
UCLA
UCLA Electronic Theses and Dissertations

Title
Regular Grid Based Methods for Fluid Simulation and Meshing Self-Intersecting Surfaces

Permalink
https://escholarship.org/uc/item/5d24c0rx

Author
Gagniere, Steven William

Publication Date
2022

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5d24c0rx
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Regular Grid Based Methods for Fluid Simulation

and Meshing Self-Intersecting Surfaces

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Mathematics

by

Steven William Gagniere

2022

© Copyright by

Steven William Gagniere

2022

ABSTRACT OF THE DISSERTATION

Regular Grid Based Methods for Fluid Simulation

and Meshing Self-Intersecting Surfaces

by

Steven William Gagniere

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2022

Professor Joseph M. Teran, Chair

Regular grids are ubiquitous across computation mathematics, appearing in areas such as

the numerical solution of differential equations, rendering in computer graphics, and mesh

generation. In this dissertation we present two methods utilizing a regular background grid.

We also discuss miscellaneous smaller contributions.

The first is a hybrid Lagrangian/Eulerian advection and projection method for fluid

simulations which employs a regular grid both for Eulerian advection and for sub-grid-

cell representation of irregular computational domains using a variation of the Marching

Cubes algorithm. This method uses a Chorin splitting of the advection and pressure terms

in the (incompressible) Euler equations. We present a novel backward semi-Lagrangian

method using quadratic B-splines for velocity interpolation during the advection step. We

additionally use B-spline interpolation over a regular grid in a variational technique for the

pressure projection step.

The second is a method for creating volumetric meshes to represent the interior of self-

intersecting input surfaces with emphasis on efficiency and the minimization of costly exact

ii

or adaptive arithmetic. Standard approaches assume that the input surface is free of self-

intersection, but in practice surface meshes have some amount of self-intersection. Our

approach generates an embedded hexahedron mesh where each hexahedral element is a copy

of a background grid cell. Regions of self-intersection are resolved by using multiple copies

of the grid cells, with connectivity determined by the behavior of the input surface. While

sufficiently high resolution is occasionally required to correctly resolve self-intersections, we

present a topology preserving coarsening method to reach the desired lower resolution.

The first of the smaller contributions is a computation of the eigenstructure of the Hes-

sian for a surface tension energy density model used in an updated-Lagrangian method for

simulating mid-to-extreme surface tension forces. The second is a proof using B-spline tech-

niques of the simplified form of the inertia tensor from the Affine Particle-in-Cell (APIC)

method.

iii

The dissertation of Steven William Gagniere is approved.

Jeffrey D. Eldredge

Marcus Leigh Roper

Luminita Aura Vese

Joseph M. Teran, Committee Chair

University of California, Los Angeles

2022

iv

To my parents, David Gagniere and Pan Kueifeng

v

TABLE OF CONTENTS

1 Introduction . 1

1.1 Overview . 1

1.2 Background . 2

1.2.1 Continuum Mechanics . 2

1.2.2 Marching Cubes . 6

1.2.3 Graph Traversal Algorithms . 9

2 A Hybrid Lagrangian/Eulerian Collocated Velocity Advection and Projec-

tion Method for Fluid Simulation . 14

2.1 Introduction . 15

2.2 Previous work . 17

2.2.1 Advection . 17

2.2.2 Pressure projection . 19

2.3 Governing Equations and Operator Splitting 21

2.4 Spatial Discretization . 23

2.4.1 BSLQB Advection . 25

2.4.2 Hybrid BSLQB-PolyPIC Advection 27

2.5 Pressure Projection . 28

2.5.1 Cut Cells . 31

2.6 Narrow band free surface . 34

2.7 Examples . 35

2.7.1 Hybrid BSLQB/PolyPIC . 35

vi

2.7.2 BSLQB Comparisons . 36

2.7.3 Cut Cell Examples . 38

2.7.4 Performance Considerations . 41

2.8 Discussion and Limitations . 43

3 A Robust Grid-Based Meshing Algorithm for Embedding Self-Intersecting

Surfaces . 45

3.1 Introduction . 45

3.2 Related Work . 48

3.2.1 Volumetric Mesh Creation from a Self-Intersecting Triangle Mesh . . 48

3.2.2 Mesh Creation and Mesh Cutting . 50

3.2.3 Self-Intersecting Curves and Surfaces 52

3.3 Algorithm Overview . 55

3.4 Definitions and Notation . 55

3.4.1 Merging . 57

3.5 Volumetric Extension . 58

3.5.1 Surface Element Precursor Meshes 58

3.5.2 Merge Surface Element Meshes . 60

3.6 Interior Extension Region Creation . 62

3.7 Interior Extension Region Merging . 67

3.7.1 Merge With Boundary . 67

3.7.2 Overlap Lists . 69

3.7.3 Deduplication . 71

3.7.4 Final Merge . 73

vii

3.8 Coarsening . 74

3.9 Hexahedron Mesh To Tetrahedron Mesh Conversion 75

3.10 Examples . 76

3.10.1 2D Examples . 77

3.10.2 3D Examples . 78

3.11 Discussion and Limitations . 85

4 Other Contributions . 89

4.1 Eigenstructure of the Hessian of a Surface Tension Energy Term 89

4.1.1 2D . 90

4.1.2 3D . 94

4.2 Derivation of the APIC Inertia Tensor . 109

4.2.1 Inertia Tensor . 112

References . 121

viii

LIST OF FIGURES

1.1 Original Marching Cubes Cases . 6

1.2 Topological Holes in Marching Cubes . 8

1.3 Connected Components in a Graph . 9

2.1 Banner Image . 14

2.2 Flow Domain and Grid . 22

2.3 BSL vs. SL . 23

2.4 High-Resolution Smoke . 24

2.5 Colorful Smoke Jets . 24

2.6 Dam Break . 26

2.7 Smoke in an Irregular Domain . 26

2.8 Water in a Globe . 27

2.9 Dam Break with Bunny . 28

2.10 SL vs. BSLQB . 30

2.11 Discrete Free Surface Fluid Domain . 32

2.12 Narrow Band Free Surface . 33

2.13 Cut Cells . 34

2.14 Von Karman Vortex Shedding . 35

2.15 Cut Cell vs. Voxelized Domain . 36

2.16 Interpolation Correction . 38

2.17 Convergence . 39

2.18 Smoke Jet . 40

ix

2.19 BSLQB Compared to Other Advection Schemes 41

2.20 Comparison with Houdini Smoke . 42

2.21 Instability . 44

3.1 Banner Image . 45

3.2 Intersection-Free Mapping . 47

3.3 Twin Bunnies . 49

3.4 Intersecting Lips . 51

3.5 Algorithm Overview . 54

3.6 Mesh Conventions . 56

3.7 Mesh Merge . 57

3.8 Precursor Meshes . 59

3.9 Precursor Merge . 61

3.10 Closest Facet . 62

3.11 Patch Expansion . 63

3.12 Region Over-Count . 64

3.13 Connected Regions . 65

3.14 Copy Counting . 66

3.15 Edge Cut Criterion . 67

3.16 Preliminary Merge . 68

3.17 Vertex Adjacency . 70

3.18 Merge with Boundary . 71

3.19 Overlap Lists . 72

3.20 Deduplication . 73

x

3.21 Coarsening . 75

3.22 Hexahedra Tetrahedralization . 76

3.23 2D Simple Overlap . 77

3.24 2D Ribbon . 78

3.25 2D Face . 79

3.26 3D Simple Overlap . 80

3.27 Double Möbius . 81

3.28 Double Möbius Refinement . 82

3.29 Dragon . 83

3.30 Fancy Ball . 84

3.31 3D Mesh Collection . 85

3.32 Sacht Geometry . 86

xi

LIST OF TABLES

2.1 SL/BSL 2D Run Time Comparison . 40

2.2 SL/BSL 2D Stability Comparison . 41

2.3 Average Time Per Frame for 3D Examples 43

3.1 Volumetric Mesh Generation Times for Various 3D Examples 80

xii

ACKNOWLEDGMENTS

I would like to express my gratitude to my advisor, Professor Joseph Teran, for his support,

instruction, and time throughout the years of research. I would also like to thank the

members of my doctoral committee: Professors Luminita Vese, Marcus Roper, and Jeffrey

Eldredge.

I’m extremely grateful to fellow lab member David Hyde, who has provided invaluable

assistance in the form of brainstorming, coding, technical support, and system maintenance

for me and all of my fellow lab members. I also want to thank the rest of my fellow lab

members whom I’ve had the pleasure of working with throughout my years in the program:

Alan Marquez-Razon, Victoria Kala, Ayano Kaneda, Jingyu Chen, Elias Gueidon, Yizhou

Chen, Yushan Han, Stephanie Wang, Mengyuan Ding, Xuchen Han, Qi Guo, and Ziheng

Ge.

I would also like to thank my good friends Nicholas Tammadge, Caleb Choban, and

Camille Bernal, as well as all of my other good friends for their support.

And last, but certainly not least, I want to express my deepest gratitude to my parents

for their constant love, support, and encouragement.

The contents of Chapter 2 are a version of [GHM20a]; an expanded description of cut cells

has been added along with various style and grammar updates. The contents of Section 4.1

are a version of material contained in the supplementary material for [HGM20]. These works

were supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort

between the U.S. DOE Office of Science and DOE National Nuclear Security Administration.

These works were additionally supported by DOE Oak Ridge National Laboratory contract

4000171342. Chapter 3 and Section 4.2 are adapted from manuscripts currently submitted

and under review.

xiii

VITA

2015 B.S. (Mathematics) and B.S. (Physics w/ specialization in Astrophysics),

UCSD.

2016-2021 Teaching Assistant, Mathematics Department, UCLA.

PUBLICATIONS

Gagniere, S., Smith, S. G. L., & Yeh, H. D. (2018). Excess pore water pressure due to ground

surface erosion. Applied Mathematical Modelling, 61, 72-82.

https://doi.org/10.1016/j.apm.2018.03.041

Wang, S., Ding, M., Gast, T. F., Zhu, L., Gagniere, S., Jiang, C., & Teran, J. M. (2019).

Simulation and visualization of ductile fracture with the material point method. Proceedings

of the ACM on Computer Graphics and Interactive Techniques, 2, 1-20.

https://doi.org/10.1145/3340259

Gagniere, S., Hyde, D., Marquez-Razon, A., Jiang, C., Ge, Z., Han, X., Guo, Q. & Teran,

J. (2020). A Hybrid Lagrangian/Eulerian Collocated Velocity Advection and Projection

Method for Fluid Simulation. Computer Graphics Forum, 39, 1-14.

https://doi.org/10.1111/cgf.14096

Hyde, D. A., Gagniere, S. W., Marquez-Razon, A., & Teran, J. (2020). An implicit updated

lagrangian formulation for liquids with large surface energy. ACM Transactions on Graphics

(TOG), 39, 1-13. https://doi.org/10.1145/3414685.3417845

xiv

CHAPTER 1

Introduction

1.1 Overview

In this dissertation we present meshing and simulation methods based on a regular back-

ground grid. First, we introduce a hybrid Lagrangian/Eulerian method for the simulation

of incompressible fluids which naturally handles irregular flow domains on a regular grid

through a cut-cell approach utilizing a variation on the marching cubes algorithm; our vari-

ant is an extension of the approach by Bhaniramka et al. [BWC04]. The incompressible

Euler equations are discretized using a B-spline mixed FEM method with a Chorin splitting

of the governing equations, where velocity degrees of freedom are collocated at the centers of

a regular grid and pressure degrees of freedom are located on cell vertices. We also introduce

a Backward semi-Lagrangian quadratic B-spline (BSLQB) technique for velocity interpola-

tion which is second order accurate in space and time. We discuss this method in detail

Chapter 2.

Second, we introduce an algorithm for generating an embedding hexahedron volume

mesh from a triangle surface mesh with self-intersections to accurately represent the self-

intersecting volume bounded by the triangle surface mesh; the steps in this algorithm are

designed with efficiency in mind by minimizing the use of exact and/or adaptive arithmetic.

The hexahedral elements in the output mesh of this algorithm are formed as copies of regular

background grid cells which are duplicated an appropriate number of times and connected

in a manner which respects the surface mesh. As the algorithm requires sufficient resolution

1

often finer than the target resolution of the user in order to resolve regions of high curvature

and other small-scale features, we also introduce a coarsening method to reach the desired

resolution while preserving the correct topological features. Additionally, we present a hex-

ahedron to tetrahedron conversion method which again respects the topology. We cover this

algorithm in Chapter 3.

We further present the following minor contributions: a computation of the eigenstructure

for the Hessian of the surface tension energy defined in [HGM20] and a proof of the inertia

tensor expression for the APIC method introduced in [JSS15]. These contributions are the

contents of Chapter 4.

The remainder of Chapter 1 covers some relevant mathematical and physical background:

continuum mechanics, the marching cubes algorithm, and graph traversal algorithms.

1.2 Background

1.2.1 Continuum Mechanics

In continuum mechanics, any material under consideration (solid or fluid) follows the con-

tinuum assumption: the material is continuous instead of discrete (even though every such

material is fundamentally comprised of atoms, molecules, etc.). The contents of this section

are based on [GS08].

1.2.1.1 Mass & Force

Let Ω denote the region of space occupied by the material. In accordance with the continuum

assumption, we assume the existence of a mass density field denoted by ρ : Ω → R. The

mass of any open subset U ⊆ Ω is then given by the integral of ρ over that subset:

mass(U) =

∫
U

ρ dx. (1.1)

The volume of U is similarly defined by integrating 1 over U .

2

Forces can be classified as either external body forces (e.g. gravity) or surface forces

resulting from contact (both internal and external). The only body force we shall consider is

gravity. Letting g denote the acceleration due to gravity, the force due to gravity on U ⊆ Ω

is given by the integral

fg(U) :=

∫
U

ρg dx. (1.2)

To describe the surface force, first let Γ denote an oriented surface in Ω which is not neces-

sarily a subset of ∂Ω. The force per unit area exerted on material on one side of this surface

by material on the other side is given by a traction field t, with the force exerted over the

whole of Γ given by

fs(Γ) :=

∫
Γ

t ds. (1.3)

This traction field depends only on position and normal vector, and can be written in terms

of a second order tensor field as

t = σn, (1.4)

where σ is the Cauchy stress tensor field and n is a normal vector. The total force on U ⊆ Ω

is the sum

f(U) = fg(U) + fs(∂U). (1.5)

1.2.1.2 Flow

Denote the initial region occupied by the material (called the reference configuration) by Ω0

and the region occupied at a later time t by Ωt. Let X ∈ Ω0 be a point in the reference

configuration, and let x ∈ Ωt be the corresponding point at time t. We assume the existence

of a bijective deformation map (or flow map) φ(·, t) : Ω0 → Ωt, and we express the corre-

spondence between x and X using the flow map as x = φ(X, t). We further assume that

the flow map is locally orientation preserving: it satisfies the inequality

det
∂φ

∂X
> 0, (1.6)

where F := ∂φ/∂X denotes the deformation gradient.

3

We thus have two coordinate systems with which to describe the system: Lagrangian

coordinates X corresponding to specific particles in the reference configuration and Eulerian

coordinates x corresponding to spatial points. Any scalar, vector, or tensor field can be

described using either coordinate system. For example, consider velocity: the velocity of a

particle X at time t is defined by

V(X, t) :=
∂φ

∂t
(X, t). (1.7)

We use the flow map inverse φ−1(·, t) : Ωt → Ω0 to find the velocity v at a spatial point x:

v(x, t) = V(φ−1(x, t), t). (1.8)

Likewise, any field expressed in Eulerian coordinates has an associated Lagrangian descrip-

tion. For example, consider the time t spatial density ρ(·, t) : Ωt → R. The corresponding

field R(·, t) : Ω0 → R in Lagrangian coordinates is then given by

R(X, t) = ρ(φ(X, t), t). (1.9)

1.2.1.3 Balance Laws

The conservation of mass and the balance of momentum lead to localized Lagrangian and

Eulerian balance laws. Given an open subset U t ⊆ Ωt, there is a corresponding set U0 such

that U t = φ(U0, t). Conservation of mass is then the statement

mass(U t) = mass(U0). (1.10)

Using definition (1.1) of the mass in terms of the mass density ρ on both sides and using

a change of variable to Lagrangian coordinates on the resulting LHS integral leads to the

localized Lagrangian mass balance

R(X, 0) = R(X, t) det F(X, t), (1.11)

where R (defined in Equation (1.9)) is the Lagrangian counterpart of ρ. Here, F is the

deformation gradient from Inequality (1.6). Taking the derivative of (1.11) and simplifying

4

eventually leads to the localized Eulerian form of the mass balance

∂ρ

∂t
+∇ · (ρv) = 0. (1.12)

The balance of momentum in integral form is

d

dt

∫
Ut
ρv dx =

∫
∂Ut

σn ds+

∫
Ut
ρg dx. (1.13)

Let D
Dt

denote the material derivative. Using the property

d

dt

∫
Ut
ρv dx =

∫
Ut
ρ
Dv

Dt
dx, (1.14)

which follows from Result 5.6 of [GS08], together with the divergence theorem on the surface

integral leads to the localized Eulerian momentum balance equation

ρ(x, t)
Dv

Dt
(x, t) = ∇ · σ(x, t) + ρ(x, t)g. (1.15)

By employing a change of variable, the divergence theorem, and conservation of mass, we

may derive the localized Lagrangian form:

R(X, t)
∂V

∂t
(X, t) = ∇ ·P(X, t) +R(X, 0)g, (1.16)

where P(X, t) = det F(X, t)σ(φ(X, t), t)F(X, t)−T is the first Piola-Kirchhoff stress.

1.2.1.4 Incompressible Euler Equations

If we assume that a fluid satisfies the incompressibility condition

∇ · v = 0 (1.17)

and that the Cauchy stress is of the form σ = −pI where p is a pressure field, we obtain the

incompressible Euler equations from equation (1.15):

ρ
Dv

Dt
= ρ

(
∂v

∂t
+
∂v

∂x
v

)
= −∇p+ ρg, (1.18)

∇ · v = 0. (1.19)

5

Figure 1.1: Original Marching Cubes Cases. The 15 marching cubes cases from [LC87]

using the authors’ original indexing. Each of the 256 possible choices of positive or negative

values on the cell vertices can be associated to one of these cases through the use of various

symmetries and reductions. Adapted from Figure 3 of [LC87].

In solving these equations, the pressure is also an unknown quantity in addition to the

velocity v. We solve these governing equations with appropriate boundary conditions in

Chapter 2.

1.2.1.5 Lagrangian and Eulerian Methods

1.2.2 Marching Cubes

The marching cubes algorithm (also known as the marching squares algorithm in 2D) was

first introduced in 1987 by Lorensen and Cline [LC87] to construct surface meshes from

medical data. The basic concept of the algorithm is to generate a triangle mesh from a

scalar field stored at the vertices of a regular grid by approximating the zero-isocontour

defined by linear interpolation on these scalar field values. Each grid cell is associated with

the corresponding 8 scalars stored at its vertices. For each edge whose scalar values at

6

its 2 incident vertices differ in sign, linear interpolation is used to find the position where

the zero-isocontour intersects the edge. A local triangle mesh is then generated by using

appropriate polygons to connect the intersection points on the edges. When a cell has been

processed, the algorithm continues, or ‘marches,’ onto other cells. The global triangle mesh

is then simply the union of the local grid cell polygon meshes. While in principle there

are 256 different sign permutations on grid cell vertices, Lorensen and Cline use rotational

symmetry and sign flips (on the scalar values) to reduce this number to 15 unique cases.

Thus, the original version of the algorithm stores 15 polygon configurations in a lookup table

and used the above symmetries to determine the correct configuration. We show these 15

configurations in Figure 1.1.

This original version contains significant drawbacks, however. First, it is possible for

holes to develop in the global mesh (i.e. to generate a mesh which is not watertight).

We demonstrate this issue using an example from Chernyaev [Che95] in Figure 1.2. Less

seriously, the surface can fail to capture the topology of the zero-isocontour even when the

resulting mesh is watertight. Both of these issues result from ambiguities on the faces and

centers of some of the original 15 cases. Consider case 3 of Figure 1.1 (one of the two cases

from Figure 1.2 which together form a hole). For this case there exists another local mesh

which is not topologically equivalent but is still consistent with the scalar values on the

vertices. In Figure 1.2 we show this case and demonstrate that its use resolves the hole

shown in the same figure.

Many authors have since modified the original algorithm and case table to resolve these

shortcomings. Chernyaev [Che95] expanded the original lookup table from 15 to 33 cases by

adding sub-cases to those original cases which contained face or center ambiguities. He also

provided tests to determine the correct sub-cases. Lewiner et al. [LLV03] further identified

and resolved missing tests from [Che95] and provided an implementation. Other approaches

expand the lookup table by discarding sign flips and using only rotations and/or reflections

[RH99]; such lookup tables additionally consider cases with 5 to 8 positive scalar values.

7

Figure 1.2: Topological Holes in Marching Cubes. Left: The original marching cubes

algorithm applied to the adjacent cells in the upper left result in a hole in the surface. The

left cell is the same as case 6 from Figure 1.1, while the right cell is reduced to case 3 by

a sign flip and a rotation. This figure is adapted from Figure 2 of [Che95]. Right: Using

an alternate choice of local triangle mesh for case 3, the same process generates a consistent

mesh across the adjacent cells.

Banks and Linton [BL03] used computational group theory methods to count and verify

the number of reduced cases from the full 256 based on whether sign flips are used and on

the types of cube symmetries allowed; they do not, however, count the number of sub-cases

required for topological correctness. In particular, they verify that the 15 cases from the

original paper are indeed the minimal number required to generate 256 cases through sign

flips and rotations.

Bhaniramka et al. [BWC04] take this even further by constructing the full 256 lookup

table without considering symmetries or sign-flips. They generate each case in the lookup

table by first taking the convex hull of the interior vertices (those vertices whose stored scalar

value is negative) together with the sample intersection points at midpoints of intersected

edges. Then they store the collection of boundary triangles on the convex hull which do

not lie on cell boundaries; i.e. the triangles on the boundary which are interior to the

8

Figure 1.3: Connected Components in a Graph. Left: We may consider this regular

grid as a graph where the vertices are grid vertices and the edges are the solid grid edges. In

Chapter 3 we will ’cut’ edges of the grid using polygonal lines such as the red line shown here.

Middle: One of the connected components is shown in blue. Right: The other connected

component is shown.

cell. We make use of their approach and extend it by also building a lookup table of the

tetrahedra comprising the convex hull. In other words, we use their marching cubes approach

to additionally generate a tetrahedralization of the volume bounded by the input surface

mesh.

For a detailed accounting of the marching cubes literature, including performance ad-

vances and further algorithmic variants, see the survey by Newman and Yi [NY06].

1.2.3 Graph Traversal Algorithms

We now describe two common graph traversal algorithms, depth-first search (DFS) and

breadth-first search (BFS), and their application to finding connected components (which

we use extensively in Chapter 3). We first define a few of the basic notions related to graphs

(note: we only consider undirected graphs here).

• A graph is a structure consisting of a set of vertices V and edges E which connect

them; each edge is given by a pair of vertices (the endpoints of the edge).

9

Algorithm 1: DFS
Input: Adjacency list L (list of lists), input vertex v, list K
begin

set visited[v] to true;
add v to K;
forall u in L[v] do

if not visited[u] then
DFS(L, u,K);

end
end

end

• An edge is incident to a vertex if that vertex is one of the two vertices in the pair.

• Two vertices are adjacent if they are the endpoints of some edge.

• A path is a sequence of alternating vertices and edges such that each edge is incident

to the vertex before and after it in the sequence and no vertex is repeated.

• Two vertices are connected if there exists a path between them.

• A graph is connected if every pair of vertices are connected.

• Finally, a connected component is a maximal connected subgraph.

We illustrate connected components in Figure 1.3.

The DFS and BFS algorithms both begin at an input vertex and systematically visit all

of the vertices connected to it, differing only in the manner in which the traversal is done.

The two most common data structures for representing a graph are the adjacency matrix

and the adjacency list. Many variations exist for the specific implementations of these data

structures. We shall use the following characterization of the adjacency list: a list of lists,

where the i-th list contains all of the vertices which are adjacent to vertex i.

10

Algorithm 2: Connected Components
Input: Adjacency list L (list of lists)
Output: Connected components C (list of lists)
begin

for v = 1 to length(L) do
if not visited[v] then

initialize new list K;
DFS(L, v,K);

end
add K to C;

end
end

1.2.3.1 DFS

We begin this algorithm by selecting one vertex and marking it as visited. We then select

an unvisited vertex from the adjacency list and repeat the process recursively. This process

of moving to adjacent unvisited vertices continues until we reach a vertex whose adjacent

vertices have all been visited. At this point, we return until we have reached a vertex which

still has unvisited neighbors, and repeat until all connected vertices have been visited.

This describes the basic process of DFS. With a slight modification to this process we can

compute the connected components. Note that by the end of the algorithm, every vertex

in the component containing the input will have been visited. So the idea is to call the

algorithm repeatedly on remaining unvisited vertices until none remain. Our input to this

algorithm will be the adjacency list. Our output will similarly be a list of lists: the i-th

list contains all of the vertices in connected component i. This connected components DFS

algorithm is presented in more detail in Algorithms 1 and 2. For simplicity we have shown

the recursive version of DFS in Algorithm 1. In practice, however, stack overflow issues arise

for large graphs and it is preferable to switch to an iterative formulation.

11

Algorithm 3: BFS
Input: Adjacency list L (list of lists), input vertex v, list K
begin

set visited[v]← true;
add v to K;
initialize new list R and add v to R;
while R is not empty do

initialize new list Rnext;
forall w in R do

forall u in L[w] do
if not visited[u] then

set visited[u]← true;
add u to K;
add u to Rnext;

end
end

end
set R← Rnext;

end
end

1.2.3.2 BFS

Whereas the DFS algorithm proceeds by traversing as far as possible in a single direction,

the BFS algorithm gradually spreads outwards from the input vertex. We do so by keeping

track of the current “ring” of vertices, and successively building new rings out of the unvisited

neighbors of vertices in the current ring. As before, we mark the starting vertex as visited.

We additionally add this vertex to the starting ring. Then, for each vertex in the current

ring we add all unvisited neighbors to the next ring and mark them as visited. This process

continues until the next ring is empty. We show this in more detail in Algorithm 3.

The extension from the core BFS traversal to the connected components algorithm is

essentially identical to the case of DFS; the only difference is which traversal algorithm is

called. Hence, the complete algorithm consists of Algorithms 3 and 2 (substituting the call

to DFS with a call to BFS in the latter).

12

For additional graph theory definitions and concepts, see [Cha77]. For a more in-depth

explanation of DFS and BFS, complexity results, and additional applications, see the text

by Goodrich et al. [GTG14].

13

CHAPTER 2

A Hybrid Lagrangian/Eulerian Collocated Velocity

Advection and Projection Method for Fluid Simulation

Figure 2.1: Banner Image. We simulate detailed incompressible flows with free surfaces and

irregular domains using our novel hybrid particle/grid simulation approach. Our numerical

method yields intricate flow details with little dissipation, even at modest spatial resolution.

Furthermore, we use collocated velocity grids rather than staggered MAC grids.

14

2.1 Introduction

Incompressible flow simulation is an integral part of modern computer graphics toolkits.

