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Abstract

Purpose—To determine the frequency with which retinal tissues other than the nerve fibre layer, 

hereafter referred to as protruded retinal layers (PRL), are a component of optical coherence 

tomography (OCT) neuroretinal rim measurements.

Methods—Ninety healthy (30 White, Black and Japanese, respectively) subjects were included 

in the study. A radial scan pattern (24 B-scans centred on Bruch’s membrane opening [BMO]) was 

used. For each of the 48 minimum rim width (MRW) measurement points, we determined whether 

PRL were present, absent or indeterminate. When present, the proportion of PRL within the MRW 

was quantified.

Results—PRL were present in 503 (11.6%), absent in 3805 (88.1%) and indeterminate in 12 

(0.3%) measurement points. Overall, 69 (76.6%) subjects had ≥1 points with PRL, with White 

subjects having the highest frequency and Japanese the lowest (29 [97%] and 18 [60%], 

respectively; P < 0.01). PRL were present in one-third of points in the temporal sector, but ≤ 5% in 

other sectors. When present, the median PRL thickness was 53.0 (interquartile range [IQR]: 33.0 

to 78.5) μm, representing 20.6 (IQR: 13.0 to 28.5)% of MRW. Globally, the median PRL thickness 

comprised 1.3 (IQR: 0.2 to 3.5)% of the MRW, however, in the temporal sector, it exceeded 30% 

of MRW in some subjects.

Conclusions—PRL are a component of MRW measurements in most normal subjects, occurring 

in almost 12% of all measurement points analyzed. There were racial variations in the presence of 

PRL and a significantly higher frequency of PRL in the temporal sector.

Introduction

Advances in optical coherence tomography (OCT) have allowed a detailed appraisal of optic 

nerve head anatomy, leading to new concepts for the acquisition, analysis and interpretation 

of OCT data. For example, OCT has revealed that the clinically visible optic disc margin is 

not a consistent anatomical structure from which the neuroretinal rim can be assessed 

(Chauhan & Burgoyne 2013, Reis et al. 2012, Strouthidis et al. 2009). Many investigators 

have now proposed that Bruch’s membrane opening (BMO), which is readily identified with 

OCT, but not always with funduscopic examination, is a consistent outer border of the rim 

that should be used as a reference point for its measurement (Reis et al. 2012, Strouthidis et 

al. 2009, Strouthidis et al. 2009). Furthermore, unlike classical rim measurements, which are 

made in the fixed plane of the disc margin, newer research supports measurement of the 

minimum width from BMO to the internal limiting membrane. This parameter is termed 

minimum rim width (MRW), and allows the direction, or MRW vector, to vary according to 

the orientation of the rim tissue (Chen 2009, Gardiner et al. 2014, Povazay et al. 2007, Reis 

et al. 2012, Strouthidis et al. 2011). These new principles have led to increased diagnostic 

accuracy for glaucoma (Chauhan et al. 2013) and a better alignment of these structural 

parameters to visual field findings (Danthurebandara et al. 2014, Pollet-Villard et al. 2014).

In addition to axons of retinal ganglion cells, the neuroretinal rim contains other elements, 

such as blood vessels and glial tissue (Varela & Hernandez 1997, Wang et al. 2002), likely 

contributing to the sub-optimal relationship between rim measurements and the visual field, 

or even retinal nerve fibre layer (RNFL) thickness. While this sub-optimal relationship is 
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perceived to problematic, it is also reasonable to propose that identifying the non-axonal 

components of the rim may improve our understanding of their behaviour in glaucoma.

Fortune and colleagues (Fortune et al. 2016) recently reported in monkeys that MRW 

measurements could contain not just the RNFL, but portions of the outer and middle retinal 

layers. Indeed, they argued that the presence of these ‘protruded’ retinal layers in the rim 

measurement could be another reason why the observed correlation between MRW and 

actual axonal counts in monkey was not as strong as the correlation between RNFL 

thickness and axon counts.

To determine the potential importance of protruded retinal layers (PRL) in humans, we 

performed this study to assess their frequency and magnitude within the MRW of healthy 

subjects. As previous studies with OCT showed variation in optic nerve head (ONH) 

anatomy, for example in cup-disc ratio (Knight et al. 2012), optic disc area (Girkin et al. 

