomial of the Frobenius endomorphism by f , so f(π) acts as [0] on A.
Then

1) f = me for some integer e and irreducible monic polynomial m with integer coefficients;

2) the center of the division ring End0A is the number field Q(π);

3) [End0A : Q] = e2[Q(π) : Q] and 2g = e[Q(π) : Q], so

2g = [End0A : Q(π)]1/2 · [Q(π) : Q] ;

4) the absolute value of π is q1/2 under every embedding of Q(π) in C. In other words, all
roots of f have absolute value q1/2.

Theorem 2.5.15 ([MW]). Let A and B be abelian varieties over a finite field Fq and fA,
fB the characteristic polynomials of their Frobenius endomorphisms. Then the following are
equivalent:

1) A and B are isogenous;

2) fA = fB;

3) The zeta-functions of A and B are the same, so #A(Fqn) = #B(Fqn) for every positive
integer n.

Definition 2.5.16. An algebraic number π is called a q-Weil number if all of its complex
embeddings have absolute value q1/2.

Combining Theorems 2.5.14,2.5.15 yields the famous result of Honda and Tate.

Theorem 2.5.17 (Honda-Tate). There is one-to-one correspondence between isogeny classes
of abelian varieties over a finite field Fq and conjugacy classes of q-Weil numbers.
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Definition 2.5.18. A CM field is a totally imaginary extension of a purely real number
field.

Definition 2.5.19. A simple abelian variety A of dimension g over any field is said to be
of CM type if End0A is a CM field of degree 2g.

If A in Definition 2.5.19 is defined over a finite field, then Theorem 2.5.14 implies that
End0A is generated as an algebra over Q by the Frobenius endomorphism. The endomor-
phism ring EndA is an order O ⊆ OK containing Z[π, π].

2.6 Constructing Curves for Cryptography

Our goal is to understand the CM method for generating hyperelliptic genus 3 curves C/Fp
such that the group of Fp-valued points on its Jacobian JacC(Fp) has a known almost prime
order, i.e. the order is the product of a large prime and a small cofactor. We start by
discussing an analogous result for elliptic curves which is much easier to understand. It was
developed by Atkin and Morain in [AM] for their elliptic curve primality testing algorithm.

Elliptic Curves

Let E be an elliptic curve over complex numbers defined by an equation y2 = x3 +Ax+B,
where A,B ∈ C. The discriminant ∆ := −4A3 − 27B2 must be non-zero for this equation
to define a non-singular plane curve. The j-invariant

j(E) := 1728
4A3

4A3 + 27B2

is well-known to classify isomorphism classes of elliptic curves over algebraically closed fields
(see [Was, Sil1]), so the moduli space of elliptic curves up to isomorphism is parametrized by
the j-invariant. Recovering an elliptic curve (or a representative for the isomorphism class)
from a given j-invariant is also easy, namely the curve

y2 = x3 − 27j

4(j − 1728)
x+

27j

4(j − 1728)
(2.6.1)

has j-invariant j.

Theorem 2.6.1 (Torelli [Mil2]). Over an algebraically closed field the Jacobian variety of a
genus g curve (up to isomorphism) is uniquely determined up to isomorphism as a principally
polarized g-dimensional abelian variety.

According to Theorem 2.6.1, to understand isomorphism classes of elliptic curves we
can just as well study principally polarized 1-dimensional abelian varieties3. Over complex

3Of course elliptic curves are isomorphic to their Jacobians, but this is an instructive point of view that
helps us understand the higher dimensional case.
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numbers these are precisely the compact Riemann surfaces C/Λ, where Λτ := Z + τZ is the
period lattice and =τ > 0. In the complex upper half-plane two values τ and τ ′ yield the
same lattice precisely when they differ by a Möbius transformation.

Let q := e2πiτ where τ is in the complex upper half-plane, and let σ3(n) denote the sum
of cubes of divisors of an integer n. On the complex upper half-plane the function

j̃(τ) :=
(1 + 240

∑∞
n=1 σ3(n)qn)

3

q
∏∞

n=1 (1− qn)24 (2.6.2)

is invariant under Möbius transformations and one can show (see [Sil2]) that the field of all
such functions is C(j̃). Since the modular invariant j̃ is a function on the moduli space of
these 1-dimensional principally polarized abelian varieties over C (i.e. the space of complex
1-dimensional algebraic tori), it should be possible according to Theorem 2.6.1 to relate it to
the classical invariant j on the moduli space of genus 1 curves. Indeed, the correspondence
is exactly what one would hope.

Theorem 2.6.2 ([Sil1]). For an elliptic curve E and the corresponding complex torus C/Λτ ,

j(E) = j̃(τ) .

Let Λ be the lattice corresponding to an elliptic curve E/C, in which case the endomor-
phism ring is simply

EndE = {α ∈ C | αΛ ⊆ Λ} .
It is not hard to show that EndE is either Z or an order O in an imaginary quadratic field
(a CM field) K, i.e. a full sublattice of OK which is also a subring.

Theorem 2.6.3 ([Sil2]). Let ι : K ↪→ C be an embedding of the imaginary quadratic field K
in C. Then the lattice Λ equals ι(a) for some ideal a ⊆ O.

Moreover, a is determined up to principal fractional O-ideals so the lattice is determined
up to scaling by an element of the ring class group Cl(O). This establishes a one-to-one
correspondence between the set of isogenous elliptic curves up to isomorphism and the ring
class group Cl(O).

We suppose from now on that EndE = OK4. The numbers j(E) have some amazing
properties.

Theorem 2.6.4 ([Sil2]). For any elliptic curve E, j(E) is an algebraic integer over Q and
conjugate j-invariants belong to isogenous elliptic curves.

From Theorem 2.6.3 and Theorem 2.6.4 it follows that the minimal polynomial of j(E)
has degree equal to the class number hK of K and Q(j(E)) is the Hilbert class field of K [Sil2].

Computing representatives for the entire isogeny class of a given elliptic curve E = C/ι(a)
with CM by OK (a is an OK-ideal) can be done as follows. Fix an embedding ι : K ↪→ C.

4This is merely for the sake of simplicity.
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Find representatives ai for each ideal class and for the ideal lattices ι(ai) compute the modular
j-invariants j̃(ι(ai)) using (2.6.2) up to high enough precision. Then form the polynomial

HK(x) :=

hK∏
i=1

(
x− j̃(ι(ai))

)
(2.6.3)

and recognize the coefficients of the polynomial as integers. Note that each elliptic curve over
C in the isogeny class can be found from the conjugate roots of this polynomial using (2.6.1).

In cryptography we are not interested in elliptic curves over complex numbers but rather
over some finite field Fp. We restrict to prime fields here. An elliptic curve E/Fp has EndE
either an order O in an imaginary quadratic field K or an order in some (non-commutative)
quaternion algebra over Q. In the former case E is ordinary as an abelian variety, and this
is the only case we consider from now on.

Remark 2.6.5. It is easy to see that EndE must be strictly bigger than Z because the (in-
separable) Frobenius endomorphism always exists and does not correspond to multiplication
by any integer.

Suppose E/C has a local model over Zp and EndE = OK for some imaginary quadratic
field K. Also suppose that p - ∆, where ∆ is the discriminant of the cubic polynomial and
that p is unramified in OK . Write p = ππ. Now the elliptic curve can be reduced modulo
p to yield an elliptic curve E/Fp. Moreover, j(E) ∈ Fp satisfies the mod-p reduction of the
minimal polynomial of j(E), so j(E) will necessarily have a linear factor over Fp. The action
of π will reduce modulo p to act as the Frobenius endomorphism on E. In fact, E is the
Serre-Tate canonical lift of E.

The Atkin-Morain CM method [AM] for generating elliptic curves thus proceeds as fol-
lows. First choose a quadratic imaginary field K/Q. Next choose a prime p that is unramified
in OK and solve for π ∈ OK such that p = ππ. Compute representatives ai ⊆ OK for each
of the hK ideal classes and choose an embedding ι : K ↪→ C. Use (2.6.2) to compute the
modular invariants corresponding to the lattices ι(ai) and form the polynomial (2.6.3). If
enough precision was used, the coefficients of the polynomial can be recognized as integers.
Reduce the resulting polynomial modulo p and find all roots in Fp. Finally use (2.6.1) to
recover an elliptic curves over Fp with j-invariants equal to these roots. Compute also their

quadratic twists E
′
. The orders of E(Fp) and E

′
(Fp) are Nm (π ∓ 1), in some order. If one

of these norms is almost prime, all that remains to be done is check which one of the twists
it is.

Genus 3 Curves

There are two types of genus 3 curves: hyperelliptic and non-hyperelliptic. Hyperelliptic
curves are ramified double covers of P1 and the rest are non-hyperelliptic. Hyperelliptic
genus 3 curves over any field of odd or 0 characteristic have an affine model of the form

y2 = x7 + a6x
6 + a5x

5 + a4x
4 + a3x

3 + a2x
2 + a1x+ a0 ,
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which always has a singularity at∞. This singularity can be resolved to yield an embedding
into higher dimensional projective space, and in particular hyperelliptic genus 3 curves are
never smooth plane curves. Furthermore, if the characteristic is not equal to 7 an even
simpler model

y2 = x
(
x6 + a4x

4 + a2x
2 + a0

)
(2.6.4)

can be obtained. Ramification occurs at the roots of x(x6 + a4x
4 + a2x

2 + a0) and at ∞,
which are called Weierstrass points of the curve.

One can show that non-hyperelliptic genus 3 curves are precisely the smooth plane quartic
curves, for which the projective embedding is given by the canonical divisor [Har]. This
means that the geometry of non-hyperelliptic curves is in some sense simpler than that of
hyperelliptic curves and is exploited by Diem to mount an efficient index calculus algorithm
against Jacobians of non-hyperelliptic genus 3 curves [Die, Die2, DT, LL], which will be the
topic of Chapter 3.

Almost all genus 3 curves are non-hyperelliptic in the following sense.

Theorem 2.6.6. The moduli space of genus 3 curves is 6-dimensional and the locus of
hyperelliptic genus 3 curves is of codimension 1.

Theorem 2.6.7 ([Mil2]). Every 3-dimensional principally polarized abelian variety is the
Jacobian of a genus 3 curve.

Theorems 2.6.6, 2.6.7, 2.6.1 imply that an arbitrarily chosen 3-dimensional principally
polarized abelian variety is “almost certainly” the Jacobian of a non-hyperelliptic curve, so
all the attacker needs to do is map the DLP in the moduli space of Jacobians of genus 3
curves to almost any other point and they can expect to obtain a DLP on the Jacobian of a
non-hyperelliptic genus 3 curve, which is vulnerable to the fast index calculus attack. These
are called isogeny attacks and will be discussed further in Chapter 4.

According to Hasse’s theorem [Was, Sil1], an elliptic curve E/Fp satisfies

|p+ 1−#E(Fp)| ≤ 2
√
p ,

which DLPs in E(Fp) very good candidates for cryptography. Recall from Section 2.3 that
for security against Pollard rho we need p be at least 160 bits. Recall from Example 2.4.3
that this field size is much smaller than what would be needed for a DLP in F×p due to the
lack of an efficient index calculus type algorithm (see [Sem, Sem2] for recent work on elliptic
curve index calculus).

The discrete logarithm problem (DLP) in the Jacobian of a genus g curve with g > 1 over
a finite field Fp was proposed for use in public key cryptosystems by Koblitz [Kob2]. The
potential advantage over elliptic curve cryptosystems comes from the fact that # JacC(Fp) =
pg +O(p(2g−1)/2). More precisely,

Theorem 2.6.8 (Hasse-Weil). Let C/Fp be a hyperelliptic curve of genus g. Then the
Jacobian JacC is a g-dimensional principally polarized abelian variety with(

p1/2 − 1
)2g ≤ # JacC(Fp) ≤

(
p1/2 + 1

)2g
.
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Due to Theorem 2.6.8 the finite field Fp can be smaller if g is larger, while still yielding
a group of the same size with potentially the same security level. In particular, group of
Fp-rational points on a Jacobian of a genus 3 hyperelliptic curve is roughly p3.

Remark 2.6.9. Keep in mind that a genus 3 hyperelliptic curve C itself has only approximately
p Fp-rational points.

Generating hyperelliptic genus 2 and genus 3 curves over Fp with a prescribed number
of Fp-points on their Jacobians is significantly more difficult than generating elliptic curves
was. In both genus 2 and genus 3 these algorithms were developed and studied by Annegret
Weng [Wen, Wen2]. We will only discuss the case of genus 3 and not go into much detail
due to the complicated nature of the algorithm. In principle the approach is the same as for
elliptic curves:

1) Choose a sextic CM field (recall Definition 2.5.18) K/K0 where K0 is a totally real cubic
field with class number 15 and OK0 = Z[w], such that i ∈ OK6, and a prime p that is
unramified inK7 and splits as p = ππ where π ∈ OK is a p-Weil number, i.e. each complex
embedding has absolute value p1/2. Make sure that one of Nm (π ∓ 1) or Nm (iπ ∓ 1) is
divisible by a large prime. The four different Weil numbers ±π,±iπ are associated to four
quartic twists of the curve and the above norms give the numbers of Fp-rational points
on their Jacobians.

2) Find all primitive CM types Φ := {ϕ1, ϕ2, ϕ3} on K [Shim, Wen] and for each of them
construct a principal polarization on the period lattice obtained by embedding Φ : OK ↪→
C3 (see [Wen]). According to Shimura-Taniyama CM theory [Shim] the finite polarized
class group

{(a, µ)|a an invertible fractional ideal of OK , aa = µOK , µ ∈ K0 totally positive}
{(µOK , µµ)|µ ∈ K}

acts freely and transitively on the set of isomorphism classes of isogenous principally
polarized abelian varieties of a particular CM type8. Using this, it is not hard to find
period lattices along with the associated Riemann forms representing isomorphisms classes
of every principally polarized abelian variety with CM by OK .

Remark 2.6.10. Different CM types might embed OK-ideals into isomorphic lattices and
hence yield isomorphic principally polarized abelian varieties, as is explained in [Wen]. In
the extreme case where K is a cyclic CM field, every CM type yields an isomorphic set
of lattices and hence the same set of principally polarized abelian varieties, so it suffices
to consider only one CM type.

5This ensures that a principal polarization can be constructed on the period lattice (see [Wen]).
6This ensures that we find a hyperelliptic curve (see [Wen] or Theorem 4.4.2).
7This ensures that π is an ordinary p-Weil number (see the proof of Theorem 4.2.3).
8The ideal a describes how the lattice changes and µ describes the change in the polarization.
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3) Once a complete set of isomorphism classes of principally polarized abelian varieties with
CM by OK has been found, one can compute analytically the associated theta constants
to high precision and consequently recover the Rosenhain invariants of the hyperelliptic
curve, as is explained in [Wen].

4) Since i ∈ OK , the hyperelliptic curves that will be produced have extra symmetry which
significantly simplifies the classical invariant theory of the singular binary octic plane
models of the curves [Shio]. Weng [Wen] shows that such curves are classified up to
isomorphism by a set of five absolute Shioda invariants, which are algebraic numbers
over Q and can be computed to high precision from the Rosenhain invariants.