Chorin splitting of the advective and pressure projection terms in the incompressible equa-

tions has been standard in graphics since the works of Foster and Metaxas [FM96], Stam

[Sta99], and Fedkiw et al. [FSJ01, FF01]. Most such methods employ regular Marker-And-

Cell (MAC) grids with pressure degrees of freedom at cell centers and velocity degrees of

freedom at cell faces. This staggered pressure/velocity grid has the advantages of preventing

pressure null modes and allow for straightforward second order central differences when dis-

cretizing the gradient and divergence operators. However, MAC grids can add undesirable

complexity to the algorithms which employ them as the pressure and each component of

velocity exist on essentially distinct regular grids.

The advection step of the splitting is typically handled with semi-Lagrangian (SL) tech-

niques originating from the atmospheric and oceanic sciences literature [Rob81]. One of the

major advantages of SL is that it allows for large time steps, which can reduce overall com-

putation cost. The trade-off for this increased stability is often significant dissipation, which

can be quite detrimental for graphics applications. Additionally, when combined with MAC

grids, the staggered locations of the velocity components means that SL must compute an

upwind location for each of these staggered locations, as opposed to a single upwind location

for collocated velocity grids.

Other non-MAC grid approaches with collocated velocities exist in the literature, in-

cluding mixed Finite Element Methods (FEM) [Hug12]. One example is an FEM method

using Taylor-Hood elements [TH73]. These elements have also been combined with B-spline

interpolation [Bre10]. We build on this approach with a method using multi-quadratic and

multi-linear B-spline interpolation for velocity and pressure degrees of freedom, respectively.

However, while our velocity components are collocated, the velocities and pressure are on

cell centers and cell nodes, respectively, as in [NSB18]. We use regular grids for velocity and

15

pressure but allow for non-voxelized, irregular domains with a variational approach with cut

cells. This is similar to XFEM [BGV09, KBT17] and virtual node techniques [SSH14], where

integrals in the variational formulation are performed over the intersection of the grid with

the physical domain.

For the advection step, we introduce a novel backward semi-Lagrangian (BSL) approach

using quadratic B-splines, which we call BSLQB, which is second order in space and time.

Both SL and BSL methods are based on the implicit relation

u(x, t) = u(x− (t− s)u(x, t), s) (2.1)

for solutions of the inviscid Burgers’ Equation [Eva10]; here s ≤ t. Semi-Lagrangian advec-

tion performs the velocity update via

un+1
i = u(xi −∆tuni , t

n), (2.2)

where xi is the location of grid node i, uni and un+1
i are the velocities at times tn and tn+1,

respectively, and u(xi −∆tuni , t
n) is estimated at non-grid locations using interpolation. In

contrast, BSL solves the implicit equation

un+1
i = u(xi −∆tun+1

i , tn), (2.3)

which is more directly analogous to Equation (2.1). This approach is at least as stable as

SL, likewise allowing for larger than CFL time steps.

Finally, we develop a hybrid particle/BSLQB advection method which uses PolyPIC

[FGG17] in the parts of the computational domain containing particles and BSLQB in the

parts which do not. As areas sparsely populated by particles develop from turbulent flows,

BSLQB takes over to maintain high quality results.

Our contributions are summarized below:

• A novel cut-cell collocated velocity B-spline mixed FEM method for Chorin [Cho67]

splitting discretization of the incompressible Euler equations.

16

• BSLQB: a novel BSL technique designed for collocated multiquadratic B-spline velocity

interpolation that achieves second order accuracy in space and time for the advection

step.

• A hybrid BSLQB/PolyPIC method for narrow band free-surface flow simulations and

concentrated-detail smoke simulations.

2.2 Previous work

2.2.1 Advection

Stam [Sta99] first demonstrated the efficacy of semi-Lagrangian techniques for graphics ap-

plications and they have since become the standard, largely due to the large time steps they

engender and their simple interpolatory nature. Many modifications to the original approach

of Stam have been developed, often inspired by approaches in the engineering literature.

Fedkiw et al. [FSJ01] use vorticity confinement [SU94] to counterbalance vorticity lost to

dissipation and cubic grid interpolation. Kim et al. [KLL06, KLL05] and Selle et al. [SFK08]

combine forward and backward semi-Lagrangian steps to estimate and remove dissipative

errors. Constrained Interpolation Profile [KSK08, YXU01, SKK09] techniques additionally

advect function derivatives to reduce dissipation. Molemaker et al. [MCP08] use the QUICK

technique of Leonhard [Leo79] which is essentially upwinding with quadratic interpolation

and Adams-Bashforth temporal discretization, although this does not have the favorable

stability properties of semi-Lagrangian. Backward Difference Formula techniques are useful

because they use an implicit multistep formulation for higher-order semi-Lagrangian advec-

tion yet still only require one projection per time step [XK01, SSH14].

The main idea in semi-Lagrangian techniques is to interpolate data from a characteristic

point. This idea goes back to the Courant-Isaacson-Rees [CIR52] method. However, as noted

in [FSJ01], semi-Lagrangian advection is very popular in atmospheric science simulation and

17

the variants used in graphics that account for characteristics traveling beyond the local cell

in one time step go back to Sawyer [Saw63]. The first BSL approach utilizing Equation (2.3)

was done by Robert [Rob81] in which they use fixed point iteration to solve the nonlinear

equation. They fit a bi-cubic function to their data over 4 × 4 grid patches, then use that

function in the fixed point iteration. If the upwind point leaves the grid, they clamp it

to the boundary of the 4 × 4 patch. This clamping will degrade accuracy for larger time

steps. In this case, more general interpolation is typically used (see [SC91, FF98] for useful

reviews). Pudykiewicz and Staniforth [PS84] investigate the effects of BSL versus explicit

semi-Lagrangian. Specifically, they compare Bates and McDonald [BM82] (explicit) versus

Robert [Rob81] (BSL). They show that keeping all things equal, the choice of Equation (2.2)

(explicit) instead of Equation (2.3) (BSL) leads to more dissipation and mass loss. This is

consistent with our observations with BSLQB.

Interestingly, multiquadratic B-splines have not been adopted by the semi-Lagrangian

community, despite their natural regularity. Hermite splines, multicubic splines and even

Lagrange polynomials are commonly used [SC91]. Preference for Hermite splines and La-

grange polynomials is likely due to their local nature (they do not require solution of a global

system for coefficients) and preference for multicubic splines (over multi-quadratic) is possi-

bly due to the requirement of odd degree for natural splines (odd degree splines behave like

low pass filters and tend to be smoother than even degree splines [CWB01, CK12]). Cubic

splines are considered to be more accurate than Hermite splines and Lagrange interpolation

[SC91, MK96]. Interestingly, Riishøjgaard et al. [RCL98] found that cubic spline interpo-

lation gave rise to a noisier solution than cubic Lagrange interpolation with a technique

analogous to that of Makar and Karpik [MK96]. However, they also note that addition of

a selective scale diffusion term helps reduce noise associated with cubic splines. Wang and

Layton [WL10] use linear B-splines with BSL but only consider one space dimension which

makes Equation (2.3) linear and easily solvable.

Dissipation with explicit semi-Lagrangian advection is so severe that many graphics re-

18

searchers have resorted to alternative methods to avoid it. Mullen et al. [MCP09] de-

velop energy preserving integration to prevent the need for correcting dissipative behavior.

Some authors [QZG19, TP11, SIB17, SBI18] resolve the flow map characteristics for peri-

ods longer than a single time step (as opposed to one step with semi-Lagrangian) to re-

duce dissipation. Hybrid Lagrange/Eulerian techniques like PIC (and related approaches)

[Bri08, JSS15, FGG17, ZB05] explicitly track motion of particles in the fluid, which is nearly

dissipation-free, but can suffer from distortion in particle sampling quality. Vorticity for-

mulations are also typically less dissipative, but can have issues with boundary conditions

enforcement [SRF05, AN05, CKP16, STK07, PK05, WP10]. Zehnder et al., Zhang et al.

and Mullen et al. [MCP09, ZNT18, NZT19, ZBG15] have noted that the Chorin projection

itself causes dissipation. Zhang et al. [ZBG15] reduced artificial dissipation caused by the

projection step by estimating lost vorticity and adding it back into the fluid. Zehnder et al.

[ZNT18, NZT19] propose a simple, but very effective modification to the splitting scheme

that is similar to midpoint rule integration to reduce the projection error.

2.2.2 Pressure projection

Graphics techniques utilizing pressure projection typically use voxelized MAC grids with

boundary conditions enforced at cell centers and faces. However, many methods improve

this by taking into account sub-cell geometric detail. Enright et al. [ENG03] showed that

enforcing the pressure free surface boundary condition at MAC grid edge crossings (rather

than at cell centers) dramatically improved the look of water surface waves and ripples.

Batty, Bridson, and colleagues developed variational weighted finite difference approaches

to enforce velocity boundary conditions with MAC grids on edge crossings and improved

pressure boundary conditions at the free surface in the case of viscous stress [BBB07, BB08,

LBB17]. XFEM [BGV09, KBT17] and virtual node (VNA) [SSH14] techniques also use cut

cell geometry with variational techniques. Schroeder et al. [SSH14] use cut cells with MAC

grids, but their technique is limited to moderate Reynolds numbers. Recently, Nielsen et

19

al. [NSB18] have shown that collocated velocities with only staggered pressures can be used

effectively for projection with turbulent detailed flow simulations.

There is a vast literature on enforcing incompressibility in the FEM community [Hug12].

Our approach is most similar to the B-spline Taylor-Hood element of Bressan [Bre10]. Adop-

tion of B-spline interpolation in FEM is part of the isogeometric movement [HCB05, RC12].

Originally motivated by the desire to streamline the transition from computer-aided design

(CAD) to FEM simulation, isogeometric analysis explores the use of CAD-based interpola-

tion (e.g. B-splines and nonuniform rational B-splines (NURBS)) with FEM methodologies.

Hughes et al. [HCB05] show that in addition to simplifying the transition from CAD to sim-

ulation, the higher regularity and spectral-like properties exhibited by these splines makes

them more accurate than traditionally used interpolation. We enforce Dirichlet boundary

conditions weakly as in XFEM and VNA approaches [BGV09, KBT17, SSH14]. Bazilevs et

al. [BH07] show that weak Dirichlet enforcement with isogeometric analysis can be more ac-

curate than strong enforcement. Edwards and Bridson [EB14] use a discontinuous Galerkin

FEM approach to simulate free surface flows over adaptive grids. Ferstl et al. [FWD14]

also use an FEM based approach for discretization of pressure projections over adaptive

hexahedral grids. Schneider et al. [SDG19] recently developed a third order accurate FEM

approach for solving Poisson and other problems on predominantly hexahedral meshes.

Graphics applications are typically concerned with turbulent, high-Reynolds numbers

flows. Interestingly, B-splines have proven effective for these flows by researchers in the

Large Eddy Simulation (LES) community [Kim98, KMS99]. Kravchenko et al. [KMS99]

use a variational weighted residuals approach with B-splines for turbulent LES and show

that the increased regularity significantly reduces computational costs. Botella [Bot02] use

a similar approach, but apply a collocation technique where the strong form of the div-

grad formulation of incompressibility is enforced pointwise. They show that their B-spline

approach attains optimal order of accuracy with accurate resolution of quadratic flow invari-

ants. Botella [Bot02] also introduce a notion of sparse approximation to the inverse mass

20

matrix to avoid dense systems of equations in the pressure solve.

2.3 Governing Equations and Operator Splitting

We solve the incompressible Euler equations that describe the evolution of a fluid in terms

of its mass density ρ, velocity u, pressure p and gravitational constant g as

ρ
Du

Dt
= ρ

(
∂u

∂t
+
∂u

∂x
u

)
= −∇p+ ρg, x ∈ Ω (2.4)

∇ · u = 0, x ∈ Ω (2.5)

u · n = a, x ∈ ∂ΩS (2.6)

p = 0, x ∈ ∂ΩFS (2.7)

where Equation (2.4) is balance of linear momentum, Equation (2.5) is the incompressibil-

ity constraint, Equation (2.6) is the boundary condition for the normal component of the

velocity, and Equation (2.7) is the free surface boundary condition. We use Ω to denote the

region occupied by the fluid, ∂ΩS to denote the portion of the boundary of the fluid domain

on which velocity is prescribed to be a (which may vary over the boundary) and ∂ΩFS is the

surface of the water where the pressure is zero (see Figure 2.2).

In a Chorin [Cho67] operator splitting of the advective and pressure terms, velocity is

first updated to an intermediate field w under the convective term ρDu
Dt

= 0, followed by an

update from the pressure and gravitational body forcing under ρ∂u
∂t

= −∇p+ ρg, where the

pressure is determined to enforce ∇ · u = 0. Dividing by the mass density, the convective

step is seen to be an update under Burgers’ equation

Du

Dt
=
∂u

∂t
+
∂u

∂x
u = 0. (2.8)

Burgers’ equation governs temporally constant Lagrangian velocity (zero Lagrangian acceler-

ation). The characteristic curves for flows of this type are straight lines (since the Lagrangian

acceleration is zero), on which the velocity is constant (see Figure 2.3). This gives rise to the

21

Figure 2.2: Flow Domain and Grid. Left: we use Ω to denote the fluid domain, with

∂ΩS used to indicate the portion of the fluid domain subject to velocity boundary conditions

and ∂ΩFS to indicate the free-surface portion of the boundary with pressure condition p =

0. Right: We use multiquadratic interpolation for velocity (ūi at cell centers, blue) and

multilinear for pressure (pc at nodes, red). The fluid domain is defined with sub-grid-cell

accuracy.

implicit relation (2.1). Intuitively, if we want to know the velocity u(x, t) at point x at time

t, we look back along the characteristic passing through x at time t to any previous time s;

however, the characteristic is the straight line defined by the velocity u(x, t) that we want

to know. Hence, we take an implicit approach to the solution of this equation, which when

combined with the operator splitting amounts to

w − ũn

∆t
= 0 (2.9)

ρ
un+1 −w

∆t
= −∇pn+1 + ρg (2.10)

∇ · un+1 = 0, (2.11)

where we use the notation un+α(x) = u(x, tn+α), α = 0, 1, to denote the time tn+α velocities.

Furthermore, the intermediate velocity w is related to ũn through ũn(x) = u(x−∆tw(x), tn).

22

Figure 2.3: BSL vs. SL. We illustrate the difference between explicit semi-Lagrangian and

BSL in 1D. Left: The exact solution of Burgers’ equation has straight line characteristics

shown in blue, green and red on which velocity (plotted above the plane in gray) is con-

stant. Middle: BSL (green) uses Newton’s method to solve for the exact characteristic

going through xi at time tn+1 to determine un+1
i . Right: explicit semi-Lagrangian (red)

uses a stale, time tn approximation of the characteristic which overshoots, resulting in an

underestimate of the velocity and energy loss.

2.4 Spatial Discretization

We discretize in space by first representing velocity and pressure in terms of multiquadratic

and multilinear B-splines for velocity and pressure, respectively. We use a regular grid with

spacing ∆x and define pressure degrees of freedom at grid vertices and velocity degrees of

freedom at grid cell centers as in [ATW13] (see Figure 2.2). This efficiently aligns the support

of the multiquadratic and multilinear interpolating functions which naturally allows for a

grid-cell-wise definition of the flow domain (see Figure 2.11). We use Ni(x) to represent the

multiquadratic B-spline basis function associated with velocity degree of freedom ūi at grid

cell center xi and χc(x) for the multilinear basis function associated with pressure pc at grid

node xc. These are defined as

Ni(x) =
∏
α

N̂

(
xα − xαi

∆x

)
, χc(x) =

∏
α

χ̂

(
xα − xαc

∆x

)
(2.12)

23

Figure 2.4: High-Resolution Smoke. Two spheres of smoke collide in a high-resolution

3D simulation (∆x = 1/255). BSLQB accurately resolves vorticial flow detail.

Figure 2.5: Colorful Smoke Jets. Multicolored jets of smoke are simulated with BSLQB.

Intricate mixing is induced as the flows collide at the spherical boundary.

N̂(η) =


1
2

(
3
2
− |η|

)2
, |η| ∈ (1

2
, 3

2
)

−η2 + 3
4
, |η| ∈ [0, 1

2
]

0, otherwise

(2.13)

χ̂(ν) =

 1− |ν|, |ν| ∈ (0, 1)

0, otherwise
(2.14)

where we use Greek indices α to indicate components of the vectors x, xi, and xc. With this

convention we interpolate to define the velocity and pressure fields:

u(x) =
∑
i

ūiNi(x), p(x) =
∑
c

pcχc(x). (2.15)

We use the notation ūi to distinguish it from the grid node velocity u(xi) =
∑

j ūjNj(xi)

since the multiquadratic B-splines are not interpolatory and these will in general be different.

Note that multilinear interpolation is interpolatory and pc =
∑

d pdχd(xc).

24

2.4.1 BSLQB Advection

With this interpolation choice, we first solve for intermediate grid node velocity values w(xi)

from Equation (2.9) as

w(xi) =
∑
j

ūnjNj (xi −∆tw(xi)) . (2.16)

We can solve this equation using Newton’s method since the multiquadratic B-splines are

C1. We use wk
i to denote the kth Newton approximation to w(xi). Explicit semi-Lagrangian

is used as an initial guess with w0
i =

∑
j ū

n
jNj (xi −∆t

∑
l ū

n
l Nl(xi)) and then we update

iteratively via wk
i += δuk with Newton increment δuk satisfying

δuk =

(
I + ∆t

∂un

∂x

(
xi −∆twk

i

))−1
(∑

j

ūnjNj

(
xi −∆twk

i

)
−wk

i

)
, (2.17)

where ∂un

∂x

(
xi −∆twk

i

)
=
∑

j ū
n
j
∂Nj

∂x

(
xi −∆twk

i

)
. It is generally observed [KW90, PS84]

that with BSL approaches of this type, this iteration will converge as long as

I + ∆t
∑
j

ūnj
∂Nj

∂x

(
xi −∆twk

i

)
(2.18)

is non-singular. We note that this condition holds as long as no shocks form under Burgers’

equation [Eva10] (forward from time tn). This is a safe assumption since we are modeling

incompressible flow with which shock formation does not occur, but it may be a problem for

compressible flows. In practice, this iteration converges in 3 or 4 iterations, even with CFL

numbers larger than 4 (see Section 2.7.1). When it does fail (which occurs less than one

percent of the time in the examples we run), it is usually for points near the boundary with

characteristics that leave the domain (since we cannot estimate ∂un

∂x
using grid interpolation

if the upwind estimate leaves the grid). In this case we use explicit semi-Lagrangian and

interpolate from the boundary conditions if the characteristic point is off the domain.

Once we have obtained the grid node values of the intermediate velocity w(xi), we must

determine interpolation coefficients w̄j such that w(xi) =
∑

j w̄jNj(xi). On the boundary

25

Figure 2.6: Dam break. A block of water falls in a rectangular domain with obstacles.

Dynamic splashing behavior is followed by settling of the water in the tank. White water

rendering effects are added based on [IAA12].

Figure 2.7: Smoke in an Irregular Domain. Multicolored spheres of smoke with non-zero

initial velocity conditions flow and collide inside the Stanford bunny. Zero normal velocity

is enforced with our cut cell formulation.

of the grid, we set w̄j = w(xj) since we can only interpolate to xi if all of its neighbors

have data. This yields a square, symmetric positive definite system of equations for the

remaining w̄j. The system is very well conditioned with sparse, symmetric matrix Nj(xi)

consisting of non-negative entries and rows that sum to one. The sparsity and symmetry of

the system arises from the compact support and geometric symmetry, respectively, of the

B-spline basis functions Nj. In practice, the system can be solved to machine precision in

tens of unpreconditioned CG iterations. We have noticed that for some flows, determining

the coefficients w̄j can lead to increasingly oscillatory velocity fields. This is perhaps due to

the unfavorable filtering properties of even order B-splines [CWB01, CK12]. However, we

26

Figure 2.8: Water in a Globe. A block of water splashes and naturally slides along cut

cell boundaries in an irregular domain interior to one large sphere and exterior to one small

sphere.

found that a simple stabilization strategy can be obtained as

∑
j

(λNj(xi) + (1− λ)δij) w̄j = w(xi), (2.19)

where λ ∈ [0, 1] and δij is the Kronecker delta. A value of λ = 0 is very stable, but extremely

dissipative. Stable yet energetic behavior is achieved by decreasing the value of λ under grid

refinement. In practice we found that λ ∈ (.95, 1] with λ = c∆x for constant c provided a

good balance without compromising second order accuracy of the method (see Section 2.7.1).

We note that Riishøjgaard et al. [RCL98] also added diffusion to cubic spline interpolation

based semi-Lagrangian to reduce noise.

2.4.2 Hybrid BSLQB-PolyPIC Advection

In some portions of the domain, we store particles with positions xnp and PolyPIC [FGG17]

velocity coefficients cnp . In the vicinity of the particles, we use PolyPIC [FGG17] to update

the intermediate velocity field w̄j. First we update particle positions as xn+1
p = xnp + ∆tvnp

(where the velocity vnp is determined from cnp following [FGG17]). Then the components w̄jα

27

Figure 2.9: Dam Break with Bunny. Opposing blocks of water collapse in a tank and

flow around the irregular domain boundary placed in the middle of the tank. Particles are

colored from slow (blue) to fast (white) speed.

of the coefficients w̄j are determined as

w̄jα =

∑
pmpNj(x

n+1
p)

(∑Nr
r=1 sr(xj − xn+1

p)cnprα

)
∑

pmpNj(xn+1
p)

, (2.20)

where Nr is the number of polynomial modes sr(x), as in Fu et al. [FGG17]. To create

our hybrid approach, we update w̄jα from Equation (2.20) whenever the denominator is

greater than a threshold
∑

pmpNj(x
n+1
p) > τm; Otherwise, we use the BSLQB update from

Equation (2.19). We use this threshold because the grid node update in Equation(2.20) loses

accuracy when the denominator is near zero and in this case the BSLQB approximation is

likely more accurate. Note that the polynomial mode coefficients for the next time step cn+1
p

are determined from the grid velocities at the end of the time step (using particle positions

xn+1
p and after pressure projection).

2.5 Pressure Projection

We solve Equations (2.10)-(2.11) and boundary condition Equations (2.6)-(2.7) in a varia-

tional way. To do this, we require that the dot products of Equations (2.10), (2.11), and

Equations (2.6) with arbitrary test functions r, q, and µ, respectively, integrated over the

domain are always equal to zero. The free surface boundary condition in Equation (2.7) is

28

naturally satisfied by our treatment of Equation (2.10). We summarize this as∫
Ω

r · ρ
(

un+1 −w

∆t

)
dx =

∫
Ω

pn+1∇ · r + ρr · gdx (2.21)

−
∫
∂Ω

pn+1r · nds(x)∫
Ω

q∇ · un+1dx = 0 (2.22)∫
∂ΩS

µ
(
un+1 · n− a

)
ds(x) = 0. (2.23)

Here we integrate by parts in the integral associated with Equation (2.10). Furthermore, we

modify the expression
∫
∂Ω
pn+1r ·nds(x) in Equation (2.21) in accordance with the boundary

conditions. We know that the pressure is zero on ∂ΩFS, however, we do not know its value

on ∂ΩS. We introduce the pressure on this portion of the domain as a Lagrange multiplier

λn+1 associated with satisfaction of the velocity boundary condition in Equation (2.23).

Physically, this is the external pressure we would need to apply on ∂ΩS to ensure that

un+1 · n = a. With this convention, we have
∫
∂Ω
pn+1r · nds(x) =

∫
∂ΩS

λn+1r · nds(x).

We note that unlike Equation (2.23) (and its strong form counterpart (2.6)) which requires

introduction of a Lagrange multiplier, Equation (2.7) is naturally enforced through the weak

form simply by setting pn+1 = 0 in the integral over ∂ΩFS in Equation (2.21).

To discretize in space, we introduce interpolation for the test functions r, q, and µ. We

use the same spaces as in Equation (2.15) for velocity and pressure for r =
∑

i r̄iNi and

q =
∑

d qdχd. For the test functions µ, we choose the same space as q, p, but with func-

tions restricted to ∂ΩS: µ =
∑

b µbχb for b with grid cell Ωb ∩ ∂ΩS 6= ∅ (see Figure 2.11).

We choose the same space for λn+1 =
∑

b λ
n+1
b χb to close the system. We note that this

choice of interpolating functions is necessary for preserving a standing pool since the pressure

and λ interpolation functions need to cancel out to prevent artificial currents (see proof in

[GHM20b]). With these choices for the test functions, the variational problem is projected

to a finite dimensional problem defined by the interpolation degrees of freedom. This is ex-

pressed as a linear system for velocities ūn+1
j , internal pressures pn+1

c , and external pressures

29

Figure 2.10: SL vs. BSLQB. We compare semi-Lagrangian (left) and BSLQB (right) in

a vorticity-intensive example. BSLQB breaks symmetry and exhibits a more turbulent flow

pattern. Note we only use particles for flow visualization and not for PolyPIC advection in

this example.

λn+1
b which is equivalent to

M −DT BT

−D

B




Un+1

Pn+1

Λn+1

 =


MW + ĝ

0

A

 . (2.24)

Here Un+1, Pn+1, and Λn+1 are the vectors of all unknown ūn+1
j , pn+1

c , and λn+1
b , respectively.

Furthermore M is the mass matrix, B defines the velocity boundary conditions, and D

defines the discrete divergence condition. Lastly, W is the vector of all w̄i that define the

intermediate velocity, ĝ is from gravity, and A is the variational boundary condition. Using

the convention that Greek indices α, β range from 1–3, these matrices and vectors have

30

entries

Mαiβj = δαβ

∫
Ω

ρ

∆t
NiNjdx, (2.25)

Ddβj =

∫
Ω

χd
∂Nj

∂xβ
dx, ĝαi =

∫
Ω

ρgαNidx, (2.26)

Bbβj =

∫
ΩS

χbNjnβds(x), Ab =

∫
Ω

aχbds(x). (2.27)

If we define G = [−DT ,BT], we can convert this system into a symmetric positive definite

one for Pn+1 and Λn+1 followed by a velocity correction for Un+1: Pn+1

Λn+1

 =
(
GTM−1G

)−1

GT
(
W + M−1ĝ

)
−

 0

A

 (2.28)

Un+1 = −M−1G

 Pn+1

Λn+1

+ W + M−1ĝ. (2.29)

Unfortunately, this system will be dense in the current formulation since the full mass matrix

Mαiβj is non-diagonal with dense inverse [Bot02]. However, a simple lumped mass approxi-

mation

M l
αiβj =

 δαβ
∫

Ω
ρ

∆t
Nidx, i = j

0, otherwise
(2.30)

gives rise to a sparse matrix in Equation (2.28).

2.5.1 Cut Cells

As in XFEM and VNA approaches [BGV09, KBT17, SSH14], we resolve sub-grid-cell ge-

ometry by simply performing the integrations in Equations (2.26)-(2.27) over the geometry

of the fluid domain. We use a level set to define solid boundaries (green in Figure 2.11) on

which velocity boundary conditions are defined. We triangulate the zero isocontour using

marching cubes (MC) [Che95] (see Figure 2.13).