2011, Knight et al. 2012), and laminar depth (Rhodes et al. 2014), according to different 

races, we report data in White, Black and Japanese normal subjects. We also investigated 

whether orientation of the border tissue of Elschnig (Anderson & Hoyt 1969) had an 

influence on the presence and extent of PRL in MRW measurements.

Methods

Participants

Data were acquired from a larger series of multi-centre studies characterising the ONH, 

RNFL and macula in normal subjects. The subjects in this report comprised a sub-sample of 

30 individuals each in three groups that self-identified as White, Black or Japanese. Each 

participating institution received approval from its Ethics Review Board. In accordance with 

the Declaration of Helsinki, all participants provided informed consent.

Subjects were included if all the following criteria were met: (1) normal eye examination 

without vitreoretinal or choroidal disease or prior intraocular surgery (except cataract or 

refractive surgery), (2) intraocular pressure of 21 mmHg or less, (3) best-corrected visual 

acuity of 20/40 or better, (4) refractive spherical error within 6 diopter (D) and cylinder error 

within 2D, and (5) normal visual field, defined by a normal glaucoma hemifield test and 

mean deviation within normal limits. Subjects were excluded if either of the following were 

found: (1) unreliable visual field examination results based on the reliability indices and the 

perimetrist’s notes, or (2) OCT images of insufficient quality (truncated B-scans where the 

internal limiting membrane could not be segmented and/or image quality score < 20). When 

both eyes were eligible, only one randomly selected eye was used for the analysis.

The 30 subjects per race group were determined as follows. We first computed the maximum 

number of subjects that would allow the same sample size for each race in each of the 6 

decade groups. To maintain the same number of subjects per decade group and race, the 

sample size was dictated by the minimum number of subjects in each decade group, which 

in this case was 5 (among those aged 70–80 years). We then randomly selected 5 subjects 

per race in each of the other decade groups.
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OCT Imaging

The ONH was imaged with OCT (Spectralis; Heidelberg Engineering GmbH, Heidelberg, 

Germany) with software version VV (Heyex, Heidelberg Engineering). The scan pattern 

consisted of 24 radially equidistant B-scans, each subtending 15°, and was aligned and 

acquired according to the subject’s own fovea-to-BMO centre axis (Chauhan et al. 2015). 

Each B-scan contained 768 A-scans and was derived from an average of 25 individual scans. 

Each B-scan contained 2 BMO points (180° apart), hence there were 2 MRW measurements 

per scan and 48 per eye. At each measurement point, the MRW angle represented the angle 

between the MRW plane of measurement and the BMO reference line, which connects the 

two BMO points of each scan.

Image segmentation

At each MRW measurement point, PRL, defined as any retinal layer besides the RNFL 

included within the MRW based on layer contrast in unenhanced B-scans (Fig. 1), were 

classified as being present, absent or indeterminate. The latter category occurred typically 

when there were shadows cast by overlying blood vessels at the point of measurement or 

when it was uncertain whether outer retinal layers were or were not within the MRW. When 

PRL were present, their width was measured with the calliper tool of the software along the 

MRW vector (Fig. 1).

Border tissue obliqueness (Reis et al. 2012, Strouthidis et al. 2009, Strouthidis et al. 2009) 

was measured for each of the two measurement points within each B-scan. A straight line 

that best approximated the border tissue and scleral canal was drawn first, starting at BMO. 

Next, a reference line connecting the two BMO points was determined. The angle between 

the border tissue plane and the BMO reference line was defined as border tissue angle 

(Vianna et al. 2016), with internally oblique border tissue (Reis et al. 2012, Strouthidis et al. 

2009, Strouthidis et al. 2009) configurations having an angle greater than 90° and externally 

oblique (Reis et al. 2012, Strouthidis et al. 2009, Strouthidis et al. 2009) configurations 

having an angle less than 90° (Fig. 2). The orientation of the MRW vector relative to the 

BMO reference plane was also computed at each MRW measurement point and defined as 

MRW angle, with MRW angle increasing as the MRW vector was oriented further from 

BMO centre (Fig. 3).

Image segmentation for the first 12 (13%) subjects was performed together by 3 examiners 

(LT, FJ and BCC) to discuss and ensure agreement on how to judge and segment the images. 

Thereafter, a single examiner (FJ) segmented the images for all remaining 78 (87%) 

subjects. All image segmentations were then reviewed by two examiners (LT and FJ) and 

corrected when necessary.