5) If enough precision was used in computing the absolute Shioda invariants for each CM
point the five minimal polynomials (Shioda class polynomials) can be recovered. In other
words, one can recover the five polynomials, with rational coefficients9, whose roots are
the the five sets of absolute Shioda invariants.

Remark 2.6.11. Given these five Shioda class polynomials, it is not clear which combina-
tions of their roots yield valid sets of absolute Shioda invariants.

6) Next reduce the Shioda class polynomials modulo the prime p and find all of their roots
in Fp. Weng [Wen] explains then how to recover a model over Fp for the curves correspond-
ing to valid combinations of these Fp-rational absolute Shioda invariants. Remark 2.6.11
still stands, so one must try all combinations to see which ones yield genus 3 hyperelliptic
curves over Fp.

7) It remains to form the Jacobians for all hyperelliptic genus 3 curves that have been found.
At least one of the curves, or one of its quartic twists, will have Jacobian JacC such that
# JacC(Fp) has order divisible by a large prime.

The algorithm has been implemented by Weng and several examples are presented in [Wen].

Genus 3 CM method ([Wen]). Let K be a sextic CM field with totally real cubic subfield
K0 := Q(w) such that i ∈ OK and OK0 = Z[w]. Let p be a prime that is unramified in K
and let π ∈ OK be a p-Weil number. Suppose K0 has class number 1 and K has small class
number. Then it is possible to find the equation of a hyperelliptic genus 3 curve C/Fp such
that JacC(Fp) has order Nm(π ∓ 1) or Nm(iπ ∓ 1).

Remark 2.6.12. Many of the assumptions in the genus 3 CM method can be relaxed. The
reader is referred to [Wen] for details.

9Shimura [Shim] proves that all complex CM abelian varieties are in fact defined over Q, so the Galois
group Gal(Q/Q) acts by permutations in the five sets of absolute Shioda invariants. This proves that the
Shioda class polynomials have rational coefficients.
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Chapter 3

Index Calculus in Genus 3

3.1 Diem’s Index Calculus

There are several variants of Diem’s index calculus for low degree plane curves. We restrict
to the case of non-hyperelliptic genus 3 curves over finite fields embedded as smooth plane
quartics using the canonical embedding [Har]. These are all so-called double large prime
index calculus algorithms (recall Section 2.4), where elements of the group are decomposed
into sums of factor base elements and at most two non-factor base elements (large primes).
The large primes are then eliminated using various methods to produce relations consisting
only of factor base elements.

Let C be a non-hyperelliptic curve of genus 3 over a finite field Fq. Using the canonical
embedding it can be realized as a smooth plane quartic. Let P0 be an Fq-rational point on
C. We want to find an integer x such that

D2 − 3[P0] = x · (D1 − 3[P0])

provided that a solution exists. Here deg(D1) = deg(D2) = 3 and both D1 and D2 are sums
of three Fq-rational points:

D1 = [P 1
1 ] + [P 1

2 ] + [P 1
3 ] , D2 = [P 2

1 ] + [P 2
2 ] + [P 2

3 ] .

For simplicity we assume that both divisors D2 − 3[P0] and D1 − 3[P0] live in the same
subgroup of prime order p.

In general, any Fq-rational divisor can be written in a unique way in the along P0 max-
imally reduced form D − `[P0] (see [Hes]), where ` ≤ 3 and in the generic case ` = 3. If
D decomposes into a sum of three Fq-rational points, it is called completely split. If the
divisor is not completely split, the standard strategy is to multiply both sides of the DLP by
constants until they become completely split and then proceed as usual. Once the discrete
logarithm has been found, these multipliers must be cancelled. We refer the reader to [Die2]
for details.
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Here is the algorithm as given in [Die2] with one modification. Diem suggests taking the
factor base to be slightly larger to ensure that the algorithm terminates successfully. The
size used below is an absolute minimum for which we can expect the algorithm to succeed.
In practice the size should be slightly bigger.

Choosing the factor base: Choose a set F ⊆ C(Fq) with d((3/2) ln q + 4)1/2 q1/2e el-
ements. Include the points {P i

j} ∪ {P0} in F . The set F is called the factor base. Let
L := C(Fq) \ F be the set of large primes.

Tree building: We constuct a tree T as follows.

Let V = {∗} be the set of vertices of T. Here ∗ denotes a distinguished special vertex. Let
E = ∅ be the set of edges.

for all unordered pairs (F1, F2) ∈ F × F such that F1 6= F2 do

Draw a line through the points F1 and F2. This will intersect the curve C at two other
points L1 and L2.

if L1 and L2 are not both Fq-rational then

Move on to the next pair.

end if

if L1 ∈ V ∪ F and L2 /∈ V ∪ F then

Add a vertex to T labeled L2.

If L1 ∈ V draw an edge to T connecting L1 and L2 and label the edge with the linear
relation [F1] + [F2] + [L1] + [L2] = 0. If L1 ∈ F draw an edge to T connecting ∗ and
L2 and label the edge with the linear relation [F1] + [F2] + [L1] + [L2] = 0.

end if

if #V ≥ dq3/4e then

break (tree building succeeded)

end if

end for

if #V < dq3/4e then

Tree building failed. Restart the algorithm with a different set F .

end if

Relation search:

for all unordered pairs (F1, F2) ∈ F × F , F1 6= F2, that were not already used in tree
building do

Draw a line through the points F1 and F2. This will intersect the curve C at two other
points L1 and L2.

if L1 and L2 are not both Fq-rational then

Move on to the next pair.

end if
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if L1, L2 ∈ V ∪ F then

If one or both of L1, L2 is in V, use the tree and the linear relations labeling the edges
to write [L1] and [L2] in terms of the factor base. A relation∑

F∈F

λF [F ] = 0

obtained in this way is called a full relation.

end if

if the number of full relations found is ≥ #F + 1 then

break (relation search succeeded)

end if

end for

if the number of full relations is ≤ #F then

Restart the algorithm with a different set F .

end if

Linear algebra step:

Construct a sparse matrix M with #F columns, each column labeled by a point of F .

The first row of M is given by the points in the divisor D1 − 3[P0].

The second row of M is given by the points in the divisor D2 − 3[P0].

for each full relation do

Add a row to M corresponding to the left-hand side of the full relation.

end for

Use sparse linear algebra techniques to find a non-zero vector v such that Mv = 0 over the
ring Z/pZ where p is the order of the subgroup of the Jacobian where the DLP was defined.
Choose v to be such that the second component v2 is invertible modulo p.

Output: −v1/v2 modulo p.

Theorem 3.1.1 ([Die2]). Under some justifiable heuristic assumptions and when q is large
enough, after a constant number of attempts the algorithm terminates successfully and out-
puts a number x ∈ Z/pZ such that D2 − 3[P0] = x · (D1 − 3[P0]). The complexity of the

algorithm is Õ(q).

3.2 New Variant

In our new improved variant of the algorithm we generate the factor base in a different
way. We start with a much smaller initial set for the factor base of size Õ(q1/8), and then
build up the factor base and the graph simultaneously at the beginning. This improves the
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efficiency of the graph-building, and then after this initial step we build the graph and find
full relations simultaneously. As a result, both the overall relation collection time and the
linear algebra stage are improved. Our algorithm works as follows.

Input:

1) The Jacobian of a smooth plane quartic C over a finite field Fq;
2) An Fq-rational point P0 on the curve;

3) A discrete logarithm problem on the Jacobian

D2 − 3[P0] = x · (D1 − 3[P0])

where deg(D1) = deg(D2) = 3 and both D1 and D2 are sums of three Fq-rational
points:

D1 = [P 1
1 ] + [P 1

2 ] + [P 1
3 ] , D2 = [P 2

1 ] + [P 2
2 ] + [P 2

3 ] ;

4) The size p of a prime order subgroup1 containing D2 − 3[P0] and D1 − 3[P0].

Initialization: Let λ be a positive real number satisfying

λ exp
(
4λ8
)

= q1/8 .

Choose a set RP of d4λ q1/8e Fq-rational points on the curve. Let F be another set of points,
the factor base, and for now let

F := RP ∪ {P i
j} ∪ {P0} .

Construction of the base vertices: We construct a graph G as follows.

Let V := {∗} be the set of vertices of the graph G. Here ∗ denotes a distinguished special
vertex. Let E := ∅ be the set of edges.

for all unordered pairs (F1, F2) ∈ RP ×RP such that F1 6= F2 do

Draw a line through the points F1 and F2. This will intersect the curve C at two other
points F and L.

if F and L are Fq-rational, L /∈ V ∪ F and F /∈ V then

Let F := {F} ∪ F and add a vertex to V labeled L.

Add an edge to E connecting ∗ and L and label the edge with the linear relation
[F1] + [F2] + [F ] + [L] = 0. The vertices L constructed here we call base vertices.

end if

end for

1It is not strictly speaking necessary for the subgroup to have prime order, but this will simplify the
linear algebra step and guarantee that the DLP has a solution.
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Let B denote the set of all base vertices. Note that at this point V = B ∪ {∗}.

Construction of the triangle relations:

for all unordered pairs (B1, B2) ∈ B×B such that B1 6= B2 do

Draw a line through the points B1 and B2. This will intersect the curve C at two other
points F and L.

if F and L are Fq-rational, L /∈ V ∪ F and F /∈ V then

Let F := {F} ∪ F and add a vertex to V labeled L.

Draw a triangle in the graph with corners B1, B2 and L. Label the triangle with the
linear relation [B1] + [B2] + [L] + [F ] = 0. The vertices L constructed here we call top
triangle vertices.

end if

end for

Graph building and relation search (RS):

for all unordered pairs (F1, F2) ∈ F × F such that F1 6= F2 do

Draw a line through the points F1 and F2. This will intersect the curve C at two other
points L1 and L2.

if L1 and L2 are not both Fq-rational then

Move on to the next pair.

end if

if L1 ∈ V \B and L2 /∈ V ∪ F then

Add a vertex to V labeled L2.

Add an edge to E connecting L1 and L2 and label the edge with the linear relation
[F1] + [F2] + [L1] + [L2] = 0.

else if L1, L2 ∈ (V \B) ∪ F then

In case L1, L2 ∈ V \ B, use the graph and the linear relations labeling the edges to
write [L1] and [L2] in terms of the factor base to obtain a relation

λ1[L′1] + λ2[L′2] +
∑
F∈F

λF [F ] = 0 ,

where L′1 and L′2 are top triangle vertices, λi are ±1 and λF are integers. Then use
the triangle relations to substitute L′1 and L′2 with elements of F . In cases where
neither one or exactly one of Li is in V \B we need to perform the above substitution
process only to the one that is in V \ B. In any case we obtain a relation involving
only elements of F , which we record. We call it a full relation.

end if

if the number of full relations found is ≥ #F + 1 then

break (relation search succeeded)
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end if

end for

if the number of full relations is ≤ #F then

Restart the algorithm.

end if

In practice we do not restart the algorithm but instead re-run the for-loop. Almost certainly
it will break very soon after starting and only a few if any duplicate full relations are
produced.

Linear algebra step:

Construct a sparse matrix M with #F columns, each column labeled by a point of F .

The first row of M is given by the points in the divisor D1 − 3[P0].

The second row of M is given by the points in the divisor D2 − 3[P0].

for each full relation do

Add a row to M corresponding to the left-hand side of the full relation.

end for

Use sparse linear algebra techniques to find a non-zero vector v such that Mv = 0 over the
ring Z/pZ where p is the order of the subgroup of the Jacobian where the DLP was defined.
Choose v to be such that the second component v2 is invertible modulo p.

Output: −v1/v2 modulo p.

Theorem 3.2.1. (Heuristic) Under some justifiable heuristic assumptions and if q is large
enough, after a constant number of attempts the algorithm terminates and outputs a number
x ∈ Z/pZ such that D2 − 3[P0] = x · (D1 − 3[P0]). The size of the factor base will be
approximately 4λ4 q1/2 and the size of the graph will be approximately 4λ2 q3/4.

Proof. Correctness is easy; see for example [Die2]. It remains to prove that the size of the
factor base is sufficiently large for the algorithm to terminate. The strategy is the following.
Let N be the size of the factor base at the beginning, essentially N = #RP . First we
compute the number of factor base elements and graph vertices produced when constructing
the base vertices and the triangle relations, and express these in terms of N . Next we
compute the expected number of full relations produced in the graph building step when
allowing the graph to grow until it has Nmax vertices. Since we know that the number of full
relations needed is #F + 1, we can find an expression for Nmax in terms of N . Finally we
compute the number of factor base pairs needed to grow the graph to size Nmax. We set this
number equal to the number of factor base pairs available, which yields an equation for N .

Due to the roundabout way of computing the numbers N and Nmax, we need to have an
idea of their sizes beforehand, so that the most significant terms can be computed. For this
purpose, we assume N = Õ(q1/8), so #F = Õ(q1/2), and Nmax = Õ(q3/4), which are in line
with Diem’s choices in [Die2].
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By [DT, Prop. 14], a line through two Fq-rational points on the curve intersects the curve
at two other Fq-rational points with probability 1/2 +O(q−1/2).

SupposeRP is a set ofN = Õ(q1/8) random Fq-rational points on the curve. Construction
of the base vertices B produces(

1

2
+O(q−1/2)

)(
N

2

)
=
N2

4
+ Õ(q1/8)

base vertices and equally many factor base elements.
Construction of the triangle relations from the set B produces(

1

2
+O(q−1/2)

)(
#B

2

)
= 4

(
N

4

)4

+ Õ(q3/8)

triangles and equally many factor base elements. At this point we expect to have

#F = 4

(
N

4

)4

+ Õ(q3/8) = 4

(
N

4

)4 (
1 + Õ(q−1/8)

)
.

We will need to choose N so that in the graph building step we expect to find #F+1 full
relations. To this end, suppose that when the algorithm terminates successfully the number
of vertices in the graph is Nmax = Õ(q3/4). When the graph building starts we already
have approximately 4(N/4)4 vertices in the graph, consisting of the base vertices B and the
top triangle vertices. If the size of the graph at a particular moment is x, the probability of
adding a new vertex and edge to the graph with a particular choice of a pair (F1, F2) ∈ F×F
is (

1 +O(q−1/2)
) x
q

(
1− x

q

)
.

Hence, to add one new vertex and edge we need to try approximately(
1 +O(q−1/2)

) 1

(x/q)(1− x/q)

pairs. For each pair we try, the probability of finding a full relation through the process
described in the algorithm is (

1

2
+O(q−1/2)

)(
x

q

)2

so when the size of the graph is increased by one we expect to have found approximately(
1

2
+O(q−1/2)

)
x/q

1− x/q

more full relations.
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Once the triangle building step has been completed, the size of the graph is roughly equal
to the number of triangles, which again is roughly equal to the size of the factor base. We
denote this by

N0 = 4

(
N

4

)4

+ Õ(q3/8) .