As noted in Section 1.2.2, the MC algorithm creates the zero isocontour in a cell-by-cell

manner, with the triangulation in any given cell dependent on the level set values (and their

31

Figure 2.11: Discrete Free Surface Fluid Domain. Left: We define the fluid domain

to consist of cells that either have (1) a particle (dark blue) in it or (2) a node with non-

positive level set value (light blue). Right: Boundary Lagrange multiplier external pressure

λb (orange circles) are like the interior pressures pc except only defined on fluid domain cells

that intersect ∂ΩS.

signs) at the 8 nodes of the cell. In most variants of the MC algorithm, the topology of a cell’s

triangulation is determined by the pattern of signs at the nodes, which leads to 256 total

cases. Our particular implementation of MC is based on the approach of Bhaniramka et al.

[BWC04], who create a full 256 case lookup table instead of exploiting various symmetries

like other MC algorithms. They maintain topological consistency of the surface, in the

sense that it is free from topological holes, by generating each case based on the following

method. Sample points are placed at the midpoints of cell edges incident to both a positive

and negative node. Then, they take the convex hull of the sample points together with

negatively signed nodes. The convex hull is then tetrahedralized, and the boundary triangles

which are not on cell-boundaries are extracted to form an entry in the lookup table. The

actual isocontour is then obtained from the lookup table by replacing the sample points with

their actual locations on the edges.

Since we need to integrate over both the surface and the volume, we extend this approach

by also extracting the tetrahedrons for each case into a second 256 case lookup table.

32

Figure 2.12: Narrow Band Free Surface. A circle/sphere falls in a tank of water under

gravity. Using only a narrow band of particles saves computational cost and enables increased

resolution of the free surface. Top: In 2D we illustrate the hybrid particle (dark blue)/level

set (light blue) representation. Bottom: Particles are colored based on velocity magnitude.

Thus, the integrals in Equations (2.26)-(2.27) are over volumetric polyhedra (Equa-

tions (2.26), blue in Figure 2.13) or surface polygons (Equations (2.27), green in Figure 2.13).

Furthermore, the integrands are all polynomials, so we use Gauss quadrature of sufficient

order to compute these integrals with no error (see [GHM20b]). For free surface flows, we

use particles (and additionally a level set function in the case of narrow banding, see Sec-

tion (2.6)) to denote grid cells with fluid in them. Cells near the solid boundary are clipped

by the marching cubes geometry, but otherwise the free surface boundary is voxelized. The

fluid domain Ω is defined as the union of all clipped and full fluid cells (see Figure 2.11).

Notably, taking a cut cell approach with our variational formulation allows us to prove

33

Figure 2.13: Cut Cells. We show the 14 essential cases used in determining the cut cell

fluid domain geometry. Blue faces indicate the intersection of the grid cell with the fluid

domain. Green faces indicate the velocity boundary condition faces on ∂ΩS.

that our method can resolve a standing pool of water exactly without producing numerical

currents. We know that with gravitational force ρg (e.g. with g pointing in the y direction

with magnitude g), steady state is maintained if the pressure increases with depth as p =

ρg (y0 − y) where y0 is the height of the water surface at rest, since −∇p + ρg = 0. Since

we use multilinear interpolating functions for p, the exact solution is representable in our

discrete space and with a short proof we show (see [GHM20b]) that this means our method

will choose it to maintain a standing pool of water, independent of fluid domain boundary

geometry.

2.6 Narrow band free surface

For free surface flows, we develop a narrow band approach as in [CMK15, FAW16, SWT18].

We represent the fluid domain with a level set and seed particles in a band of width W from

the zero isocontour (see Figure 2.11). Particles are advected and used to augment BSLQB

advection as detailed in Section 2.4.2. We also advect the level set by interpolating its value

at the previous step from the upwind location xi −∆tw(xi) determined in Equation (2.16).

We then use the updated particle locations to compute a narrow band level set from the

particles based on the method of Boyd and Bridson [BB12]. We update the level set to be

34

Figure 2.14: Von Karman Vortex Shedding. We demonstrate the accuracy of our Hybrid

BSLQB/PolyPIC with vortex shedding past a disk in 2D. Note the smooth transition between

regions with particles (PolyPIC) and those without (BSLQB).

the union of that defined by the narrow band and that from advection. This is done by

taking the minimum of the two level set values and then redistancing with the method of

Zhao [Zha05].

2.7 Examples

2.7.1 Hybrid BSLQB/PolyPIC

We demonstrate our hybrid BSLQB/PolyPIC advection with water simulation. We prevent

excessive run times by utilizing a narrow band of particles near the free surface and a level

set (with BSLQB advection) in deeper levels. Figure 2.12 top shows a disc of water splashing

in a rectangular tank with dimension 1 × 2 and grid cell size ∆x = 1/255. The time step

∆t is restricted to be in the range [0.005, 0.01]. 20 particles are initialized in every cell that

is initially in a narrow band of 7∆x below the zero isocontour of the level set. Figure 2.12

Bottom shows an analogous 3D example where a sphere of water splashes in a tank. A cell

size of ∆x = 1
63

is used in a domain with dimensions 1 × 2 × 1. We take a fixed time step

of ∆t = 0.01 and demonstrate that narrow banding does not prevent larger-than-CFL time

35

Figure 2.15: Cut Cell vs. Voxelized Domain. Using a cut cell domain (right) instead of

a voxelized domain (left) yields marked improvements in simulation quality.

steps. 1,008,187 particles are used to resolve the free surface in a narrow band of width 5∆x.

As in 2D, the particles capture highly dynamic behavior of the free surface while the level

set is sufficient to represent the bulk fluid in the bottom half of the domain.

We also demonstrate our hybrid advection with a vortex shedding example (see Fig-

ure 2.14). The flow domain Ω is a 3 × 1 rectangle with circle of radius 0.05. We seed a

band of particles of width .2 above the midline y = .5 for PolyPIC advection. Advection in

the rest of the domain is done with BSLQB. The vorticity plot illustrates a seamless transi-

tion between the two advection schemes. The simulation was run with a grid resolution of

∆x = 1
255

, CFL number of 4 (i.e. ∆t = 4∆x
vmax

), and inlet speed of 1.5.

2.7.2 BSLQB Comparisons

We demonstrate improved resolution of flow detail with BSLQB compared to explicit semi-

Lagrangian in a 2D example of smoke flowing past a circle (see Figure 2.16) and with a 2D

spinning circle example (see Figure 2.10). Note that particles are only used for flow visual-

ization and not for PolyPIC advection in these examples. BSLQB exhibits more energetic,

turbulent flows than semi-Lagrangian advection. Notably, the BSLQB result breaks symme-

try sooner. In Figure 2.16 we also examine the effect of extremal values of the λ parameter

described in Equation (2.19). A zero value of λ is quite dissipative compared to a full value

36

of λ = 1 for both semi-Lagrangian and BSLQB. As mentioned in Section 2.4.1, we generally

found that keeping λ close to 1 provided the least dissipative behavior, while setting the value

slightly less than 1 helped restore stability when necessary (one can also dynamically adjust

this value over the course of a simulation, e.g. setting λ closer to 1 when vorticity is high to

better resolve desirable details.). In Table 2.1 we examine the efficiency of semi-Lagrangian

and BSLQB for various grid resolutions and values of λ. We see that BSLQB takes more

time to run than semi-Lagrangian, and that time also increases slightly with higher values

of λ. Similarly, in Table 2.2 we look at the stability of semi-Lagrangian and BSLQB for

different values of λ and ∆t. We observe that for λ = 1, both semi-Lagrangian and BSLQB

are unstable when the time step is sufficiently small, though the instability vanishes when λ

is reduced to 0.9. We illustrate this instability in Figure 2.21. In Figure 2.10, we initially set

the angular velocity to 4 radians per second in a circle of radius .2 (with Ω = [0, 1]× [0, 1]).

The simulation is run with ∆x = 1
511

and a ∆t = .02 (CFL number of 3).

We also compare BSLQB with APIC and advection-reflection [ZNT18] in Figure 2.19.

We again set the angular velocity of each circle to 4 radians per second in a circle of radius

.2, and the simulation is run with ∆x = 1
127

and ∆t = .02. Even at a lower resolution,

both BSLQB and APIC exhibit more energetic flows than advection-reflection. BSLQB also

shows more turbulent behavior compared to APIC.

In addition, in Figure 2.20 we compare our approach with Houdini’s smoke tool using

basic settings. We do this with the smoke past a sphere example from Figure 2.18. Both

simulations used a grid resolution of ∆x = 1
127

. Houdini’s simulation is much faster per

frame (see Table 2.3 for our Smoke Jet’s average time per frame). However, our method

exhibits finer detail at similar resolution.

We examine the convergence behavior of BSLQB for the 2D Burgers’ equation Du
Dt

= 0

with initial data u(x) = x · (Ax) for A = RΛRT for diagonal Λ with entries 1 and .25 and

rotation (of .1 radians) R (see Figure 2.17). We examine the convergence behavior under

refinement in space and time with ∆t = ∆x. We compute the best fit line to the plot of

37

BSLQBSLBSLQBSL

Figure 2.16: Interpolation Correction. BSLQB exhibits more fine-scale flow detail and

vorticity than semi-Lagrangian for extremal values of interpolation parameter λ (Equa-

tion (2.19)). From left to right: semi-Lagrangian with λ = 0, BSLQB with λ = 0, semi-

Lagrangian with λ = 1, BSLQB with λ = 1.

the logarithm of the L∞ norm of the error versus the logarithm of ∆x for a number of grid

resolutions. We observe slopes of approximately 2 for BSLQB with interpolation parameter

λ = 1 and λ = 1 − c∆x (with c = 2.95), indicating second order accuracy in space and

time under refinement. We observe slopes of approximately 1 for explicit semi-Lagrangian,

indicating first order.

2.7.3 Cut Cell Examples

We demonstrate the ability of our cut cell method to produce detailed flows in complicated

irregular domains for smoke and free surface water examples. Figure 2.5 demonstrates the

subtle and visually interesting behavior that arises as two plumes of multicolored smoke flow

to the center of a cubic domain colliding with a spherical boundary. We use ∆x = 1/63 and

∆t = .02. We demonstrate a more complex domain in Figure 2.7. Puffs of colored smoke

38

-11

-10

-9

-8

-7

-6

-4.2 -4.175 -4.15 -4.125 -4.1 -4.075

2.05*x + -2.07 0.98*x + -2.52 1.9*x + -1.99

 BSLQB BSLQBSL

log(x)

lo
g(

e)

Figure 2.17: Convergence. We compare explicit semi-Lagrangian (SL, red), with BSLQB

(blue) and interpolation coefficient λ = 1 (Equation (2.19)) and BSLQB with interpolation

coefficient λ = 1− c∆x (orange) to a final time of 1. We plot log(∆x) versus log(e) (where

e is the infinity norm of the error) for a variety of grid resolutions ∆x and compute the best

fit lines. The slope of the line provides empirical evidence for the convergence rate of the

method.

with converging initial velocities are placed in a bunny shaped clear domain. We use a grid

cell size of 1/127 and a fixed time step of ∆t = 0.01 (CFL number > 1). In Figure 2.8,

we demonstrate water splashing, while accurately conforming to the walls of an irregular

domain defined as the interior of a large sphere and exterior of a small inner sphere. The

spatial resolution of the domain is ∆x = 1/127, and 30 particles per cell are seeded in the

initial fluid shape. A minimum time step of ∆t = 0.001 is enforced, which is often larger

than the CFL condition. We also consider dam break simulations in rectangular domains

with column obstacles (Figure 2.6) and a bunny obstacle (Figure 2.9). Both examples use a

39

Figure 2.18: Smoke Jet. A plume of smoke is simulated with BSLQB. Zero normal velocity

boundary conditions are enforced on the irregular boundary of the sphere inducing intricate

flow patterns as the smoke approaches it.

∆x = 1/31 1/63 1/127 1/255 1/511

SL (λ = 1) 3.16 11.26 48.25 260.26 1329.88

SL (λ = 0.5) 2.62 11.05 48.07 252.68 1263.91

SL (λ = 0) 2.31 10.66 44.35 238.84 1193.98

BSL (λ = 1) 4.92 19.33 79.86 393.47 1838.78

BSL (λ = 0.5) 4.64 18.53 77.36 378.95 1777.42

BSL (λ = 0) 4.49 18.19 74.75 365.98 1707.63

Table 2.1: SL/BSL 2D Run Time Comparison. Comparison of run times (in seconds)

for SL and BSL for three values of the interpolation parameter λ in 2D. The example is that

of Figure 2.16 with a fixed time step of ∆t = 0.2 at various grid resolutions out to a total

time of 4.

grid cell size of ∆x = 1/127, 8 particles per cell and a fixed time step of ∆t = 0.003. Lastly,

we demonstrate the benefits of our cut cell formulation over a more simplified, voxelized

approach in Figure 2.15. Notice the water naturally sliding in the cut cell domain compared

with the jagged flow in the voxelized domain.

40

Figure 2.19: BSLQB Compared to Other Advection Schemes. From left to right:

BSLQB, APIC, and Advection-Reflection at time = 6.

∆t = .02 .001 .0005 .00025 .0001

SL (λ = 1) X X X X ×

SL (λ = 0.9) X X X X X

SL (λ = 0) X X X X X

BSL (λ = 1) X X × × ×

BSL (λ = 0.9) X X X X X

BSL (λ = 0) X X X X X

Table 2.2: SL/BSL 2D Stability Comparison. Comparison of stability for SL and BSL

at three values of the interpolation parameter λ in 2D. The example is that of Figure 2.16

with a fixed resolution of ∆x = 1/127 at various time steps ∆t out to a total time of 2.

Stable simulations are marked with a check mark, while unstable simulations are marked

with an x.

2.7.4 Performance Considerations

The implementation of our method takes advantage of hybrid parallelism (MPI, OpenMP,

and CUDA/OpenCL) on heterogeneous compute architectures in order to achieve practical

41

Figure 2.20: Comparison with Houdini Smoke. We compare the smoke jet of Figure 2.18

with Houdini’s Billowy Smoke using basic settings at similar grid resolution. Our method

displays more detail without additional disturbance or turbulence.

runtime performance (see Table 2.3 for 3D example performance numbers). The spatial do-

main is uniformly divided into subdomains assigned to distinct MPI ranks, which distributes

much of the computational load at the expense of synchronization overhead exchanging ghost

information across ranks. On each rank, steps of our time integration loop such as BSLQB

advection are multithreaded using OpenMP or CUDA when appropriate. The dominant

costs per time step are the solution of the pressure projection system and, in the case of

free surface simulation, assembly of the pressure system and its preconditioner. We permute

Equation (2.28) so that each rank’s degrees of freedom are contiguous in the solution vector

then solve the system using AMGCL [Dem19] using the multi-GPU VexCL backend (or the

OpenMP CPU backend on more limited machines). Using a strong algebraic multigrid pre-

conditioner with large-degree Chebyshev smoothing allows our system to be solved to desired

tolerance in tens of iterations, even at fine spatial resolution. An important step in minimiz-

ing the cost of system assembly is to scalably parallelize sparse matrix-matrix multiplication,

for which we use the algorithm of Saad [Saa03]. In the future, we are interested in imple-

menting load balancing strategies such as the simple speculative load balancing approach

of [SHQ18], particularly for free surface flows. We note that our implementation enables

high-resolution simulations such as that in Figure 2.4 at relatively modest computational

cost (see Table 2.3).

42

Example Seconds # Particles # Nodes

Smoke Jet (Fig. 2.18) 1,212 12,502,349 2 ∗ 1273

Multiple Jets (Fig. 2.5) 53 25,004,699 633

Bunny Smoke (Fig. 2.7) 160 24,000,000 1273

Smoke Spheres* (Fig. 2.4) 428 64,000,000 2553

Narrow Band (Fig. 2.12) 396 1,008,187 2 ∗ 633

Water Globe (Fig. 2.8) 242 524,415 1273

Dam Break (Fig. 2.6) 870 3,251,409 2 ∗ 1273

Bunny Dam Break (Fig. 2.9) 1,171 4,797,535 2 ∗ 1273

Table 2.3: Average Time Per Frame for 3D Examples. Average time per frame (in

seconds) for each of the 3D examples shown in this chapter. Examples were run on worksta-

tions with 16-core CPUs running at 2.20 GHz, except for the smoke spheres example, which

was run on a cluster equipped with CPUs running at 3.07 GHz and Nvidia Tesla V100 GPUs

which were used for the linear solves.

2.8 Discussion and Limitations

Our approach has several key limitations that could be improved. First, our adoption of

collocated multiquadratic velocity and staggered multilinear pressure is a significant depar-

ture from most fluid solvers utilized in graphics applications. We note that BSLQB and

BSLQB/PolyPIC could be used with a MAC grid; however, each velocity face component

would have to be solved for individually. Another drawback for our multiquadratic velocity

and multilinear pressure formulation is that it gives rise to a very wide pressure system

stencil consisting of 49 non-zero entries per row in 2D and 343 in 3D. Collocated approaches

that make use of multilinear velocities and constant pressure give rise to 9 (2D) and 27 (3D)

entries per row [ZZS17], however they do not allow for C1 continuity and require spurious

pressure mode damping. Our wide stencils likely negatively affect the efficacy of precondi-

43

Figure 2.21: Instability. When λ is close (or equal) to 1, simulations can become unstable

for smaller values of ∆t. We show this here with a simulation of smoke against a circle at a

spatial resolution of ∆x = 1/127. This is seen for both semi-Lagrangian and BSLQB.

tioning techniques as well, however we were very pleased with the efficiency of the AMGCL

[Dem19] library. Also, while the use of mass lumping in Equation (2.30) is necessary to

ensure a sparse pressure projection system, Botella [Bot02] note that this has been shown

to degrade accuracy. In fact, Botella [Bot02] introduce a sparse approximate inverse to the

full mass matrix to avoid dense systems of equations in the pressure solve without degrading

accuracy. Split cubic interpolation, which approximates similar systems with tridiagonal

ones could also possibly be used for this [Hua94]. Adoption of one of these approaches with

our formulation would be an interesting area of future work. Also, we note that the more

sophisticated transition criteria for narrow banding techniques in Sato et al. [SWT18] could

naturally be used with our method. Additionally, the free surface boundary in our approach

is voxelized. In future work, we would like to use non-voxelized cut cell boundaries. Fi-

nally, we note that the work of Zehnder et al. [ZNT18, NZT19] could be easily applied to

our technique to further reduce dissipation since it is based on the Chorin [Cho67] splitting

techniques (Equations (2.9)-(2.11)) that we start from.

44

CHAPTER 3

A Robust Grid-Based Meshing Algorithm for Embedding

Self-Intersecting Surfaces

Figure 3.1: Banner Image. Left: Our method can generate a consistent volumetric mesh

for a facial geometry that contains self-intersections e.g. around the lips. Middle: Two in-

terlocking Möbius-strip-like bands separate freely at various spatial resolutions of the back-

ground grid, despite many near self-intersections in the surface geometry. Right: Two bunny

geometries can naturally separate despite significant initial overlaps.

3.1 Introduction

It is often necessary in computer graphics and computational mechanics to create a vol-

umetric mesh representing the interior of an input polygonal surface mesh. A volumetric

tetrahedron mesh whose boundary coincides with an input surface triangle mesh is typically

created [MBT03, LS07, HZG18, Si15]. It is also common to create a volumetric embed-

ding mesh which contains the surface mesh but has a different boundary [SDF07, TBF19,

45

KBT17, TSB05]. In either case, a common requirement is that the surface mesh is closed

and orientable.

Another common requirement is that the input surface mesh is not self-intersecting or

overlapping. Despite many surface mesh generation techniques address the prevention of

such features [HPS11, FTS06, Att10, ACW06, GD01], as noted in e.g. [SJP13, LB18],

self-intersecting meshes are still common. This can occur in the production pipeline when

the people creating the surface meshes are not involved in the processing of these meshes

and are unaware of the importance of preventing self-intersection. Additionally, removal of

self-intersection can be time consuming endeavor which is not worth the time investment.

Additionally, it is even desirable on occasion for self-intersections to be present, such as when

lips overlap in the neutral state of a deformable mesh, as non-overlapping contact is not a

stress-free state [CBE15, CBF16].

Violation of this constraint can lead to the failure of various mesh creation methods, with

either no output mesh being generated or an output mesh which has incorrect connectivity.

There are, however, also methods which are robust to self-intersection [SJP13, LB18] or slight

self-intersection [TSB05, LB18]. While some such approaches modify the input surface,

Li and Barbič [LB18] create embedding tetrahedron meshes from an unmodified surface

mesh with self-intersection by computing locally-injective immersions which are then used

to unambiguously duplicate embedded mesh regions near overlapping regions.

We present a method for creating a well-defined uniform grid based embedding hex-

ahedron mesh V corresponding to an input triangle surface mesh S which is in general

self-intersecting. As in [SJP13], we assume there exists a nearby non-self-intersecting mesh

S̃ and a mapping φS
S̃

: S̃V → R3 with non-singular Jacobian determinant (see Figure 3.2);

here S̃V is the unambiguously defined interior of the non-self-intersecting S̃. However, unlike

[SJP13], we do not explicitly generate the mapping or the non-self-intersecting surface; we

instead rely on their implicit existence. We build our volumetric mesh by copying back-

ground cells of contiguous regions to create sub-meshes which are then sewn together in an

46

Figure 3.2: Intersection-Free Mapping. Two mappings from a non-self-intersecting region

S̃V to self-intersecting boundary S are shown. The second mapping (right) requires the

existence of a negative Jacobian determinant.

appropriate manner using techniques inspired by Teran et al. [TSB05].

Our approach is quite similar to Li and Barbič [LB18] in various ways: both create

a volumetric embedding mesh without input surface modification and our duplication and

sewing method is equivalent to immersion computation. However, our method uses less exact

and/or adaptive precision arithmetic since we do not need to resolve the exact intersection

between triangle-triangle pairs or triangles and background cells; we only need to know

whether or not triangles intersects a particular cell or edge. Additionally, we do not use

CSG operations [SDF07].

This approach places limits on how coarse the grid spacing can be, and we often need

to run with high resolutions. In order to limit element counts and reach a desired lower

resolution, we introduce a topology-preserving mesh coarsening strategy similar to [WJS14].

Finally, we introduce a topology-preserving method for converting our hexahedron mesh to

a tetrahedron mesh using a body-centered cubic (BCC) structure [MBT03] as in [LB18].

Our contributions are summarized below:

• An efficient technique with reduced use of exact/adaptive precision arithmetic for build-

ing an embedding hexahedron mesh for an input self-intersecting triangle mesh from a

uniform grid that is equivalent to pushing forward one unambiguously defined from a

47

self-intersection-free state.

• A topology aware embedding mesh coarsening strategy to provide for flexible resolu-

tion/element count.

• A topology aware BCC approach for converting the embedding hexahedron mesh into

an embedding tetrahedron mesh.

3.2 Related Work

3.2.1 Volumetric Mesh Creation from a Self-Intersecting Triangle Mesh

Sacht et al. [SJP13] were the first to design an approach that creates an appropriately

overlapping tetrahedron mesh from a self-intersecting triangle mesh. As with our approach,

they assume the existence of a mapping φS
S̃
from a non-self intersecting counterpart S̃ to

the input mesh S. Unlike our approach, they explicitly form S̃ and the mapping φS
S̃
. S̃

is created by a backward process using cMCF followed by a forward process that mini-

mizes distortion-energy and deviation from S subject to collision constraints. The cMCF

is known to remove self-intersections for sphere-topology surfaces [KSB12] and accordingly,

their method is limited to input surfaces with genus zero. They create a tetrahedron mesh

using the self-intersection free S̃ and then push it forward under φS
S̃
which is created by

mapping the boundary of the tetrahedron mesh to S and propagating deformation to the

interior. Our approach is similar in spirit, but we do not explicitly create S̃ or φS
S̃
; further-

more, we can support input surfaces with genus larger than zero. In addition, since they do

not directly generate tetrahedra in world space, they must take care to maintain tetrahedron

mesh quality under deformation in φS
S̃
.

Like Li and Barbič [LB18], we create a volumetric embedding mesh in world space. Li and

Barbič [LB18] observed that the creation of a volumetric mesh from a self-intersecting surface

is related to the geometric and algebraic topological determination of immersions (locally

48

(a) Frame 1 (b) Frame 54

Figure 3.3: Twin Bunnies. Two overlapping bunnies naturally separate. The top part of

each subfigure shows the meshes generated by our algorithm, while the bottom part of each

subfigure shows the corresponding surface meshes.

injective mappings) from a compact 3-manifold to a portion of the world space domain.

As in our approach, they start by dividing world space into contiguous regions using the

input surface mesh S. However, they use exact/adaptive precision arithmetic to intersect S

with itself to achieve this. We use simplified/less costly intersections of triangles in S with

uniform background grid cells and edges. We only need to know whether an intersection

occurs or not; we do not need to resolve the intersection geometry. Immersions do not

always exist, and Li and Barbič [LB18] developed a graph based algorithm to determine if

one exists. Their method for computing these is NP-complete; however, as they note, this is

not a bottleneck for most computer graphics applications. When such an immersion exists,

they compute it by duplicating the contiguous regions, intersecting each duplicate with a

uniform background tetrahedron lattice to create local tetrahedron meshes that are then

sewn together appropriately using their graph structure. We also duplicate and then sew

together contiguous regions, but we use simplified criteria that, while more efficient, can only

49

give accurate results for simple immersions. Although, as Li and Barbič [LB18] note, the vast

majority of applications in computer graphics only require simple immersions. As with our

approach, they also prevent artificial glueing for embedded meshes with nearly intersecting

features. While Li and Barbič [LB18] can accurately compute non-simple immersions, they

cannot handle exactly coincident portions S with non-zero measure, which we can handle.

Broadly speaking, the Li and Barbič [LB18] approach is more general than our method,

but more costly, primarily due to the comparably large use of exact/adaptive precision

arithmetic.

3.2.2 Mesh Creation and Mesh Cutting

The virtual node algorithm (VNA) of [MBF04] allows cutting a tetrahedron mesh along

piecewise-linear paths through the mesh. As in our approach, duplicates of cut elements are

used to resolve necessary topological features. Teran et al. [TSB05] built a generalization

of this approach to create embedding meshes for nearly overlapping input triangle meshes.

Sifakis et al. [SDF07] further extended the VNA to allow for arbitrary cut geometry. A

downside to the geometric flexibility provided by these generalizations is their need for

adaptive precision arithmetic and CSG. Motivated by this, Wang et al. [WJS14] developed

a technique that allows for geometric flexibility without the need for adaptive precision

arithmetic. Their approach allows for arbitrary cut surfaces by generalizing the original

VNA [MBF04] to allow cuts to pass through vertices, edges, or faces of the embedding mesh.

This alone does not provide sufficient geometric flexibility since cuts cannot pass through

facets multiple times. To resolve such cuts, the algorithm is run at high-resolution where

facets are only intersected once and then coarsened in a topologically-aware manner.

The extended finite element method (XFEM) [BB99] is very similar to VNA. An XFEM-

based but remeshing-free approach for cutting of deformable bodies is presented in [KBT17].

In a similar spirit, Zhang et al. [ZDZ18] utilized the cracking node method [SB09], which is

similar to XFEM but uses discontinuous cracks centered at nodes in order to approximate

50

(a) Frame 0 (b) Frame 80

(c) Interior view of lips

Figure 3.4: Intersecting Lips. A face surface with self-intersecting lips is successfully

meshed. The right-hand side of each of the first four frames shows the deformed hexahe-

dron mesh, while each left-hand side shows the corresponding surface mesh. The wireframe

boxes represent Dirichlet boundary condition regions. In the bottom four subfigures, lip

intersection is visualized in the input surface and subsequent hexahedron mesh.