Reproducibility of image segmentations

The intra-individual agreement for assessing the presence and extent of PRL as well as in 

the assessment of border tissue angle was determined for one observer (FJ), who segmented 

most of the images. OCT images were obtained in the same manner as described above for 

an independent group of 15 White healthy subjects, which were used to perform the 

reproducibility analysis. The examiner segmented the OCT images twice, on different days.
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Statistical analysis

Data were summarised with median and interquartile range (IQR) values. Comparisons of 

continuous variables among the three races were performed with the Kruskal-Wallis test, 

while the comparisons of categorical values utilized the chi-squared test. Kappa statistics 

were used for the reproducibility study.

The number of MRW measurement points with PRL was calculated globally and in each of 

6 ONH sectors as described previously (Garway-Heath et al. 2000). From the 48 points 

evaluated in each subject, 15 were located in the nasal sector, 13 in the temporal and 5 in 

each of the others sectors (supero-nasal, supero-temporal, infero-nasal and infero-temporal).

For each measurement point in which PRL were present, an adjusted MRW was calculated 

by subtracting the PRL thickness from the total or unadjusted MRW. The global unadjusted 

and adjusted MRW were calculated as averages for each subject. For this calculation, 

measurement points where the presence of PRL was classified as absent or indeterminate 

were given a PRL thickness value of 0.0 μm.

Linear regression was used to estimate the correlation between BMO area and the number of 

MRW measurement points with PRL per eye. The influence of border tissue angle at each 

point on the presence of PRL was evaluated with a mixed-effects logistic model. Mixed 

effect models were used to account for the correlation between multiple observations (i.e., 

measurement points) from each subject. Data analysis was performed with the open-source 

software R (version 3.3.1), and package lmer4 (version 1.1–12).

Results

Key characteristics of the study subjects are shown in Table 1. There were some differences 

among the groups: Black subjects were the most myopic; Japanese subjects had the largest 

BMO area and the thinnest global unadjusted MRW (all P < 0.01).

In the reproducibility study, the kappa statistic for intra-individual agreement for 

categorising the presence or absence of PRL was 0.82, classified as ‘almost perfect’ 

according to Landis and Koch (Landis & Koch 1977). The median difference between the 

two evaluations of PRL thickness was 0 (IQR: −12 to 4.5) μm, while the corresponding 

figure for border tissue angle was 0.1 (IQR: −5.8 to 5.0) °.

With 24 B-scans (48 MRW measurement points) per subject, there were a total of 4320 

points analyzed. PRL were present in 503 (11.6%) points, absent in 3805 (88.1%) and 

labeled as indeterminate in 12 (0.3%) points. Overall, 69 (76.6%) subjects had ≥1 points 

with PRL within MRW (Table 2): the frequency was highest in White subjects (29 [97%]), 

then Black subjects (22 [73%]) and lowest in Japanese subjects (18 [60%]). The temporal 

sector had the highest number of MRW measurement points with PRL: 391 (33.4%) of 1170 

points; while the frequencies in the other sectors were: 13 (2.8%) of 450 points in the infero-

temporal sector, 23 (5.1%) of 450 in the supero-temporal sector, 64 (4.7%) of 1350 in the 

nasal sector, 6 (1.3%) of 450 in the infero-nasal sector and 6 (1.3%) out of 450 in the 

supero-nasal sector (Fig. 4).
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For the measurement points in which PRL were present, the median PRL thickness and PRL 

thickness, relative to unadjusted MRW, was 53.0 (IQR: 33.0 to 78.5) μm and 20.6 (IQR: 13.0 

to 28.5)%, respectively (Fig. 5). The global and sectoral distributions of PRL thickness and 

the PRL thickness relative to unadjusted MRW are shown in Figure 6. Globally, the median 

PRL thickness was 4.1 (IQR: 0.5 to 10.3) μm, comprising 1.3 (IQR: 0.2 to 3.5)% of the 

unadjusted MRW. The temporal sector had the largest median PRL thickness with a median 

of 13.0 (IQR: 0.0 to 30.1) μm, comprising 5.5 (IQR: 0.0 to 13.7)% of the unadjusted MRW. 

In the other sectors, the median PRL thickness was 0.0 μm (Fig. 6).