Note that once the triangles have been constructed, the factor base does not change anymore
and only the graph is built using the factor base. The total number of full relations produced
in the entire graph building step, when the size of the graph is built from N0 to Nmax =
Õ(q3/4), is(

1

2
+O(q−1/2)

)Nmax−1∑
k=N0

k/q

1− k/q =

(
1

2
+O(q−1/2)

)(∫ Nmax

N0

x/q

1− x/q dx+ E

)

=
(q

2
+O(q1/2)

)[
−Nmax

q
− ln

(
1− Nmax

q

)
+
N0

q
+ ln

(
1− N0

q

)
+
E

q

]
, (3.2.1)

where the error term E is

E =
Nmax−1∑
k=N0

(
k/q

1− k/q −
∫ k+1

k

x/q

1− x/q dx
)
.

Since the function (k/q)/(1− k/q) is increasing, E satisfies

Nmax−1∑
k=N0

(
k/q

1− k/q −
(k + 1)/q

1− (k + 1)/q

)
=

N0/q

1−N0/q
− Nmax/q

1−Nmax/q
≤ E ≤ 0 .

Hence E ∈ Õ(q−1/4) and E/q ∈ Õ(q−5/4). If we expand out the first two terms of the
logarithms in (3.2.1), we find that the total number of full relations produced in the entire
graph building step is(q

2
+O(q1/2)

)[1

2

(
Nmax

q

)2

+ Õ(q−3/4)

]
=
q

4

(
Nmax

q

)2

+ Õ(q1/4) .

We want this to equal roughly the size of the factor base (or maybe slightly more in practice
to ensure that the algorithm terminates successfully) so we must have

q

4

(
Nmax

q

)2

= 4

(
N

4

)4 (
1 + Õ(q−1/8)

)
.

From this we can solve

Nmax

4q
=

(
N

4q1/4

)2 (
1 + Õ(q−1/8)

)
=

(
N

4q1/4

)2

+ Õ(q−3/8) . (3.2.2)
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With (3.2.2) we are ready to compute the value of N . The number of unordered pairs of

factor base elements needed to build the graph from size N0 to size Nmax = Õ(q3/4) should

equal the number of pairs available, i.e.
(

#F
2

)
= 8(N/4)8 + Õ(q7/8). Therefore,

8

(
N

4

)8

+ Õ(q7/8) =
(
1 +O(q−1/2)

)Nmax−1∑
k=N0

1

(k/q)(1− k/q)

=
(
1 +O(q−1/2)

)(∫ Nmax

N0

1

(x/q)(1− x/q) dx+ E

)
. (3.2.3)

The error term E is

E =
Nmax−1∑
k=N0

(
1

(k/q)(1− k/q) −
∫ k+1

k

1

(x/q)(1− x/q) dx
)
.

Since the function 1/((k/q)(1− k/q)) is decreasing, E satisfies

0 ≤ E ≤ 1

(N0/q)(1−N0/q)
− 1

(Nmax/q)(1−Nmax/q)

so E ∈ Õ(q1/2). Now (3.2.3) becomes

(
q +O(q1/2)

) [
ln

(
Nmax

4q

)
− ln

(
1− Nmax

q

)
− ln

(
N0

4q

)
+ ln

(
1− N0

q

)
+
E

q

]

=
(
q +O(q1/2)

) [
ln

(
Nmax

4q

)
− ln

(
N0

4q

)
+ Õ(q−1/4)

]
= −2q ln

(
N

4q1/4

)
+ Õ(q7/8)

where we have used (3.2.2). Hence we obtain the equation

4

(
N

4q1/8

)8

+ Õ(q−1/8) = − ln

(
N

4q1/4

)
.

Denoting

λ =
N

4q1/8

this becomes
λ exp

(
4λ8
)

= q1/8 + Õ(1) ≈ q1/8 ,

where the approximation makes sense when q is large enough. In practice the error term is
small, even for small field sizes. The function λ exp (4λ8)− q1/8 is monotonically increasing
and has precisely one positive real root. This is the equation stated in the initialization
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step of the algorithm, so if we take N = 4λ q1/8 the algorithm can be expected to terminate
successfully.

If q is large, then the size of the factor base will be

#F = 4λ4 q1/2 + Õ(q3/8) ≈ 4λ4 q1/2

and the size of the graph when the algorithm terminates will be

Nmax = 4λ2 q3/4 + Õ(q5/8) ≈ 4λ2 q3/4 .

For field sizes of most practical interest (perhaps between 60 and 120 bits) our algorithm
has not much worse storage requirements than Diem’s algorithm but the factor base remains
smaller. In practice the factor base can be taken to be even slightly smaller than 4λ4 q1/2 if
we run the graph building step twice in a row as was explained earlier. We will look at some
precise numbers in the next section.

Specifics of Implementation in Characteristic 2

In our experiments we made an artificial restriction to the case of binary fields in order to be
able to count the number of points on the Jacobian easily. In this case it is easy to perform
the geometric step of the algorithm where a line is drawn through two points on the curve and
the intersection divisor is computed. Indeed, we did this by first constructing an equation
for the line, then solving for one of the variables in terms of the other ones and substituting
this into the equation of the curve to obtain a quartic polynomial in one variable. It is
a simple computation to divide this polynomial by the two linear factors corresponding to
the two points we started with. Finally the quadratic equation can be transformed into an
Artin-Schreier equation by a linear change of variables and the solutions can be immediately
written down using Chen’s formulas [Che]. The complexity is logarithmic in q.

For odd characteristic fields one has to compute a square-root in Fq using the Tonelli-
Shanks algorithm to solve the quadratic polynomial, the complexity of which is logarithmic
in q.

3.3 Complexity for Realistic Field Sizes

Relation Collection Time and Total Memory

In our naive implementation the number of field multiplications (in the binary field case)
needed to process each pair of factor base elements as explained above was

Mpair := 7 log2 q + 13 .
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This count is an actual count of how many field multiplications are used to process each
pair of points in our code, but it is also a theoretical count of the number of field operations
required to pass a line through two points and intersect it with the curve. There are field
inversions involved, which roughly explains the log q factors. This number could likely be
improved in a more robust implementation. The total number of field multiplications needed
was therefore approximately

MTotal ≈Mpair ·
(

#F
2

)
= (7 log2 q + 13) · 8λ8 q .

Remark 3.3.1. Locally the numbers λ behave roughly logarithmically as a function of q. If
we focus on the range q ∈ [270, 2120] we can for instance approximate

λ(q) ≈ C logα2 q , where C = 0.62054 , α = 0.12431 .

Then
MTotal ≈ 0.17589 · (7 log2 q + 13) · log0.99448

2 (q) · q ≈ 1.23123 · log2
2(q) · q .

The memory consumption was roughly 370 bytes per graph vertex but our implementation
was not optimized towards saving memory so this number can probably be reduced by a
significant factor. Moreover, every vertex data must contain the coordinates of some points
on the curve or other vertex identifiers, the size of which grows logarithmically in q. Hence
the size of a vertex will grow logarithmically in q, but this dependence is weak and for
practical field sizes it is not a significant factor. To take this into account, we assume the
size of a vertex data is d(log2 q)/64e · 370 bytes. The results are shown in Table 3.1.

According to these estimates one should use a field of size at least 115 bits to get a
security level of 128 bits and a field of size at least 240 bits to get a security level of 256
bits. Of course this is only the relation collection step and is not taking into account the
linear algebra step or even more importantly the massive memory consuption. Later we will
see that there is a time-memory trade-off which can be used to reduce the memory cost
significantly without affecting the computational complexity much, and that parallelization
can be used to even further reduce both time and memory requirements (per computer).

Experimental Results for Small Examples

We ran small experiments and got results corresponding to the theoretical results above.
We chose RP to be slightly bigger than was strictly speaking needed to ensure that the
algorithm finishes successfully on the first attempt. More precisely, we chose it so that about
95% of the factor base pairs are used when the algorithm finishes. The results are shown in
Table 3.2. We conclude that the experimental results correspond closely to the theoretical
results, even for such small field sizes.
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Table 3.1: Results for field sizes of practical interest

Field size λ logq #F logqNmax logqMTotal log2MTotal Memory
230 0.94987 0.55677 0.81172 1.34024 40.20729 7.4 GB
240 0.98285 0.54750 0.79875 1.27488 50.99510 1430 GB
250 1.00974 0.54112 0.79056 1.23231 61.61568 267 TB
260 1.03251 0.53641 0.78487 1.20212 72.12744 50490 TB
270 1.05230 0.53277 0.78067 1.17947 82.56275 1.90 · 107 TB
280 1.06983 0.52987 0.77743 1.16177 92.94144 3.56 · 109 TB
290 1.08559 0.52749 0.77486 1.14752 103.27649 6.62 · 1011 TB
2100 1.09992 0.52550 0.77275 1.13577 113.57690 1.2 · 1014 TB
2110 1.11306 0.52380 0.77099 1.12590 123.84916 2.28 · 1016 TB
2115 1.11926 0.52304 0.77022 1.12153 128.97628 3.10 · 1017 TB
2120 1.12522 0.52234 0.76950 1.11748 134.09806 4.22 · 1018 TB
2140 1.14712 0.51994 0.76711 1.10386 154.53975 2.16 · 1023 TB
2160 1.16646 0.51805 0.76528 1.09327 174.92298 7.29 · 1027 TB
2180 1.18380 0.51652 0.76382 1.08479 195.26141 8.43 · 1031 TB
2200 1.19954 0.51525 0.76262 1.07782 215.56441 1.10 · 1037 TB
2220 1.21397 0.51418 0.76163 1.07199 235.83869 3.71 · 1041 TB
2240 1.22729 0.51326 0.76080 1.06704 256.08921 1.24 · 1046 TB

Table 3.2: Experimental results. (FBPU := percent of factor base pairs used; th/pr denote
the value suggested by theory/value observed in practice)

Field size logq #F (th) logq #F (pr) FBPU logqMTotal (th) logqMTotal (pr)
217 0.57846 0.58034 96.4 1.51247 1.50780
219 0.57387 0.57692 95.5 1.47352 1.46740
221 0.56683 0.57223 95.3 1.44080 1.43510
223 0.56637 0.56819 95.4 1.41287 1.40769
225 0.56325 0.56468 96.0 1.38869 1.38418
227 0.56046 0.56158 96.4 1.36752 1.36351

Linear Algebra

The complexity of sparse linear algebra algorithms is O
(
w · (#F)2) where w denotes the

average row weight. The row weight depends logarithmically on the field size. The expected
average depth of a tree on a given number of vertices can be estimated using the method in
[GTTD] but we need to take into account that the size of the graph is changing while we are
looking for full relations.
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Lemma 3.3.2. The average row weight of the matrix is w ≤ 18− 8 lnλ+ ln q.

Proof. In [GTTD] it is established that for a tree containing k vertices the expected average
depth can be approximated from above by the function 1 + ln k. Our graph consists of trees
built on top of each of the top triangle vertices. When our graph has a total of k vertices,

each one of these 4λ4 q1/2+Õ(q3/8) trees has on average
(

1 + Õ(q−1/8)
)
·k/(4λ4 q1/2) vertices.

So if we choose a tree at random and a point in it at random, the expected depth (measured
from the root of that tree) is at most

1 + ln

(
k

4λ4 q1/2

)
+ Õ(q−1/8) .

We find full relations while building the graph so the sizes of the trees change. Recall
that right after the triangles are constructed, the size of the graph is

N0 = 4λ4 q1/2 + Õ(q3/8) .

When a full relation is produced and the graph tracing step performed, the number of factor
base elements we end up with on average is at most2

22

#F
Nmax−1∑
k=N0

(
1 + ln

(
k

4λ4 q1/2

)
+ Õ(q−1/8)

)
·
(

1

2
+O(q−1/2)

)
k/q

1− k/q

=
q1/2

2λ4

(
1 + Õ(q−1/8)

)[∫ Nmax/q

N0/q

(
1 + ln

(
t q1/2

4λ4

)
+ Õ(q−1/8)

)
· t

1− t dt+
E

q

]

=
q1/2

2λ4

(
1 + Õ(q−1/8)

)[(
1 + Õ(q−1/4)

)∫ Nmax/q

N0/q

t

(
1 + ln

(
t q1/2

4λ4

)
+ Õ(q−1/8)

)
dt+

E

q

]

= 4
(

1 + Õ(q−1/8)
)[(1

2
− 2 lnλ+

1

4
ln q + Õ(q−1/8)

)
+ Õ(q−1/2) +

E

8λ4 q1/2

]
.

Here the error term E is

E =
Nmax−1∑
k=N0

[(
1 + ln

(
k

4λ4 q1/2

)
+ Õ(q−1/8)

)
k/q

1− k/q

−
∫ k+1

k

(
1 + ln

(
x

4λ4 q1/2

)
+ Õ(q−1/8)

)
x/q

1− x/q dx
]

and it satisfies the bounds(
1 + ln

(
N0

4λ4 q1/2

)
+ Õ(q−1/8)

)
N0/q

1−N0/q
2One factor of 2 is for the two factor base elements that are produced at every step in the graph and the

other factor of 2 from tracing back two vertices to their respective roots. Here we are only concerned with
the factor base elements that result from moving in the graph. The others are taken into account below.
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−
(

1 + ln

(
Nmax

4λ4 q1/2

)
+ Õ(q−1/8)

)
Nmax/q

1−Nmax/q
≤ E ≤ 0 .

Hence E ∈ Õ(q−1/4) and E/(8λ4 q1/2) ∈ Õ(q−3/4). Finally, with this we find that the average
number of factor base elements appearing is

2− 8 lnλ+ ln q + Õ(q−1/8) + Õ(q−3/4) = 2− 8 lnλ+ ln q + Õ(q−1/8) .

In addition to the contribution coming from moving in the graph, we have 2 initial factor
base elements, 2 coming from using the triangle relations and 12 from the base vertices. The
expected average row weight should therefore satisfy w ≤ 18− 8 lnλ+ ln q.

Note that in practice q is large so q−1/8 is small, and we let west := 18 − 8 lnλ + ln q.
Results for field sizes of practical interest are shown in Table 3.3. The complexity of the
linear algebra is in all cases slightly better than the complexity of relation search so there
might be some room for optimization by choosing the factor base to be slightly larger, which
makes relation collection faster and linear algebra slower.