51

crack paths. This yields an efficiency advantage over XFEM which in turn allows for sim-

ulating materials with many evolving, branching cracks. The reader is also referred to the

survey of Wu et al. [WWD15] for more discussion of mesh cutting techniques in computer

graphics.

More generally, tetrahedron mesh creation has been robustly addressed by a number

of works [Si15, HZG18, LS07, MBF03, DCB13, JAY15]. For example, Si [Si15] pursued a

Delaunay refinement strategy in order to provide certain guarantees on tetrahedron quality.

However, sliver tetrahedra are still possible [HZG18]. The method presented in [HZG18] can

handle arbitrary triangle soup as input and returns a high-quality approximated constrained

tetrahedron mesh, though performance is hindered to an extent due to prominent usage of

exact rational arithmetic. However, recently, those performance bottlenecks were alleviated

and replaced with floating-point computations [HSW20]. Notably, researchers have recently

presented a successful method for learning high-quality tetrahedron meshes from noisy point

clouds or a single image [GCX20].

3.2.3 Self-Intersecting Curves and Surfaces

Self-intersecting curves and surface meshes have been considered for many years in both

the mathematics and computer science literature. In two dimensions, algorithms and the-

orems related to identifying self-intersecting curves date back to [Tit61], with many more

recent contributions [Bla67, Mar74, SV92, HL95, GC11, EFW20]. Notably, many problems

related to identifying self-intersections are NP-complete [EM09]. Despite this, efficient algo-

rithms frequently exist; for example, Mukherjee [Muk14] gave a quadratic algorithm (in the

number of points on the discrete curve) to determine the mapping from a disk to an arbi-

trarily stretched, potentially self-overlapping curve, also known as computing an immersion

of the disk. In another vein, Li [Li11] used Gauss diagrams from knot theory to character-

ize self-intersecting two-dimensional projections of three-dimensional polygons, in order to

understand whether there are one or multiple ways to perform mesh repair algorithms like

52

[BWS09].

In the context of three-dimensional mesh generation and animation, self-intersections are

typically treated as degeneracies to be avoided or removed. For example, Von Funck et

al. [FTS06] provided a method for deforming surfaces that prevents new self-intersections

from occurring, due to the smoothness requirements they place on the vector fields gov-

erning the deformation. The tool devised in [ACW06] allows for local prevention of self-

intersections when deforming a mesh. A method for avoiding introducing self-intersections

within the free-form deformation (FFD) modeling scheme [Bez70, SP86] was presented in

[GD01]. The space-time interference volumes introduced in [HPS11] can be used to elim-

inate self-intersections in meshes, although this method is not always guaranteed to work

(the method is primarily intended for interacting with non-self-intersecting input geometry).

Shen et al. [SOS04] built an implicit surface from polygon soup, resulting in a watertight

mesh that approximates the input surface data. Attene [Att10] deleted overlapping triangles

and subsequently performed a gap-filling procedure in the resulting holes. Similarly, Jacob-

son et al. [JKS13] presented a method based on the generalized winding number (which,

notably, is still applicable to triangle soups and point clouds [BDS18], unlike the standard

winding number). Their method results in fusing together self-intersecting parts of the mesh.

Recently, Tao et al. [TBF19] demonstrated a method for accurately and efficiently generating

cut cell meshes for arbitrary triangulated surfaces, including those with degeneracies. How-

ever, again, they treat self-intersections as flaws to be removed, unlike in our method where

self-intersections are valid features of our inputs and outputs. Nonetheless, an attractive

aspect of their algorithm is robust resolution of mesh degeneracies and singularities, unlike

methods like [EB14, KT10] which require random numerical perturbations of the background

cut cell grid. Finally, we also highlight [MAS15], which describes a method for representing

self-intersecting surfaces using implicit functions sampled on a specialized hexahedron mesh.

53

Figure 3.5: Algorithm Overview. Given an initial input surface mesh S, there are three

major steps in the computation of the final volumetric extension mesh V : Volumetric Ex-

tension, Interior Extension Region Creation, and Interior Extension Region Merging. Vol-

umetric Extension: In this step, we create a precursor mesh for each element in S, and

compute preliminary signing information for the vertices. We then merge the precursor

meshes to create the volumetric extension U and correct the signing information where nec-

essary. Interior Extension Region Creation: In preparation for growing the volumetric

extension into the interior, we first partition the nodes of the background grid using the

edges cut by S. We decide which regions are interior and count the copies of each region

using the vertices of U which have negative sign. For each interior region jI with at least one

copy, we then create a hexahedron mesh VjI ,c for each copy c. Interior Extension Region

Merging: The merging process begins with copying relevant hexahedra from U into VjI ,c.

First, certain vertices of VjI ,c are replaced by corresponding vertices from U . Hexahedra to

be replaced are then removed from VjI ,c before the boundary hexahedra are copied in. We

then merge the various meshes VjI ,c by first determining where different meshes overlap, and

then using these hexahedra overlap lists to perform the final merge.

54

3.3 Algorithm Overview

The input to our algorithm is a triangulated surface mesh S. The output is a uniform-grid-

based embedding hexahedron mesh counterpart V to S that is well-defined (i.e., free from

numerical mesh "glueing" artifacts) even when S is self-intersecting (see Section 3.10 for

examples).

We briefly summarize the three main stages of our algorithm, as detailed in Figure 3.5. In

the first stage, volumetric extension (Section 3.5), we create a hexahedron mesh U from the

background grid that only covers the input surface S with connectivity designed to mimic it.

We sign its vertices depending on inside/outside information derived from the hypothetical

self-intersection-free counterpart S̃. We emphasize that this volumetric extension mesh only

surrounds S. Accordingly, the second stage of the algorithm is interior extension region

creation (Section 3.6). Nodes of the background grid are partitioned using the edges cut

by S, and then we decide which regions are interior. Interior regions will be copied a

certain number of times corresponding to the number of times which interior portions of

the hypothetical self-intersection-free counterpart S̃V will overlap under the hypothetical

push forward mapping φS
S̃
; the number of copies is approximate at this stage. For each

interior region jI with at least one copy, we create a hexahedron mesh VjI ,c for each copy

c. In the third stage of the algorithm (Section 3.7), interior extension regions meshes VjI ,c

are sewn together and into the volumetric extension U to produce the final output mesh.

We additionally provide a coarsening approach in Section 3.8 to provide user control over

the embedding mesh resolution as well as a topologically-aware technique for converting the

hexahedron mesh V into a tetrahedron mesh T .

3.4 Definitions and Notation

We take a triangle mesh S = (xS,mS) as input. We use xS = [xS0 , . . . ,x
S
NS
v −1] ∈ R3NS

p

to denote the vector of triangle vertices xSi ∈ R3 and mS ∈ N3NS
e to denote the vector of

55

✓ ✘

Figure 3.6: Mesh Conventions. Left: A sample triangle mesh is shown, along with the

vector mS. The incident mesh indices IS6 for vertex 6 are also shown. For example, triangle

4 has vertices 2, 8, 6 at indices 12, 13, 14 in mS. Hence, 14 is in IS6 . The first 10 faces,

visible from the front, have been labeled on the mesh. Right: The left pair of triangles are

consistently oriented; the orientations of the edge induced by the normals point in opposite

directions. For the right pair, the orientations on the common edge point in the same

direction; this is not consistent.

indices mS
j for vertices in xS corresponding triangles tSb j

3
c, 0 ≤ b j

3
c < NS

e . For example, for

the mesh S in Figure 3.6, triangle tS5 is made up of vertices xS
mSj

with j = 15, 16, 17 where

mS
j equals 2, 3, 8, respectively. We assume that S is closed (every edge in the mesh has two

incident triangles) and consistently oriented (each edge appears with opposite orientations

in its two incident triangles). For each vertex xSi of S, we use ISi to denote the set of incident

mesh indices j such that i = mS
j . Figure 3.6 demonstrates these conventions. We output a

hexahedron mesh V = (xV ,mV) with xV ∈ R3NV
p denoting the vector of hexahedron vertices

and mV ∈ N8NV
e denoting the vector of indices in xV corresponding to vertices in hexahedron

hVe , 0 ≤ e < NV
e . Each hexahedron in the mesh is geometrically coincident with one grid cell

in a background uniform grid G∆x. We denote the spacing of this grid as ∆x (uniformly in

each direction). For ease of visualization, we use 2D counterparts to S and V in illustrative

56

Figure 3.7: Mesh Merge. An example of two meshes merging together. Vertices 2, 3, 4 and

5 merge with vertices 9, 10, 12 and 13, respectively. A new vector m2 is created to hold all

of the hexahedron vertices post-merge, and the extra hexahedron (in red) is then removed.

figures. In this case, S is a segment mesh and V is a quadrilateral mesh.

3.4.1 Merging

We construct the final hexahedron mesh V by merging portions of various precursor hexahe-

dron meshes in a manner similar to techniques used in [TSB05, WDG19, WJS14, LB18]. As

with V , each hexahedron in a precursor mesh is geometrically coincident with background

grid cells. All precursor meshes share the same vertex array xV , although its size will change

as we converge to the final V . At various stages of the algorithm, we will merge certain

geometrically coincident precursor hexahedra. To perform a merge, we view the set of all

vertices in xV as nodes in a single undirected graph and introduce graph edges between

nodes corresponding to geometrically coincident vertices. In subsequent sections, we refer

to such edges in the undirected graph as adjacencies to distinguish them from edges in the

various meshes. Once all adjacencies are defined, we compute the connected components of

the graph using depth-first search. All vertices in a connected component are considered to

be the same and we choose one representative for all mesh entries. We note that this opera-

tion may be carried out on more than two meshes at once and that it can lead to duplicate

57

hexahedra and in this case we remove all but one. Furthermore, replacing all vertices in a

connected component with one representative results in unused vertices in xV . We remove

all unused vertices in a final pass, changing indexing in mV accordingly. We illustrate the

connected component calculation, vertex replacement and unused vertex removal in Figure

3.7.

3.5 Volumetric Extension

We first create a volumetric extension U of the surface S. It is a hexahedron mesh that

contains the input surface S and is designed to have topological properties analogous to

S. Since it is an extension of S, we can sign the vertices of U depending on which side

of the surface they lie on. Overlapping regions in S complicate this process, but it can be

disambiguated by considering the pre-image of the surface to its overlap-free counterpart S̃

under the mapping φS
S̃
. Signing points in R3 depending on whether or not they are inside

S̃ is well-defined and our procedure for signing the vertices in the volumetric extension U is

designed considering its pre-image under φS
S̃
.

3.5.1 Surface Element Precursor Meshes

In order to mimic the topology of the S, we create its volumetric extension U from precursor

meshes U e = (xV ,mU
e) associated with each triangle tSe in S. Note that all precursor meshes

share the common vertex array xV and that this process begins its evolution to the final

V vertex array. For each triangle tSe in S, we define a hexahedron mesh from the subgrid

GUe∆x of G∆x defined by the grid-cell-aligned bounding box of tSe . We add a new hexahedron

to U e corresponding to each background grid cell in GUe
∆x intersected by tSe . We perform

this operation using the intersection function from CGAL’s 2D/3D Linear Geometry Kernel

[The20, BFG20]. We note that every call to the CGAL library here and in subsequent sections

uses the exact arithmetic kernel; conversely, all of our exact/adaptive precision arithmetic is

58

Figure 3.8: Precursor Meshes. Left: Surface element tS0 creates quadrilateral mesh U0.

Right: Surface element tS1 creates quadrilateral mesh U1. Each element creates copies of

the grid cells it intersects by introducing new vertices which are geometrically coincident to

grid nodes.

limited to CGAL. The hexahedron is geometrically coincident to the intersected grid cell in

G∆x, however the vertices introduced into the vertex vector xV are copies of the background

grid nodes associated with the sub grid GUe∆x. Note that even though different triangles may

intersect the same grid cells, their respective hexahedra correspond to distinct vertices in

xV . Further note that mesh elements in U e inherit the connectivity of the sub grid GUe∆x, that

is, hexahedra share common vertices if they are neighbors in GUe∆x. We sign the vertices in

each U e depending on which side of the plane containing the triangle tSe that they lie on. We

illustrate this process in Figure 3.8. Lastly, we note that these signs are low-cost preliminary

approximations to the signs in the final volumetric extension U . In some cases the signs

computed in this phase will not be accurate in the volumetric extension, and we provide a

more accurate but costly signing when this occurs (discussed in Section 3.5.2; however, in

many cases, they are equal to the final signs, and their comparably low computational cost

improves overall algorithm performance.

59

3.5.2 Merge Surface Element Meshes

We merge portions of the precursor meshes U e to form the volumetric extension hexahedron

mesh U by defining adjacency between vertices in xV as described in Section 3.4.1. We

define this adjacency from the mesh connectivity of S using its incident elements ISi for

each vertex xSi . Geometrically coincident vertices in UbjSi,0/3c and UbjSi,1/3c for j
S
i,0, j

S
i,1 ∈ ISi

are defined to be adjacent if each are on hexahedrons in their respective meshes which are

geometrically coincident. Note in particular that this is different from defining geometrically

coincident vertices in UbjSi /3c for j
S
i ∈ ISi to be adjacent (see the geometry of Figure 3.16). In

other words, all geometrically coincident hexahedra in element precursor meshes associated

with triangles that share a common vertex are merged (see Figure 3.9), including hexahedra

along common edges. Merged vertices retain the sign they were given in U e when possible.

However, if merged vertices have differing signs, e.g. in regions with higher curvature (see

Figure 3.10), then we must recompute the sign from their geometric relation to S.

In regions of higher curvature where the preliminary signs of vertices in U e cannot be

adopted in U , we use an eikonal strategy [OF03] to propagate positive signs from S in the

direction of the surface normal and minus signs in the opposite direction. This is well defined

in light of the assumed existence of the pre-image S̃ of S under φS
S̃
. Here, each vertex xVi in

the volumetric extension U is associated with some collection of precursor meshes U ei where

xVi was created in the merge of vertices in the U ei . This defines a local patch SiV of surface

triangles tSei in S associated with xVi . When propagating signs from S to xVi , only these

triangles are considered. It is important to only use this local surface patch since there may

be triangles in S that are geometrically close to xVi but topologically distant. Note that

this precludes the use of global point-in-polygon algorithms based on ray casting or winding

numbers since those will not give correct results when S has self-intersection. Instead we

adopt the local point-in-polygon method of Horn and Taylor [HT89]. First, we compute the

closest mesh facet (triangle, edge, or point) in SiV to xVi . The closest facet calculation is

performed by first storing SiV in a CGAL surface mesh and then using its class functions

60

Figure 3.9: Precursor Merge. The 12 vertices bordering the cell marked in yellow are

merged into 8 resulting vertices. Blue vertices 0, 1, 4, 5 and green vertices 12, 13, 15, 16 are

merged, respectively. However, magenta vertices 19, 20, 21, 22 do not merge with the blue

or green vertices since their associated surface element is topologically distant.

and the locate function from the Polygon Mesh Processing package [BSM20, LRT20]. If the

closest facet is an edge or a point, we add triangles from S that are incident to the vertices

in the edge or the point respectively to the patch SiV (if they are not already in it). If more

triangles were added, we recompute the closest mesh facet. We illustrate this process in

Figures 3.10 and 3.11. If the closest facet is a triangle, we compute the sign depending on

the side of the plane containing the triangle that the point lies on. If the closest faces is an

edge or point we use the conditions from [HT89], which we summarize below:

• If the closest facet is an edge, then the sign is −1 if the edge is concave (as determined

by the normals of the incident faces) and +1 if it is convex.

• If the closest facet is a vertex, then there exists a discrimination plane with an empty

half-space. Choosing any such plane, the sign is −1 if the edges defining the plane are

concave and +1 if they are convex.

61

Figure 3.10: Closest Facet. Left: The four vertices in yellow all have ambiguous signs.

Middle: To sign vertex 5, we generate the local patch S5V , which are the segments shown

in yellow. The closest facet (indicated in cyan) lies on a face. Right: A similar process is

illustrated for vertex 8, but here the closest facet is a vertex.

A discrimination plane is defined by two non-collinear incident edges and it has an empty

half-space if all incident faces and edges lie on one side of the plane or on the plane itself.

Note that geometries can be constructed at any resolution for which the addition of more

triangles in the closest facet detection can result in an incorrect sign evaluated from the

above conditions. However, we did not observe this failure in any practical mesh. Even the

addition of more triangles was only rarely needed, among the meshes used in the present

work, for the mesh of example 3.29 at a few resolutions.

3.6 Interior Extension Region Creation

We grow the volumetric extension U on its interior boundary (defined by vertices with

negative sign) to create the remainder of the volumetric mesh V . We determine where to

grow the extension by examining connected components of the background grid defined by

its intersections with S. We compute these components using depth-first search (as discussed

in Section 3.4.1), where adjacency between nodes in the background grid is defined between

edge neighbors not divided by S. We again use CGAL’s intersection function from the

62

Figure 3.11: Patch Expansion. The local patch SiV corresponding to the yellow vertex is

shown. The initial patch is indicated in red, and the closest facet is a vertex of the red patch.

We add the missing incident triangles (turquoise) and recompute the closest facet. This is

again a vertex with incident triangles not in the patch, so we repeat the process (with new

triangles in dark yellow). The closest feature is now on an edge, and we proceed to the edge

criteria for signing.

2D/3D Linear Kernel to determine whether or not an edge is divided. This is a simplistic

criterion which can lead to an over-count in the number of interior regions, as demonstrated

in Figure 3.12. A more accurate criteria would use material connectivity determined from

the intersection of the surface S with the relevant background grid cells, similar to the CSG

operations in [SDF07]. However, as noted in [LB18] these operations are extremely costly

and our approach is robust to over-counting the number of interior regions since they are all

merged together appropriately in the later stages of the algorithm.

Each connected component of background grid nodes constitutes a contiguous region.

Regions that have a grid node with at least one geometrically coincident vertex in xV with

negative sign are defined to be interior. Exterior regions, those not containing a grid node

with a geometrically coincident vertex in xV with negative sign, are discarded. We create

at least one hexahedron mesh VjI ,c for each interior region jI . Multiple copies of interior

63

Figure 3.12: Region Over-Count. As the process of partitioning the grid only uses con-

nectivity based on grid edges, it is possible for a contiguous region to be split into multiple

regions. Shifting some of the vertices of S on the left results in the geometry on the right,

which contains an additional region in the upper right corner since no edge connects this

grid node to the larger blue region.

meshes are created near self-intersecting portions of S since here they represent multiple

overlapping portions of the volumetric domain. We illustrate this process in Figure 3.13. We

note that as before, each hexahedron mesh VjI ,c uses the common vertex array xV .

We determine interior regions jI that require multiple copies as those with grid nodes

that have more than one geometrically coincident vertex in xV with negative sign. For these

regions, we create a copy VjI ,c for each connected component c of vertices in xV with negative

sign that are geometrically coincident with a grid node in the region, as shown in Figure

3.14. Adjacency between these vertices is defined if they are in a common hexahedron in

the volumetric extension U . In general, this will be an over-count as multiple connected

components may ultimately correspond to the same copy. We note that this process is

analogous to the cell creation portion of the method of Li and Barbič [LB18]. They show

that in the case of simple immersions, the correct number of copies is equal to the winding

number of the region. We do not compute the winding number since our over-count is

typically resolved during the merging process described in Section 3.7. However, failure

64

Figure 3.13: Connected Regions. Left: The surface partitions the background grid into

contiguous regions. Middle: The exterior regions are removed. Right: The volumetric ex-

tension U is shown, along with the negatively signed vertices in green. Multiple geometrically

coincident vertices are indicated using blue circles with green centers.

cases occur when the background uniform grid G∆x cannot resolve thin features or high-

curvature in S. In these cases, an over-count that cannot be resolved in the later merging

stages occurs. The background grid must be refined to resolve these cases, however using

a strategy similar to that of Wang et al. [WJS14] we use a topology-preserving coarsening

strategy (see Section 3.8) after the algorithm has run to prevent excessively small element

sizes and associated high element counts. We also note again that unlike Li and Barbič

[LB18], we cannot handle non-simple immersions.

As with U , we construct the first copy of the hexahedron mesh for each interior region

VjI ,0 from precursor hexahedron meshes Vj
I ,0

i = (xV ,mV j
I ,0

i). Here xi are the grid nodes in

region jI . It should be noted that these are different than the vertices xVi ∈ xV and that

i = (i0, i1, i2) is used to denote the grid multi-index associated with the node. For each xi,

mV jI ,0
i consists of 8 hexahedra which are geometrically coincident with the 8 local background

grid cells incident to xi. Copies of xi and the 26 background grid nodes surrounding xi

(whether or not they are in region jI) are introduced into xV to achieve this. We again merge

these precursors as described in Section 3.4.1 where adjacencies between the vertices of xV

65

Figure 3.14: Copy Counting. The two regions from Figure 3.13 having multiple copies are

shown. Each copy is displayed with its corresponding connected component of vertices with

negative sign.

are defined as follows. For each pair of grid nodes xi and xj in region jI , the geometrically

coincident vertices in xV corresponding to the hexahedra of Vj
I ,0

i and Vj
I ,0

j are adjacent if

xi and xj are connected by an edge in G∆x that is not cut by a triangle in S. This edge cut

criteria prevents connection between geometrically close but topologically distant features,

as illustrated in Figure 3.15. We reemphasize that as described in Section 3.4.1 the final

mV j
I ,0 is formed by concatenating all of the arrays mV j

I ,0

i (modified to account for merged

vertex numbering) and removing any duplicated hexahedra. The remaining copies VjI ,c are

created by duplicating mV j
I ,0 with new vertices distinct from those corresponding to VjI ,0

and any other copy.

66

Figure 3.15: Edge Cut Criterion. Grid nodes xi of a region are shown, along with two

examples showing that adjacent grid nodes may have their common edge cut by a triangle

(cut edges are indicated by the dashed yellow lines). In this case, adjacencies are not built

between the corresponding vertices in Vj
I ,0

i to avoid unwanted sewing.

3.7 Interior Extension Region Merging

Having created the interior extensions VjI ,c, the merging of these meshes with the volumet-

ric extension U and with each other (to account for possible over-counting in their creation)

is carried out in multiple steps. We first merge hexahedra from U into VjI ,c in a process

described below. We then determine which of the interior extensions should merge to each

other, using hexahedra from U which merge into multiple VjI ,c to generate a list of overlap-

ping hexahedra between meshes of different regions and copies. Next, we use these overlaps

to determine which copies of the same region are duplicated and merge the duplicates to-

gether. Finally, these overlapping hexahedra are used to define the adjacencies in the final

merging process.

3.7.1 Merge With Boundary

Recall from Section 3.6 that in regions with more than one copy, we create a copy VjI ,c for

each connected component c of vertices in xV located in region jI with negative sign. We

67

Figure 3.16: Preliminary Merge. The construction of the volumetric extension U may

result in geometrically coincident vertices which do not come from topologically distant

parts of the mesh. Green vertices have negative signs, while purple vertices have positive

sign. Top: The process in Section 3.7.1 merges these vertices into a single vertex. Bottom:

We do not merge coincident positive vertices, to avoid unnecessarily sewing the exterior.

use CjIc to denote the collection of these nodes in the connected component c. For regions

with only one copy, Cj
I

0 instead denotes the collection of all vertices in xV located in region

jI with negative sign, as we do not generate connected components in this case. Not that

for these single copy regions, the vertices of Cj
I

0 need not be connected (see the geometry

of Figure 3.17, where the vertices Cj
I

0 are composed of two connected components on the

outer and inner boundaries). We merge vertices of VjI ,c with vertices in CjIc using the merge

described in Section 3.4.1. Before this merge, we first perform a preliminary merge of vertices

in CjIc which are geometrically coincident. Here, two vertices of xV are adjacent if they are

geometrically coincident and both in CjIc . The effect of this preliminary merge is to close

unwanted interior voids without ‘sewing’ the exterior and without merging topologically

distant vertices of U , as shown in Figure 3.16. The merge between the vertices of VjI ,c

and CjIc is then defined by the following adjacency. Vertices of VjI ,c and CjIc are adjacent

if they are geometrically coincident and the vertex of VjI ,c was created from an interior

68

connected component of vertices in the Vj
I ,0

i that gave rise to VjI ,c via the merge described

in Section 3.6. Here, an interior connected component is one that contains the center vertex

(as opposed to one of the surrounding 26 vertices) introduced in the creation of Vj
I ,0

j for

some grid node xj in the region jI . This requirement effectively means that vertices of CjIc
should only merge to the those vertices of VjI ,c which are actually interior to the region, and

not the vertices which are overlapping from a topologically far part of VjI ,c. We illustrate

this in Figure 3.17. Note that after this merge has been performed, we update the indices

in CjIc accordingly as this set will be used in latter steps of the merging procedure.

We next use a strategy different to that in Section 3.4.1 for merging hexahedral elements

in U to their geometrically coincident counterparts inVjI ,c. This modified merging strategy

is designed to prefer the structure of U over that in VjI ,c. For instance, if two hexahedra

of U are geometrically coincident but share only vertices on one face, then they will still

have this connectivity after merging to VjI ,c. We merge the hexahedra in U incident to the

vertices in CjIc to their geometrically coincident counterparts in VjI ,c. Specifically, for each

vertex xVi with i ∈ CjIc and kUi ∈ IUi , the hexahedron b
kUi
8
c is marked for merging. We denote

the collection of hexahedra in U marked to be merged with their counterparts in copy c of

region jI as Ij
I ,c
H . Note that it is possible that some hexahedra of U are not included in

any such collection. To perform this modified merging procedure, we first remove hexahedra

from mV j
I ,c that are geometrically coincident with a hexahedron from Ij

I ,c
H and incident to

a vertex in CjIc . Note that a hexahedron in mV j
I ,c can only be incident to a node in CjIc

after the merge described in the previous paragraph has been completed. Next, copies of

the hexahedra in Ij
I ,c
H are added to mV j

I ,c . The process following the preliminary merge is

outlined in Figure 3.18.

3.7.2 Overlap Lists

We next merge differing regions VjI0 ,c along their appropriately defined common boundaries.

The boundary region between any two region copy meshes VjI0 ,c0 and VjI1 ,c1 is grown from

69

Figure 3.17: Vertex Adjacency. The merge process between vertices of VjI ,c and CjIc .

For the cell highlighted in yellow, there are 2 hexahedra from VjI ,c and therefore 4 pairs of

geometrically coincident vertices. The two negatively signed vertices (in green) from CjIc are

matched to the vertices which came from an interior connected component (marked in cyan)

and not the ones which did not (marked in pink).

seeds which we define by hexahedra in the respective meshes that are equal and in U . For

example, suppose that VjI0 ,c0 and VjI1 ,c1 contain such a hexahedron. In this case there are

hexahedra with indices hV
jI0 ,c0

e0
, hV

jI1 ,c1

f0
∈ N sharing the same vertices as a hexahedron in U

with index hUg0 ∈ N such that

mV j
I
0 ,c0

8hV
jI0 ,c0

e0
+ie

= mV j
I
1 ,c1

8hV
jI1 ,c1

f0
+ie

= mV S

8hV Sg0 +ie
, ie ∈ {0, 1, . . . , 7} . (3.1)

When these hexahedra exist in two region copies jI0 , c0 and jI1 , c1 we use the notation q =

(jI0 , c0, j
I
1 , c1) to denote a pair of region copies with common boundary (that which will

eventually merge). We define sq0 = (hV
jI0 ,c0

e0
, hV

jI1 ,c1

f0
) as a seed between the pair of region

copies. Furthermore, we use pq = [sq0 , . . . , s
q

Nq
s −1

] to denote the collection of all such seeds

between jI0 , c0 and jI1 , c1 with Nq
s being the number of seeds. This collection, which we call

an overlap list, is grown into the complete overlapping common boundary between jI0 , c0 and

jI1 , c1.