The median MRW angle nasally was close to 90°, indicating a close to vertical MRW vector 

compared to temporally, superiorly or inferiorly, which had a more horizontal MRW vector 

towards to the BMO centre (Figs. 3 and 7). In measurement points with PRL, the 

corresponding MRW angle was generally greater than the median for all points, indicating a 

MRW vector more external to the BMO centre (Fig. 7).

The lowest values of border tissue angle, indicating more externally oblique border tissue 

configuration, occurred in the temporal and infero-temporal sectors, while the highest 

values, indicating more internally oblique border tissue configuration, occurred more 

frequently in the nasal and supero-nasal sectors (Fig. 8). There was a negative association 

between the proportion of measurement points with PRL and border tissue angle (odds ratio 

for frequency of PRL = 0.84 (CI: 0.82 - 0.87) for each 10° of increase in border tissue angle, 

P < 0.01; Fig. 9) indicating that there was a lesser likelihood of PRL with increasingly 

internally oblique border tissue angle. The proportion of MRW measurement points with 

PRL was particularly high in extreme externally oblique border tissue configurations (angles 

≤ 30°). There was a poor relationship between BMO area and the number of measurement 

points with PRL (adjusted R2 = 0.00, P = 0.68; Fig. 10).

Discussion

Fortune et al (Fortune et al. 2016) previously identified PRL in OCT images of monkey 

ONHs and speculated that the PRL could be one of the reasons for the weaker correlation 

between rim parameters and axons counts compared to that between peripapillary RNFL 

thickness and axons counts. In the present study we assessed the frequency with which PRL 

were detected within the neuroretinal rim and the impact they had on MRW measurements 

in a multiracial sample of healthy subjects. PRL were identified in at least one B-scan in 69 

(76.6%) subjects and in 503 (11.6%) MRW measurement points examined, over one-third of 

which were in the temporal sector. When present, the median PRL thickness in the temporal 

sector was 53 μm, corresponding to 20.6% of the unadjusted MRW. In the temporal sector, 

the PRL thickness made up 5.5% of the unadjusted MRW, however, in some subjects this 

proportion exceeded 30% (Fig. 6). Globally, PRL accounted for 1.3% of the MRW and in no 

subject did it exceed 10%.

Although OCT is now a well-established tool to help clinicians assess structural 

glaucomatous damage with objective measurements of the ONH rim, peripapillary RNFL 

and the macular ganglion cell layer, there are potential limitations of these parameters and 

questions regarding what precisely they measure. If the goal of these parameters is to relate 
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to retinal ganglion cell function, then they should specifically provide an estimate of 

functional ganglion cell components, and not include non-neural components such as blood 

vessels, connective or glial tissue. Current technology does not allow subtraction of all non-

neural components from the width, area or volume measurements currently in use, however, 

attempts to account for blood vessels, suggested by some authors (Knighton et al. 2012, 

Patel et al. 2014, Ye et al. 2016) to adjust rim measurements for the PRL could help in this 

regard. However, it is important to recognize that also glaucoma affects non-neural tissues 

also (Yang et al. 2015, Yang et al. 2017, Yang et al. 2011) and that while the inclusion of 

these components may result in a less than perfect alignment with functional loss, it does not 

mean that diagnostic accuracy for glaucoma is adversely affected.

In addition to documenting the frequency of PRL and its magnitude within the neuroretinal 

rim, we also addressed factors related to the presence of PRL. Although our study was 

limited by a relatively small sample size, we found a consistent difference in PRL frequency 

among races, with the Japanese having the lowest frequency. Racial differences among 

structural measurements have already been shown in parameters of the ONH, for example, 

in the cup-disc ratio (Knight et al. 2012), optic disc area (Girkin et al. 2011, Knight et al. 

2012), laminar depth (Rhodes et al. 2014) and BMO area (Rhodes et al. 2015, Rhodes et al. 

2017). The clinical relevance of these inter-racial differences in ONH parameters are still not 

clear (Knight et al. 2012, Rao et al. 2010, Zelefsky et al. 2006). Although race-specific 

normative databases may be an alternative to deal with these differences (Zelefsky et al. 