Table 3.3: Linear algebra results for field sizes of practical interest

Field size log2west log2 #F Lin. alg. MTotal

230 5.29300 16.70320 ≈ 239 ≈ 240

240 5.51930 21.90017 ≈ 249 ≈ 251

250 5.71644 27.05593 ≈ 260 ≈ 262

260 5.89076 32.18461 ≈ 270 ≈ 272

270 6.04685 37.29417 ≈ 281 ≈ 283

280 6.18808 42.38952 ≈ 291 ≈ 293

290 6.31698 47.47391 ≈ 2101 ≈ 2103

2100 6.43551 52.54957 ≈ 2112 ≈ 2114

2110 6.54518 57.61814 ≈ 2122 ≈ 2124

2115 6.59709 60.15016 ≈ 2127 ≈ 2129

2120 6.64723 62.68083 ≈ 2132 ≈ 2134

2140 6.83216 72.79205 ≈ 2152 ≈ 2155

2160 6.99630 82.88852 ≈ 2173 ≈ 2175

2180 7.14381 92.97370 ≈ 2193 ≈ 2195

2200 7.27774 103.04993 ≈ 2213 ≈ 2216

2220 7.40038 113.11892 ≈ 2234 ≈ 2236

2240 7.51347 123.18192 ≈ 2254 ≈ 2256

3.4 Time-Memory Trade-offs

Our variant presented in Section 3.2 improves on the computational complexity of Diem’s
algorithm by building a larger graph. Since the memory costs of algorithms of this type are
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enormous, one should ask how the computational complexity behaves when the size of the
graph is limited to something between that of Diem’s algorithm (q3/4 vertices) and Nmax

given in Theorem 3.2.1.
Let χ be a fixed positive real number. Suppose in our algorithm we let our graph grow to

size χ q3/4 and after that only search for full relations. More precisely, we start by choosing
a set RPχ of 4ηχ q

1/8 random points on the curve where ηχ is a real number depending
on χ and use these to construct a factor base Fχ of size 4η4

χ q
1/2 just as in our original

algorithm. We expect ηχ to be somewhere between 1 and 10 for practical field sizes. In the
graph building/relation searching step we stop adding new vertices to the graph once it has
reached size χ q3/4 and after that only search for full relations. To simplify the notation we
denote ηχ just by η.

Theorem 3.4.1. (Heuristic) If q is large enough and we take η to be a root of

2η2 exp
(
4η8 − 4η4/χ2 + 1/4

)
= χ1/2 q1/8 (3.4.1)

we can expect the algorithm to terminate successfully. The average row weight of the matrix
will be approximately

wχest := 20− χ2

8η4
− 4 ln(4η4) + ln q + 4 lnχ . (3.4.2)

Proof. This is very similar to the proof of Theorem 3.2.1. We start with a set RPχ of

4η q1/8 = Õ(q1/8) random points. The size of the factor base and the number of vertices in
the graph after the triangles have been constructed are

#Fχ = 4η4 q1/2 + Õ(q3/8) , N0 = 4η4 q1/2 + Õ(q3/8) .

We build the graph until it has size χ q3/4. This produces(
1

2
+O(q−1/2)

) χ q3/4−1∑
k=N0

k/q

1− k/q =
χ2 q1/2

4
+ Õ(q1/4)

full relations (see the proof of Theorem 3.2.1). The total number of full relations needed is
#Fχ + 1 so we are lacking

4η4 q1/2 − χ2 q1/2

4
+ Õ(q3/8) =

(
4η4 − χ2

4

)
q1/2 + Õ(q3/8)

of them. We also need to know how many pairs of factor base elements were used in this.
Just like in the proof of Theorem 3.2.1 we find that this number is

(
1 +O(q−1/2)

) χ q3/4−1∑
k=N0

1

(k/q)(1− k/q) = q ln

(
χ q1/4

4η4

)
+ Õ(q7/8) .
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Now once the graph has size χ q3/4 we need to find the rest of the full relations. For
each pair of factor base elements we try, the probability of finding a full relation is now
approximately χ2/(2q1/2) + Õ(q−1) (see the proof of Theorem 3.2.1). Thus we need to try

2q1/2

χ2

(
1 +O(q−1/2)

)
·
[(

4η4 − χ2

4

)
q1/2 + Õ(q3/8)

]
=

(
8η4

χ2
− 1

2

)
q + Õ(q7/8)

more factor base pairs. We want to end up using precisely all of the factor base pairs, of
which there are

(
#Fχ

2

)
= 8η8 q + Õ(q7/8). We get the equation

8η8 q + Õ(q7/8) = q ln

(
χ q1/4

4η4

)
+

(
8η4

χ2
− 1

2

)
q + Õ(q7/8) .

Exponentiating this yields

2η2 exp(4η8 − 4η4/χ2 + 1/4) = χ1/2 q1/8 + Õ(1) .

When q is big we can approximate this with

2η2 exp(4η8 − 4η4/χ2 + 1/4) = χ1/2 q1/8 .

As in the proof of Theorem 3.3.2 we find that the average row weight is approximated
from above by

16 +
22

#Fχ

χ q3/4−1∑
k=N0

(
1 + ln

(
k

4η4 q1/2

)
+ Õ(q−1/8)

)
·
(

1

2
+O(q−1/2)

)
k/q

1− k/q

+

(
1 + ln

(
χ q3/4

4η4 q1/2

)
+ Õ(q−1/8)

)((
4η4 − χ2

4

)
q1/2 + Õ(q3/8)

)]
= 16 +

χ2 ln q

16η4
− χ2 ln(4η4)

4η4
+

χ2

8η4
+
χ2 lnχ

4η4

+

(
1− χ2

16η4

)(
4− 4 ln(4η4) + ln q + 4 lnχ

)
+ Õ(q−1/8)

= 20− χ2

8η4
− 4 ln(4η4) + ln q + 4 lnχ+ Õ(q−1/8) .

The computational complexity of the relation search step is given by the number of factor
base pairs, which is roughly 8η8 q, multiplied by the computational cost of processing one
such pair, as was discussed in the beginning of Section 3.3. The complexity of the linear
algebra step depends quadratically on #Fχ and linearly on the average row weight given by
Theorem 3.4.1. The total memory cost is given by the size of the graph, which is χ q3/4,
multiplied by the memory cost of storing one vertex. For a given q the largest meaningful
choice for χ is λ, given by Theorem 3.2.1, since at that point all of the required full relations
have been found and there is nothing more to do.
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Remark 3.4.2. In fact, it is easy to see that η, as a function of χ, has a global minimum at
a point where χ = 4η2. Substituting this into (3.4.1) yields precisely the defining equation
of λ.

On the other hand, the index calculus attack is no faster than Pollard rho unless 8η8 q �
q3/2, which yields the upper bound η � 2−3/8 q1/16. We denote the χ corresponding to
η = 2−3/8 q1/16 by χmin. Hence we assume that the smallest meaningful size for the graph
is χmin q

3/4.
For any fixed q, the value of η increases as χ decreases from λ towards χmin, but what is

interesting is the rate of change of η. It turns out that η increases quite slowly until χ gets
close to 1. In Figure 3.1 we show the ratios of both the relation search complexity and linear
algebra complexity relative to those of Diem’s algorithm, as functions of χ, for several field
sizes.

Another point of view is to look at the complexities of relation search and linear algebra
relative to the best possible ones, i.e. those obtained in the case of unrestricted memory
(χ = 4λ2), as functions of memory cost relative to Nmax. These are presented in Figure 3.2,
again for several field sizes. These graphs are instructive since we already have presented
the values for the fastest case (χ = λ) in Tables 3.1 and 3.3. For example, consider the field
size q = 260 and χ/(4λ2) = 1/5. Then (η/λ)8 ≈ 2.75, so the running time is 2.75 times that
of the running time in the unrestricted case, but the memory use has been cut down to a
fifth of the original. We get more concrete numbers by scaling the results of Table 3.1. The
memory use is 10098 TB and the computational complexity is approximately q1.226 = 273.589

field multiplications.
Yet a third point of view is to compare our algorithm to Pollard rho when memory use is

even more restricted. Figure 3.3 shows the ratio of the complexities for several field sizes as
a function of χ. The key point to observe is that one can do significantly better than Pollard
rho even if χ is taken to be very small. So if one has massive amounts of computing power
available the best approach might be to choose some suitable χ� 1, although the memory
cost is still going to be extremely large. For example, if we take q = 270 and χ = 2−6 ≈ 0.016,
the graph will end up containing χ q3/4 = 246.5 ≈ 1014.0 vertices. Using the same estimate as
in Section 3.3, this corresponds to 67300 TB of memory. The complexity of relation search
will be 8η8 q ≈ q1.386. As in Section 3.3, we can use the value 7 log2 q + 13 for the number of
field multiplications needed to process one pair of factor base elements, so the total number
of field multiplications can be estimated to be (7 log2 q + 13) · 8η8 q ≈ q1.514. Of course this
is bigger than q3/2, but the unit of time in Pollard rho and other generic algorithms involves
operations in the Jacobian, and for non-hyperelliptic genus 3 curves each group operation
costs around 130–185 field multiplications plus 2 field inversions [FOR].

Recall that in Diem’s algorithm (see [Die2]) the size of the factor base should be taken
to be at least

#FDiem := d((3/2) ln q + 4)1/2 q1/2e
whereas the size of our factor base is #Fχ = 4η4 q1/2. Using the defining equation of η to
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Figure 3.1: Complexities relative to those of Diem’s algorithm, for field sizes q =
260, 280, 2100, 2120, 2140, 2160, 2180, 2200
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(b) Linear algebra (LA)
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write

ln q = 32η8 − 32η4

χ2
+ 2 + 8 ln(2η2)− 4 lnχ
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Figure 3.2: Complexities relative to the case of unrestricted memory, for field sizes q =
260, 280, 2100, 2120, 2140, 2160, 2180, 2200
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(b) Linear algebra (LA)
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we find that

ρχRS(q) :=

(
#Fχ

#FDiem

)2

=
1

3

(
1− 1

η4χ2
+

1

16η8
+

ln(2η2)

4η8
− lnχ

8η8
+

1

24η8

)−1
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Figure 3.3: Relation search complexity relative to Pollard rho, for field sizes q =
260, 265, 270, 275, 280, 285, 290, 295, 2100
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which approaches 1/3 as q → ∞ no matter what the fixed number χ is. This is the ratio
plotted in Figure 3.1 on the left-hand side. Note that both in Diem’s algorithm and in
our variant the size of the factor base is chosen to be minimal so that all pairs of factor
base elements are being used. So if we assume that in both algorithms the complexity of
processing a pair of factor base elements is the same, the ratio ρχRS measures the ratio of the
complexities of the relation search steps.

Similarly, we define

ρχLA(q) :=
20− χ2/(8η4)− 4 ln(4η4) + ln q + 4 lnχ

6 + 3 ln q

(
#Fχ

#FDiem

)2

.

The ratio ρχLA approaches 1/9 as q → ∞ and it is the ratio plotted in Figure 3.1 on the
right-hand side.

Lemma 3.4.3. For any fixed χ, asymptotically as q → ∞ our algorithm is 3 times faster
than Diem’s algorithm for relation search and 9 times faster for linear algebra.

Remark 3.4.4. As we have pointed out earlier, in our algorithm it is possible to take the
factor base to be slightly smaller and re-run the graph building/relation searching step once
it has failed for the first time. At that point the graph is huge and it should not take long
to find the missing full relations. This is not possible in Diem’s approach. We also save
time because we only need to find roughly q1/8 random points on the curve compared to
over q1/2 which have to be found in Diem’s algorithm. Of course we then need to compute
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more intersection divisors to find the remaining factor base elements, but all of that work
also builds the graph.

Remark 3.4.5. There is another variant of Diem’s algorithm, namely the full algorithm ap-
proach of Diem and Thomé [DT] (see [GTTD] for the hyperelliptic case). In this algorithm a
very large graph is constructed, of the size q5/6. Consequently the factor base can be chosen
to be smaller, of the size 2q1/2. The graph is disconnected and is searched for cycles which are
then used to produce full relations. The complexity analysis of the full algorithm is difficult
and the large graph size makes it impractical for all but the smallest examples so we will not
discuss it further here.

3.5 Parallelization

In this section we study how the work of computing the DLP can be split between K
computers. It turns out that with an increase in total computing time and total memory
cost we can be split the computation between these K computers so that each needs to pay
only a fraction of the original memory cost.

Suppose λK is a real number and we start by choosing a set RPK of 4λK q
1/8 random

points on the curve and as usual use these to generate a factor base FK of size 4λ4
K q

1/2.
As usual at this point the graph will contain 4λ4

K q
1/2 triangles. Now distribute the entire

factor base and the base vertices to each one of the K computers and split the triangles
evenly between them so that each computer gets 4λ4

K q
1/2/K triangles. Each computer

starts building a graph and searching for full relations using their share of the triangles
until they have each found approximately 4λ4

K q
1/2 full relations. Now all full relations are

combined into a matrix and the linear algebra step is performed as usual. To simplify the
notation, we denote λK simply by λ.

Theorem 3.5.1. (Heuristic) If q is large enough and we take λ to be a root of

λ exp
(
4λ8
)

= (K2q)1/8

we can expect the algorithm to terminate successfully. Each of the K computers will end up
with a graph of size

Nmax =
4λ2 q3/4

√
K

.

The average row weight of the matrix will be approximately

18− 8 lnλ+ ln(K2q) .

Proof. The proof is again similar to the proof of Theorem 3.2.1. We start with a set RPK
of 4λ q1/8 = Õ(q1/8) random points and suppose that Nmax = Õ(q3/4). The size of the factor
base and the number of vertices in the graph after the triangles have been constructed are

#FK = 4λ4 q1/2 + Õ(q3/8) , N0 = 4λ4 q1/2 + Õ(q3/8) .
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Building the graphs from size N0/K to Nmax on each computer produces(
1

2
+O(q−1/2)

) Nmax−1∑
k=N0/K

k/q

1− k/q =
N2

max

4q
+ Õ(q1/4)

full relations. But each computer should produce #FK/K = 4λ4 q1/2/K + Õ(q3/8) full
relations, so we get an equation and solve

Nmax =
4λ2 q3/4

√
K

(
1 + Õ(q−1/8)

)
=

4λ2 q3/4

√
K

+ Õ(q5/8) .

The number of pairs of factor base elements that each computer has is
(FK

2

)
= 8λ8 q +

Õ(q7/8). We want this number to equal the number of pairs needed to build the graphs as

explained above. Hence we need 8λ8 q + Õ(q7/8) to equal

(
1 +O(q−1/2)

) Nmax−1∑
k=N0/K

1

(k/q)(1− k/q) = q ln

(
K1/2q1/4

λ2

)
+ Õ(q7/8)

which gives the equation
λ exp

(
4λ8
)

= (K2q)1/8 + Õ(1) .

Finally, the average row weight is approximated from above by

16 +
22

#FK/K
Nmax−1∑
k=N0/K

(
1 + ln

(
kK

4λ4 q1/2

)
+ Õ(q−1/8)

)
·
(

1

2
+O(q−1/2)

)
k/q

1− k/q

= 18− 8 lnλ+ ln(K2q) + Õ(q−1/8) .

More generally, we can consider what happens if each of the K computers stops building
their graphs when they reach size χ q3/4/

√
K, where χ is a fixed positive real number, and

only proceed with relation search. Suppose ηK,χ is a real number and we start by choosing
a set RPKχ of 4ηK,χ q

1/8 random points on the curve. Then we get a result similar to
Theorem 3.4.1. To simplify the notation, we denote ηK,χ by η.

Theorem 3.5.2. (Heuristic) If q is large enough and we take η to be a root of

2η2 exp
(
4η8 − 4η4/χ2 + 1/4

)
= χ1/2 (K2q)1/8

we can expect the algorithm to terminate successfully. The average row weight of the matrix
will be approximately

20− χ2

8η4
− 4 ln(4η4) + ln(K2q) + 4 lnχ .
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Proof. Similar to the proofs of Theorem 3.4.1 and Theorem 3.5.1.