We expand the initial seed collections pq by first marking background grid cells geomet-

70

Figure 3.18: Merge with Boundary. We illustrate the process of Section 3.7.1 following

the preliminary merge of negatively signed vertices. First, specific vertices of VjI ,c are merged

with vertices of CjIc . Next, hexahedra to be replaced are removed from the VjI ,c. Finally,

copies of hexahedra from U are added to this mesh.

rically coincident with hexahedra in the seeds as being visited. Then, starting with the seed

sq0 , we compute the neighbor hexahedra of each hexahedron in the seed (the neighbors of a

hexahedron are those which share a common vertex). Geometrically coincident neighbors

of the two hexahedra in the seed are added to pq if the background grid cell to which they

are geometrically coincident is unvisited. We then mark the cell as visited, and continue

until every seed has been processed in this way. At the end of this expansion, pq is a list

of overlapping hexahedra that will be used to sew the regions together. We illustrated this

process in Figure 3.19.

3.7.3 Deduplication

As mentioned in Section 3.6, the number of copies is generally an over count. We use the

overlap lists pq to deduce which copies c of a region jI are redundant. For each hexahedron

hSe in U , we create a list of hexahedra from geometrically coincident counterparts in interior

region copies. This list is formed by considering each pair q: if either hexahedron in a seed of

pq is a copy of hSe (i.e. it uses the same vertices in xS as in Equation (3.1)), both hexahedra

in the seed are added to the list associated with hSe . Note that while the hexahedron pairs of

the initial seeds in pq are both copies of hexahedra from U in accordance with Equation (3.1),

71

Figure 3.19: Overlap Lists. A closeup of the overlap region from the geometry of Figure

3.17 is shown here. At the upper left, the seeds for the overlap between the two copies are

shown in purple, as well as the incident negative vertices (green) to the seeds from each copy.

At each step, the current seed is marked with a cyan border. New geometrically coincident

neighbors of the seed hexahedra are then added in the next step. When all seeds have been

traversed, the process stops.

subsequent seeds added during the overlap process may have both, one, or neither hexahedra

equal to copies of hexahedra from U . Should any list for any hexahedron hSe in U contain

hexahedra from multiple copies c0 and c1 of the same region jI , copies c0 and c1 are considered

to be redundant duplicates of each other. Redundant copies are merged using the process of

Section 3.7.1. This process is shown in Figure 3.20.

For each region, we compute connected components of its copies using duplication as the

notion of adjacency. For each connected component of copies, we take the copy with the

smallest index ci as the representative copy. However, this copy’s mesh only has the vertices

of the component ci. Likewise, only copies of the hexes in IciH are in VjI ,ci . We remedy this

by repeating the merge with boundary process of Section 3.7.1 on updated data. Specifically,

we replace the connected component ci of vertices with the union of all components cj for

copies in the connected component of copies. We then form an updated collection of incident

72

Figure 3.20: Deduplication. We show two of the four copies of the central region (yellow),

corresponding to the right and left segments of U . Each of copies 0 and 1 create an overlap

list with the upper region (blue). The overlap list for copy 0 creates a pair between a

non-boundary yellow hexahedron and a boundary hexahedron from the blue region. This

boundary hexahedron is in a pair with a boundary hexahedron of copy 1, allowing us to

deduce that copies 0 and 1 of the yellow region are duplicates. We then repeat the boundary

merge process to create a deduplicated copy with complete boundary information.

hexahedra IciH before repeating the boundary merge process. Finally, we update the overlap

lists. Any overlap list corresponding to a duplicated copy is recreated using the minimum

representative in place of the original copy to account for updated hexahedron ordering.

Redundant overlap lists resulting from this update are then discarded.

3.7.4 Final Merge

We now merge the vertices of xV using the pattern of Section 3.4.1 with adjacencies defined

by the overlap lists. For each seed s in an overlap list, the geometrically coincident nodes

of the two hexahedra in s are considered adjacent. We then create the final mesh V by

combining all of the arrays mV j
I ,c from copies which are either the minimum representative,

or not duplicated. Recall from Section 3.4.1 that some hexahedra of U are not copied into

any copy’s mesh. We add all such hexahedra to V to guarantee that U is contained in this

final mesh, completing the interior extension region merging process.

73

3.8 Coarsening

Our method requires high resolution (small ∆x) background grids for high-curvature/detailed

surfaces. We provide a topology-aware coarsening strategy to provide user control over the

final volumetric mesh resolution/element counts. After the hexhedron mesh V is created,

we coarsen the underlying grid by doubling ∆x. We then create a maximal coarse meshM

based on the fine mesh V . For each index mV
j in V , we define the initial connectivity forM

as mM
j = j. We then bin the center of each fine hexahedron hM ∈ NNM

e into the coarsened

grid and keep track of its multi-dimensional grid index ih
M . We initialize the position array

xM forM from the coarse grid cell corners of cell ih
M . Specifically, for each hexahedron in

hM in M we define xM8hM+ie = x2∆x

ihM
+ oie where oie is an offset from the coarse cell center

x2∆x

ihM
to the eight respective corners of the coarse grid cell ih

M . To build the final coarsened

mesh, we merge portions of the maximal coarse mesh using Section 3.4.1 where adjacencies

are defined from a hexahedron-wise notion of connectivity. Two maximal coarse hexahedra

hM0 and hM1 are connected if their corresponding fine hexahedra hV0 = hM0 and hV1 = hM1

share a face fVi =
[
fVi0 , f

V
i1 , f

V
i2 , f

V
i3

]
∈ N4 in V . We define two types of connection: totally

connected and partially connected. Maximal coarse hexahedra are totally connected if they

have the same coarse grid index ih
M
0 = ih

M
1 and their corresponding fine hexahedra hV0 and

hV1 are not geometrically coincident. Maximal coarse hexahedra are partially connected if

they are connected but are not totally connected. We define vertex adjacency from our

notions of hexahedron connectivity. If two hexahedra hM0 and hM1 in the maximal coarse

mesh are totally connected, then their eight respective geometrically coincident vertices are

defined to be adjacent, i.e. vertex mM
8hM0 +ie

is adjacent to vertex mM
8hM1 +ie

, 0 ≤ ie < 8. If

they are partially connected, then their corresponding fine hexahedra hV0 , hV1 share a face

fVi =
[
fVi0 , f

V
i1 , f

V
i2 , f

V
i3

]
. We then identify an analogous face in each of hV0 and hV1 which we

define in terms of the indices kV0α, kV1α, α ∈ {0, 1, 2, 3}. Only the vertices corresponding to

74

Figure 3.21: Coarsening. An example of fine mesh connections. Hexahedra 0 and 1 are

totally connected, while hexahedra 1 and 2 are connected by a face. After merging the

vertices of the coarse mesh (blue), the duplicated hexahedron (indicated in red) is removed.

the analogous face are defined to be adjacent

mM
8hM0 +kV0α

= mM
8hM1 +kV1α

, α ∈ {0, 1, 2, 3} . (3.2)

There are two cases that define the analogous face. First, if the fine hexahedron counterparts

hV0 , h
V
1 are geometrically coincident, then the analogous face is the one on the analogous side

of the coarse hexahedron. If they are not geometrically coincident, then the analogous face is

the one geometrically coincident with the fine face defined from fVi . The general coarsening

procedure is illustrated in Figure 3.21.

3.9 Hexahedron Mesh To Tetrahedron Mesh Conversion

We design a topologically-aware BCC-based approach for the creation of a tetrahedron mesh

T from the hexahedron mesh V . We initialize the particle array for the tetrahedron mesh xT

to be the same as xV , but we add a new vertex in the center of each hexahedron and each

boundary face. Tetrahedra are computed from the faces in the mesh V . Normally a face in V

would have one (boundary face) or two (interior face) incident hexahedra. However, since V

is comprised of many geometrically coincident hexahedra there are more cases. We classify

them as: standard boundary face (one incident hexahedraon), standard interior face (two

non-geometrically coincident incident hexahedra), non-standard interior (more than two in-

75

Figure 3.22: Hexahedra Tetrahedralization. Left: a standard interior face in V . The

centers of the two incident hexahedra are combined with two face vertices to form the

tetrahedra (red). Middle: a standard boundary face uses a face center instead of the

missing incident hexahedron center. Right: a non-standard interior face is shown. The

right-most incident hexahedra are geometrically coincident. We form hexahedra pairs/faces

(0,1), (0,2) and treat them respectively as standard interior, as in the left-most image.

cident hexahedra, some geometrically coincident and some not geometrically coincident) and

non-standard boundary (more than one incident hexahderon, all geometrically coincident).

Each face contributes four tetrahedra to T in the case of standard boundary and standard

interior faces. The tetrahedra consist of two vertices from the face and the cell centers on

either side of the face in the case of standard interior faces. In the case of standard boundary

faces, the face center is used in place of the second hexahedron center. For non-standard

interior faces, we take all pairs of non-geometrically coincident incident hexahedra and add

tetrahedra as if their common face was a standard interior face. For non-standard boundary

faces, tetrahedra are added for each incident hexahedron as if it were incident to a standard

boundary face. We illustrate this procedure in Figure 3.22.

3.10 Examples

We consider a variety of examples in both two and three dimensions. To illustrate the

capabilities of the final mesh connectivites, we treat the objects as deformable solids and

76

(a) Frame 0 (b) Frame 11 (c) Frame 27 (d) Frame 60

Figure 3.23: 2D Simple Overlap. A self-intersecting shape is suspended from a ceiling.

The geometry deforms under gravity, and both sides freely move regardless of the initial

overlap.

run a finite element (FEM) simulation [SB12]. Performance statistics for the 3D examples

are presented in Table 3.1. All experiments were run on a workstation with a single Intel®

Core™ i9-10980XE CPU at 3.00GHz.

3.10.1 2D Examples

3.10.1.1 Single Overlap

Figure 3.23 shows a deformable FEM simulation using a volumetric mesh produced by our

algorithm. As evidenced by the geometry’s ability to separate and freely move, our algorithm

produces a mesh that properly resolves the single self-intersection present in the initial

configuration.

3.10.1.2 Ribbon

Our algorithm can also handle more complex self-intersections. In Figure 3.24, one end of

a ribbon shape passes through the other, partitioning the surface into several components.

These intersections are successfully resolved, and the mesh is allowed to move as in the

77

(a) Frame 0 (b) Frame 14 (c) Frame 59 (d) Frame 74

Figure 3.24: 2D Ribbon. A ribbon with a more complicated initial self-intersection is also

treated properly by our method.

previous example.

3.10.1.3 Face

Figure 3.25 demonstrates a similar scenario. In this case, the lips of the face geometry

initially overlap; and, as an added challenge, the boundary of the input geometry consists

of multiple disconnected components. Our method successfully treats cases like these by

design.

3.10.2 3D Examples

3.10.2.1 Two Boxes & Simple Overlap

We begin our 3D examples by demonstrating that our algorithm is able to quickly generate

consistent meshes for simple self-intersecting geometries. In Figure 3.26, basic hand-made

geometries are allowed to separate and unfurl from their initial self-intersecting states. The

two boxes in the left-hand side of each subfigure were meshed using a background grid

78

(a) Frame 0 (b) Frame 8 (c) Frame 21 (d) Frame 92

Figure 3.25: 2D Face. A face with multiple boundary components and initially self-

intersecting lips is successfully animated.

resolution of 66×64×86 cells and ∆x = .00955671, taking 2.80219s to generate the resulting

256,368 hexahedra in the output mesh. The simple overlapping shape in the right-hand side

of each subfigure was meshed using a grid with 194 × 64 × 194 cells and ∆x = .00328125,

resulting in 1,606,296 hexahedra in the output mesh.

3.10.2.2 Double Möbius

Figure 3.27 shows two Möbius-strip-like geometries1 falling and separating under the effects

of gravity, despite substantial intersections at the start of the simulation. This example was

run using a background grid with 294× 288× 64 cells and a ∆x of 0.0347391. The resulting

hexahedron mesh has 903,653 elements. Generating the volumetric mesh using our algorithm

takes 33.6324s.

We also consider repeating this example at multiple spatial resolutions in order to demon-

strate the effect of resolution on the quality of meshing results (see Figure 3.28). The coarsest

grid (corresponding to the leftmost meshes in each subfigure) is 21×19×5 with ∆x = 0.556.

An intermediate grid resolution of 39 × 37 × 9 cells with ∆x = 0.278 corresponds to the

1“Mobius Bangle” by Creative_Hacker is licensed under CC BY 4.0.

79

Example Grid dim. Relative ∆x # Hex Time (s)

Two Boxes 66×64×86 0.0158730 256368 2.80219

Simple Overlap 194×64×194 0.0158730 1606296 24.0179

Double Möbius 294×288×64 0.0158730 903653 33.6324

Twin Bunnies 162×166×128 0.00787402 1525821 31.1815

Dragon 512×690×520 0.00195313 20110457 303.301

Fancy Ball 130×132×128 0.00787402 515400 25.8388

Head 512×830×718 0.00195313 62444819 839.951

Sacht 52×104×42 0.0243902 135736 6.97091

Table 3.1: Volumetric Mesh Generation Times for Various 3D Examples. All times

are in seconds and represent the total runtime of the algorithm. Relative ∆x is ratio of ∆x

to the shortest side length of the bounding box.

(a) Frame 4 (b) Frame 33

Figure 3.26: 3D Simple Overlap. Simple self-intersecting 3D geometries are able to sepa-

rate and unfurl with our algorithm.

80

(a) Frame 0

(b) Frame 44 (c) Frame 110

Figure 3.27: Double Möbius. Two intersecting Möbius-strip-like geometries (pink) natu-

rally fall and separate under our method. The associated hexahedron meshes are shown in

the right half of each frame.

81

(a) Frame 0

(b) Frame 16 (c) Frame 84

Figure 3.28: Double Möbius Refinement. Running the example shown in Figure 3.27

at different spatial resolutions. In each frame, from left to right, the background grids have

∆x = 0.556, 0.278, and 0.139.

middle meshes in each subfigure. The rightmost meshes in each subfigure come from using

a grid with 75× 73× 17 cells with ∆x = 0.139. Proper separation is achieved at all three of

these tested resolutions, and in particular, our algorithm performs quite well on this example

even at extremely low spatial resolution.

3.10.2.3 Twin Bunnies

Another standard example is the Stanford bunny. Figure 3.3 demonstrates that two almost

completely overlapping bunny meshes can naturally separate under our method. No issues

are encountered as different segments of the bunnies pass through one another. This example

uses a grid resolution of 162×166×128 cells with ∆x = 0.0203027, resulting in a mesh with

1,525,821 hexahedra.

82

(a) Frame 0 (b) Frame 300

Figure 3.29: Dragon. A complex mesh of a dragon is allowed to fall under gravity. The

left-hand side of each subfigure shows the deforming mesh we generate, and each right-hand

side shows the corresponding surface mesh.

3.10.2.4 Dragon

The most complicated geometry we test our method on is the dragon2 shown in Figure 3.29

(and also shown in Figure 3.11). Adequate resolution is required in order to resolve all the

fine-scale features of this mesh; accordingly, we use a grid resolution of 512 × 690 × 520

cells with ∆x = 0.0708709. Our final mesh, generated in five minutes, contains just over 20

million hexahedra.

3.10.2.5 Fancy Ball

Figure 3.30 shows another interesting case where several ball-like geometries3 deform and

collide after being meshed with our algorithm. Each ball has a number of thin cuts and

2“Asian Dragon” by Lalo-Bravo.

3“Abstract object” by sonic art.

83

(a) Frame 20 (b) Frame 80

Figure 3.30: Fancy Ball. Several ball-like geometries with intricate slices and holes are suc-

cessfully meshed with our algorithm and then deform and collide under an FEM simulation.

fine-scale features, which our algorithm is able to resolve using a grid with 130× 132× 128

cells and ∆x = 2.82671. The 515,400 resulting hexahedra are generated in 25.8388s.

3.10.2.6 Head

Modeling of the human body often gives rise to self-intersection. This is particularly common

in the faces, where lip geometries often self-intersect. To that end, we consider a real-world

head geometry in Figure 3.4. Note that the lips separate effectively. This example results

in a volumetric mesh with over 62 million elements, using a background grid resolution of

512×830×718 cells and ∆x = 0.000501962. Generating the hexahedron mesh takes 839.951s.

3.10.2.7 Collection

Various objects from 3D examples are dropped in a tank in Figure 3.31. The objects naturally

deform and collide without meshing or simulation issues.

84

(a) Frame 80 (b) Frame 200

Figure 3.31: 3D Mesh Collection. We simulated dropping our 3D examples into a box

with a FEM sim.

3.10.2.8 Sacht et al. Mesh

Finally, we demonstrate that our method, like that of Li and Barbič [LB18], can successfully

resolve the self intersections of the geometry shown in Figure 3.32 that is not supported by

the method of Sacht et al. [SJP13]. In [SJP13], the bristles in this geometry get locked

by the surrounding torus. However, both our method and [LB18] properly resolve all self-

intersections. Of note, for a similar number of output mesh elements (135,736 vs. 112,554),

our method runs noticeably faster than that of Li and Barbič [LB18] (6.97s vs. 22.5s).

3.11 Discussion and Limitations

Our method has various limitations, most of which are attributed to our reduced use of

exact/adaptive precision arithmetic. The most prominent limitations of our approach are in

the types of input surface mesh S that we support. Fine-scale features, e.g., thin parallel

sheets, can cause negatively signed vertices to be located in regions of the grid corresponding

85

(a) Original surface mesh

(b) Output tetrahedral mesh (c) A contiguous subsection

Figure 3.32: Sacht Geometry. Our method can successfully resolve the self intersecting

geometry proposed in [SJP13]. Here, we visualize the surface of the output after conversion

to a tetrahedral mesh. We emphasize a subsection of the mesh on the right sub-figure; the

bristles are attached to the correct parts of the torus and are not connected to the bristles

from the opposite side of the torus.

86

to an incorrect region. This may result in exterior regions erroneously generating copies, or

interior regions creating extra copies which will not be correctly merged or deduplicated.

In these pathological cases, the output mesh will have undesirable extraneous collections of

hexahedra. Such cases result from a background grid which is too coarse relative to the size

of polygonal faces in the finer regions. Hence, we resolve this by iteratively halving the cell

width until fine scale features can be accurately resolved. We note that such a heuristic

strategy may result in an undesirable level of refinement. However, our coarsening approach

is designed to mitigate this. Even using added resolution and subsequent coarsening, our

methodological simplifications prevent us from handling certain classes of cases that Li and

Barbič [LB18] can handle, e.g., we cannot resolve non-simple immersions. It would be inter-

esting to investigate whether our minimal-exact-arithmetic approach could be extended to

handle non-simple immersions as well. A further failure case arises from one surface mesh

being fully contained within the volume defined by a larger surface mesh. Our method will

generally fail to create enough copies of the smaller volume. This is not a serious limitation,

however, as our focus is on self-intersection and such situations can easily be avoided by

translating separate meshes by a sufficient amount. Future work includes improvements to

the algorithm to handle known pathological cases without the need for refinement and sub-

sequent coarsening, as well as improved detection mechanisms for such cases. In particular,

additional use of exact arithmetic in the form of segment-triangle intersections should allow

for the detection of fine scale signing failures. It should be possible to combine such a detec-

tion mechanism with an adaptive refinement/coarsening scheme to create an intermediate

step which eliminates the need for heuristic global refinement and allows for graceful failure

(i.e. when a refinement limit is reached).

Lastly, Figure 3.2 illustrates an interesting case which neither our approach, that of Li

and Barbič [LB18] nor that of Sacht et al. [SJP13] can handle. In this case, which is

common near e.g. elbows and even shoulders in an upper torso, a portion of the domain

overlaps in such a way that φS
S̃
must have negative Jacobian determinant in some regions.

87

Our approach returns a mesh for this case, but it does not properly copy the overlap region

and one of the two copies that would be required is rejected. I.e. our approach does not give

a result consistent with creating a mesh in S̃V and pushing it forward under φS
S̃
. In Li and

Barbič [LB18], this is noted as a case for which an immersion does not exist and Sacht et

al. [SJP13] explicitly require the Jacobian determinant of φS
S̃
to be non-negative. However,

this is a commonly occurring case which would be beneficial to resolve.

88

CHAPTER 4

Other Contributions

This chapter is organized into two sections. In Section 4.1, we compute the eigenvalues

and eigenvectors of the Hessian of the surface tension potential energy density defined

in [HGM20]. This is a modified version of material from the supplementary material of

[HGM20].

In Section 4.2, we derive the expression for the inertia tensor from [JSS15]. While we

provide definitions of relevant terms as necessary, a general summary of the APIC method

has been omitted. We direct the reader to [JST16] for a summary of APIC and the material

point method in general.

4.1 Eigenstructure of the Hessian of a Surface Tension Energy Term

We define the following surface tension energy density as a function of the deformation

gradient F̂ (see Section 1.2.1.2; we use the hat notation to match [HGM20]) and area weighted

normal dA:

Ψ(F̂, dA) = k‖JF̂−TdA‖, (4.1)

where J = det F̂ and k is the surface tension coefficient. We now compute the Hessian and

its structure in both 2D and 3D.

89

4.1.1 2D

In 2D, we may write JF̂−T in terms of the Levi-Civita symbol as follows:

JF̂−Tαβ = εαγεβδF̂γδ. (4.2)

Then we can write JF̂−TdA as

JF̂−Tαβ dAβ = εαγεβδdAβF̂γδ. (4.3)

We then define the third order tensor C by

Cαγδ = εαγεβδdAβ. (4.4)

With this notation,

JF̂−Tαβ dAβ = CαγδF̂γδ. (4.5)

We denote this by CF̂. The tensor C is a function of dA. Note that the energy written in

this notation is Ψ(F̂, dA) = k‖CF̂‖.

4.1.1.1 Gradient

With this notation, the gradient of the energy is given by

∂Ψ

∂F̂αβ
=
k

2

1

‖CF̂‖
∂

∂F̂αβ

(
CγδεF̂δεCγζηF̂ζη

)
= k

CγδεF̂δε

‖CF̂‖
∂

∂F̂αβ

(
CγζηF̂ζη

)
= k

CγαβCγδεF̂δε

‖CF̂‖
. (4.6)

90

4.1.1.2 Hessian

The Hessian is given by

∂2Ψ

∂F̂γδF̂αβ
= k

CεαβCεζη

‖CF̂‖
∂F̂ζη

∂F̂γδ
− k

2

CεαβCεζηF̂ζη

‖CF̂‖3

∂

∂F̂γδ

(
CθικF̂ικCθλµF̂λµ

)
= k

CεαβCεγδ

‖CF̂‖
− kCεαβCεζηF̂ζηCθγδCθικF̂ικ

‖CF̂‖3
. (4.7)

We can simplify these expressions using the property εαβεαγ = δβγ. First, note that

CεαβCεγδ = εεαεζβdAζεεγεηδdAη

= δαγεζβdAζεηδdAη. (4.8)

Then, define dA⊥ by

dA⊥β = εζβdAζ . (4.9)

This notation is motivated by the observation that dA⊥ · dA = εζβdAζdAβ = 0. With this

notation,

CεαβCεγδ = δαγdA
⊥
β dA

⊥
δ . (4.10)

The gradient and Hessian in this notation are

∂Ψ

∂F̂αβ
= k

F̂αεdA
⊥
ε dA

⊥
β

‖CF̂‖
(4.11)

and
∂2Ψ

∂F̂γδF̂αβ
= k

δαγdA
⊥
β dA

⊥
δ

‖CF̂‖
− k

F̂αηdA
⊥
η dA

⊥
β F̂γκdA

⊥
κ dA

⊥
δ

‖CF̂‖3
. (4.12)

4.1.1.3 Eigenvalues and Eigenvectors

By inspection, the dA⊥δ in both terms suggest that tensors of the form

δF̂γδ = uγdAδ (4.13)

91

are in the kernel of the Hessian:

∂2Ψ

∂F̂γδF̂αβ
uγdAδ = k

δαγuγdA
⊥
β

‖CF̂‖
dA⊥δ dAδ − k

F̂αηdA
⊥
η dA

⊥
β F̂γκdA

⊥
κ uγ

‖CF̂‖3
dA⊥δ dAδ

= 0. (4.14)

So we obtain two orthogonal eigenvectors with associated eigenvalue 0 by choosing any two

nonzero orthogonal vectors u0 and u1 and forming the tensor products u0dA
T and u1dA

T .

For the remaining two eigenvectors, consider tensors of the form

δF̂γδ = vγdA
⊥
δ . (4.15)

For the first term, note that

k
δαγdA

⊥
β dA

⊥
δ

‖CF̂‖
vγdA

⊥
δ = k

‖dA⊥‖2

‖CF̂‖
vαdA

⊥
β = k

‖dA‖2

‖CF̂‖
vαdA

⊥
β , (4.16)

where we have used the fact that ‖dA⊥‖ = ‖dA‖. So the first term acts as a uniform scaling

on the subspace spanned by vectors of the form v(dA⊥)T . So eigenvectors of the second

term in this subspace will also be eigenvectors of the first term, and hence eigenvectors of

the Hessian. Note that the second term is rank 1 and has the form

−k
F̂αηdA

⊥
η dA

⊥
β F̂γκdA

⊥
κ dA

⊥
δ

‖CF̂‖3
= −k

(F̂dA⊥)αdA
⊥
β (F̂dA⊥)γdA

⊥
δ

‖CF̂‖3
, (4.17)

so it has eigenvectors (F̂dA⊥)(dA⊥)T and (F̂dA⊥)⊥(dA⊥)T , where (F̂dA⊥)⊥ is defined in

the same way as dA⊥, i.e. (F̂dA⊥)⊥α = εβα(F̂dA⊥)β, and is likewise orthogonal to F̂dA⊥.

The eigenvalues of the second term corresponding to these eigenvectors are, respectively,

−k ‖F̂dA
⊥‖2‖dA‖2

‖CF̂‖3 and 0.

Taking into account the eigenvalues of the first term,

(F̂dA⊥)(dA⊥)T and (F̂dA⊥)⊥(dA⊥)T (4.18)

are eigenvectors of the Hessian with eigenvalues

k
‖dA‖2

‖CF̂‖
− k‖F̂dA

⊥‖2‖dA‖2

‖CF̂‖3
= k
‖dA‖2

‖CF̂‖

(
1− ‖F̂dA

⊥‖2

‖CF̂‖2

)
(4.19)

92

and

k
‖dA‖2

‖CF̂‖
. (4.20)

The first eigenvalue here can be simplified:

‖CF̂‖2 = CαβγF̂βγCαδεF̂δε

= εαβεζγdAζF̂βγεαδεηεdAηF̂δε

= εαβF̂βγdA
⊥
γ εαδF̂δεdA

⊥
ε

= δβδ(F̂dA
⊥)β(F̂dA⊥)δ

= ‖F̂dA⊥‖2. (4.21)

Hence, the first eigenvalue here is also 0.

