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Functional Measure for Lattice Gravity

Myron Bander
Department of Physics, University of California, Irvine, California 92717

C,Received 11 April 1986)

A procedure is developed for transcription of any measure for the integration over metric fields
in the continuum to the Regge-calculus lattice.

PACS numbers; 04.60.+n

A discrete version of Riemannian geometry and its
application to classical Einstein gravity has existed' for
more than twenty years in the form of Regge calculus.
Because of its own intrinsic interest and as a result of
its connection with the study of random lattices, 2 this
subject has had a revival3 4 of interest. Such a discrete
formulation of gravity theories permits us to consider
numerical studies4 of their quantum counterparts. In
addition to a discrete form of the action for such
theories we still need a measure for the functional in-
tegrals appearing in the Feynman quantization pro-
cedure. It is the purpose of this Letter to provide a
transcription of a given continuum measure for quan-
tum gravity to the discrete case. The numerical stud-
ies referred to previously used ad hoc measures. A
prescription for the transferring of an integration mea-
sure from the continuum to the discrete case will like-
wise permit a lattice formulation of the Polyakovs
string theory.

In d space-time dimensions quantum theory is ob-
tained by integrating over the [d(d+ I)/2]-
independent components of the metric tensor g„„(x).
For example the vacuum-to-vacuum amplitude is

Z=& )M(g), dg„„exp[iS[g„„]], (1)
z p, &v

where S[gpv] is an action for gravity and (M, (g) is a
continuum measure. Gauge-fixing terms and integra-
tions over ghosts are implied in p, (g). The reason we

have emphasized that what will be presented in this
work is a transcription of a given continuum measure to
the discrete form is that there exist various prescrip-
tions for the continuum measure p, (g).

(a) De Witt Fujika-wa6 measure A.m—etric on the de-
formations of the space-time metric is chosen as

lit'g„. ll =) d'xi gG "" &—g„„hg„, ()
Gyv)lo [@Ago + @og)t. (2/ d C)@vpo ]

C&0.

Such a metric implies the functional measure

p, (g) = [deti —g G]'/'

j[
'[ ](d-4)(d+1)/8

This is also the measure used by Polyakovs in his
transformation of the bosonic string theory into the
conformally invariant quantum Liouville theory.

(b) Konopleva and Popov7 measure. —This is a scale-
invariant measure

p, (g) = [detG]»= [ —g]
—«+»/

(c) LeutvvyleP Fradkin and-Vilkovisky measure—This measure follows from a canonical treatment of
the gravity problem. It strongly depends on the action
to be quantized. For S[g„„]=Jddxi —g [A —~R]
the vacuum-to-vacuum amplitude in harmonic coordi-
nates is

z = exp(is[g„„]]5(()„(i—ggt'") )det[B„i—ggt'"()„& is+ ] p, (g) dg~„,
Z p ~~v

~(g) (g00)d(d —3)/4( g)(d2 —sd —8)/8 (6)
bein e „is related to the metric tensor g„„by

An integration over an orbit, under coordinate
transformations of a fixed metric g„„, eliminates the
coordinate-fixing & function and the associated
Fade'ev-Popov determinant. As on the lattice we do
not have to fix further a coordinate system, it is only
the p, (g) of Eq. (6) we wish to transcribe.

In the following part of this work it will prove more
convenient to work in the vielbein formalism. The viel

g„„(x)= e „(x)et'„(x)v) /s, (7)

with q ts a flat Minkowski metric. In general, lattice
calculations are performed in Euclidean space; we
shall, however, present our results for the curved
space being locally Minkowski. In part this is due to
the fact that the transition between a Minkowski and
Euclidean formulation of gravity is not as direct as it is
for flat metric field theories. The formal transposition
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plex Swe may take the P~& s'. s emerging from any ver-
tex as the independent set of vielbeins for that simplex.
Equation (9) tells us that two vectors P(i s.and P, s, .

V '7

associated with the same edge but with different sim-
plices must be related by a Lorentz transformation
depending only on the simplices Sand S':

p„,, = [I (s',s)],i„„ (10)

of our results to the Euclidean case is straightforward.
The relation between the integration over the metric
tensor and integrating over the vielbein variables is

dg~„=v g Ide ~. (8)
pgp p. , a

In Regge calculus' curved d-dimensional space-time
is approximated by d-dimensional simplices glued to-
gether at common (d —1)-dimensional subsimplices.
Such a configuration is specified by giving all the edge
lengths ii& between neighboring vertices ij T.hese
edge lengths are the dynamical variables of this theory.
To obtain the functional measure we found it easiest

What is the continuum analog of this relation'? The
continuum vielbeins satisfy

D~e q
= (QJ~) pe

X P(i=0
(lj) 6Q

to work in a vieibein formulation. To this end we will cu„) p is the spin connection, an infinitesimal Lorentz
develop, within Regge calculus, such formalism. transformation and D„ is a vector covariant derivative.

To each edge (;J) of a s,mplex Swe ass,g„a fiat d. Translated to the lattice, this covariant derivative is

dimensional vector P, .s, a = 1, 2, . . . , d, satisfying just the difference of the lattice vielbeins between two
neighboring simplices. The translation of Eq. (11) to

Pij;si (i;sn p= (iii)', the lattice is just Eq. (10).
The transcription of a continuum vielbein measure to

f ll t
.

l 5 .
th

.
1 S Within each sim a lattice is achieved by incorporation of the constraints

implied by Eq. (10) and Eq. (11):

Z;Pa, a
de ~(x) = '

de „(x) '[(da)„) p] v' —g] 5(D„e"„+(m~)"ae „)
ZP a XP eP 'y

The v' —g in the above ensures that the integrations over the spin connections yield a constant independent of the
metric.

Noting that Eq. (10) is the lattice version of Eq. (11), the above result may be transcribed to the lattice:
(

. .dP(i;s. .. . 5 X Pii;s
z~, e $ (y) c$a h, es (rg) 6d,

x dL(S,S
—
) (iss,Nss, ) (d i) -~'" 5(Pu, s [L(S,S ) ]-plPil, s).

$,$' ( i,i) 6 s p s;a
(13)

The single prime indicates that the product is only
over d(d —I)/2 triangles of the simplex S. The prod-
uct over simplices S and S' ranges over pairs having a
common (d —1)-dimensional subsimplex. The
(d —1)-dimensional hypervolume of this subsimplex
is denoted by cuss, and the edge dual to it has length

i~, . The double prime denotes that this product is

over (in view of the first 5 function) any (d —1) in-
dependent edges (i,j) common to both S and S'. lss,

cuss, is one of the lattice analogs3 of 4 —g. There is

one factor I0) for each edge ij in the fmal product.
The integration over the Lorentz transformations

and over the 5-function constraints may be performed
resulting in

~ V" S (v) s.s
""

This is the main result of this work.

We end this Letter with a detailed expression for the
measure in two interesting cases. The Leutwyler-
Fradkin and Vilkovisky measure in four dimensions is

(s)00

& ~ ~ ~ [V I(S) ]3 .- . ll (l . .I. ss' ss'

where g~(S) is the metric component appropriate to
the simplex S; it is expressible in terms of the edge
lengths of this simplex. The measure for the Polyakov
string theory in two dimensions is

p =
' "' [Area(h) ]3i2 ' "' dli (li ) i0i .

(tg)

In this case co(i is the length dual to the (ij) edge.
I wish to thank Dr. Herbert Hamber for many use-
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