Above we assumed that each one of the computers computes the same 8η8 q intersec-
tion divisors but of course this is completely unnecessary if there is a very efficient way
for the computers to communicate with each other. In this case each computer computes(
1/2 +O(q−1/2)

)
8η8 q/K intersection divisors and shares its results with the other K − 1

computers. Unfortunately this is a massive amount of data to share. In fact, merely storing
all these intersection divisors costs potentially much more memory than storing the graph
since

4η8 q

K
� χ q3/4

√
K

for practical field sizes unless K is impossibly large. Hence instead of storing the intersection
divisors they should be streamed to all other computers as soon as they are generated and
then deleted immediately afterwards. This speeds up the algorithm only if the connections
between the computers are so fast that distributing the data over the network is faster than
for each computer to generate it separately. We assume this is the case.

Let MK,χ
Total be the total number of field multiplications needed per computer. We have

MK,χ
Total = Mpair ·

1

K

(
#FKχ

2

)
≈ (7 log2 q + 13) · 8η8

K,χ q

K
.

Note that this is not exactly the same as 1/K-th of the complexity in the unparallelized case
because the coefficient ηK,χ is bigger, namely ηK,χ(q) = ηχ(K2q).

The complexity of linear algebra is given by(
20− χ2

8η4
K,χ

− 4 ln(4η4
K,χ) + ln(K2q) + 4 lnχ

)
· 16η8

K,χ q ,

which is worse than the complexity in the unparallelized case, again due to ηK,χ(q) =
ηχ(K2 q).

We demonstrate these results in the case of unrestricted memory, i.e. when χ = 4λ2
K .

The ratio of complexities of the linear algebra steps in the parallelized and unparallelized
cases is

ρKLA :=
18− 8 lnλK + ln(K2q)

18− 8 lnλ+ ln q

(
λK
λ

)8

.

We denote

MPCK (Memory cost Per Computer) :=
4λ2

K q
3/4

√
K

· (d(log2 q)/64e · 370 bytes)

and

IDPCK (Intersection Divisors Per Computer with Fq-rational points) :=
4λ8

K q

K
,



CHAPTER 3. INDEX CALCULUS IN GENUS 3 47

the latter measuring the amount of data that needs to be shared.
These numbers for a few practical field sizes are shown in Tables 3.4, 3.5, 3.6. It is also

easy to see how to scale the values in Tables 3.4, 3.5, 3.6 to obtain corresponding numbers
in the case χ < 4λ2

K . For example, to find MK,χ
Total, simply scale the value of MK

Total by the
coefficient given by Figure 3.2 for a field of size K2q. To find MPCK,χ, scale the value of
MPCK by (ηK,χ/λK)2. Concretely, consider e.g. q = 260, K = 100 and χ/(4λ2

K) = 1/50.
Then

log2M
K,χ
Total = log2

[
MK

Total ·
(
ηK,χ
λK

)8
]

= 79.03607

and MPCK,χ = 106 TB.
In the above our main concern was with reducing the per computer memory cost. One

should keep in mind that parallelization makes the complexity of the linear algebra part
slightly worse and for large K the difference between the relation search step and the linear
algebra step becomes very large, unless χ is taken to be smaller. To make linear algebra
faster, each computer could perform some preprocessing of the full relations before they are
combined into the full linear algebra problem. There are also several ways of parallelizing
relation search within the K memory units to further reduce the complexity MK,χ

Total. For in-
stance, each processor connected to a memory unit can compute its own share of intersection
divisors which are then collected together and used to build the local graph.

Table 3.4: Parallelization: K = 4

Field size q log2MTotal ρLA MPC log2 IDPC
260 70.21903 1.11420 25648 TB 60.46080
270 80.64203 1.09991 9.62 · 106 TB 70.66761
280 91.01129 1.08883 1.80 · 109 TB 80.84890
290 101.3389 1.07996 3.35 · 1011 TB 91.01023
2100 111.63331 1.07272 6.21 · 1013 TB 101.15555
2110 121.90060 1.06667 1.15 · 1016 TB 111.28773
2120 132.14535 1.06156 2.13 · 1018 TB 121.40894
2140 152.58044 1.05338 1.09 · 1023 TB 141.62479
2160 172.95868 1.04712 3.67 · 1027 TB 161.81275
2180 193.29321 1.04217 1.24 · 1032 TB 181.97919
2200 213.59307 1.03816 5.56 · 1036 TB 202.12853
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Table 3.5: Parallelization: K = 100

Field size q log2MTotal ρLA MPC log2 IDPC
260 65.76817 1.40309 5304 TB 56.00995
270 76.16726 1.35025 1.98 · 106 TB 66.19284
280 86.51785 1.30967 3.69 · 108 TB 76.35545
290 96.83049 1.27752 6.85 · 1010 TB 86.50181
2100 107.11261 1.25142 1.27 · 1013 TB 96.63485
2110 117.36965 1.22982 2.35 · 1015 TB 106.75678
2120 127.60571 1.21162 4.33 · 1017 TB 116.86931
2140 148.02689 1.18270 2.20 · 1022 TB 137.07124
2160 168.39449 1.16072 7.45 · 1026 TB 157.24856
2180 188.72061 1.14346 2.51 · 1031 TB 177.40660
2200 209.01367 1.12954 1.12 · 1036 TB 197.54912

Table 3.6: Parallelization: K = 1000

Field size q log2MTotal ρLA MPC log2 IDPC
260 62.57026 1.63014 1714 TB 52.81204
270 72.95535 1.54507 6.39 · 105 TB 62.98094
280 83.29477 1.48017 1.19 · 108 TB 73.13238
290 93.59828 1.42905 2.20 · 1010 TB 83.26961
2100 103.87281 1.38774 4.07 · 1012 TB 93.39505
2110 114.12344 1.35366 7.52 · 1014 TB 103.51057
2120 124.35401 1.32508 1.39 · 1017 TB 113.61761
2140 144.76630 1.27981 7.05 · 1021 TB 133.81065
2160 165.12699 1.24559 2.38 · 1026 TB 153.98106
2180 185.44760 1.21881 8.00 · 1030 TB 174.13358
2200 205.73615 1.19728 3.58 · 1035 TB 194.27161
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Chapter 4

Avoiding Isogeny Attacks in Genus 3

4.1 Overview

Isogeny Attacks

Galbraith [Gal] showed that it was possible to attack elliptic curve cryptosystems by finding
a weak curve in the isogeny class of the original curve. By Tate’s isogeny theorem [Sil1] two
elliptic curves E1, E2 over Fq are isogenous if E1(Fp) and E2(Fp) have the same number of
points. Since point counting can be done in logarithmic time using the Schoof-Elkies-Atkin
algorithm, it is easy to check whether two elliptic curves are isogenous. Next Galbraith used
the volcano structure of `-isogeny graphs found by Kohel [Koh] and the CM theory of elliptic
curves [Sil2] to construct an explicit isogeny between the two curves. The discrete logarithm
can now be mapped from the original curve to the weak curve, where it can possibly be
solved. A similar attack against hyperelliptic curves of genus 2 is possible using recently
developed algorithms for computing explicit isogenies [Wes, Dud] but is less straightforward
due to the significantly more complicated structure of the isogeny graphs.

In genus 3 things are radically different due to most genus 3 curves being non-hyperelliptic
and thus vulnerable to the index calculus attack of Chapter 3, which means that finding a
weak Jacobian in the isogeny class should be very easy. Indeed, we briefly explained already in
Section 2.6 how it is possible to attack the DLP on a hyperelliptic Jacobian by constructing
an arbitrary explicit isogeny to an isogenous principally polarized 3-dimensional abelian
variety, which according to Theorems 2.6.6, 2.6.7, 2.6.1 will almost certainly be isomorphic
to the Jacobian of a non-hyperelliptic genus 3 curve, although possibly only over a quadratic
extension field [ZLR]. Once the DLP is mapped to this non-hyperelliptic Jacobian, all that

remains to be done is use the Õ(p) non-hyperelliptic index calculus of Chapter 3.

Remark 4.1.1. As was mentioned above, the target abelian variety might be isomorphic to
a Jacobian only over a quadratic extension field. It is clear from Chapter 3 that the attack
becomes impossibly costly if this is the case (see e.g. Theorem 3.2.1 and Table 3.1). Instead,
to succeed the attacker must be able to recover the Jacobian structure over the original field,
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which happens with probability approximately 1/2 (see [ZLR]).

Definition 4.1.2. Let A be a g-dimensional abelian variety. A subgroup K ⊆ A[`] is said to
be isotropic if the `-Weil pairing becomes trivial when restricted toK. The isotropic subgroup
K is maximal isotropic if it is not a subgroup of any strictly larger isotropic subgroup. When
` is prime, every maximal isotropic subgroup is isomorphic to (Z/`Z)g.

Definition 4.1.3. Let A be 3-dimensional. An isogeny with maximal isotropic kernel K ⊂
A[`] isomorphic to (Z/`Z)3 is called an (`, `, `)-isogeny.

Fortunately, computing isogenies between 3-dimensional Jacobians seems to be very dif-
ficult in general. From the point of view of the attacker, the best types of isogenies for this
purpose seem to be (`, `, `)-isogenies and cyclic isogenies, i.e. isogenies with a cyclic kernel.
Of these two (`, `, `)-isogenies are significantly easier to compute, essentially because they
induce a natural principal polarization on the target abelian variety.

The first demonstration of an isogeny attack in genus 3 was given by Smith in [Smi]. His
algorithm gives a very efficient way of computing explicitly certain (2, 2, 2)-isogenies. Al-
though the algorithm is very fast, it only works for approximately 18.57% of all hyperelliptic
curves over a given finite field. Thus one can easily avoid this attack by using curves such
that the conditions necessary for the algorithm to work are not met, e.g. a curve whose
hyperelliptic polynomial factors over Fp in a particular way (see [Smi]).

A more general but also significantly more complicated method for computing (`, `, `)-
isogenies for any ` is developed and discussed in references [LR, CR, Rob]. This method
has so far only been implemented for Jacobians of genus 2 curves, but there does not seem
to be any reason why it would not work also in genus 3. Consequently one should assume
(`, `, `)-isogenies to be possible to compute explicitly for any ` not too large.

Computing cyclic isogenies is significantly more difficult because they do not respect
principal polarizations. This means that one needs to somehow recover an appropriate
principal polarization on the target abelian variety. It is not clear how this could be done,
although one possible approach is outlined in [Rob2] and further developed in the case of
genus 2 by Dudeanu in [Dud]. The method of Dudeanu places extremely strong restrictions
on the rings of real multiplication of the source and the target Jacobians, and has no obvious
generalization to the case of genus 3. Nevertheless, it is not unreasonable to assume that in
the near future also cyclic isogenies between Jacobians of genus 3 curves can be computed.
There are currently no methods known for computing any other types of isogenies.

Constructing Genus 3 Curves

We already explained in Section 2.6 how the genus 3 CM method of Weng [Wen] can be
used to construct hyperelliptic genus 3 curves with a predetermined number of points. This
involved choosing a sextic CM field K = K0(i), where K0 is a totally real cubic number field.
One of the main difficulties in the genus 3 case is that for a randomly chosen CM field the
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resulting curve will be non-hyperelliptic with overwhelming probability due to the hyperel-
liptic locus having codimension 1 in the moduli space of genus 3 curves (Theorem 2.6.6).
Weng solved this problem by taking the CM to field to be such that i ∈ OK , which implies
by an extension of Torelli’s theorem that the curve must be hyperelliptic (see [Wen] and
Theorem 4.4.2).

Remark 4.1.4. The genus 3 CM method of Weng produces very special hyperelliptic curves
with an automorphism of order 4. No analogous algorithm for constructing more general
hyperelliptic genus 3 curves is known.

For cryptographic purposes we need to choose K/K0 and a p-Weil number π ∈ OK so
that one of Nm(iπ ∓ 1) is almost prime. Recall from Section 2.6 that these norms compute
the orders of the groups {JacCi(Fp)}i for the four quartic twists {Ci} of a hyperelliptic curve
over Fp. In this Chapter we discuss a way of doing this which allows us to both compute
and to control the index [OK : Z[π, π]]. This is desirable because if A → B is an isogeny
with kernel K ⊆ A[`n] for some prime `, and if

EndA = OK , EndB = O ,

then [OK : O] must divide `5n. On the other hand [OK : O] divides [OK : Z[π, π]] so ` must
be a divisor of [OK : Z[π, π]]. We will force [OK : Z[π, π]] to be divisible only by 2 and
large primes1. It is not feasible to compute isogenies whose kernels are contained in large
torsion subgroups, so it suffices to worry about isogenies with kernel contained in power-of-2
torsion subgroups of A. In our construction of K/K0 and π the attacker will only be able to
reach the Jacobian of a non-hyperelliptic curve if the kernel of the isogeny contains points
of high power-of-2 order. The connection to endomorphism rings is given by Theorem 4.4.2,
namely the endomorphism ring of the target must be an order O ⊃ Z[π, π] such that i /∈ O.
Computing such isogenies in one step is impossible since the coordinates of the points in the
kernel would have to be represented using huge extension fields. In practice the attacker
would have to compute a long enough chain of isogenies with smaller Fp-rational kernels2,
e.g. Fp-rational (2, 2, 2)-isogenies. We will also give a heuristic reason for why the curves
we construct should be secure against isogeny attacks by cyclic isogenies unless remarkable
progress in the theory of explicit isogeny computations is made. If the curve is now carefully
selected so that its Jacobian admits no chain of isogenies with Fp-rational maximal isotropic
kernels contained in power-of-2 torsion leading to a Jacobian of a non-hyperelliptic curve3,
one can assume the curve to be relatively safe against isogeny attacks.

1This is not quite true. The index can also be divisible by certain small primes but they end up being
less relevant for the attacker.

2It is necessary that the kernels are defined over Fp. Otherwise the attacker will end up at an abelian
variety defined over an extension field and the index calculus algorithm of Chapter 3 becomes unwieldy. One
could imagine combining such an isogeny with another isogeny so that the target eventually has a model
over Fp, but it is not clear how this could be done.

3In particular, it should not admit any such chains of (2, 2, 2)-isogenies, which are the easiest to compute.
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4.2 A Family of Sextic CM Fields

Requirements

Let K0 = Q(w) be a totally real cubic number field and K = K0(i) a sextic CM field.
We want to find rational primes p such that p = ππ, where π ∈ OK is a p-Weil number
and K = Q(π). We then construct a hyperelliptic genus 3 curve C using the genus 3 CM
method of Weng [Wen] (recall Section 2.6) such that the Jacobian JacC is a simple ordinary
3-dimensional abelian variety and JacC(Fp) has order Nm(π−1), which we want to be almost
prime (divisible by a very large prime and possibly some powers of small primes).

Suppose the minimal polynomial of the totally real root w is f(x) = x3 + αx2 + βx + γ
and that

π = a0 + a1w + a2w
2 + i(b0 + b1w + b2w

2) .