We then have the following eigenvalues and corresponding orthonormal eigenvectors:

Eigenvalue Eigenvectors

k ‖dA‖
2

‖CF̂‖
(F̂dA⊥)⊥

‖CF̂‖
(dA⊥)T

‖dA‖

0 F̂dA⊥

‖CF̂‖
(dA⊥)T

‖dA‖

u0
dAT

‖dA‖

u1
dAT

‖dA‖

where u0 and u1 is any orthonormal basis for R2. So the Hessian is positive semi-definite in

2D. Note that the gradient can be written as

∂Ψ

∂F̂
= k

F̂dA⊥

‖CF̂‖
(
dA⊥

)T
, (4.22)

and is therefore in the kernel of the Hessian.

4.1.1.4 Behavior of Ψ under perturbations

Consider the function

h(ε, ν) = Ψ
(
F̂ + εc1F̂dA

⊥(dA⊥)T + νc2(F̂dA⊥)⊥(dA⊥)T
)
, (4.23)

93

where c1 and c2 are normalizing constants. Then, its square is

h(ε, ν)2 = k2εαβ

(
F̂βγ + εc1(F̂dA⊥)βdA

⊥
γ + νc2(F̂dA⊥)⊥β dA

⊥
γ

)
dA⊥γ

∗ εαδ
(
F̂δε + εc1(F̂dA⊥)δdA

⊥
ε + νc2(F̂dA⊥)⊥δ dA

⊥
ε

)
dA⊥ε

= k2δβδ

(
F̂βγ + εc1(F̂dA⊥)βdA

⊥
γ + νc2(F̂dA⊥)⊥β dA

⊥
γ

)
dA⊥γ

∗
(
F̂δε + εc1(F̂dA⊥)δdA

⊥
ε + νc2(F̂dA⊥)⊥δ dA

⊥
ε

)
dA⊥ε

= k2δβδ

(
(F̂dA⊥)β + εc1‖dA‖2(F̂dA⊥)β + νc2‖dA‖2(F̂dA⊥)⊥β

)
∗
(

(F̂dA⊥)δ + εc1‖dA‖2(F̂dA⊥)δ + νc2‖dA‖2(F̂dA⊥)⊥δ

)
= k2δβδ

(
(1 + εc1‖dA‖2)(F̂dA⊥)β + νc2‖dA‖2(F̂dA⊥)⊥β

)
∗
(

(1 + εc1‖dA‖2)(F̂dA⊥)δ + νc2‖dA‖2(F̂dA⊥)⊥δ

)
= k2

[
(1 + εc1‖dA‖2)2‖CF̂‖2 + ν2c2

2‖CF̂‖2‖dA‖4
]
. (4.24)

Since c1 and c2 are normalizing, constants, c1 = c2 = (‖CF̂‖‖dA‖)−1, and hence

h(ε, ν)2 = k2
[
(‖CF̂‖+ ‖dA‖ε)2 + ‖dA‖2ν2

]
= k2

[(
1

k
Ψ(F̂) + ‖dA‖ε

)
+ ‖dA‖2ν2

]
. (4.25)

So

h(ε, ν) = k

√(
1

k
Ψ(F̂) + ‖dA‖ε

)
+ ‖dA‖2ν2. (4.26)

4.1.2 3D

In 3D, we may likewise write JF̂−T in terms of the Levi-Civita symbol:

JF̂−Tαβ =
1

2
εαγδεβεζF̂γεF̂δζ . (4.27)

Then we write JF̂dA as

JF̂αβdAβ =
1

2
εαγδεβεζF̂γεF̂δζdAβ. (4.28)

94

We then define the fifth order tensor C by

Cαγεδζ =
1

2
εαγδεβεζdAβ. (4.29)

With this notation,

JF̂αβdAβ = CαγεδζF̂γεF̂δζ . (4.30)

We again denote this by CF̂ for convenience, even though this is really the tensor C con-

tracted with two copies of F̂, not one. Once again, we have Ψ(F̂, dA) = k‖CF̂‖.

4.1.2.1 Gradient

The gradient in 3D is given by

∂Ψ

∂F̂αβ
=
k

2

1

‖CF̂‖
∂

∂F̂αβ

(
CγδεζηF̂δεF̂ζηCγθικλF̂θιF̂κλ

)
= k

CγδεζηF̂δεF̂ζη

‖CF̂‖
∂

∂F̂αβ

(
CγθικλF̂θιF̂κλ

)
= k

CγδεζηF̂δεF̂ζη

‖CF̂‖

[
CγαβκλF̂κλ + CγθιαβF̂θι

]
= 2k

CγαβκλF̂κλCγδεζηF̂δεF̂ζη

‖CF̂‖

= 2k
CγαβκλF̂κλ(CF̂)γ

‖CF̂‖
, (4.31)

where we have used the fact that Cγθιαβ = Cγαβθι, which follows from our definition of C

and the properties of the Levi-Civita symbol:

Cγθιαβ =
1

2
εγθαεδιβdAδ =

1

2
εγαθεδβιdAδ = Cγαβθι. (4.32)

95

4.1.2.2 Hessian

The Hessian is given by

∂2Ψ

∂F̂γδF̂αβ
= 2k

CθαβκλCθιεζηF̂ιεF̂ζη

‖CF̂‖
∂F̂κλ

∂F̂γδ
+ 2k

CθαβκλF̂κλ

‖CF̂‖
∂

∂F̂γδ

(
CθιεζηF̂ιεF̂ζη

)
− kCθαβκλF̂κλCθιεζηF̂ιεF̂ζη

‖CF̂‖
∂

∂F̂γδ

(
CµνξρσF̂νξF̂ρσCµτυφχF̂τυF̂φχ

)
= 2k

Cθαβγδ(CF̂)θ

‖CF̂‖
+ 4k

CθαβκλF̂κλCθγδζηF̂ζη

‖CF̂‖

− 2k
CθαβκλF̂κλCθιεζηF̂ιεF̂ζηCµνξρσF̂νξF̂ρσ

‖CF̂‖3

∂

∂F̂γδ

(
CµτυφχF̂τυF̂φχ

)
= 2k

Cθαβγδ(CF̂)θ

‖CF̂‖
+ 4k

CθαβκλF̂κλCθγδζηF̂ζη

‖CF̂‖

− 4k
CθαβκλF̂κλCθιεζηF̂ιεF̂ζηCµγδφχF̂φχCµνξρσF̂νξF̂ρσ

‖CF̂‖3

= 2k
Cθαβγδ(CF̂)θ

‖CF̂‖
+ 4k

CθαβκλF̂κλCθγδζηF̂ζη

‖CF̂‖

− 4k
CθαβκλF̂κλ(CF̂)θCµγδφχF̂φχ(CF̂)µ

‖CF̂‖3
. (4.33)

4.1.2.3 Eigenvalues and Eigenvectors

First consider tensors of the form

∂F̂γδ = uγdAδ, (4.34)

for arbitrary nonzero u ∈ R3. Then,

CθαβγδuγdAδ =
1

2
εθαγεεβδdAεuγdAδ =

1

2
εθαγuγεεβδdAδdAε =

1

2
εθαγuγ(dA× dA)β = 0.

(4.35)

Likewise, since Cθγδζη = Cθζηγδ, every term of the Hessian contains a summation of this form.

Thus,
∂2Ψ

∂F̂γδ∂F̂αβ
uγdAδ = 0 (4.36)

96

for arbitrary u. So we obtain three eigenvectors u0dA
T , u1dA

T , and u2dA
T for three

orthogonal vectors u0, u1, and u2.

To find more eigenvalues and eigenvectors, we split the Hessian into a sum of two tensors.

We then look for eigenvectors of one and verify that they are eigenvectors of the other, and

therefore eigenvectors of the Hessian. Define

∂2Ψ1
αβγδ = 2k

Cθαβγδ(CF̂)θ

‖CF̂‖
(4.37)

and

∂2Ψ2
αβγδ = 4k

CθαβκλF̂κλCθγδζηF̂ζη

‖CF̂‖
− 4k

CθαβκλF̂κλ(CF̂)θCµγδφχF̂φχ(CF̂)µ

‖CF̂‖3
, (4.38)

so that
∂2Ψ

∂F̂γδ∂F̂αβ
= ∂2Ψ1

αβγδ + ∂2Ψ2
αβγδ. (4.39)

Note that each of these are real and symmetric in the indices αβ and γδ.

4.1.2.4 Eigenvalues and Eigenvectors of ∂2Ψ1

Consider how ∂2Ψ1 acts on tensors of the form uvT :

∂2Ψ1
αβγδuγvδ = 2k

Cθαβγδ(CF̂)θ

‖CF̂‖
uγvδ

= k
(CF̂)θ

‖CF̂‖
εθαγεεβδdAεuγvδ

= kεαθγ
(CF̂)θ

‖CF̂‖
uγεβεδdAεvδ

= k

(
CF̂

‖CF̂‖
× u

)
α

(dA× v)β

= k‖dA‖

(
CF̂

‖CF̂‖
× u

)
α

(
dA

‖dA‖
× v

)
β

. (4.40)

Note that we do not pick up a minus sign in the third step because we have interchanged

indices in both of the Levi-Civita symbols.

97

This form suggests that we look for eigenvectors of the linear transformations defined by

u 7→ CF̂

‖CF̂‖ ×u and v 7→ dA
‖dA‖ ×v. Let [CF̂]× and [dA]× denote the skew symmetric matrices

associated with these linear transformations, i.e. [a]×u = a
‖a‖ × u for a = CF̂ or a = dA.

The characteristic polynomial of [a]× is λ(λ2 + 1), so the eigenvalues of these matrices

are 0,±i. Since these matrices are normal, the corresponding eigenvectors are orthogonal

(with respect to the Hermitian inner product).

Let u0, u1, and u2 be eigenvectors of [CF̂]× corresponding to 0, i, and −i respectively.

Despite the notation, these are not the vectors from the previous section. Similarly, let

v0, v1, and v2 be eigenvectors of [dA]× corresponding to 0, i, and −i. If we denote these

eigenvectors by λ0 = 0, λ1 = i, and λ2 = −i, then the tensor products ujv
T
k are eigenvectors

of ∂2Ψ1:

∂2Ψ1

∂F̂γδ∂F̂αβ
ujγvkδ = k‖dA‖

(
CF̂

‖CF̂‖
× uj

)
α

(
dA

‖dA‖
× vk

)
β

= k‖dA‖λjλkujαvkβ. (4.41)

The corresponding eigenvalues of ∂2Ψ1 are k‖dA‖λjλk, which are all real:

λ0λ0 = 0, λ0λ1 = 0, λ0λ2 = 0,

λ1λ0 = 0, λ1λ1 = −1, λ1λ2 = 1,

λ2λ0 = 0, λ2λ1 = 1, λ2λ2 = −1. (4.42)

Thus, there are three distinct eigenvalues for ∂2Ψ1: 0 with multiplicity five, k‖dA‖ with

multiplicity two, and −k‖dA‖ with multiplicity two.

It is clear from properties of the cross product that the vectors u0 and v0 are parallel to

CF̂ and dA, respectively. The following five orthogonal vectors therefore span the kernel of

∂2Ψ1:

u0dA
T , u1dA

T , u2dA
T , (CF̂)vT1 , (CF̂)vT2 . (4.43)

Aside from u0, the vectors uj and vk here are complex. But complex eigenvectors of real ma-

trices come in complex conjugate pairs. So by taking linear combinations, we can construct

five real orthogonal vectors out of these. The first three are then equivalent to the three

98

vectors in the kernel of the Hessian from before, and the last two are of the form (CF̂)wT
0

and (CF̂)wT
1 for some real vectors w0 and w1 orthogonal to dA.

To identify the four remaining eigenvectors, we use a common strategy of applying the

Cayley-Hamilton Theorem to construct them. By Cayley-Hamilton, [a]× satisfies its own

characteristic polynomial

([a]× − iI)[a]×([a]× + iI) = 0. (4.44)

So for any vector b not parallel to a, the vector

[a]×([a]× + iI)b (4.45)

is an eigenvector of [a]× with eigenvalue i, since it is in the kernel of ([a]×− iI). Its complex

conjugate pair

[a]×([a]× − iI)b (4.46)

is then an eigenvector with eigenvalue −i. We may rewrite these using cross products:

a× (a× b± ib) = a× (a× b)± ia× b. (4.47)

If we further specify that b is orthogonal to a, we get the simplified vectors

−b + ia× b, −b− ia× b, (4.48)

as eigenvectors of [a]× for i and −i.

So let b1 be orthogonal to CF̂ and let b2 be orthogonal to dA. We therefore have the

following eigenvectors for [CF̂]× and [dA]×:

u1 = −b1 + i
CF̂

‖CF̂‖
× b1, u2 = −b1 − i

CF̂

‖CF̂‖
× b1,

v1 = −b2 + i
dA

‖dA‖
× b2, v2 = −b2 − i

dA

‖dA‖
× b2. (4.49)

We can now construct the eigenvectors we are looking for. The two eigenvectors correspond-

ing to eigenvalue k‖dA‖ are

u1v
T
2 =

(
−b1 + i

CF̂

‖CF̂‖
× b1

)(
−b2 − i

dA

‖dA‖
× b2

)T
(4.50)

99

and

u2v
T
1 =

(
−b1 − i

CF̂

‖CF̂‖
× b1

)(
−b2 + i

dA

‖dA‖
× b2

)T
, (4.51)

which expand to

b1b
T
2 +

(
CF̂

‖CF̂‖
× b1

)(
dA

‖dA‖
× b2

)T
+ i

[
b1

(
dA

‖dA‖
× b2

)T
−

(
CF̂

‖CF̂‖
× b1

)
bT2

]
(4.52)

and

b1b
T
2 +

(
CF̂

‖CF̂‖
× b1

)(
dA

‖dA‖
× b2

)T
− i

[
b1

(
dA

‖dA‖
× b2

)T
−

(
CF̂

‖CF̂‖
× b1

)
bT2

]
,

(4.53)

respectively. Since these are complex conjugate pairs, we take the real and imaginary parts

to get two real eigenvectors for ∂2Ψ1 with eigenvalue k‖dA‖:

b1b
T
2 +

(
CF̂

‖CF̂‖
× b1

)(
dA

‖dA‖
× b2

)T
(4.54)

and

b1

(
dA

‖dA‖
× b2

)T
−

(
CF̂

‖CF̂‖
× b1

)
bT2 . (4.55)

Since b1 is orthogonal to CF̂× b1 and b2 is orthogonal to dA× b2, these eigenvectors are

still orthogonal. By similar reasoning, they are also orthogonal to the five eigenvectors in

the kernel.

Next, the eigenvectors corresponding to −k‖dA‖ are

u1v
T
1 =

(
−b1 + i

CF̂

‖CF̂‖
× b1

)(
−b2 + i

dA

‖dA‖
× b2

)T
(4.56)

and

u2v
T
2 =

(
−b1 − i

CF̂

‖CF̂‖
× b1

)(
−b2 − i

dA

‖dA‖
× b2

)T
(4.57)

100

which expand to

b1b
T
2 −

(
CF̂

‖CF̂‖
× b1

)(
dA

‖dA‖
× b2

)T
− i

[
b1

(
dA

‖dA‖
× b2

)T
+

(
CF̂

‖CF̂‖
× b1

)
bT2

]
(4.58)

and

b1b
T
2 −

(
CF̂

‖CF̂‖
× b1

)(
dA

‖dA‖
× b2

)T
+ i

[
b1

(
dA

‖dA‖
× b2

)T
+

(
CF̂

‖CF̂‖
× b1

)
bT2

]
,

(4.59)

respectively. As before, we can take the real and imaginary parts to get real eigenvectors for

−k‖dA‖:

b1b
T
2 −

(
CF̂

‖CF̂‖
× b1

)(
dA

‖dA‖
× b2

)T
(4.60)

and

b1

(
dA

‖dA‖
× b2

)T
+

(
CF̂

‖CF̂‖
× b1

)
bT2 . (4.61)

We must know these four eigenvectors are also eigenvectors for ∂2Ψ2 in order to conclude

that they are eigenvectors of the Hessian. As each of these eigenvectors is a sum of tensor

products, consider the action of ∂2Ψ2 on a tensor product uvT :

∂2Ψ2
αβγδuγvδ = 4k

CθαβκλF̂κλ

‖CF̂‖

[
CθγδζηF̂ζηuγvδ −

(CF̂)θ

‖CF̂‖
CµγδφχF̂φχuγvδ

(CF̂)µ

‖CF̂‖

]

= 4k
CθαβκλF̂κλ

‖CF̂‖

[
1

2
εθγζεεδηdAεF̂ζηuγvδ −

(CF̂)θ

‖CF̂‖
1

2
εµγφειδχdAιF̂φχuγvδ

(CF̂)µ

‖CF̂‖

]

= 2k
CθαβκλF̂κλ

‖CF̂‖

[
εθγζuγF̂ζη(dA× v)η −

(CF̂)θ

‖CF̂‖
F̂φχ(dA× v)χεφµγ

(CF̂)µ

‖CF̂‖
uγ

]

= 2k
CθαβκλF̂κλ

‖CF̂‖

[(
u× F̂(dA× v)

)
θ
− (CF̂)θ

‖CF̂‖
F̂(dA× v) ·

(
CF̂

‖CF̂‖
× u

)]

= 2k‖dA‖CθαβκλF̂κλ
‖CF̂‖

[(
u× F̂

(
dA

‖dA‖
× v

))
θ

−(CF̂)θ

‖CF̂‖
F̂

(
dA

‖dA‖
× v

)
·

(
CF̂

‖CF̂‖
× u

)]
. (4.62)

101

We show that all four of these are in the kernel of ∂2Ψ2. Now, note that for any choice

of b1 orthogonal to CF̂ and b2 orthogonal to dA, the eigenvectors for k‖dA‖ form a basis

for that two dimensional eigenspace, and similarly for the other two. The corresponding

vectors for any other valid choice of b1 and b2 will then be linear combinations of these basis

vectors. So if we show for one particular choice of b2 that all four are in the kernel, then the

result will also hold for any other valid choice of b2.

So for convenience, we choose b2 = F̂−1b1 for any b1 orthogonal to CF̂. This is a valid

choice of b2, since

0 = bT1 CF̂ = b1JF̂−TdA = JbT1 F̂−TdA = J(F̂−1b1)TdA = JbT2 dA. (4.63)

As J 6= 0, we have b2 orthogonal to dA. Note that we also have b1 = F̂b2 with this choice.

We show that the term in brackets above is 0.

First consider the eigenvectors of the form

b1b
T
2 ±

(
CF̂

‖CF̂‖
× b1

)(
dA

‖dA‖
× b2

)T
. (4.64)

102

The term in brackets applied to each of the tensor products in this sum is

b1 × F̂

(
dA

‖dA‖
× b2

)
− CF̂

‖CF̂‖
F̂

(
dA

‖dA‖
× b2

)
·

(
CF̂

‖CF̂‖
× b1

)

±

(
CF̂

‖CF̂‖
× b1

)
× F̂

(
dA

‖dA‖
×
(

dA

‖dA‖
× b2

))

∓ CF̂

‖CF̂‖
F̂

(
dA

‖dA‖
×
(

dA

‖dA‖
× b2

))
·

(
CF̂

‖CF̂‖
×

(
CF̂

‖CF̂‖
× b1

))

= F̂b2 × F̂

(
dA

‖dA‖
× b2

)
− CF̂

‖CF̂‖
CF̂

‖CF̂‖
·
(

b1 × F̂

(
dA

‖dA‖
× b2

))
∓

(
CF̂

‖CF̂‖
× b1

)
× F̂b2 ∓

CF̂

‖CF̂‖
F̂b2 · b1

= JF̂−T
(

b2 ×
(

dA

‖dA‖
× b2

))
− CF̂

‖CF̂‖
CF̂

‖CF̂‖
·
(

F̂b2 × F̂

(
dA

‖dA‖
× b2

))
∓

(
CF̂

‖CF̂‖
× b1

)
× b1 ∓

CF̂

‖CF̂‖
b1 · b1

=
‖b2‖2

‖dA‖
JF̂−TdA− CF̂

‖CF̂‖
CF̂

‖CF̂‖
· JF̂−T

(
b2 ×

(
dA

‖dA‖
× b2

))
± ‖b1‖2 CF̂

‖CF̂‖
∓ ‖b1‖2 CF̂

‖CF̂‖

=
‖b2‖2

‖dA‖
CF̂− ‖b2‖2

‖dA‖
CF̂

‖CF̂‖
CF̂

‖CF̂‖
· JF̂−TdA

= 0, (4.65)

where the last line follows from the fact that JF̂−TdA = CF̂. We have also made use of the

following property of cross products in this calculation: Au×Av = det(A)A−T (u× v).

Next, consider the other two eigenvectors of the form

b1

(
dA

‖dA‖
× b2

)T
∓

(
CF̂

‖CF̂‖
× b1

)
bT2 . (4.66)

103

The term in brackets is now

b1 × F̂

(
dA

‖dA‖
×
(

dA

‖dA‖
× b2

))
− CF̂

‖CF̂‖
F̂

(
dA

‖dA‖
×
(

dA

‖dA‖
× b2

))
·

(
CF̂

‖CF̂‖
× b1

)

∓

(
CF̂

‖CF̂‖
× b1

)
× F̂

(
dA

‖dA‖
× b2

)

± CF̂

‖CF̂‖
F̂

(
dA

‖dA‖
× b2

)
·

(
CF̂

‖CF̂‖
×

(
CF̂

‖CF̂‖
× b1

))

= −b1 × F̂b2 +
CF̂

‖CF̂‖
F̂b2 ·

(
CF̂

‖CF̂‖
× b1

)
∓

(
CF̂

‖CF̂‖
× b1

)
× F̂

(
dA

‖dA‖
× b2

)
∓ CF̂

‖CF̂‖
F̂

(
dA

‖dA‖
× b2

)
· b1

= −b1 × b1 +
CF̂

‖CF̂‖
b1 ·

(
CF̂

‖CF̂‖
× b1

)
± F̂

(
dA

‖dA‖
× b2

)
×

(
CF̂

‖CF̂‖
× b1

)

∓ CF̂

‖CF̂‖
F̂

(
dA

‖dA‖
× b2

)
· b1

= ±F̂

(
dA

‖dA‖
× b2

)
· b1

CF̂

‖CF̂‖
∓ F̂

(
dA

‖dA‖
× b2

)
· CF̂

‖CF̂‖
b1

∓ CF̂

‖CF̂‖
F̂

(
dA

‖dA‖
× b2

)
· b1

= ∓
(

dA

‖dA‖
× b2

)
· F̂T CF̂

‖CF̂‖
b1

= ∓ b1

‖CF̂‖

(
dA

‖dA‖
× b2

)
· F̂TJF̂−TdA

= ∓J b1

‖CF̂‖

(
dA

‖dA‖
× b2

)
· dA

= 0. (4.67)

We have thus shown that the eigenvectors of the first term for ±k‖dA‖ are also eigenvec-

tors of the Hessian, with the same eigenvalues. Since b2 and dA × b2 are both orthogonal

to dA, it follows that we now have seven orthogonal eigenvectors for the Hessian.

104

4.1.2.5 Eigenvalues and Eigenvectors of ∂2Ψ2

Denote the seven eigenvectors found so far by

δF̂i = uidA
T (4.68)

for i = 0, 1, 2 (where the vectors u here are arbitrary orthogonal vectors in R3), and

δF̂3 = b1b
T
2 +

(
CF̂

‖CF̂‖
× b1

)(
dA

‖dA‖
× b2

)T
,

δF̂4 = b1

(
dA

‖dA‖
× b2

)T
−

(
CF̂

‖CF̂‖
× b1

)
bT2 ,

δF̂5 = b1b
T
2 −

(
CF̂

‖CF̂‖
× b1

)(
dA

‖dA‖
× b2

)T
,

δF̂6 = b1

(
dA

‖dA‖
× b2

)T
+

(
CF̂

‖CF̂‖
× b1

)
bT2 , (4.69)

for b1 orthogonal to CF̂ and b2 orthogonal to dA. From the previous two sections, we see

that span(δF̂0, . . . , δF̂6) is in the kernel of ∂2Ψ2. Hence, ∂2Ψ2 is at most rank 2. So we

look for eigenvectors of the form (CF̂)wT
0 and (CF̂)wT

1 , which are a basis for the orthogonal

complement of span(δF̂0, . . . , δF̂6) for any linearly independent w0 and w1 both orthogonal

to dA.

The remaining two eigenvectors for ∂2Ψ2 must be of this form. If the rank is 2, then

this follows from the fact that eigenvectors of distinct eigenvalues for symmetric matri-

ces are orthogonal, and hence the eigenvectors must be in the orthogonal complement of

span(δF̂0, . . . , δF̂6). If instead the rank is 1, then the eigenvector for the nonzero eigenvalue

must for the same reason be of the form (CF̂)wT
0 . Then, (CF̂)wT

1 for any w1 orthogonal to

w0 and dA will be in the kernel and therefore also an eigenvector.

105

From the previous section, we have that

∂2Ψ2
αβγδ

(CF̂)γ

‖CF̂‖
wiδ = 2k‖dA‖CθαβκλF̂κλ

‖CF̂‖

[(
CF̂

‖CF̂‖
× F̂

(
dA

‖dA‖
×wi

))
θ

− (CF̂)θ

‖CF̂‖
F̂

(
dA

‖dA‖
×wi

)
·

(
CF̂

‖CF̂‖
× CF̂

‖CF̂‖

)]

= 2k‖dA‖CθαβκλF̂κλ
‖CF̂‖

(
CF̂

‖CF̂‖
× F̂

(
dA

‖dA‖
×wi

))
θ

. (4.70)

Multiplying this to CF̂α
‖CF̂‖wjβ, we get

2k‖dA‖CθαβκλF̂κλ
‖CF̂‖

(
CF̂

‖CF̂‖
× F̂

(
dA

‖dA‖
×wi

))
θ

CF̂α

‖CF̂‖
wjβ

= k
‖dA‖2

‖CF̂‖
εθακεεβλ

dAε
‖dA‖

F̂κλ
(CF̂)α

‖CF̂‖
wjβ

(
CF̂

‖CF̂‖
× F̂

(
dA

‖dA‖
×wi

))
θ

= k
‖dA‖2

‖CF̂‖
εθακ

(CF̂)α

‖CF̂‖
F̂κλ

(
dA

‖dA‖
×wj

)
λ

(
CF̂

‖CF̂‖
× F̂

(
dA

‖dA‖
×wi

))
θ

= k
‖dA‖2

‖CF̂‖

(
CF̂

‖CF̂‖
× F̂

(
dA

‖dA‖
×wj

))
·

(
CF̂

‖CF̂‖
× F̂

(
dA

‖dA‖
×wi

))
. (4.71)

This expression can be simplified, as follows:

k
‖dA‖2

‖CF̂‖

(
CF̂

‖CF̂‖
× F̂

(
dA

‖dA‖
×wj

))
·

(
CF̂

‖CF̂‖
× F̂

(
dA

‖dA‖
×wi

))

= k
‖dA‖2

‖CF̂‖

[
F̂

(
dA

‖dA‖
×wj

)
· F̂
(

dA

‖dA‖
×wi

)
− CF̂

‖CF̂‖
· F̂
(

dA

‖dA‖
×wj

)
CF̂

‖CF̂‖
· F̂
(

dA

‖dA‖
×wi

)]

= k
‖dA‖2

‖CF̂‖
F̂

(
dA

‖dA‖
×wj

)
· F̂
(

dA

‖dA‖
×wi

)
, (4.72)

where the last line follows from

(CF̂) · F̂(dA×w) = F̂T (CF̂) · (dA×w) = JdA · (dA×w) = 0. (4.73)

Hence,(
CF̂α

‖CF̂‖
wjβ

)
∂2Ψ2

αβγδ

(
(CF̂)γ

‖CF̂‖
wiδ

)
= k
‖dA‖2

‖CF̂‖
F̂

(
dA

‖dA‖
×wj

)
· F̂
(

dA

‖dA‖
×wi

)
, (4.74)

106

and so (CF̂)wT
0 and (CF̂)wT

1 will be eigenvectors if and only if

F̂

(
dA

‖dA‖
×w1

)
· F̂
(

dA

‖dA‖
×w0

)
= 0. (4.75)

In this case, if we further assume that w0 and w1 have been normalized, this is equivalent

to

F̂w0 · F̂w1 = 0. (4.76)

With this normalization assumption, we also have the remaining two eigenvalues

k
‖dA‖2

‖CF̂‖

∥∥∥∥F̂(dA

‖dA‖
×w0

)∥∥∥∥2

= k
‖dA‖2

‖CF̂‖
‖F̂w1‖2,

k
‖dA‖2

‖CF̂‖

∥∥∥∥F̂(dA

‖dA‖
×w1

)∥∥∥∥2

= k
‖dA‖2

‖CF̂‖
‖F̂w0‖2, (4.77)

where we have used the fact that dA
‖dA‖ cross either w0 or w1 gives plus or minus the other

one.