2006), the large within-race variability of these parameters indicates there would be little 

benefit of accounting for race in diagnostic tests for glaucoma (Rhodes et al. 2017). The 

MRW adjustment for PRL thickness would lead to a smaller inter-racial difference of MRW, 

as White and Black subjects, who had thicker MRW, also had a higher frequency of PRL 

compared to Japanese subjects, in whom the BMO area was largest. Therefore, even if future 

studies demonstrated that adjusting MRW for PRL thickness is clinically beneficial, it will 

be unlikely that specific normative databases for each race would be necessary.

We observed that PRL were more frequently found in the temporal sector, where there also 

was a higher likelihood of the border tissues having an externally oblique configuration. In 

our study we assumed that the border tissues and the anterior scleral canal were continuous 

to define neural canal obliqueness, however, this assumption may not be valid, as we did not 

separately segment these two structures. Nonetheless how border tissue or neural canal 

obliqueness could influence the presence of PRL is not clear. We also showed that the 

presence of PRL was related to the orientation of MRW: most points with PRL had a MRW 

vector that was oriented further from the BMO centre than the corresponding one for the 

entire population. However, it is interesting to note that although nasal points had a higher 

median MRW angle compared to temporal points (indicating that MRW was oriented more 

externally relative to the BMO centre), it was rare to observe PRL nasally compared to 

temporally where PRL were more frequently present. This observation suggests that the 

retinal layers protruding within the rim might be closer to BMO temporally compared to 

nasally. The higher density of photoreceptors (Curcio et al. 1990) and retinal ganglion cells 

(Curcio & Allen 1990) temporal to the ONH and the centrifugal displacement of the inner 

retinal layers at the fovea (Springer & Hendrickson 2004, Springer & Hendrickson 2004, 
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Springer & Hendrickson 2005) support our findings, though we did not measure the 

proximity of the retinal layers to BMO.

Because our study included only healthy subjects, we cannot yet speculate on the clinical 

implications of our findings. How glaucoma disease severity influences the presence of PRL 

and the clinical implications of these findings require additional studies, now in progress, 

that are beyond the scope of this report. The differences in the frequency, magnitude and 

especially sectoral variation in the presence of PRL among healthy subjects may suggest that 

adjusting MRW for PRL thickness could impact diagnostic accuracy.

There is considerable controversy in the literature as to whether retinal layers distal to the 

inner plexiform layer are affected in glaucoma. Histological studies in both experimental 

monkey glaucoma and human glaucoma eyes indicate either modest (Fan et al. 2011, Lei et 

al. 2008, Werner et al. 2011, Wygnanski et al. 1995) or no (Hasegawa et al. 2016, Ishikawa 

et al. 2005, Kendell et al. 1995, Kotowski et al. 2012) photoreceptor layer loss. Retinal 

ganglion cells have their somas in the ganglion cell layer, their axons in the RNFL and their 

dendrites in the inner plexiform layer. Thus it is expected that in addition to the RNFL loss, 

there is thinning of the ganglion cell layer (Ishikawa et al. 2005, Na et al. 2012, Tan et al. 

2008, Wilsey et al. 2016), and the inner plexiform layer (Wilsey et al. 2016) in glaucoma 

that is readily detectable with OCT. We did not perform manual segmentation of each retinal 

layer (except the RNFL) within the PRL and therefore cannot speculate whether, in single 

examinations, potential damage to the other retinal layers in glaucoma could impact 

diagnostic accuracy of MRW. If there were no progressive loss of the outer retina in 

glaucoma, the presence of PRL would not be expected to impact the value of MRW for 

monitoring serial changes in the neuroretinal rim. In a possible scenario of progressive PRL 

thinning, the rate of MRW change would be amplified by the inclusion of PRL in the MRW 

measurements.

In the present study, one-third of the MRW measurement points in the temporal sector had 

PRL. This finding may be one of several reasons to explain why the temporal sector has the 

weakest diagnostic accuracy for glaucoma compared to other sectors (Chauhan et al. 2013). 

Development of automated algorithms to segment the RNFL only within the rim may be 

necessary and have clinical benefit if future studies were to demonstrate improved diagnostic 

accuracy of adjusted MRW measurements.

In summary, we demonstrated that most normal subjects had at least one MRW 

measurement point within radial ONH scans in which retinal layers in addition to the RNFL 

are included in the measurement of MRW. These PRL were measured as part of the MRW in 

almost 12% of the total number of measurement points. The clinical relevance of these 

findings and whether PRL have any impact on the diagnosis and follow-up of glaucoma 

remain to be determined.
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Figure 1. 
Protruded retinal layers (PRL) in the neuroretinal rim in two radial B-scans (top and bottom) 

obtained with optical coherence tomography of the optic nerve head and peripapillary retina. 