We then require that

ππ =
[
a2

0 + b2
0 + αγ(a2

2 + b2
2)− 2(a1a2 + b1b2)γ

]
+
[
(αβ − γ)(a2

2 + b2
2) + 2(a0a1 + b0b1)− 2(a1a2 + b1b2)β

]
w

+
[
a2

1 + b2
1 + (a2

2 + b2
2)(α2 − β) + 2(a0a2 + b0b2)− 2(a1a2 + b1b2)α

]
w2

equals a prime p, which results in three conditions:

a2
0 + b2

0 + αγ(a2
2 + b2

2)− 2(a1a2 + b1b2)γ = p ,

(αβ − γ)(a2
2 + b2

2) + 2(a0a1 + b0b1)− 2(a1a2 + b1b2)β = 0 ,

a2
1 + b2

1 + (a2
2 + b2

2)(α2 − β) + 2(a0a2 + b0b2)− 2(a1a2 + b1b2)α = 0 .

In addition, the following conditions must be met:

(1) The polynomial f(x) = x3 + αx2 + βx+ γ must be irreducible.

(2) π generates the sextic CM field K/Q.

(3) The number p must be prime.

(4) Some of the parameters must be large enough so that p can be large.

(5) All complex embeddings of π must have absolute value p1/2.

(6) π + π must be relative prime to p, i.e. π must be an ordinary Weil number [MW].

(7) K0 must have class number 1 for the CM method to work.

(8) K must have small class number for the CM method to work.

(9) The index [OK0 : Z[w]] should be small and preferably 1, since this simplifies the CM
method.
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(10) The index [OK : Z[π, π]] must be computable and controllable.

(11) The number Nm(π − 1) must be almost prime.

(12) It must be easy to generate several such sets of parameters.

Remark 4.2.1. Due to Cohen-Martinet type heuristics (see [CM]) there is a good chance that
the totally real field K0 has class number 1, but in general the field K will have huge class
number unless the discriminant of f(x) is small, which will be likely to happen only when
α, β, γ are small.

A Family of Sextic CM Fields

We now show one way of choosing sets of parameters satisfying the twelve conditions listed
above. Algorithm 4.2.1 attempts to construct a sextic CM field K/Q with totally real subfield
K0, together with an ordinary p-Weil number π ∈ OK such that ππ = p is a large prime
and that a 3-dimensional principally polarized abelian variety A/Fp with CM by OK and π
acting as the Frobenius endomorphism has #A(Fp) almost prime.

If Algorithm 4.2.1 returns FAIL, simply restart it with new input parameters. In Sec-
tion 4.3 we explain how the input parameters should be chosen so that a successful output
can be expected with reasonable probability, and give a revised version of Algorithm 4.2.1
implementing these strategies (see Algorithms 4.3.1,4.3.2). For now, we assume that Al-
gorithm 4.2.1 successfully outputs a tuple (α, β, γ, A,B, k, a0, p, Q,K0, K, P, C, π,# Cl(K))
and prove some facts about it.

Lemma 4.2.2. The index [OK : Z[i, w]] divides 25[OK0 : Z[w]]2.

Proof. It is a standard result in algebraic number theory that if K/Q and L/Q are number
fields such that [K · L : Q] = [K : Q][L : Q] and d = gcd (∆(OK/Z),∆(OL/Z)), then

OK·L ⊆
1

d
OK · OL .

Compute
d = gcd

(
∆(OK0/Z),∆(OQ(i)/Z)

)
.

This is either 1, 2 or 4 since ∆(OQ(i)/Z) = 4. In any case,

OK ⊆ Z +
1

4
(Zη1 + Zη2 + Zi+ Ziη1 + Ziη2) ,

where OK0 = Z + Zη1 + Zη2. Take any element η ∈ OK and write it as

η = a+
bη1 + cη2 + di+ eiη1 + fiη2

4
.
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Algorithm 4.2.1 Constructing a sextic CM field

1: Input: α, β integers, k,B positive integers and A a power of 2 such that A2 | 2B.
2: Let γ := αβ − 2B/A2.
3: Let a0 := 23k−2(2B2/A) + 2k−1A(α2 − β)
4: Let p := a2

0 + 22kA2αγ + 1.
5: if p is not prime then
6: Output: FAIL
7: end if
8: Let Q := 1 + 22kBα + 24kB2β + 26kB3γ.
9: if Q has small prime divisors then

10: Output: FAIL
11: end if
12: Let f(x) := x3 + αx2 + βx+ γ.
13: if f is not irreducible over Q then
14: Output: FAIL
15: end if
16: Let ∆ := α2β2 − 4β3 − 4α3γ − 27γ2 + 18αβγ.
17: if ∆ ≤ 0 then
18: Output: FAIL
19: end if
20: Let K0 be the field generated by a root w of f(x).
21: if [OK0 : Z[w]] is not small then
22: Output: FAIL
23: end if
24: Let K := K0(i).
25: if p is ramified in K then
26: Output: FAIL
27: end if
28: Let Π := a0 − 2kAw2 + i(1− 22kBw).
29: Compute N± := Nm(±Π− 1).
30: if Ns equals a large prime times a small cofactor Cs for a sign s then
31: Let P := Ns/Cs, C := Cs and π := sΠ.
32: else
33: Output: FAIL
34: end if
35: if |ϕ(π + π)| > 2p1/2 for some embedding ϕ : OK0 ↪→ R then
36: Output: FAIL
37: end if
38: if the class number of K0 is not 1 then
39: Output: FAIL
40: end if
41: Compute the class number # Cl(K) of K.
42: Output: (α, β, γ, A,B, k, a0, p, Q,K0, K, P, C, π,# Cl(K))
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The relative trace of η is

TrK/K0 η = 2a+
bη1 + cη2

2
∈ OK0 ,

so b and c must be even. Similarly computing TrK/K0 iη ∈ OK0 shows that d, e, f are even.
Hence

OK ⊆ Z +
1

2
(Zη1 + Zη2 + Ziη1 + Ziη2) . (4.2.1)

Let M be the Z-module Zη1 + Zη2 + Zi+ Ziη1 + Ziη2. From (4.2.1) we see that

[Z + (1/2)M : OK ][OK : Z +M ] = [Z + (1/2)M : Z +M ] = 25 ,

so [OK : Z +M ] | 25. Next observe that

[OK : Z +M ][Z +M : Z[i, w]] = [OK : Z[i, w]] ,

but [Z +M : Z[i, w]] = [OK0 : Z[w]]2 so [OK : Z[i, w]] | 25[OK0 : Z[w]]2.

Theorem 4.2.3. If Algorithm 4.2.1 returns successfully, it produces a sextic CM field K
with real subfield K0, a prime p and an ordinary p-Weil number π such that

[OK : Z[π, π]] | 26k+25A5B2Q3[OK0 : Z[w]]2 .

More precisely, we have

22k+3Bw ∈ Z[π, π] , 2k+1Aw2 ∈ Z[π, π] , 24AQi ∈ Z[π, π] ,

22k+7ABQiw ∈ Z[π, π] , 2k+5A2Qiw2 ∈ Z[π, π] , [OK : Z[i, w]] | 25[OK0 : Z[w]]2 .

Proof. Showing that ππ = p is a simple computation using

w3 = −αw2 − βw − γ and w4 = (α2 − β)w2 + (αβ − γ)w + αγ .

Let π′ be any of the conjugates of π. Then π′ satisfies the equation

x2 − κx+ p = 0

for some (real) embedding κ of π + π. The roots of this equation are (κ ± i
√

4p− κ2)/2,
where the square root is real by construction (|κ| ≤ 2p1/2). But both roots have absolute
value p1/2. This proves that π is a p-Weil number.

According to [MW] the p-Weil number π is ordinary if and only if π+π is relatively prime
to p. If this was not the case, then some prime r ⊂ OK divides both (π)(π) and (π + π),
which implies that r divides both (π)2 and (π)2, so it divides both (π) and (π). But then r2

divides (p), which is not the case by construction.
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For the index, write

− (Π + Π) + 2a0 = 2k+1Aw2 ∈ Z[Π,Π] , (4.2.2)

Π− Π = 2i− 22k+1Biw ∈ Z[Π,Π] . (4.2.3)

Squaring (4.2.2) yields

22k+2A2w4 = 22k+2A2(α2 − β)w2 + 22k+2A2(αβ − γ)w + 22k+2A2αγ ∈ Z[Π,Π] .

Using (4.2.2) and (αβ − γ)A2 = 2B this turns into

22k+3Bw ∈ Z[Π,Π] . (4.2.4)

Next we need

22k+3Bw(2i− 22k+1Biw) = 22k+4Biw − 24k+4B2iw2 ∈ Z[Π,Π] . (4.2.5)

Then compute

24k+3AB2w2(2i− 22k+1Biw) = 24k+4AB2(1 + 22kα)iw2

+26k+4AB2βiw + 26k+4AB2γi ∈ Z[Π,Π] .

Using (4.2.5) here yields

22k+4AB(1 + 22kBα)iw + 26k+4AB3βiw + 26k+4AB3γi

= 22k+4AB(1 + 22kBα + 24kB2β)iw + 26k+4AB3γi ∈ Z[Π,Π] . (4.2.6)

Now use (4.2.3) with (4.2.6) to get

24A(1 + 22kBα + 24kB2β + 26kB3γ)i = 24AQi ∈ Z[Π,Π] . (4.2.7)

Finally use (4.2.2) and (4.2.4) with (4.2.7) to get

22k+7ABQiw ∈ Z[Π,Π] and 2k+5A2Qiw2 ∈ Z[Π,Π] .

Since Z[Π,Π] = Z[π, π], we have

22k+3Bw ∈ Z[π, π] , 2k+1Aw2 ∈ Z[π, π] , 24AQi ∈ Z[π, π] ,

22k+7ABQiw ∈ Z[π, π] , 2k+5A2Qiw2 ∈ Z[π, π] .

These imply that
[Z[i, w] : Z[π, π]] | 26k+20A5B2Q3 .

By Lemma 4.2.2 we have [OK : Z[i, w]] | 25[OK0 : Z[w]]2, so finally we get

[OK : Z[π, π]] | 26k+25A5B2Q3[OK0 : Z[w]]2 .
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Lemma 4.2.4. ν2(C) = 3 and (C/8)P ≡ 1 (mod 2k−1).

Proof. Compute
NmK/Q(i)(±Π− 1) = ±NmK/Q(i)(Π∓ 1)

= ± det

a0 ∓ 1 + i 2kAγ −2kγ(Aα− 2kBi)
−22kBi a0 ∓ 1 + 2kAβ + i 2k(A(γ − αβ) + 2kBβi)
−2kA 2k(Aα− 2kBi) a0 ∓ 1 + 2kA(β − α2) + (1 + 22kBα)i


which looks really bad until we reduce it modulo 2k−1 and find that

NmK/Q(i)(±Π− 1) ≡ ±(a0 ∓ 1 + i)3 ≡ ±(∓1 + i)3 = ±2± 2i (mod 2k−1)

where we also used the fact that a0 ≡ 0 (mod 2k−1). Now this means that, for some integers
a and b

NmK/Q(i)(±Π− 1) = ±(2 + 2k−1a)± (2 + 2k−1b)i .

Taking the absolute norm of this yields

Nm(±Π− 1) = (2 + 2k−1a)2 + (2 + 2k−1b)2

= 8
[
1 + 2k−1(a+ b) + 22k−5(a2 + b2)

]
= CsPs ,

which gives ν2(Cs) = 3 since P is a large odd prime, and (C/8)P ≡ 1 (mod 2k−1).

4.3 Parameter Selection

We start by considering the dependence of p on α, β,A,B and k. It is easy to compute that

p = 26k−4

(
2B2

A

)2

+ 24k−1B2
(
α2 − β

)
+ 22k−2A2

(
(α2 − β)2 − 4αγ

)
+ 1 (4.3.1)

in which the first is by far the most significant term for practical parameters. The idea is
that p can be made large even if α and β remain small by taking k to be large enough (see
Remark 4.2.1).

Remark 4.3.1. Depending on k and the other parameters, in the binary representation of p
most of the digits are zeros and the ones are grouped together in roughly four spots. This
might be relevant for high-performance arithmetic in Fp on consequently on the Jacobian.

Lemma 4.3.2. For reasonable parameters4 the number of bits in p is

6k − 1− 2ν2(A) + 4blog2Bc .

4For reasonable parameters the first term in (4.3.1) is by far the largest.
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Lemma 4.3.3. For reasonable parameters, as in Lemma 4.3.2, the number of bits in
Nm(π − 1) is

18k − 5− 6ν2(A) + 12blog2Bc .

Proof. This follows immediately from the fact that Nm(π − 1) = p3 +O(p5/2).

How big does it make sense to allow the cofactor C in Nm(π−1) to be? We already saw in
Lemma 4.2.4 that C is necessarily divisible by 8. Recall that Jacobians of hyperelliptic genus
3 curves admit a double large prime index calculus with complexity Õ(p4/3) (see [GTTD]).
This means that Pollard rho operating in the large prime order subgroup yields no further
reduction in security as long as

p4/3 �
(
p3

C

)1/2

,

which simplifies to C � p1/3. By Lemma 4.3.2 this means that the number of bits in C
should be less than 2k. To obtain practical sizes we need k ≥ 10, so this is a very large
bound.

From Lemma 4.3.2 we see that to have a prime p of N bits we should take k to be at
most b(N+1)/6c. The smaller k we choose the bigger B can be, which gives us more options
for the input to Algorithm 4.2.1. For security reasons it might preferable to have k be as big
as possible, as we will see in Section 4.4.

After N (the bit-length of p) and k have been chosen, from the formula in Lemma 4.3.2
we get bounds for B in terms of A:

2−1/4(2A)1/22N/4−3k/2 ≤ B < (2A)1/22N/4−3k/2 . (4.3.2)

If 22m divides both A2 and B, then in fact we get a setup identical to something we would
get by replacing k 7→ k + m. To avoid such overcounting we only choose B such that
gcd(A2, B) ≤ 2. When A = 1, any of the integers in the range (4.3.3) is a possible choice for
B, but when A ≥ 2 the divisibility condition A2 | 2B must be satisfied as well as the non-
trivial gcd(A2, B) ≤ 2. But together these can only hold when A ≤ 2 so the only possible
values for A are 1 and 2.

In the case A = 1, (4.3.2) becomes

2−1/42N/4−3k/2+1/2 ≤ B < 2N/4−3k/2+1/2 . (4.3.3)

In the case A = 2, (4.3.2) becomes

2−1/42N/4−3k/2+1 ≤ B < 2N/4−3k/2+1 , (4.3.4)

where in addition we require B ≡ 2 (mod 4) to ensure gcd(A2, B) ≤ 2. Hence, the number
of possible Bs is very closely approximated by{(

1− 2−1/4
)

2N/4−3k/2+1/2 when A = 1;(
1− 2−1/4

)
2N/4−3k/2−1 when A = 2.

(4.3.5)



CHAPTER 4. AVOIDING ISOGENY ATTACKS IN GENUS 3 59

Figure 4.1: Approximate number of pairs (A,B) available as a function of k, for N =
60, 65, 70, 75, 80
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From (4.3.5) we get that the approximate number of pairs (A,B) that yield primes p of N
bits with a fixed k is very closely approximated by(

1− 2−1/4
) (

21/2 + 2−1
)

2N/4−3k/2 . (4.3.6)

It is worth pointing out that for a fixed N this number decreases exponentially as a function
of k. In Figure 4.1 we have plotted (4.3.6) as a function of k for some interesting values
of N .