To construct these, let w̃0 and w̃1 be any pair of orthonormal vectors which are also

orthogonal to dA. Consider the following 2× 2 matrix

B =

F̂w̃0 · F̂w̃0 F̂w̃0 · F̂w̃1

F̂w̃0 · F̂w̃1 F̂w̃1 · F̂w̃1

 . (4.78)

This is a real symmetric matrix, and therefore there exists an orthogonal matrix U such that

UTBU is diagonal. Let

U =

u11 u12

u21 u22

 . (4.79)

Then,

BU =

F̂w̃0 · F̂w̃0 F̂w̃0 · F̂w̃1

F̂w̃0 · F̂w̃1 F̂w̃1 · F̂w̃1

u11 u12

u21 u22


=

F̂w̃0 · (u11F̂w̃0 + u21F̂w̃1) F̂w̃0 · (u12F̂w̃0 + u22F̂w̃1)

F̂w̃1 · (u11F̂w̃0 + u21F̂w̃1) F̂w̃1 · (u12F̂w̃0 + u22F̂w̃1)


=

F̂w̃0 · F̂(u11w̃0 + u21w̃1) F̂w̃0 · F̂(u12w̃0 + u22w̃1)

F̂w̃1 · F̂(u11w̃0 + u21w̃1) F̂w̃1 · F̂(u12w̃0 + u22w̃1)

 (4.80)

107

and UTBU simplifies to ‖F̂(u11w̃0 + u21w̃1)‖2 F̂(u11w̃0 + u21w̃1) · F̂(u12w̃0 + u22w̃1)

F̂(u11w̃0 + u21w̃1) · F̂(u12w̃0 + u22w̃1) ‖F̂(u12w̃0 + u22w̃1)‖2

 , (4.81)

which is diagonal. So if we define

w0 = u11w̃0 + u21w̃1 (4.82)

and

w1 = u12w̃0 + u22w̃1, (4.83)

the condition

F̂w0 · F̂w1 = 0 (4.84)

is satisfied. The vectors are clearly still orthogonal to dA, and also orthogonal to each other

since

w0 ·w1 = u11u12 + u21u22 = 0, (4.85)

where the last step is the dot product of the columns of U. The vectors are also still unit

length.

Lastly, note that (CF̂)wT
0 and (CF̂)wT

1 are in the kernel of ∂2Ψ1, and hence they are the

last two eigenvectors of the Hessian.

We then have the following eigenvalues and corresponding eigenvectors for the Hessian:

108

Eigenvalue Eigenvectors

k‖dA‖ 1√
2
b1b

T
2 + 1√

2

(
CF̂

‖CF̂‖ × b1

)(
dA
‖dA‖ × b2

)T
1√
2
b1

(
dA
‖dA‖ × b2

)T
− 1√

2

(
CF̂

‖CF̂‖ × b1

)
bT2

−k‖dA‖ 1√
2
b1b

T
2 − 1√

2

(
CF̂

‖CF̂‖ × b1

)(
dA
‖dA‖ × b2

)T
1√
2
b1

(
dA
‖dA‖ × b2

)T
+ 1√

2

(
CF̂

‖CF̂‖ × b1

)
bT2

k ‖dA‖
2

‖CF̂‖ ‖F̂w1‖2 CF̂

‖CF̂‖w
T
0

k ‖dA‖
2

‖CF̂‖ ‖F̂w0‖2 CF̂

‖CF̂‖w
T
1

0 u0
dAT

‖dA‖

u1
dAT

‖dA‖

u2
dAT

‖dA‖

where b1 and b2 are any unit vectors orthogonal to dA and CF̂ respectively, w0 and w1 are

any orthonormal vectors orthogonal to dA satisfying

F̂w0 · F̂w1 = 0, (4.86)

and u0, u1, and u2 are any orthonormal basis for R3. where b1 and b2 are any unit vectors

orthogonal to dA and CF̂ respectively, w0 and w1 are any orthonormal vectors orthogonal

to dA satisfying

F̂w0 · F̂w1 = 0, (4.87)

and u0, u1, and u2 are any orthonormal basis for R3.

4.2 Derivation of the APIC Inertia Tensor

When using APIC, the angular momentum associated with a particle xp with mass mp

and linear and affine velocities vp and Ap is defined from its associated mass/momentum

distribution on the grid as

lp =
∑
i

(xi − xp)×mpNi(xp) (vp + Ap (xi − xp)) , (4.88)

109

where Ni(x) are quadratic B-spline interpolating functions associated with grid node xi used

to transfer particle quantities to grid quantities. Using the fact that linear reproduction

property of B-splines (see Section 4.2.1.2) we may remove the constant velocity term and

rewrite this as:

lp =
∑
i

(xi − xp)×mpNiAp(xi − xp)

=
∆x2

4
mpε : AT

p , (4.89)

where (ε : B)α := εαβγBγβ. To derive the last equality, we first rewrite lp using summation

notation:

lp =
∑
i

(xi − xp)×mpNiAp(xi − xp)

=
∑
i

εαβγ(xi − xp)βmpNi(xp)Apγδ(xi − xp)δ

= mpεαβγApγδ
∑
i

(xi − xp)β(xi − xp)δNi(xp). (4.90)

We now show that the inertia tensor

Dp :=
∑
i

(xi − xp)(xi − xp)
TNi(xp) (4.91)

is a constant multiple of the identity.

Consider an arbitrary component Dpαβ. Then, using the fact that Ni is defined as a

dyadic product of 1D B-splines, we obtain

Dpαβ =
∑
i

(xi − xp)α(xi − xp)βNi(xp)

=
∑
i

(xi − xp)α(xi − xp)β
∏
δ

N

(
(xi − xp)δ

∆x

)
=
∑
i

∏
γ

(xi − xp)
nα,βγ
γ

∏
δ

N

(
(xi − xp)δ

∆x

)
=
∑
i

∏
γ

(xi − xp)
nα,βγ
γ N

(
(xi − xp)γ

∆x

)
, (4.92)

110

where nα,βγ = δαγ + δβγ. Writing the multi-index i as (i1, i2, i3), we note that xiγ depends

only on the component index iγ. We use this observation to switch the order of the sum and

product:

Dpαβ =
∑
i

∏
γ

(xi − xp)
nα,βγ
γ N

(
(xi − xp)γ

∆x

)
=
∑
i1,i2,i3

∏
γ

(xiγ − xpγ)n
α,β
γ N

(
xiγ − xpγ

∆x

)
=
∏
γ

∑
iγ

(xiγ − xpγ)n
α,β
γ N

(
xiγ − xpγ

∆x

)
. (4.93)

We have therefore reduced this to a product of 1D sums. There are three cases to consider,

corresponding to the possible values 0, 1, and 2 for nαβγ . When nαβγ = 0, this becomes a sum

over all B-splines, which is 1. When nαβγ = 1, the linear reproduction property of B-splines

implies that the sum is 0. In particular, this implies that Dp is diagonal since nαβγ = 1 occurs

for some γ precisely when α 6= β. The diagonal values Dpµµ are then equal to the sum∑
iµ

(xiµ − xpµ)2N

(
xiµ − xpµ

∆x

)
, (4.94)

since the sums in the other dimensions are 1 from the nαβγ = 0 case. This sum will be

independent of the value of xpµ, making Dp a multiple of the identity.

As this is now a 1D calculation, we write xi and xp in place of xiµ and xpµ, respectively.

Next, define the knot sequence

ai = xi −
3

2
∆x. (4.95)

With these knots, define the degree 0 B-spline N0
i by

N0
i (x) =


1 x ∈ [ai, ai+1)

0 otherwise
, (4.96)

and the higher degree B-splines N1
i and N2

i are defined using the standard recursion formula.

The sum is expressed in this notation as∑
i

(xi − xp)2N2
i (xp), (4.97)

111

since N2
i is equal to N with a shifted and scaled argument. We use Marsden’s identity

[PBP02] ∑
i

(ai+1 − a)(ai+2 − a)N2
i (xp) = (xp − a)2 (4.98)

with a = xp − ∆x
2

to compute it. Note that xi − xp can be rewritten in terms of the knot

sequence ai as xi − xp = ai+1 − a. Then,∑
i

(xi − xp)2N2
i (xp)

=
∑
i

(ai+1 − a)2N2
i (xp)

=
∑
i

(ai+1 − a)(ai+2 − a−∆x)N2
i (xp)

=
∑
i

(ai+1 − a)(ai+2 − a)N2
i (xp) + ∆x

∑
i

(ai+1 − a)N2
i (xp)

= (xp − a)2

=
∆x2

4
, (4.99)

where the second term is 0 by the linear reproduction property since ai+1 − a = xi − xp.

Hence, Dp = ∆x2

4
I and

lp =
∆x2

4
mpεαβγApγδδβδ

=
∆x2

4
mpεαβγApγβ

=
∆x2

4
mpε : AT

p . (4.100)

This value is specific to the case where N is quadratic. The inertia tensor calculation with

splines of arbitrary degree is presented in the following subsection.

4.2.1 Inertia Tensor

In this section we show that the inertia tensor

Dp =
∑
i

(xi − xp)(xi − xp)
TNi(xp) (4.101)

112

is a constant multiple of the identity for the dyadic product Ni of cardinal B-splines of degree

n ≥ 2 with spacing ∆x, and compute this constant. It is shown above that

Dpαβ =
∏
γ

∑
iγ

(xiγ − xpγ)n
α,β
γ N

(
xiγ − xpγ

∆x

)
(4.102)

where nα,βγ = δαγ + δβγ, xiγ = xiγ is the γth component of xi (i.e. each component of xi

depends only on one component index of i; namely the γth index), and N is the cardinal

B-spline of degree n centered at 0 unit spacing. As nα,βγ can take on the values 0, 1, and

2, there are three cases to consider for each sum in the product. As before, we drop the γ

subscript throughout the rest of this section for notational convenience.

The sums in these three cases are:∑
i

N

(
xi − xp

∆x

)
= 1, (4.103)

∑
i

(xi − xp)N
(
xi − xp

∆x

)
= 0, (4.104)

∑
i

(xi − xp)2N

(
xi − xp

∆x

)
=
n+ 1

12
∆x2. (4.105)

The first follows from the fact that B-splines of any degree form a partition of unity. The

second follows from the linear reproduction property, which we also prove in this section.

We used the value of this sum above to deduce that Dp is diagonal. The third is the main

focus of this section.

4.2.1.1 Background & Notation

We now introduce the notation and recursive formula for B-splines of varying degrees over

multiple knot sequences.

For a given knot sequence (ai)i∈Z with ai < ai+1 for all i, the 0th degree B-splines N0
i are

defined by

N0
i (x) =


1 x ∈ [ai, ai+1)

0 otherwise
, (4.106)

113

and the general kth degree B-splines Nk
i are defined using the standard recursive formula

Nk
i (x) =

x− ai
ai+k − ai

Nk−1
i (x) +

(
1− x− ai+1

ai+1+k − ai+1

)
Nk−1
i+1 (x). (4.107)

These B-splines are called cardinal B-splines if ai+1− ai is a constant for all i. We will need

the following properties.

Proposition 1. The following hold for all x.

(a) (Partition of Unity)
∑

iN
k
i (x) = 1 for all degrees k.

(b) (Affine Invariance) Let (bi)i∈Z be a sequence of knots defined by bi = c1ai + c2, and

let N̂k
i denote the B-splines defined over these knots. Then

Nk
i (x) = N̂k

i (c1x+ c2) (4.108)

for all degrees k.

(c) For k ≥ 1,

∑
i

ciN
k
i (x) =

∑
i

[
ci

x− ai
ai+k − ai

+ ci−1

(
1− x− ai

ai+k − ai

)]
Nk−1
i (x). (4.109)

In the case of cardinal B-splines where ai+1−ai = h for all i, this takes a simpler form:

∑
i

ciN
k
i (x) =

∑
i

[
ci
x− ai
kh

+ ci−1

(
1− x− ai

kh

)]
Nk−1
i (x). (4.110)

(d) For a cardinal B-spline Nk
i of any degree k, let M = 1

2
(ai + ai+k+1) be the midpoint of

its support. Then

Nk
i (x) = Nk

i (M − (x−M)). (4.111)

Property (a) is a standard property, while properties (b) and (d) can be proved by induc-

tion. Property (c) is simply an application of the recursive formula followed by a re-indexing

of the second term in the series.

114

We shall work with the knot sequences (ani)i∈Z defined by

ani = xi −
n+ 1

2
∆x (4.112)

for n ∈ N. We use the notation Nn,k
i to denote the B-splines of degree k defined by these

knots. Note that these are cardinal B-splines with spacing ∆x since xi is uniform. The

motivation for this choice of knots is the following identity:

Nn,n
i (x) = N

(
xi − x

∆x

)
, (4.113)

where N is the degree n B-spline defined over the knots tj = j − n+1
2

for j = 0, 1, . . . , n+ 1.

This is a consequence of properties (b) and (d). Since ai+j−xi
∆x

= tj for j = 0, 1, . . . , n + 1,

property (b) implies

Nn,n
i (x) = N

(
x− xi

∆x

)
. (4.114)

Next, since N is supported on the interval (−n+1
2
, n+1

2
) whose midpoint is 0, we have

Nn,n
i (x) = N

(
x− xi

∆x

)
= N

(
xi − x

∆x

)
(4.115)

from property (d).

We may therefore write our earlier sums in the form∑
i

(xi − xp)αN
(
xi − xp

∆x

)
=
∑
i

(xi − xp)αNn,n
i (xp). (4.116)

We record one further useful consequence of this choice of knots, combined with property

(b).

Corollary 2. For any n ≥ 1 and any degree k,

Nn,k
i (x) = Nn−1,k

i

(
x+

∆x

2

)
. (4.117)

4.2.1.2 Linear Reproduction Property of B-splines

Before we prove the linear reproduction property, we first prove an intermediate result.

115

Lemma 3. For n ≥ 1, the following identity holds for all x:

∑
i

xiN
n,n
i (x) =

x

n
− n− 1

2n
∆x+

n− 1

n

∑
i

xiN
n,n−1
i (x). (4.118)

Proof. Applying property (c) yields

∑
i

xiN
n,n
i (x) =

∑
i

[
xi
x− ani
n∆x

+ (xi −∆x)

(
1− x− ani

n∆x

)]
Nn,n−1
i (x)

=
∑
i

[
xi −∆x

(
1− x− ani

n∆x

)]
Nn,n−1
i (x)

=
∑
i

[
xi −∆x

n−1
2

∆x+ (xi − x)

n∆x

]
Nn,n−1
i (x)

=
∑
i

[
n− 1

n
xi +

x

n
− n− 1

2n
∆x

]
Nn,n−1
i (x)

=
x

n
− n− 1

2n
∆x+

n− 1

n

∑
i

xiN
n,n−1
i (x), (4.119)

where the last line follows from the partition of unity.

Proposition 4. For n ≥ 1, the following identity holds for all x:

∑
i

xiN
n,n
i (x) = x. (4.120)

Proof. We shall proceed by induction. The base case n = 1 follows immediately from Lemma

3.

Now suppose that ∑
i

xiN
n,n
i (x) = x (4.121)

116

for all x for some n ≥ 1. Then, applying Lemma 3 and the inductive hypothesis, we get

∑
i

xiN
n+1,n+1
i (x) =

x

n+ 1
− n

2(n+ 1)
∆x+

n

n+ 1

∑
i

xiN
n+1,n
i (x)

=
x

n+ 1
− n

2(n+ 1)
∆x+

n

n+ 1

∑
i

xiN
n,n
i

(
x+

∆x

2

)
=

x

n+ 1
− n

2(n+ 1)
∆x+

n

n+ 1

(
x+

∆x

2

)
=
n+ 1

n+ 1
x+

(
n

2(n+ 1)
− n

2(n+ 1)

)
∆x

= x, (4.122)

where we have used Corollary 2 on the second line. The result thus follows for all n ≥ 1 by

induction.

The sum 4.104 is an immediate consequence of Proposition 4.

4.2.1.3 Diagonal Terms of Dp

We now verify the sum 4.105. We first perform a calculation similar to that of Lemma 3.

Lemma 5. For n ≥ 2, the following identity holds for all x:

∑
(xi − x)2Nn,n

i (x) =
1

2n
∆x2 +

n− 2

n

∑
i

(xi − x)2Nn,n−1
i (x). (4.123)

117

Proof. Using the same strategy as in Lemma 3, we get∑
i

(xi − x)2Nn,n
i (x) =

∑
i

[
(xi − x)2x− ani

n∆x
+ (xi − x−∆x)2

(
1− x− ani

n∆x

)]
Nn,n−1
i (x)

=
∑
i

[
(xi − x)2 + (∆x2 − 2(xi − x)∆x)

(
1− x− ani

n∆x

)]
Nn,n−1
i (x)

=
∑
i

[
(xi − x)2 +

(∆x− 2(xi − x))
(
n−1

2
∆x+ (xi − x)

)
n

]
Nn,n−1
i (x)

=
∑
i

[
n− 2

n
(xi − x)2 − n− 2

n
∆x(xi − x) +

n− 1

2n
∆x2

]
Nn,n−1
i (x)

=
n− 1

2n
∆x2 +

∑
i

[
n− 2

n
(xi − x)2 − n− 2

n
∆x(xi − x)

]
Nn,n−1
i (x).

(4.124)

Applying Corollary 2 and Proposition 4 (valid since n−1 ≥ 1) to the second term, it becomes

−n− 2

n
∆x
∑
i

(xi − x)Nn,n−1
i (x) = −n− 2

n
∆x
∑
i

(xi − x)Nn−1,n−1
i

(
x+

∆x

2

)
= −n− 2

n
∆x

(
x+

∆x

2
− x
)

= −n− 2

2n
∆x2. (4.125)

Using this we can simply the previous expression to get∑
i

(xi − x)2Nn,n
i (x) =

n− 1

2n
∆x2 − n− 2

2n
∆x2 +

n− 2

n

∑
i

(xi − x)2Nn,n−1
i (x)

=
1

2n
∆x2 +

n− 2

n

∑
i

(xi − x)2Nn,n−1
i (x). (4.126)

Proposition 6. For n ≥ 2, the following identity holds for all x:∑
i

(xi − x)2Nn,n
i (x) =

n+ 1

12
∆x2. (4.127)

Proof. We proceed again by induction. The base case n = 2 is true by an application of

Marsden’s identity and the linear reproduction property; alternatively, it also follows from

Lemma 5.

118

Now suppose that ∑
i

(xi − x)2Nn,n
i (x) =

n+ 1

12
∆x2 (4.128)

for all x for some n ≥ 2. Consider the n+ 1 term. Applying Lemma 5, we obtain∑
i

(xi − x)2Nn+1,n+1
i (x) =

1

2(n+ 1)
∆x2 +

n− 1

n+ 1

∑
i

(xi − x)2Nn+1,n
i (x)

=
1

2(n+ 1)
∆x2 +

n− 1

n+ 1

∑
i

(xi − x)2Nn,n
i

(
x+

∆x

2

)
. (4.129)

We then expand the coefficient of Nn,n
i in the second term and apply the inductive hypothesis

to get∑
i

(xi − x)2Nn,n
i

(
x+

∆x

2

)
=
∑
i

(
xi −

(
x+

∆x

2

)
+

∆x

2

)2

Nn,n
i

(
x+

∆x

2

)
=

1

4
∆x2 +

∑
i

(
xi −

(
x+

∆x

2

))2

Nn,n
i

(
x+

∆x

2

)
=

1

4
∆x2 +

n+ 1

12
∆x2

=
n+ 4

12
∆x2, (4.130)

where the sum over the coefficients ∆x
(
xi −

(
x+ ∆x

2

))
is 0 by the linear reproduction prop-

erty. Then, ∑
i

(xi − x)2Nn+1,n+1
i (x) =

1

2(n+ 1)
∆x2 +

n− 1

n+ 1

n+ 4

12
∆x2

=
n+ 2

12
∆x2. (4.131)

Thus, the result holds for all n ≥ 2 by induction.

On every diagonal of Dp, all sums except for one in the product evaluate to 1, and the

final sum is of the third case. Hence Dp = n+1
12

∆x2I.

While it is not recommended to use linear B-splines, we include the calculation of the

diagonal entries of Dp for the case n = 1 for completeness. While Dp remains diagonal in

this case, it will not be a constant multiple of the identity.

119

Proposition 7. ∑
i

(xi − x)2N1,1
i (x) = (xi′ − x)(x− xi′−1), (4.132)

where i′ is the unique index satisfying

xi′−1 ≤ x < xi′ . (4.133)

Proof. Following the proof of Lemma 5, we have

∑
i

(xi − x)2N1,1
i (x) =

∑
i

[
(xi − x)2x− a1

i

∆x
+ (xi − x−∆x)2

(
1− x− a1

i

∆x

)]
N1,0
i (x)

=
∑
i

[
(xi − x)2 + (∆x2 − 2(xi − x)∆x)

(
1− x− a1

i

∆x

)]
N1,0
i (x)

=
∑
i

[
(xi − x)2 + (∆x− 2(xi − x))(xi − x)

]
N1,0
i (x)

=
∑
i

[
∆x(xi − x)− (xi − x)2

]
N1,0
i (x)

=
∑
i

(xi − x)(∆x− (xi − x))N1,0
i (x)

=
∑
i

(xi − x)(x− xi−1)N1,0
i (x). (4.134)

Every term in this sum is 0 except for the i′ term, where i′ is the unique index such that

x ∈
[
a1
i′ , a

1
i′+1

)
. For this term, N1,0

i (x) simply evaluates to 1. Hence,

∑
i

(xi − x)2N1,1
i (x) = (xi′ − x)(x− xi′−1). (4.135)

Lastly, a1
i = xi −∆x = xi−1 and x ∈

[
a1
i′ , a

1
i′+1

)
implies that

xi′−1 ≤ x < xi′ . (4.136)

We note that there are simpler ways of performing this calculation since the B-splines N1,1
i

have a simple form, but this calculation matches the style of the rest of this section.

Hence, Dpγγ will depend on xpγ.

120

REFERENCES

[ACW06] A. Angelidis, M.-P. Cani, G. Wyvill, and S. King. “Swirling-sweepers: Constant-
volume modeling.” Graph. Models, 68(4):324–332, 2006.

[AN05] A. Angelidis and F. Neyret. “Simulation of smoke based on vortex filament
primitives.” In Proc 2005 ACM SIGGRAPH/Eurographics Symp Comp Anim,
pp. 87–96. ACM, 2005.

[Att10] M. Attene. “A lightweight approach to repairing digitized polygon meshes.” The
visual computer, 26(11):1393–1406, 2010.

[ATW13] R. Ando, N. Thürey, and C. Wojtan. “Highly adaptive liquid simulations on
tetrahedral meshes.” ACM Trans Graph, 32(4):103:1–103:10, 2013.

[BB99] T. Belytschko and T. Black. “Elastic crack growth in finite elements with minimal
remeshing.” Int. J. Num. Meth. Engr., 45(5):601–620, 1999.

[BB08] C. Batty and R. Bridson. “Accurate viscous free surfaces for buckling, coiling,
and rotating liquids.” Proc ACM SIGGRAPH/Eurograph Symp Comp Anim, pp.
219–228, 2008.

[BB12] L. Boyd and R. Bridson. “MultiFLIP for energetic two-phase fluid simulation.”
ACM Trans Graph, 31(2):16:1–16:12, 2012.

[BBB07] C. Batty, F. Bertails, and R. Bridson. “A fast variational framework for accurate
solid-fluid coupling.” ACM Trans Graph, 26(3), 2007.

[BDS18] G. Barill, N. Dickson, R. Schmidt, D. Levin, and A. Jacobson. “Fast winding
numbers for soups and clouds.” ACM Trans. Graph., 37(4):1–12, 2018.

[Bez70] P. Bézier. “Numerical control: mathematics and applications.” 1970.

[BFG20] H. Brönnimann, A. Fabri, G.-J. Giezeman, S. Hert, M. Hoffmann, L. Kettner,
S. Pion, and S. Schirra. “2D and 3D Linear Geometry Kernel.” In CGAL User
and Reference Manual. CGAL Editorial Board, 5.2 edition, 2020.

[BGV09] T. Belytschko, R. Gracie, and G. Ventura. “A review of extended/generalized
finite element methods for material modeling.” Mod Sim Mat Sci Eng,
17(4):043001, 2009.

[BH07] Y. Bazilevs and T. Hughes. “Weak imposition of Dirichlet boundary conditions
in fluid mechanics.” Comp Fluids, 36(1):12–26, 2007.

121

[BL03] D.C. Banks and S. Linton. “Counting cases in marching cubes: toward a generic
algorithm fo rproducing substitopes.” In IEEE Visualization, 2003. VIS 2003.,
pp. 51–58, 2003.

[Bla67] S. Blank. Extending immersions of the circle. PhD thesis, Brandeis University,
Waltham, Mass., 1967.

[BM82] J. Bates and A. McDonald. “Multiply-upstream, semi-Lagrangian advective
schemes: Analysis and application to a multi-level primitive equation model.”
Monthly Weather Review, 110(12):1831–1842, 1982.

[Bot02] O. Botella. “On a collocation B-spline method for the solution of the Navier–
Stokes equations.” Comp Fl, 31(4-7):397–420, 2002.

[Bre10] A. Bressan. “Isogeometric regular discretization for the Stokes problem.” IMA J
Num Anal, 31(4):1334–1356, 2010.

[Bri08] R. Bridson. Fluid simulation for computer graphics. Taylor & Francis, 2008.

[BSM20] M. Botsch, D. Sieger, P. Moeller, and A. Fabri. “Surface Mesh.” In CGAL User
and Reference Manual. CGAL Editorial Board, 5.2 edition, 2020.