In both images, PRL were present at the temporal measurement point but absent at the nasal 

point (insets). Bottom image shows PRL thickness (black bar with caps) as a proportion of 

the minimum rim width (MRW, blue arrow, inset). In this case, the PRL thickness (102 μm) 

corresponds to 44% of the measured MRW. Red lines show the internal limiting membrane 

and red dots show Bruch’s membrane opening.
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Figure 2. 
Border tissue angle segmentation in B-scans of two optic nerve head radial B-scans subjects 

(left and right images, respectively). Top images: unmarked images. Middle images: from 

each Bruch’s membrane opening (BMO) point (red dots), the border tissue is traced with a 

straight line (yellow line). Bottom images: the border tissue angle at each measurement point 

is calculated with relative to the BMO reference plane (red dotted line). The B-scan of one 

subject (left images) has one point with an externally oblique angle (52°) and another with 

an internally oblique angle (136°). The other subject (right images) has internally oblique 

angles at both measurement points (153° and 125°).
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Figure 3. 
Minimum rim width (MRW) vector orientation in each of the 2 measurement points in a B-

scan. The MRW angles are measured from the Bruch’s membrane opening (red dots) 

reference plane (dotted red line).
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Figure 4. 
Polar plot (in right eye format) showing the frequency of protruded retinal layers (PRL) in 

each of the 48 optic nerve head neuroretinal rim measurement points evaluated. The black 

dotted lines separate the 6 sectors. T = Temporal, ST = supero-temporal, SN = supero-nasal, 

N = nasal, IN = infero-nasal, IT = infero-temporal.
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Figure 5. 
Histograms showing the distribution of protruded retinal layers (PRL) thickness (left plot) 

and PRL thickness relative to the unadjusted minimum rim width (MRW, right plot) in those 

measurement points where PRL were present. The median values of PRL thickness and PRL 

thickness relative to the unadjusted MRW are 53.0 μm and 20.6%, respectively.

Torres et al. Page 16

Acta Ophthalmol. Author manuscript; available in PMC 2019 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
Box plots showing the global and sectoral distribution of the protruded retinal layers (PRL) 

thickness (left plot) and the PRL thickness proportion relative to the MRW (computed PRL 

thickness/unadjusted MRW, right plot). The data points above or below the box plots 

represent values outside the interquartile range. MRW = minimum rim width, G = global, T 

= temporal, ST = supero-temporal, SN = supero-nasal, N = nasal, IN = infero-nasal, IT = 

infero-temporal.
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Figure 7. 
Minimum rim width (MRW) angle distribution. Median and interquartile ranges of all 

measurement points in all subjects are represented by bold lines and gray shading, 

respectively. MRW angle in points with protruded retinal layers (PRL, blue dots). A median 

of 66.7 (interquartile range: 49.5 to 100.0)% of the blue dots were above the bold line, 

indicating that the MRW angles for the points with PRL are generally greater than the MRW 

angles in all points. T = temporal, ST = supero-temporal, SN = supero-nasal, N = nasal, IN = 

infero-nasal, IT = infero-temporal.
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Figure 8. 
Border tissue angle distribution in the optic nerve head. Median and interquartile ranges are 

represented by the bold line and gray shading, respectively. The dashed horizontal line 

separates border tissue angles corresponding to internally oblique configuration (> 90°) and 

externally oblique configuration (< 90°). T = temporal, ST = supero-temporal, SN = supero-

nasal, N = nasal, IN = infero-nasal, IT = infero-temporal.

Torres et al. Page 19

Acta Ophthalmol. Author manuscript; available in PMC 2019 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 9. 
Scatterplot showing the influence of each 10° change in border tissue angle on the frequency 

of protruded retinal layers (PRL). The red line, generated by a logistic mixed effect model, 

represents the predicted relationship. The dashed vertical line separates border tissue angles 

corresponding to internally oblique configuration (> 90°) and externally oblique 

configuration (< 90°).
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Figure 10. 
Scatterplot showing the association between Bruch’s membrane opening (BMO) area and 

the number of measurement points with protruded retinal layers (PRL).
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