Next we consider what restrictions there are on k. When A = 1, to find any values for
B we certainly need 2N/4−3k/2+1/2 > 1, so N/4 − 3k/2 + 1/2 > 0. When A = 2, we need
2N/4−3k/2 > 1. So to find any pairs (A,B) resulting in a prime of the right size, we need k
to satisfy {

k ≤ dN/6 + 1/3e − 1 when A = 1;

k ≤ dN/6e − 1 when A = 2.

Note that some values of N are particularly bad in the sense that only A = 1 might yield
pairs (A,B) for the largest possible k, namely those for which dN/6 + 1/3e = dN/6e+ 1.

Based on these observations, we suggest the following approach for choosing suitable
parameters:

1) Choose a target bit length N for p.

2) Choose a minimum value kmin for k.
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3) List all integer triples (A = 1, B, k) where

kmin ≤ k ≤ dN/6 + 1/3e − 1 , 2N/4−3k/2+1/4 ≤ B < 2N/4−3k/2+1/2 ,

and all integer triples (A = 2, B, k) where B ≡ 2 (mod 4) and

kmin ≤ k ≤ dN/6e − 1 , 2N/4−3k/2+3/4 ≤ B < 2N/4−3k/2+1 .

4) Choose bounds for α (e.g. [−30, 30]) and bounds for β (e.g. [−1000, 0])5. Choose some
reasonable bound ∆max for the discriminant ∆ (e.g. 105).

5) Loop over triples (A,B, k) and over all (α, β) in the chosen ranges, and for each of these
compute γ = αβ − 2B/A2 and ∆. Discard those where ∆ > ∆max.

6) Run Algorithm 4.2.1 for all tuples (α, β, γ, A,B, k) until you find a set of parameters that
satisfies the primality conditions and the class number conditions.

We present this in algorithm form in Algorithms 4.3.1, 4.3.2. First Algorithm 4.3.1
constructs a set of potentially good curve parameters that are then given to Algorithm 4.3.2,
which tests them against several conditions and if all are met outputs sextic CM fields K/K0

together with ordinary p-Weil numbers π ∈ OK , such that ππ = p is an N -bit prime and all
the conditions required by the genus 3 CM method are met as given in Section 4.2.

If either Algorithm 4.3.1 or Algorithm 4.3.2 returns an empty list, a smaller kmin should
be chosen. According to (4.3.6) and Figure 4.1 allowing k to be just slightly smaller is likely
to significantly increase the probability of getting a non-empty output. Alternatively a larger
∆max, a larger αmax and a smaller βmin may be used, but larger discriminants ∆ are much
more likely to produce fields K with large class numbers that make the genus 3 CM method
inconvenient or impossible to do in practice.

Remark 4.3.4. Computing class numbers is not a problem. Assuming the Generalized Rie-
mann Hypothesis (GRH) the complexity of computing the class number of a number field
with discriminant ∆ is

L∆(1/2,
√

2 + o(1)) := exp
(

(
√

2 + o(1)) · (log ∆)1/2 (log log ∆)1/2
)

according to [Bac]. Since the discriminants are assumed to be fairly small, the class number
is expected to be reasonably small for the computation to be fast even if the GRH is not
assumed and Minkowski’s bound is used. Such computations are done in a few seconds using
either SAGE or Magma [BCP] and do not pose any problem.

A few more comments are in order:

5Having β be negative and in general larger in absolute value than α ensures that the discriminant ∆ is
positive.
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Algorithm 4.3.1 Construction of curve parameters

1: Input: αmax, βmin, ∆max, kmin

2: for k ∈ [kmin, dN/6 + 1/3e − 1] do
3: Let Bmin := d2N/4−3k/2+1/4e and Bmax := d2N/4−3k/2+1/2e − 1.
4: for B ∈ [Bmin, Bmax] do
5: for α ∈ [−αmax, αmax] and β ∈ [βmin, 0] do
6: Let γ := αβ − 2B/A2.
7: Let ∆ := α2β2 − 4β3 − 4α3γ − 27γ2 + 18αβγ.
8: if 0 < ∆ ≤ ∆max then
9: Record the tuple (α, β, γ, A = 1, B, k).

10: end if
11: end for
12: end for
13: end for
14: for k ∈ [kmin, dN/6e − 1] do
15: Let Bmin := d2N/4−3k/2+3/4e and Bmax := d2N/4−3k/2+1e − 1.
16: for B ∈ [Bmin, Bmax] such that B ≡ 2 (mod 4) do
17: for α ∈ [−αmax, αmax] and β ∈ [βmin, 0] do
18: Let γ := αβ − 2B/A2.
19: Let ∆ := α2β2 − 4β3 − 4α3γ − 27γ2 + 18αβγ.
20: if 0 < ∆ ≤ ∆max then
21: Record the tuple (α, β, γ, A = 2, B, k).
22: end if
23: end for
24: end for
25: end for

26: Output: List of tuples (α, β, γ, A,B, k).

1) The bound kmin should not be too small. The larger it is, or really the larger k is, the
more work the attacker must do to perform an isogeny attack as will be explained and
discussed in Section 4.4.

2) The symmetric choice for the α interval and the choice for the β interval are to guarantee
that the discriminant ∆ is positive.

3) The index [OK0 : Z[w]] is very likely to be small. It would be preferable to have it be 1 to
simplify the CM method, but also larger indices are possible to deal with as is explained
in [Wen].

4) The polynomial f(x) is almost certainly irreducible.

5) The bound p4/9 for the size of the prime divisors of Q is explained in Section 4.4.
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Algorithm 4.3.2 Construction of CM data

1: Input: A list of tuples (α, β, γ, A,B, k) constructed by Algorithm 4.3.1.

2: for all input tuples (α, β, γ, A,B, k) do
3: Let a0 := 23k−2(2B2/A) + 2k−1A(α2 − β).
4: Let p := a2

0 + 22kA2αγ + 1.
5: if p is not prime then
6: Continue
7: end if
8: Let Q := 1 + 22kBα + 24kB2β + 26kB3γ.
9: if Q has prime divisors smaller than p4/9 then

10: Continue
11: end if
12: Let f(x) := x3 + αx2 + βx+ γ.
13: if f is not irreducible over Q then
14: Continue
15: end if
16: Let K0 be the field generated by a root w of f(x).
17: if [OK0 : Z[w]] is not small then
18: Continue
19: end if
20: Let K := K0(i).
21: if p is ramified in K then
22: Continue
23: end if
24: Let Π := a0 − 2kAw2 + i(1− 22kBw).
25: Compute N± := Nm (±Π− 1).
26: if Ns equals a prime times a cofactor Cs (Cs at most k bits) for a sign s then
27: Let P := Ns/Cs, C := Cs and π := sΠ.
28: if |ϕ(π + π)| > 2p1/2 for some embedding ϕ : OK0 ↪→ R then
29: Continue
30: end if
31: else
32: Continue
33: end if
34: if the class number of K0 is not 1 then
35: Continue
36: end if
37: Compute the class number # Cl(K) of K.
38: Record the tuple (α, β, γ, A,B, k, a0, p, Q,K0, K, P, C, π,# Cl(K)).
39: end for

40: Output: List of tuples (α, β, γ, A,B, k, a0, p, Q,K0, K, P, C, π,# Cl(K)).
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6) An explicit computation reveals that the inequality |ϕ(π+ π)| ≤ 2p1/2 should hold for all
real embeddings ϕ : OK0 ↪→ R as long as k is of practically relevant size.

4.4 Special Properties of the Isogeny Class

We start by presenting a result from [Mil2] explaining the relation between the automor-
phisms of JacC and C.

Theorem 4.4.1 ([Mil2]). If A is the Jacobian variety of a curve C with canonical principal
polarization λ, then

Aut C ∼=
{

Aut(A, λ) if C is hyperelliptic;

Aut(A, λ)/{±1} if C is non-hyperelliptic.

In [Wen] Weng used Theorem 4.4.1 to find Jacobians of genus 3 hyperelliptic curves
(rather than non-hyperelliptic) as follows.

Theorem 4.4.2. If A is a simple Jacobian variety of a curve C of genus g ≥ 2 and i ∈
EndA, then C must be hyperelliptic.

Proof. We know that 4 divides |Aut(A, λ)| so by Theorem 4.4.1 we see that C must have
an automorphism ϕ of order at least 2. But then C/〈ϕ〉 sits inside C and the Jacobian JacC
is not simple unless C/〈ϕ〉 has genus 0. Hence there is a degree 2 cover C → P1 so C is
hyperelliptic.

Suppose from now on that a CM field K/K0 and a p-Weil number π have been constructed
using Algorithms 4.3.1,4.3.2. Suppose the genus 3 CM method of Weng has been used to
construct an abelian variety A/Fp, which is the Jacobian of a hyperelliptic curve C/Fp of
genus 3 such that EndA = OK (recall Section 2.6).

Lemma 4.4.3. Let ` be a prime and A → A/K = B an isogeny to a 3-dimensional abelian
variety B/Fp, such that EndB = O 6= OK. Then O is an order in OK containing Z[π, π]. If
the kernel K is contained in A[`n] for some prime `, then ` | 2BQ[OK0 : Z[w]].

Proof. Recall from Section 2.5 that the endomorphism ring of B is an order O ⊆ OK con-
taining Z[π, π].

For any endomorphism ϕ ∈ OK of A we have a sequence of abelian varieties

B = A/K // A/A[`n]
[`n]
// A ϕ

// A // A/K = B

which shows that `nϕ ∈ O, and consequently `nOK ⊆ O. Since O is a ring, we in fact have

Z + `nOK ⊆ O .



CHAPTER 4. AVOIDING ISOGENY ATTACKS IN GENUS 3 64

Since [OK : Z + `nOK ] = `5n, we have a diagram of orders (sublattices)

OK

O

6=1

OO

Z[π, π] + `nOK

OO

Z[π, π]

77

26k+25A5B2Q3[OK0
:Z[w]]2

@@

Z + `nOK

hh

`5n

__

where the labels denote numbers that the relative indices are divisible by. From this it is
clear that ` must divide 2BQ[OK0 : Z[w]] (since A is either 1 or 2).

Theorem 4.4.4. Let K ⊂ A[2nN ] where N is divisible by powers of odd prime divisors of
B[OK0 : Z[w]], and suppose K is stable under π. Suppose B = A/K is the Jacobian of a
non-hyperelliptic curve defined over Fp.

a) A[2nN ] ∼= A[2n]⊕A[N ] and under this decomposition K decomposes as K ∼= K[2n]⊕K[N ]
into subgroups of the two summands. Both K[2n] and K[N ] are π-stable.

b) K, K[2n] and K[N ] are stable under π = p/π.

c) K must contain a point of power-of-2 order at least 2k+ν2(A)+1.

d) If B has real multiplication (RM) by 2kAw2, then K must contain a point of power-of-2
order at least 22k+ν2(B)+1.

e) B can not have RM by 2b(k+ν2(A))/2cw.

Proof. Any abelian group of exponent NM , where N and M are relatively prime, is isomor-
phic to a direct sum of its N -torsion and M -torsion subgroups. This follows directly from
the structure theorem of finitely generated abelian groups. Hence A[2nN ] ∼= A[2n] ⊕ A[N ]
and K ∼= K[2n]⊕K[N ]. Since π commutes with Z,

2nπK[2n] = π 2nK[2n] = 0 , and NπK[N ] = π NK[N ] = 0 ,

so both subgroups of K are stable under π. This proves a).
In fact, it is true that πK = K. First, note that π satisfies a degree 6 minimal polynomial

πg(π) + p3 = 0, where g(x) is some polynomial in Z[x] of degree 5. Next, p3K = K because
gcd (p, 2nN) = 1, meaning we can find integers a and b such that a p3 + b 2nN = 1, and write

p3K ⊆ K = (a p3 + b 2nN)K = a p3K ⊆ p3K .
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Similarly of course pK = K. We get

πK ⊆ K = −p3K = πg(π)K ⊆ πK
since g(π)K ⊆ K, and so

πK = ππK = pK = K .
Again, as in the proof of a), π must leave the two subgroups K[2n] and K[N ] invariant. This
proves b).

By definition of π,
i = ±π − a0 + 2kAw2 + 22kBiw . (4.4.1)

Since B is defined over Fp, the kernel K must be stable under π and by Theorem 4.4.2 it
can not be stable under i. By (4.4.1) the summand K[2n] is stable under i unless it contains
points of order at least 2k+ν2(A)+1. Note that gcd (B[OK0 : Z[w]], Q) = 1 since Q is assumed
to have only large factors. Therefore, K[N ] = 27AQK[N ], and so

iK[N ] = i(27AQK[N ])

⊆ 27AQ(±π − a0)K[N ] + 2k+7A2Qw2K[N ] + 22k+7A2BQiwK[N ]

where 2k+7A2Qw2 ∈ Z[π, π] and 22k+7A2BQiw ∈ Z[π, π] by Theorem 4.2.3. Since Z[π, π]
leaves K invariant, we conclude that the only way to get to a non-hyperelliptic Jacobian
A/K is by taking K to have points of power-of-2 order at least 2k+ν2(A)+1. We are done with
c).

For d), suppose that B has RM by 2kAw2, meaning 2kAw2 leavesK invariant. From (4.4.1)
we see, just like in the proof of c), that K must contain points of power-of-2 order at least
22k+ν2(B)+1.

To prove e), consider first what happens if B has RM by 2kAw2. As in the proof of c),
K = QK. Using this and (4.4.1), we can write

iK ⊆ (±π − a0)K + 2kAw2K + 22kBiwK
= (±π − a0)K + 2kAw2K + 22k−ν2(A)−4Bw(24AQi)K .

But (±π−a0)K ⊆ K and we assumed 2kAw2K ⊆ K, and by Theorem 4.2.3 24AQi ∈ Z[π, π],
so in fact

iK ⊆ K + 22k−ν2(A)−4BwK . (4.4.2)

Therefore, if B has RM by 22k−ν2(A)−4Bw it also has CM by i, which can not be the case
by Theorem 4.4.2. We conclude that B can not have RM by 22k−ν2(A)−4Bw if it has RM by
2kAw2.

Now, if B does have RM by 2b(k+ν2(A))/2cw, then it also has RM by 2kAw2 and, according
the above argument, not by 22k−ν2(A)−4Bw. It is very easy to see that

b(k + ν2(A))/2c < 2k − ν2(A) + ν2(B)− 4 ,

so B having RM by 2b(k+ν2(A))/2cw means that it also has RM by 22k−ν2(A)−4Bw. This is a
contradiction, proving that B can not have RM by 2b(k+ν2(A))/2cw.
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According to Theorem 4.4.4 the attacker must necessarily compute an isogeny whose
kernel involves high power-of-2 torsion points. We next argue that it is not feasible to do
this in one step. Lemma 4.2.4 shows that #A(Fp)[2] = 8, and the following result shows
that the remaining 2-torsion points are defined over Fp2 .