[BWC04] P. Bhaniramka, R. Wenger, and R. Crawfis. “Isosurface construction in any di-
mension using convex hulls.” IEEE Transactions on Visualization and Computer
Graphics, 10(2):130–141, 2004.

[BWS09] A. Brunton, S. Wuhrer, C. Shu, P. Bose, and E. Demaine. “Filling holes in
triangular meshes by curve unfolding.” In 2009 IEEE International Conference
on Shape Modeling and Applications, pp. 66–72, 2009.

[CBE15] M. Cong, M. Bao, J. E, K. Bhat, and R. Fedkiw. “Fully automatic generation
of anatomical face simulation models.” In Proc ACM SIGGRAPH/Eurographics
Symp Comp Anim, pp. 175–183, 2015.

[CBF16] M. Cong, L. Bhat, and R. Fedkiw. “Art-Directed Muscle Simulation for High-End
Facial Animation.” In Proc 2016 ACM SIGGRAPH/Eurographics Symp Comp
Anim, pp. 119–127. Eurographics Association, 2016.

[Cha77] G. Chartrand. Introductory graph theory. Courier Corporation, 1977.

[Che95] E. Chernyaev. “Marching Cubes 33: Construction of Topologically Correct Iso-
surfaces.” Technical report, Institute for High Energy Physics, 1995.

[Cho67] A. Chorin. “A numerical method for solving incompressible viscous flow prob-
lems.” J Comp Phys, 2(1):12–26, 1967.

122

[CIR52] R. Courant, E. Isaacson, and M. Rees. “On the solution of nonlinear hyperbolic
differential equations by finite differences.” Comm Pure App Math, 5(3):243–255,
1952.

[CK12] W. Cheney and D. Kincaid. Numerical mathematics and computing. Cengage
Learning, 2012.

[CKP16] A. Chern, F. Knöppel, U. Pinkall, P. Schröder, and S. Weißmann. “Schrödinger’s
smoke.” ACM Trans Graph (TOG), 35(4):77, 2016.

[CMK15] N. Chentanez, M. Müller, and T. Kim. “Coupling 3D eulerian, heightfield and
particle methods for interactive simulation of large scale liquid phenomena.”
IEEE Trans Vis Comp Graph, 21(10):1116–1128, 2015.

[CWB01] F. Cheng, X. Wang, and B. Barsky. “Quadratic B-spline curve interpolation.”
Comp Math App, 41(1-2):39–50, 2001.

[DCB13] C. Doran, A. Chang, and R. Bridson. “Isosurface Stuffing Improved: Acute
Lattices and Feature Matching.” In ACM SIGGRAPH 2013 Talks, SIGGRAPH
’13, New York, NY, USA, 2013. Association for Computing Machinery.

[Dem19] D. Demidov. “AMGCL: An Efficient, Flexible, and Extensible Algebraic Multi-
grid Implementation.” Lobachevskii Journal of Mathematics, 40(5):535–546, 5
2019.

[EB14] E. Edwards and R. Bridson. “Detailed water with coarse grids: combining surface
meshes and adaptive Discontinuous Galerkin.” ACM Trans Graph, 33(4):136:1–
136:9, 2014.

[EFW20] P. Evans, B. Fasy, and C. Wenk. “Combinatorial Properties of Self-Overlapping
Curves and Interior Boundaries.” In Sergio Cabello and Danny Z. Chen, edi-
tors, 36th International Symposium on Computational Geometry (SoCG 2020),
volume 164 of Leibniz International Proceedings in Informatics (LIPIcs), pp.
41:1–41:17, Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum für In-
formatik.

[EM09] D. Eppstein and E. Mumford. “Self-overlapping curves revisited.” In Proceedings
of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, pp.
160–169. SIAM, 2009.

[ENG03] D. Enright, D. Nguyen, F. Gibou, and R. Fedkiw. “Using the particle level set
method and a second order accurate pressure boundary condition for free surface
flows.” In ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference,
pp. 337–342. ASMEDC, 2003.

123

[Eva10] L. Evans. Partial differential equations. American Mathematical Society, Provi-
dence, R.I., 2010.

[FAW16] F. Ferstl, R. Ando, C. Wojtan, R. Westermann, and N. Thuerey. “Narrow Band
FLIP for Liquid Simulations.” In Proceedings of the 37th Annual Conference of
the European Association for Computer Graphics, EG ’16, p. 225–232, Goslar,
DEU, 2016. Eurographics Association.

[FF98] M. Falcone and R. Ferretti. “Convergence analysis for a class of high-order semi-
Lagrangian advection schemes.” SIAM J Num Anal, 35(3):909–940, 1998.

[FF01] N. Foster and R. Fedkiw. “Practical animation of liquids.” In Proc 28th SIG-
GRAPH, pp. 23–30. ACM, 2001.

[FGG17] C. Fu, Q. Guo, T. Gast, C. Jiang, and J. Teran. “A Polynomial Particle-in-cell
Method.” ACM Trans Graph, 36(6):222:1–222:12, November 2017.

[FM96] N. Foster and D. Metaxas. “Realistic animation of liquids.” Graph Mod Imag
Proc, 58:471–483, 1996.

[FSJ01] R. Fedkiw, J. Stam, and H. Jensen. “Visual simulation of smoke.” In SIG-
GRAPH, pp. 15–22. ACM, 2001.

[FTS06] W. Von Funck, H. Theisel, and H.-P. Seidel. “Vector field based shape deforma-
tions.” ACM Trans. Graph., 25(3):1118–1125, 2006.

[FWD14] F. Ferstl, R. Westermann, and C. Dick. “Large-scale liquid simulation on adaptive
hexahedral grids.” IEEE Trans Vis Comp Graph, 20(10):1405–1417, 2014.

[GC11] J. Graver and G. Cargo. “When Does a Curve Bound a Distorted Disk?” SIAM
Journal on Discrete Mathematics, 25(1):280–305, 2011.

[GCX20] J. Gao, W. Chen, T. Xiang, A. Jacobson, M. McGuire, and S. Fidler. “Learn-
ing Deformable Tetrahedral Meshes for 3D Reconstruction.” In H. Larochelle,
M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors, Advances in Neural
Information Processing Systems, volume 33, pp. 9936–9947. Curran Associates,
Inc., 2020.

[GD01] J. Gain and N. Dodgson. “Preventing self-intersection under free-form deforma-
tion.” IEEE Trans Viz Comp Grap, 7(4):289–298, 2001.

[GHM20a] S. Gagniere, D. Hyde, A. Marquez-Razon, C. Jiang, Z. Ge, X. Han, Q. Guo, and
J. Teran. “A Hybrid Lagrangian/Eulerian Collocated Velocity Advection and
Projection Method for Fluid Simulation.” Computer Graphics Forum, 39(8):1–
14, 2020.

124

[GHM20b] S. Gagniere, D. Hyde, A. Marquez-Razon, C. Jiang, Z. Ge, X. Han, Q. Guo, and
J. Teran. “Supplementary Technical Document.” Technical report, 2020.

[GS08] O. Gonzalez and A. M. Stuart. A First Course in Continuum Mechanics. Cam-
bridge Texts in Applied Mathematics. Cambridge University Press, 2008.

[GTG14] M. T. Goodrich, R. Tamassia, and M. H. Goldwasser. Data Structures and
Algorithms in Java. Wiley Publishing, 6th edition, 2014.

[HCB05] T.J.R. Hughes, J.A. Cottrell, and Y. Bazilevs. “Isogeometric analysis: CAD,
finite elements, NURBS, exact geometry and mesh refinement.” Comp Meth
App Mech Eng, 194(39,41):4135–4195, 2005.

[HGM20] D.A.B. Hyde, S.W. Gagniere, A. Marquez-Razon, and J. Teran. “An Implicit
Updated Lagrangian Formulation for Liquids with Large Surface Energy.” ACM
Trans Graph, 39(6), November 2020.

[HL95] Z.-J. Hu and Z.-K. Ling. “Geometric modeling of a moving object with self-
intersection.” In International Design Engineering Technical Conferences and
Computers and Information in Engineering Conference, volume 17162, pp. 141–
148. American Society of Mechanical Engineers, 1995.

[HPS11] D. Harmon, D. Panozzo, O. Sorkine, and D. Zorin. “Interference-aware geometric
modeling.” ACM Transactions on Graphics (TOG), 30(6):1–10, 2011.

[HSW20] Y. Hu, T. Schneider, B. Wang, D. Zorin, and D. Panozzo. “Fast tetrahedral
meshing in the wild.” ACM Trans. Graph., 39(4):117–1, 2020.

[HT89] W. Horn and D. Taylor. “A theorem to determine the spatial containment of
a point in a planar polyhedron.” Comp Vis Graph Imag Proc, 45(1):106–116,
1989.

[Hua94] C. Huang. “Semi-Lagrangian advection schemes and Eulerian WKL algorithms.”
Monthly Weather Review, 122(7):1647–1658, 1994.

[Hug12] T. Hughes. The finite element method: linear static and dynamic finite element
analysis. Courier Corporation, 2012.

[HZG18] Y. Hu, Q. Zhou, X. Gao, A. Jacobson, D. Zorin, and D. Panozzo. “Tetrahedral
Meshing in the Wild.” ACM Trans. Graph., 37(4):60:1–60:14, July 2018.

[IAA12] M. Ihmsen, N. Akinci, G. Akinci, and M. Teschner. “Unified spray, foam and air
bubbles for particle-based fluids.” Vis Comp, 28(6-8):669–677, 2012.

[JAY15] C. Jamin, P. Alliez, M. Yvinec, and J.-D. Boissonnat. “CGALmesh: a generic
framework for delaunay mesh generation.” ACM Trans. Math. Soft., 41(4):1–24,
2015.

125

[JKS13] A. Jacobson, L. Kavan, and O. Sorkine-Hornung. “Robust inside-outside segmen-
tation using generalized winding numbers.” ACM Trans. Graph., 32(4):1–12,
2013.

[JSS15] C. Jiang, C. Schroeder, A. Selle, J. Teran, and A. Stomakhin. “The Affine
Particle-In-Cell Method.” ACM Trans Graph, 34(4):51:1–51:10, 2015.

[JST16] C. Jiang, C. Schroeder, J. Teran, A. Stomakhin, and A. Selle. “The Material
Point Method for Simulating Continuum Materials.” In ACM SIGGRAPH 2016
Courses, SIGGRAPH ’16, New York, NY, USA, 2016. Association for Computing
Machinery.

[KBT17] D. Koschier, J. Bender, and N. Thuerey. “Robust eXtended Finite Elements for
complex cutting of deformables.” ACM Trans Graph, 36(4):55:1–55:13, 2017.

[Kim98] E. Kim. “A mixed Galerkin method for computing the flow between eccentric
rotating cylinders.” Int J Num Meth Fl, 26(8):877–885, 1998.

[KLL05] B. Kim, Y. Liu, I. Llamas, and J. Rossignac. “FlowFixer: Using BFECC for
Fluid Simulation.” In Proc Eurograph Conf Nat Phen, pp. 51–56. Eurographics
Association, 2005.

[KLL06] B. Kim, Y. Liu, I. Llamas, and J. Rossignac. “Advections with significantly
reduced dissipation and diffusion.” IEEE Trans Viz Comp Graph, 13(1):135–
144, 2006.

[KMS99] A. Kravchenko, P. Moin, and K. Shariff. “B-spline method and zonal grids for
simulations of complex turbulent flows.” J Comp Phys, 151(2):757–789, 1999.

[KSB12] M. Kazhdan, J. Solomon, and M. Ben-Chen. “Can Mean-Curvature Flow Be
Modified to Be Non-Singular?” Comput. Graph. Forum, 31(5):1745–1754, Au-
gust 2012.

[KSK08] D. Kim, O. Song, and H. Ko. “A Semi-Lagrangian CIP Fluid Solver without
Dimensional Splitting.” Computer Graphics Forum, 27(2):467–475, 2008.

[KT10] H.-J. Kim and T. Tautges. “EBMesh: An Embedded Boundary Meshing
Tool.” In Suzanne Shontz, editor, Proceedings of the 19th International Meshing
Roundtable, pp. 227–242, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[KW90] H. Kuo and R. Williams. “Semi-Lagrangian solutions to the inviscid Burgers
equation.” Monthly Weather Review, 118(6):1278–1288, 1990.

[LB18] Y. Li and J. Barbič. “Immersion of Self-Intersecting Solids and Surfaces.” ACM
Trans. Graph., 37(4), July 2018.

126

[LBB17] E. Larionov, C. Batty, and R. Bridson. “Variational stokes: A unified pressure-
viscosity solver for accurate viscous liquids.” ACM Trans Graph, 36(4), 2017.

[LC87] W. Lorensen and H. Cline. “Marching Cubes: A High Resolution 3D Surface
Construction Algorithm.” SIGGRAPH Comput. Graph., 21:163–169, August
1987.

[Leo79] B. Leonard. “A stable and accurate convective modelling procedure based on
quadratic upstream interpolation.” Computer methods in applied mechanics and
engineering, 19(1):59–98, 1979.

[Li11] W. Li. “Detecting Ambiguities in 3D Polygons with Self-Intersecting Projec-
tions.” In 2011 12th International Conference on Computer-Aided Design and
Computer Graphics, pp. 11–16, 2011.

[LLV03] T. Lewiner, H. Lopes, A.W. Vieira, and G. Tavares. “Efficient Implementation
of Marching Cubes’ Cases with Topological Guarantees.” Journal of Graphics
Tools, 8(2):1–15, 2003.

[LRT20] S. Loriot, M. Rouxel-Labbé, J. Tournois, and I. Yaz. “Polygon Mesh Processing.”
In CGAL User and Reference Manual. CGAL Editorial Board, 5.2 edition, 2020.

[LS07] F. Labelle and J. Shewchuk. “Isosurface Stuffing: Fast Tetrahedral Meshes with
Good Dihedral Angles.” In ACM SIGGRAPH 2007, SIGGRAPH ’07, pp. 57–es,
New York, NY, USA, 2007. ACM.

[Mar74] M. Marx. “Extensions of normal immersions of S1 into R2.” Transactions of the
American Mathematical Society, 187:309–326, 1974.

[MAS15] N. Mitchell, M. Aanjaneya, R. Setaluri, and E. Sifakis. “Non-Manifold Level
Sets: A Multivalued Implicit Surface Representation with Applications to Self-
Collision Processing.” ACM Trans. Graph., 34(6), October 2015.

[MBF03] N. Molino, R. Bridson, and R. Fedkiw. “Tetrahedral mesh generation for de-
formable bodies.” In Proc. Symposium on Computer Animation, p. 8, 2003.

[MBF04] N. Molino, Z. Bao, and R. Fedkiw. “A virtual node algorithm for changing mesh
topology during simulation.” ACM Trans Graph, 23(3):385–392, 2004.

[MBT03] N. Molino, R. Bridson, J. Teran, and R. Fedkiw. “A Crystalline, Red Green
Strategy for Meshing Highly Deformable Objects with Tetrahedra.” In Int Mesh
Round, pp. 103–114. Citeseer, 2003.

[MCP08] J. Molemaker, J. Cohen, S. Patel, and J. Noh. “Low viscosity flow simulations for
animation.” In Proc 2008 ACM SIGGRAPH/Eurographics Symp Comp Anim,
pp. 9–18. Eurographics Association, 2008.

127

[MCP09] P. Mullen, K. Crane, D. Pavlov, Y. Tong, and M. Desbrun. “Energy-Preserving
Integrators for Fluid Animation.” ACM Trans. Graph., 28(3), jul 2009.

[MK96] P. Makar and S. Karpik. “Basis-spline interpolation on the sphere: Applications
to semi-Lagrangian advection.” Monthly Weather Review, 124(1):182–199, 1996.

[Muk14] U. Mukherjee. “Self-overlapping curves: Analysis and applications.” Computer-
Aided Design, 46:227–232, 2014.

[NSB18] M. B. Nielsen, K. Stamatelos, M. Bojsen-Hansen, D. Brinsmead, Y. Pomerleau,
M. Nordenstam, and R. Bridson. “A Collocated Spatially Adaptive Approach
to Smoke Simulation in Bifrost.” In ACM SIGGRAPH 2018 Talks, SIGGRAPH
’18, New York, NY, USA, 2018. Association for Computing Machinery.

[NY06] T.S. Newman and H. Yi. “A survey of the marching cubes algorithm.” Computers
& Graphics, 30(5):854–879, 2006.

[NZT19] R. Narain, J. Zehnder, and B. Thomaszewski. “A Second-order advection-
reflection solver.” Proc ACM Comput Graph Interact Tech, 2(2), July 2019.

[OF03] S. Osher and R. Fedkiw. Level set methods and dynamic implicit surfaces. Ap-
plied mathematical science. Springer, New York, N.Y., 2003.

[PBP02] H. Prautzsch, W. Boehm, and M. Paluszny. Bézier and B-spline techniques,
volume 6. Springer, 2002.

[PK05] S. Park and M. Kim. “Vortex fluid for gaseous phenomena.” In Proc 2005 ACM
SIGGRAPH/Eurograph Symp Comp Anim, pp. 261–270. ACM, 2005.

[PS84] J. Pudykiewicz and A. Staniforth. “Some properties and comparative perfor-
mance of the semi-Lagrangian method of Robert in the solution of the advection-
diffusion equation.” Atmosphere-Ocean, 22(3):283–308, 1984.

[QZG19] Z. Qu, X. Zhang, M. Gao, C. Jiang, and B. Chen. “Efficient and conservative
fluids using bidirectional mapping.” ACM Trans. Graph., 38(4), 2019.

[RC12] T. Rüberg and F. Cirak. “Subdivision-stabilised immersed b-spline finite ele-
ments for moving boundary flows.” Comp Meth App Mech Eng, 209:266–283,
2012.

[RCL98] L. Riishøjgaard, S. Cohn, Y. Li, and R. Ménard. “The use of spline interpolation
in semi-Lagrangian transport models.” Monthly Weather Review, 126(7):2008–
2016, 1998.

128

[RH99] J. C. Roberts and S. Hill. “Piecewise linear hypersurfaces using the marching
cubes algorithm.” In Robert F. Erbacher, Philip C. Chen, and Craig M. Witten-
brink, editors, Visual Data Exploration and Analysis VI, volume 3643, pp. 170 –
181. International Society for Optics and Photonics, SPIE, 1999.

[Rob81] A. Robert. “A stable numerical integration scheme for the primitive meteorolog-
ical equations.” Atm Ocean, 19(1):35–46, 1981.

[Saa03] Y. Saad. Iterative Methods for Sparse Linear Systems. Society for Industrial and
Applied Mathematics, USA, 2nd edition, 2003.

[Saw63] J. Sawyer. “A semi-Lagrangian method of solving the vorticity advection equa-
tion.” Tellus, 15(4):336–342, 1963.

[SB09] J.-H. Song and T. Belytschko. “Cracking node method for dynamic fracture with
finite elements.” Int. J. Num. Meth. Engr., 77(3):360–385, 2009.

[SB12] E. Sifakis and J. Barbic. “FEM simulation of 3D deformable solids: a prac-
titioner’s guide to theory, discretization and model reduction.” In ACM SIG-
GRAPH 2012 Courses, SIGGRAPH ’12, pp. 20:1–20:50, New York, NY, USA,
2012. ACM.

[SBI18] T. Sato, C. Batty, T. Igarashi, and R. Ando. “Spatially adaptive long-term semi-
Lagrangian method for accurate velocity advection.” Comp Vis Med, 4(3):223–
230, 2018.

[SC91] A. Staniforth and J. Côté. “Semi-Lagrangian integration schemes for atmospheric
models-A review.” Monthly weather review, 119(9):2206–2223, 1991.

[SDF07] E. Sifakis, K. Der, and R. Fedkiw. “Arbitrary cutting of deformable tetrahe-
dralized objects.” In Proc ACM SIGGRAPH/Eurograph Symp Comp Anim, pp.
73–80, 2007.

[SDG19] T. Schneider, J. Dumas, X. Gao, M. Botsch, D. Panozzo, and D. Zorin. “Poly-
Spline Finite-Element Method.” ACM Trans Graph, 38(3):1–16, 2019.

[SFK08] A. Selle, R. Fedkiw, B. Kim, Y. Liu, and J. Rossignac. “An unconditionally
stable MacCormack method.” J Sci Comp, 35(2-3):350–371, 2008.

[SHQ18] C. Shah, D. Hyde, H. Qu, and P. Levis. “Distributing and Load Balancing Sparse
Fluid Simulations.” Computer Graphics Forum, 37(8):35–46, 2018.

[Si15] H. Si. “TetGen, a Delaunay-Based Quality Tetrahedral Mesh Generator.” ACM
Trans. Math. Softw., 41(2), February 2015.

129

[SIB17] T. Sato, T. Igarashi, C. Batty, and R. Ando. “A long-term semi-Lagrangian
method for accurate velocity advection.” In SIGGRAPH Asia 2017 Tech Briefs,
p. 5. ACM, 2017.

[SJP13] L. Sacht, A. Jacobson, D. Panozzo, C. Schüller, and O. Sorkine-Hornung. “Con-
sistent Volumetric Discretizations inside Self-Intersecting Surfaces.” In Proceed-
ings of the Eleventh Eurographics/ACMSIGGRAPH Symposium on Geometry
Processing, SGP ’13, p. 147–156, Goslar, DEU, 2013. Eurographics Association.

[SKK09] O. Song, D. Kim, and H. Ko. “Derivative particles for simulating detailed move-
ments of fluids.” IEEE Trans Vis Comp Graph, pp. 247–255, 2009.

[SOS04] C. Shen, J. O’Brien, and J. Shewchuk. “Interpolating and Approximating Im-
plicit Surfaces from Polygon Soup.” In ACM SIGGRAPH 2004 Papers, SIG-
GRAPH ’04, p. 896–904, New York, NY, USA, 2004. Association for Computing
Machinery.

[SP86] T. Sederberg and S. Parry. “Free-form deformation of solid geometric models.”
In Proc. 13th Ann. Conf. Comp. Graph. Interactive Techniques, pp. 151–160,
1986.

[SRF05] A. Selle, N. Rasmussen, and R. Fedkiw. “A Vortex Particle Method for Smoke,
Water and Explosions.” In ACM SIGGRAPH 2005 Papers, SIGGRAPH ’05, p.
910–914, New York, NY, USA, 2005. Association for Computing Machinery.

[SSH14] C. Schroeder, A. Stomakhin, R. Howes, and J. Teran. “A second order virtual
node algorithm for Navier-Stokes flow problems with interfacial forces and dis-
continuous material properties.” J Comp Phys, 265:221 – 245, 2014.

[Sta99] J. Stam. “Stable Fluids.” In Siggraph, volume 99, pp. 121–128, 1999.

[STK07] E. Sharif, Y. Tong, E. Kanso, P. Schröder, and M. Desbrun. “Stable, circulation-
preserving, simplicial fluids.” ACM Trans Graph (TOG), 26(1):4, 2007.

[SU94] J. Steinhoff and D. Underhill. “Modification of the Euler equations for “vorticity
confinement”: Application to the computation of interacting vortex rings.” Phys
Fl, 6(8):2738–2744, 1994.

[SV92] P. Shor and C. Van Wyk. “Detecting and decomposing self-overlapping curves.”
Computational Geometry, 2(1):31–50, 1992.

[SWT18] T. Sato, C. Wojtan, N. Thuerey, T. Igarashi, and R. Ando. “Extended narrow
band FLIP for liquid simulations.” Comp Graph For, 2018.

[TBF19] M. Tao, C. Batty, E. Fiume, and D. Levin. “Mandoline: Robust Cut-Cell Gen-
eration for Arbitrary Triangle Meshes.” ACM Trans. Graph., 38(6), November
2019.

130

[TH73] C. Taylor and P. Hood. “A numerical solution of the Navier-Stokes equations
using the finite element technique.” Comp & Fl, 1(1):73–100, 1973.

[The20] The CGAL Project. CGAL User and Reference Manual. CGAL Editorial Board,
5.2 edition, 2020.

[Tit61] C. Titus. “The combinatorial topology of analytic functions of the boundary of
a disk.” Acta Mathematica, 106(1-2):45–64, 1961.

[TP11] J. Tessendorf and B. Pelfrey. “The characteristic map for fast and efficient vfx
fluid simulations.” In Computer Graphics International Workshop on VFX, Com-
puter Animation, and Stereo Movies. Ottawa, Canada, 2011.

[TSB05] J. Teran, E. Sifakis, S. Blemker, V. Ng-Thow-Hing, C. Lau, and R. Fedkiw.
“Creating and simulating skeletal muscle from the visible human data set.” IEEE
Trans Vis Comp Graph, 11(3):317–328, 2005.

[WDG19] S. Wang, M. Ding, T. Gast, L. Zhu, S. Gagniere, C. Jiang, and J. Teran. “Sim-
ulation and Visualization of Ductile Fracture with the Material Point Method.”
Proc. ACM Comput. Graph. Interact. Tech., 2(2), jul 2019.

[WJS14] Y. Wang, C. Jiang, C. Schroeder, and J. Teran. “An adaptive virtual node
algorithm with robust mesh cutting.” In Proc ACM SIGGRAPH/Eurograph
Symp Comp Anim, pp. 77–85. Eurographics Association, 2014.

[WL10] J. Wang and A. Layton. “New numerical methods for Burgers’ equation
based on semi-Lagrangian and modified equation approaches.” App Num Math,
60(6):645–657, 2010.

[WP10] S. Weißmann and U. Pinkall. “Filament-Based Smoke with Vortex Shedding and
Variational Reconnection.” In ACM SIGGRAPH 2010 Papers, SIGGRAPH ’10,
New York, NY, USA, 2010. Association for Computing Machinery.

[WWD15] J. Wu, R. Westermann, and C. Dick. “A survey of physically based simulation
of cuts in deformable bodies.” Comp Graph Forum, 34(6):161–187, 2015.

[XK01] D. Xiu and G. Karniadakis. “A semi-Lagrangian high-order method for Navier–
Stokes equations.” J Comp Phys, 172(2):658–684, 2001.

[YXU01] T. Yabe, F. Xiao, and T. Utsumi. “The constrained interpolation profile method
for multiphase analysis.” J Comp Phys, 169:556–593, 2001.

[ZB05] Y. Zhu and R. Bridson. “Animating sand as a fluid.” ACM Trans Graph,
24(3):965–972, 2005.

[ZBG15] X. Zhang, R. Bridson, and C. Greif. “Restoring the missing vorticity in advection-
projection fluid solvers.” ACM Trans Graph (TOG), 34(4):52, 2015.

131

[ZDZ18] J. Zhang, F. Duan, M. Zhou, D. Jiang, X. Wang, Z. Wu, Y. Huang, G. Du,
S. Liu, P. Zhou, and X. Shang. “Stable and realistic crack pattern generation
using a cracking node method.” Front. Comp. Sci., 12(4):777–797, 2018.

[Zha05] H. Zhao. “A fast sweeping method for eikonal equations.” Math Comp,
74(250):603–627, 2005.

[ZNT18] J. Zehnder, R. Narain, and B. Thomaszewski. “An advection-reflection solver for
detail-preserving fluid simulation.” ACM Trans Graph (TOG), 37(4):85, 2018.

[ZZS17] F. Zhang, X. Zhang, Y. Sze, Y. Lian, and Y. Liu. “Incompressible material point
method for free surface flow.” J Comp Phys, 330(C):92–110, 2017.

132