Lemma 4.4.5. The subgroup A[1 + i] is a 3-dimensional subspace of A[2]. All points of
A[1 + i] are defined over Fp and the rest of the points in A[2] are defined over Fp2.

Proof. Recall that i ∈ EndA and that

± π = a0 − 2k Aw2 + i(1− 22k Bw) . (4.4.3)

The subgroup A[1 + i] consists of points x ∈ A such that (1 + i)x = 0. But for such a point
(1 − i)(1 + i)x = 2x = 0, so x ∈ A[2]. Hence A[1 + i] is a subgroup of A[2]. Moreover,
by (4.4.3) (recall that a0 is even) we have πx = ix = x, so A[1 + i] ⊆ A(Fp)[2]. Likewise,
A(Fp)[2] ⊆ A[1 + i], so in fact A[1 + i] = A(Fp)[2]. Hence A[1 + i] is a 3-dimensional
Fp-rational subspace of A[2].

According to (4.4.3) π acts as i on A[2] and so π2 acts as 1, which means that the rest
of the points in A[2] are defined over Fp2 .

Lemma 4.4.6. The smallest extension of Fp over which a point of order 2M of A is guar-
anteed to be found is of degree 2M−1. This is also the smallest extension where such a point
can be “expected” to be found.

Proof. It follows from the endomorphism i ∈ EndA of order 4 thatA[2] has at least one point
that is stable under π. This can now be lifted to A[4] using Cantor’s hyperelliptic division
polynomials [Can] and can be repeated until a point of order 2M is found6. Performing
the lifting requires extraction of square-roots, which will result in elements in a quadratic
extension field.

We found in Lemma 4.4.5 that A(Fp)[2] = A[1 + i]. It follows that the smallest field
extension of Fp where one can expect (in the sense that one must almost certainly go to a
quadratic extension whenever a division by 2 is performed) to find a point of order 2M , has
degree 2M−1.

Corollary 4.4.7. If A → A/K = B is an isogeny where the target B is the Jacobian of
a non-hyperelliptic curve, then one should expect the points of K to have coordinates in an
extension of Fp of degree at least 2k+ν2(A).

Furthermore, if B has RM by 2kAw2, then one should expect the points of K to have
coordinates in an extension of Fp of degree at least 22k+ν2(B).

Proof. Follows immediately from Theorem 4.4.4 and Lemma 4.4.6.

6This lifting process is studied and demonstrated in the case of genus 2 in [GS].



CHAPTER 4. AVOIDING ISOGENY ATTACKS IN GENUS 3 67

4.5 Explicitly Computable Isogenies

By an explicitly computable isogeny we mean that given the theta null point of the source
principally polarized abelian variety and the theta coordinates of points in a finite subgroup,
there is an efficient and practical algorithm to compute the theta null point of the quotient
principally polarized abelian variety and find theta coordinates of the image of any Fp-valued
point. We also need to be able to recover the Jacobian structures of the source and the target
abelian varieties and be able to express all points as divisors on the corresponding curves.

Computing an isogeny to a non-hyperelliptic Jacobian in one step from A is unlikely
to be possible due to Theorem 4.4.4 and Corollary 4.4.7. The attacker would need to find
a π-stable kernel containing points of very high power-of-2 torsion, which would only be
defined over large extension fields. Even worse, the algorithms of [LR, CR, Rob] require
computing theta coordinates for the points in the kernel, which typically live in even larger
field extensions. So instead of doing to computation in one step the attacker is practically
forced to compute a chain of isogenies between Jacobians of hyperelliptic curves over Fp,
until the Jacobian of a non-hyperelliptic curve is encountered. The smallest possible length
of the chain clearly depends directly on k.

Maximal Isotropic Isogenies

Currently (`, `, `)-isogenies between Jacobian varieties are by far the easiest isogenies to
compute7. The reason is that such an isogeny f : A → B respects principal polarizations
in the sense that for a principal polarization on A determined by a degree 1 line sheaf L
there is always an induced polarization M on the target B such that f ∗M ∼= Ldeg f . For
instance, this means that the target is guaranteed to be principally polarized and hence
isomorphic to the Jacobian of a genus 3 curve according to Theorem 2.6.7, although as we
pointed out in Section 2.6 and again in Section 4.1 the target abelian variety might only be
isomorphic to the Jacobian over a quadratic extension of the base field if the target curve
is non-hyperelliptic, in which case it would not be useful for the attacker. These techniques
were developed in references [LR, CR, Rob] and, while only implemented in genus 2, should
just as well work to compute (`, `, `)-isogenies between Jacobians of genus 3 curves.

Much earlier Smith [Smi] computed certain (2, 2, 2)-isogenies between Jacobians of genus 3
curves and demonstrated the isogeny attack with practical examples. While his method is
much simpler and faster than the heavy machinery of [LR, CR, Rob], it only works for certain
maximal isotropic tractable subgroups K ∼= (Z/2Z)3 of A[2], whose existence depends on
the form of the hyperelliptic polynomial. In particular, Smith found that only 18.57% of
hyperelliptic genus 3 curves are vulnerable.

When ` is odd, the complexity of computing an (`, `, `)-isogeny is at least Õ(`3) operations
in the field of definition of the points of K using the methods of [CR]. In Algorithm 4.3.2 we
restricted the prime factors of Q to be at least p4/9 to ensure that computing an isogeny by a

7At least when the dimension of the varieties is greater than 1. In the case of elliptic curves computing
isogenies is significantly easier (see [Sil1, Was]).
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factor of Q is no easier than breaking the DLP on the hyperelliptic Jacobian using the Õ(p4/3)
index calculus. In reality it would be extremely difficult to compute isogenies by such large
kernels, even much more difficult than suggested by the complexity estimate, because one
would have to deal with extremely large extension fields of Fp to describe the points in the
kernel. This means that the attacker faces exactly the situation of Theorem 4.4.4, implying
that the only isogenies the attacker can directly profit from are either (`, `, `)-isogenies or
cyclic `-isogenies, where ` is a power of 2.

Cyclic Isogenies

Very recently there has been some progress in computing horizontal isogenies8 with cyclic
kernels in the case of genus 2 [Dud], assuming both the source and the target Jacobians
have real multiplication (RM) by the maximal order OK0 , or at least by some “large enough”
order, but this seems to be hard to make precise. It is not clear at all if the same methods
can be extended to work for genus 3 curves. However, the requirements on the ring of real
multiplication are so central to the algorithm that it seems very unlikely it could be made to
work unless both the source and the target varieties have RM by (almost) all of OK0 . Now,
Theorem 4.4.4 implies that the ring of real multiplication on B is smaller than on A. Part
d) implies that unless the kernel contains very high power-of-2 torsion points, 2kAw2 does
not act on B. Note that by Theorem 4.2.3 2k+1Aw2 ∈ Z[π, π], so in some sense B is as far
as possible from having w2 act on it. By Theorem 4.2.3 we know that 22k+3Bw ∈ Z[π, π]
so it acts on B, but by part e) of 2b(k+ν2(A))/2cw does not. This gives a strong reason to
believe that computing isogenies with cyclic kernel is unlikely to help the attacker reach a
non-hyperelliptic Jacobian unless remarkable theoretical progress is made in explicit isogeny
algorithms.

Chains of Isogenies

For the attacker the best course of action seems to be to compute a chain of (2, 2, 2)-isogenies,
or possibly a chain consisting of (2m, 2m, 2m)-isogenies for small integers m, in such a way
that each Jacobian in the chain is defined over Fp. This means that each relative kernel
must be invariant under π. Due to the nature of the explicit isogeny algorithms at each
step it is necessary to identify the target as the Jacobian of a (hyperelliptic) curve, map
the DLP to this particular Jacobian and proceed with finding the next kernel in the chain.
By Theorem 4.4.4 the kernel of the composition of the isogenies in the chain should contain
points of power-of-2 order at least 2k+ν2(A)+1, which means that the attacker would need to
compute e.g. at least k+ν2(A)+1 (2, 2, 2)-isogenies. It is not clear how feasible such a chain
of isogenies would be to find and to compute, and a detailed analysis is left for future work.

8Horizontal isogenies are isogenies that do not change the endomorphism ring.
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Even though our solution to the threat of isogeny attacks is not complete in the sense
that there is still a possible path left open for the attacker, we have presented several novel
techniques for preventing most isogeny attacks from working.

Of course one should keep in mind that according to the results of Chapter 3 isogeny
attacks are not a threat when p is large enough, say when p > 280, because of the massive
memory requirements of the index calculus attack. Instead, the question of preventing
isogeny attacks is only relevant in the lower part of the range 260 < p < 280. Such relatively
“low security” cryptosystems using extremely small fields certainly have their uses, but are
currently not practical due to the persisting threat of isogeny attacks and the lack of efficient
enough arithmetic.



70

Bibliography

[ADH] L. M. Adleman, J. DeMarrais, M.-D. Huang, A subexponential algorithm for discrete
logarithms over hyperelliptic curves of large genus over GF(q), Theoret. Comput. Sci.
226 (1999), no. 1-2, pp. 7–18.

[Adl] L. Adleman, A subexponential algorithm for the discrete logarithm problem with ap-
plications to cryptography, In 20th Annual Symposium on Foundations of Computer
Science, IEEE (1979), 55–60.

[AM] A. Atkin, F. Morain, Elliptic curves and primality proving, Mathematics of computa-
tion 61, no. 203 (1993), 29–68.

[Bac] E. Bach, Eric, Explicit bounds for primality testing and related problems, Mathematics
of Computation 55, no. 191 (1990), 55–380.

[BCLS] D. J. Bernstein, C. Chuengsatiansup, T. Lange, P. Schwabe, Kummer strikes back:
new DH speed records, In Advances in Cryptology–ASIACRYPT 2014, pp. 317-337,
Springer Berlin Heidelberg, 2014.

[BCHL] J. W. Bos, C. Costello, H. Hisil, K. Lauter, Fast Cryptography in Genus 2, Advances
in Cryptology - EUROCRYPT 2013, Lecture Notes in Comput. Sci. 7881, Springer
Berlin (2013), 194–210.

[BCP] W. Bosma, J. Cannon, C. Playoust, The Magma algebra system I: The user language,
Journal of Symbolic Computation 24, no. 3 (1997), 235–265.

[Can] D. G. Cantor, On the analogue of the division polynomials for hyperelliptic curves,
Journal fur die reine und angewandte Mathematik, 447 (1994), 91–146.

[Can2] D. G. Cantor, Computing in the Jacobian of a hyperelliptic curve, Mathematics of
computation 48, no. 177 (1987), 95–101.

[Che] Formulas for the solutions of quadratic equations over GF(2m), IEEE Trans. Inform.
Theory 28 (1982), no. 5, 792—794.

[CM] H. Cohen, J. Martinet, Class groups of number fields: numerical heuristics, Mathe-
matics of Computation 48, no. 177 (1987), 123–137.



BIBLIOGRAPHY 71

[CR] R. Cosset, D. Robert, Computing (`, `)-isogenies in polynomial time on Jacobians of
genus 2 curves, http://hal.inria.fr/docs/00/57/89/91/PDF/niveau.pdf, 2011.

[DH] W. Diffie, M. Hellman, New directions in cryptography, Information Theory, IEEE
Transactions on 22, no. 6 (1976), 644–654.
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[Rob2] D. Robert, Computing cyclic isogenies using real multiplication (Talk Notes), ANR
Peace meeting, April 2013, Paris.

[Sem] I. Semaev, Summation polynomials and the discrete logarithm problem on elliptic
curves, IACR Cryptology ePrint Archive 2004 (2004): 31, http://eprint.iacr.org/
2004/031.

[Sem2] I. Semaev, New algorithm for the discrete logarithm problem on elliptic curves, IACR
Cryptology ePrint Archive 2015 (2015): 310, http://eprint.iacr.org/2015/310.

[Shim] G. Shimura, Abelian varieties with complex multiplication and modular functions, vol.
46, Princeton University Press, 1998.

[Shio] T. Shioda, On the graded ring of invariants of binary octavics, American Journal of
Mathematics (1967), 1022–1046.

[Sil1] J. Silverman, The arithmetic of elliptic curves, Vol. 106, Springer, 2009.

[Sil2] J. Silverman, Advanced topics in the arithmetic of elliptic curves, Vol. 151, Springer-
Verlag, 1994.

[Smi] Smith, B., Isogenies and the Discrete Logarithm Problem in Jacobians of Genus 3
Hyperelliptic Curves, Advances in Cryptology - EUROCRYPT 2008, Lecture Notes in
Comput. Sci. 4965, Springer, Berlin (2008), 163–180.

[SWD] O. Schirokauer, D. Weber, T. Denny, Discrete logarithms: the effectiveness of the
index calculus method, In Algorithmic number theory, pp. 337–361, Springer Berlin
Heidelberg, 1996.

[The] Thériault, N., Index calculus attack for hyperelliptic curves of small genus, Advances
in Cryptology - ASIACRYPT 2003, Lectures Notes in Comput. Sci. 2894, Springer,
Berlin (2003), 75–92.

[VJS] M. D. Velichka, M. J. Jacobson Jr., A. Stein, Computing discrete logarithms in the
Jacobian of high-genus hyperelliptic curves over even characteristic finite fields Math.
Comp. 83 (2014), 935–963.

[Was] L. C. Washington, Elliptic curves: number theory and cryptography, CRC press, 2008.

[Wen] A. Weng, A class of hyperelliptic CM-curves of genus three, Journal of the Ramanujan
Math. Soc. 16, no. 4 (2001), 339–372.

[Wen2] A. Weng, Constructing hyperelliptic curves of genus 2 suitable for cryptography,
Mathematics of Computation 72, no. 241 (2003), 435–458.

http://eprint.iacr.org/2004/031
http://eprint.iacr.org/2004/031
http://eprint.iacr.org/2015/310


BIBLIOGRAPHY 74

[Wes] B. Wesolowski, Walking on Isogeny Graphs of Genus 2 Hyperelliptic Curves (M.Sc.
Thesis), Ecole polytechnique fédérale de Lausanne, 2014.

[ZLR] A. Zykin, G. Lachaud, C. Ritzenthaler, Jacobians among abelian threefolds: A for-
mula of Klein and a question of Serre, Doklady Mathematics 81, no. 2, SP MAIK
Nauka/Interperiodica, 2010.


	Contents
	List of Figures
	List of Tables
	Introduction
	Discrete Logarithms
	Index Calculus in Genus 3
	Avoiding Isogeny Attacks in Genus 3

	Background
	Public Key Cryptography
	Discrete Logarithms
	Generic Attacks
	Index Calculus
	Abelian Varieties over Finite Fields
	Constructing Curves for Cryptography

	Index Calculus in Genus 3
	Diem's Index Calculus
	New Variant
	Complexity for Realistic Field Sizes
	Time-Memory Trade-offs
	Parallelization

	Avoiding Isogeny Attacks in Genus 3
	Overview
	A Family of Sextic CM Fields
	Parameter Selection
	Special Properties of the Isogeny Class
	Explicitly Computable Isogenies

	Bibliography



